aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ramips
diff options
context:
space:
mode:
authorJohn Crispin <john@openwrt.org>2013-11-18 09:35:23 +0000
committerJohn Crispin <john@openwrt.org>2013-11-18 09:35:23 +0000
commitf307b35c8bcad691dbefb316105117addec9dbef (patch)
treed4baefd920266bf5be07c89dcc8c4e5a493fdfc9 /target/linux/ramips
parent9d4eb0ac917d38b54d11067cf5af0ca1b026ecb4 (diff)
downloadupstream-f307b35c8bcad691dbefb316105117addec9dbef.tar.gz
upstream-f307b35c8bcad691dbefb316105117addec9dbef.tar.bz2
upstream-f307b35c8bcad691dbefb316105117addec9dbef.zip
ralink: add mt7620 nand driver
This is a minor rework of the SDK driver. This driver needs a full rewrite. Signed-off-by: John Crispin <blogic@openwrt.org> SVN-Revision: 38846
Diffstat (limited to 'target/linux/ramips')
-rw-r--r--target/linux/ramips/mt7620a/config-3.101
-rw-r--r--target/linux/ramips/patches-3.10/0250-nand-7620.patch2417
2 files changed, 2418 insertions, 0 deletions
diff --git a/target/linux/ramips/mt7620a/config-3.10 b/target/linux/ramips/mt7620a/config-3.10
index 62195bd198..21d5be1d52 100644
--- a/target/linux/ramips/mt7620a/config-3.10
+++ b/target/linux/ramips/mt7620a/config-3.10
@@ -96,6 +96,7 @@ CONFIG_MODULES_USE_ELF_REL=y
# CONFIG_MTD_CFI_INTELEXT is not set
CONFIG_MTD_CMDLINE_PARTS=y
CONFIG_MTD_M25P80=y
+CONFIG_MTD_NAND_MT7620=y
CONFIG_MTD_OF_PARTS=y
CONFIG_MTD_PHYSMAP=y
CONFIG_MTD_PHYSMAP_OF=y
diff --git a/target/linux/ramips/patches-3.10/0250-nand-7620.patch b/target/linux/ramips/patches-3.10/0250-nand-7620.patch
new file mode 100644
index 0000000000..c9a845d44d
--- /dev/null
+++ b/target/linux/ramips/patches-3.10/0250-nand-7620.patch
@@ -0,0 +1,2417 @@
+From a5fc495c8dc199ffa997d43331693a5b7ee07270 Mon Sep 17 00:00:00 2001
+From: John Crispin <blogic@openwrt.org>
+Date: Sun, 17 Nov 2013 17:41:46 +0100
+Subject: [PATCH] ralink: add mt7620 nand driver
+
+Signed-off-by: John Crispin <blogic@openwrt.org>
+---
+ drivers/mtd/maps/Kconfig | 4 +
+ drivers/mtd/maps/Makefile | 2 +
+ drivers/mtd/maps/ralink_nand.c | 2136 ++++++++++++++++++++++++++++++++++++++++
+ drivers/mtd/maps/ralink_nand.h | 232 +++++
+ drivers/mtd/nand/Makefile | 2 +-
+ 5 files changed, 2375 insertions(+), 1 deletion(-)
+ create mode 100644 drivers/mtd/maps/ralink_nand.c
+ create mode 100644 drivers/mtd/maps/ralink_nand.h
+
+Index: linux-3.10.18/drivers/mtd/maps/Kconfig
+===================================================================
+--- linux-3.10.18.orig/drivers/mtd/maps/Kconfig 2013-11-17 17:50:02.049020043 +0100
++++ linux-3.10.18/drivers/mtd/maps/Kconfig 2013-11-17 17:51:50.545024547 +0100
+@@ -424,4 +424,8 @@
+
+ If compiled as a module, it will be called latch-addr-flash.
+
++config MTD_NAND_MT7620
++ tristate "Support for NAND on Mediatek MT7620"
++ depends on RALINK && SOC_MT7620
++
+ endmenu
+Index: linux-3.10.18/drivers/mtd/maps/Makefile
+===================================================================
+--- linux-3.10.18.orig/drivers/mtd/maps/Makefile 2013-11-17 17:50:02.049020043 +0100
++++ linux-3.10.18/drivers/mtd/maps/Makefile 2013-11-17 17:51:50.545024547 +0100
+@@ -46,3 +46,5 @@
+ obj-$(CONFIG_MTD_GPIO_ADDR) += gpio-addr-flash.o
+ obj-$(CONFIG_MTD_LATCH_ADDR) += latch-addr-flash.o
+ obj-$(CONFIG_MTD_LANTIQ) += lantiq-flash.o
++obj-$(CONFIG_MTD_NAND_MT7620) += ralink_nand.o
++
+Index: linux-3.10.18/drivers/mtd/maps/ralink_nand.c
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ linux-3.10.18/drivers/mtd/maps/ralink_nand.c 2013-11-17 17:51:50.549024547 +0100
+@@ -0,0 +1,2136 @@
++#define DEBUG
++#include <linux/device.h>
++#undef DEBUG
++#include <linux/slab.h>
++#include <linux/mtd/mtd.h>
++#include <linux/delay.h>
++#include <linux/module.h>
++#include <linux/interrupt.h>
++#include <linux/dma-mapping.h>
++#include <linux/mtd/partitions.h>
++#include <asm/io.h>
++#include <linux/delay.h>
++#include <linux/sched.h>
++#include <linux/of.h>
++#include <linux/platform_device.h>
++
++#include "ralink_nand.h"
++#ifdef RANDOM_GEN_BAD_BLOCK
++#include <linux/random.h>
++#endif
++
++#define LARGE_MTD_BOOT_PART_SIZE (CFG_BLOCKSIZE<<2)
++#define LARGE_MTD_CONFIG_PART_SIZE (CFG_BLOCKSIZE<<2)
++#define LARGE_MTD_FACTORY_PART_SIZE (CFG_BLOCKSIZE<<1)
++
++
++#define BLOCK_ALIGNED(a) ((a) & (CFG_BLOCKSIZE - 1))
++
++#define READ_STATUS_RETRY 1000
++
++struct mtd_info *ranfc_mtd = NULL;
++
++int skipbbt = 0;
++int ranfc_debug = 1;
++static int ranfc_bbt = 1;
++#if defined (WORKAROUND_RX_BUF_OV)
++static int ranfc_verify = 1;
++#endif
++static u32 nand_addrlen;
++
++#if 0
++module_param(ranfc_debug, int, 0644);
++module_param(ranfc_bbt, int, 0644);
++module_param(ranfc_verify, int, 0644);
++#endif
++
++#if 0
++#define ra_dbg(args...) do { if (ranfc_debug) printk(args); } while(0)
++#else
++#define ra_dbg(args...)
++#endif
++
++#define CLEAR_INT_STATUS() ra_outl(NFC_INT_ST, ra_inl(NFC_INT_