#include #include #define IMG_SIZE 0x3e0000 #define KERNEL_START 0x020000 #define KERNEL_SIZE 0x0b0000 #define ROOTFS_START 0x0d0000 #define ROOTFS_SIZE 0x30ffb2 char* app_name; void print_usage(void) { fprintf(stderr, "usage: dgfirmware [] \n"); fprintf(stderr, " firmware image filename\n"); fprintf(stderr, " -h print this message\n"); fprintf(stderr, " -f fix the checksum\n"); fprintf(stderr, " -x extract the rootfs file to \n"); fprintf(stderr, " -xk extract the kernel to \n"); fprintf(stderr, " -m merge in rootfs fil\e from \n"); fprintf(stderr, " -k merge in kernel from \n"); fprintf(stderr, " -w write back the modified firmware\n"); } unsigned char* read_img(const char *fname) { FILE *fp; int size; unsigned char *img; fp = fopen(fname, "rb"); if (fp == NULL) { perror(app_name); exit(-1); } fseek(fp, 0, SEEK_END); size = ftell(fp); if (size != IMG_SIZE) { fprintf(stderr, "%s: image file has wrong size\n", app_name); fclose(fp); exit(-1); } rewind(fp); img = malloc(IMG_SIZE); if (img == NULL) { perror(app_name); fclose(fp); exit(-1); } if (fread(img, 1, IMG_SIZE, fp) != IMG_SIZE) { fprintf(stderr, "%s: can't read image file\n", app_name); fclose(fp); exit(-1); } fclose(fp); return img; } void write_img(unsigned char* img, const char *fname) { FILE *fp; fp = fopen(fname, "wb"); if (fp == NULL) { perror(app_name); exit(-1); } if (fwrite(img, 1, IMG_SIZE, fp) != IMG_SIZE) { fprintf(stderr, "%s: can't write image file\n", app_name); fclose(fp); exit(-1); } } void write_rootfs(unsigned char* img, const char *fname) { FILE *fp; fp = fopen(fname, "wb"); if (fp == NULL) { perror(app_name); exit(-1); } if (fwrite(img+ROOTFS_START, 1, ROOTFS_SIZE, fp) != ROOTFS_SIZE) { fprintf(stderr, "%s: can't write image file\n", app_name); fclose(fp); exit(-1); } } void write_kernel(unsigned char* img, const char *fname) { FILE *fp; fp = fopen(fname, "wb"); if (fp == NULL) { perror(app_name); exit(-1); } if (fwrite(img+KERNEL_START, 1, KERNEL_SIZE, fp) != KERNEL_SIZE) { fprintf(stderr, "%s: can't write kernel file\n", app_name); fclose(fp); exit(-1); } } unsigned char* read_rootfs(unsigned char* img, const char *fname) { FILE *fp; int size; int i; for (i=ROOTFS_START; i ROOTFS_SIZE) { fprintf(stderr, "%s: rootfs image file is too big\n", app_name); fclose(fp); exit(-1); } rewind(fp); if (fread(img+ROOTFS_START, 1, size, fp) != size) { fprintf(stderr, "%s: can't read rootfs image file\n", app_name); fclose(fp); exit(-1); } fclose(fp); return img; } unsigned char* read_kernel(unsigned char* img, const char *fname) { FILE *fp; int size; int i; for (i=KERNEL_START; i KERNEL_SIZE) { fprintf(stderr, "%s: kernel binary file is too big\n", app_name); fclose(fp); exit(-1); } rewind(fp); if (fread(img+KERNEL_START, 1, size, fp) != size) { fprintf(stderr, "%s: can't read kernel file\n", app_name); fclose(fp); exit(-1); } fclose(fp); return img; } int get_checksum(unsigned char* img) { short unsigned s; s = img[0x3dfffc] + (img[0x3dfffd]<<8); return s; } void set_checksum(unsigned char*img, unsigned short sum) { img[0x3dfffc] = sum & 0xff; img[0x3dfffd] = (sum>>8) & 0xff; } int compute_checksum(unsigned char* img) { int i; short s=0; for (i=0; i<0x3dfffc; i++) s += img[i]; return s; } int main(int argc, char* argv[]) { char *img_fname = NULL; char *rootfs_fname = NULL; char *kernel_fname = NULL; char *new_img_fname = NULL; int do_fix_checksum = 0; int do_write = 0; int do_write_rootfs = 0; int do_read_rootfs = 0; int do_write_kernel = 0; int do_read_kernel = 0; int i; unsigned char *img; unsigned short img_checksum; unsigned short real_checksum; app_name = argv[0]; for (i=1; i= argc) { fprintf(stderr, "%s: missing argument\n", app_name); return -1; } do_write_rootfs = 1; rootfs_fname = argv[i+1]; i++; } else if (!strcmp(argv[i], "-xk")) { if (i+1 >= argc) { fprintf(stderr, "%s: missing argument\n", app_name); return -1; } do_write_kernel = 1; kernel_fname = argv[i+1]; i++; } else if (!strcmp(argv[i], "-m")) { if (i+1 >= argc) { fprintf(stderr, "%s: missing argument\n", app_name); return -1; } do_read_rootfs = 1; rootfs_fname = argv[i+1]; i++; } else if (!strcmp(argv[i], "-k")) { if (i+1 >= argc) { fprintf(stderr, "%s: missing argument\n", app_name); return -1; } do_read_kernel = 1; kernel_fname = argv[i+1]; i++; } else if (!strcmp(argv[i], "-w")) { if (i+1 >= argc) { fprintf(stderr, "%s: missing argument\n", app_name); return -1; } do_write = 1; new_img_fname = argv[i+1]; i++; } else if (img_fname != 0) { fprintf(stderr, "%s: too many arguments\n", app_name); return -1; } else { img_fname = argv[i]; } } if (img_fname == NULL) { fprintf(stderr, "%s: missing argument\n", app_name); return -1; } if ((do_read_rootfs && do_write_rootfs) || (do_read_kernel && do_write_kernel)) { fprintf(stderr, "%s: conflictuous options\n", app_name); return -1; } printf ("** Read firmware file\n"); img = read_img(img_fname); printf ("Firmware product: %s\n", img+0x3dffbd); printf ("Firmware version: 1.%02d.%02d\n", (img[0x3dffeb] & 0x7f), img[0x3dffec]); if (do_write_rootfs) { printf ("** Write rootfs file\n"); write_rootfs(img, rootfs_fname); } if (do_write_kernel) { printf ("** Write kernel file\n"); write_kernel(img, kernel_fname); } if (do_read_rootfs) { printf ("** Read rootfs file\n"); read_rootfs(img, rootfs_fname); do_fix_checksum = 1; } if (do_read_kernel) { printf ("** Read kernel file\n"); read_kernel(img, kernel_fname); do_fix_checksum = 1; } img_checksum = get_checksum(img); real_checksum = compute_checksum(img); printf ("image checksum = %04x\n", img_checksum); printf ("real checksum = %04x\n", real_checksum); if (do_fix_checksum) { if (img_checksum != real_checksum) { printf ("** Bad Checksum, fix it\n"); set_checksum(img, real_checksum); } else { printf ("** Checksum is correct, good\n"); } } if (do_write) { printf ("** Write image file\n"); write_img(img, new_img_fname); } free(img); return 0; } 127'>127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/*
 *  Portable interface to the CPU cycle counter
 *
 *  Based on XySSL: Copyright (C) 2006-2008  Christophe Devine
 *
 *  Copyright (C) 2009  Paul Bakker <polarssl_maintainer at polarssl dot org>
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in the
 *      documentation and/or other materials provided with the distribution.
 *    * Neither the names of PolarSSL or XySSL nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 *  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 *  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "polarssl/config.h"

#if defined(POLARSSL_TIMING_C)

#include "polarssl/timing.h"

#if defined(WIN32)

#include <windows.h>
#include <winbase.h>

struct _hr_time
{
    LARGE_INTEGER start;
};

#else

#include <unistd.h>
#include <sys/types.h>
#include <sys/time.h>
#include <signal.h>
#include <time.h>

struct _hr_time
{
    struct timeval start;
};

#endif

#if (defined(_MSC_VER) && defined(_M_IX86)) || defined(__WATCOMC__)

unsigned long hardclock( void )
{
    unsigned long tsc;
    __asm   rdtsc
    __asm   mov  [tsc], eax
    return( tsc );
}

#else
#if defined(__GNUC__) && defined(__i386__)

unsigned long hardclock( void )
{
    unsigned long tsc;
    asm( "rdtsc" : "=a" (tsc) );
    return( tsc );
}

#else
#if defined(__GNUC__) && (defined(__amd64__) || defined(__x86_64__))

unsigned long hardclock( void )
{
    unsigned long lo, hi;
    asm( "rdtsc" : "=a" (lo), "=d" (hi) );
    return( lo | (hi << 32) );
}

#else
#if defined(__GNUC__) && (defined(__powerpc__) || defined(__ppc__))

unsigned long hardclock( void )
{
    unsigned long tbl, tbu0, tbu1;

    do
    {
        asm( "mftbu %0" : "=r" (tbu0) );
        asm( "mftb  %0" : "=r" (tbl ) );
        asm( "mftbu %0" : "=r" (tbu1) );
    }
    while( tbu0 != tbu1 );

    return( tbl );
}

#else
#if defined(__GNUC__) && defined(__sparc__)

unsigned long hardclock( void )
{
    unsigned long tick;
    asm( ".byte 0x83, 0x41, 0x00, 0x00" );
    asm( "mov   %%g1, %0" : "=r" (tick) );
    return( tick );
}

#else
#if defined(__GNUC__) && defined(__alpha__)

unsigned long hardclock( void )
{
    unsigned long cc;
    asm( "rpcc %0" : "=r" (cc) );
    return( cc & 0xFFFFFFFF );
}

#else
#if defined(__GNUC__) && defined(__ia64__)

unsigned long hardclock( void )
{
    unsigned long itc;
    asm( "mov %0 = ar.itc" : "=r" (itc) );
    return( itc );
}

#else

static int hardclock_init = 0;
static struct timeval tv_init;

unsigned long hardclock( void )
{
    struct timeval tv_cur;

    if( hardclock_init == 0 )
    {
        gettimeofday( &tv_init, NULL );
        hardclock_init = 1;
    }

    gettimeofday( &tv_cur, NULL );
    return( ( tv_cur.tv_sec  - tv_init.tv_sec  ) * 1000000
          + ( tv_cur.tv_usec - tv_init.tv_usec ) );
}

#endif /* generic */
#endif /* IA-64   */
#endif /* Alpha   */
#endif /* SPARC8  */
#endif /* PowerPC */
#endif /* AMD64   */
#endif /* i586+   */

int alarmed = 0;

#if defined(WIN32)

unsigned long get_timer( struct hr_time *val, int reset )
{
    unsigned long delta;
    LARGE_INTEGER offset, hfreq;
    struct _hr_time *t = (struct _hr_time *) val;

    QueryPerformanceCounter(  &offset );
    QueryPerformanceFrequency( &hfreq );

    delta = (unsigned long)( ( 1000 *
        ( offset.QuadPart - t->start.QuadPart ) ) /
           hfreq.QuadPart );

    if( reset )
        QueryPerformanceCounter( &t->start );

    return( delta );
}

DWORD WINAPI TimerProc( LPVOID uElapse )
{
    Sleep( (DWORD) uElapse );
    alarmed = 1;
    return( TRUE );
}

void set_alarm( int seconds )
{
    DWORD ThreadId;

    alarmed = 0;
    CloseHandle( CreateThread( NULL, 0, TimerProc,
        (LPVOID) ( seconds * 1000 ), 0, &ThreadId ) );
}

void m_sleep( int milliseconds )
{
    Sleep( milliseconds );
}

#else

unsigned long get_timer( struct hr_time *val, int reset )
{
    unsigned long delta;
    struct timeval offset;
    struct _hr_time *t = (struct _hr_time *) val;

    gettimeofday( &offset, NULL );

    delta = ( offset.tv_sec  - t->start.tv_sec  ) * 1000
          + ( offset.tv_usec - t->start.tv_usec ) / 1000;

    if( reset )
    {
        t->start.tv_sec  = offset.tv_sec;
        t->start.tv_usec = offset.tv_usec;
    }

    return( delta );
}

static void sighandler( int signum )
{
    alarmed = 1;
    signal( signum, sighandler );
}

void set_alarm( int seconds )
{
    alarmed = 0;
    signal( SIGALRM, sighandler );
    alarm( seconds );
}

void m_sleep( int milliseconds )
{
    struct timeval tv;

    tv.tv_sec  = milliseconds / 1000;
    tv.tv_usec = milliseconds * 1000;

    select( 0, NULL, NULL, NULL, &tv );
}

#endif

#endif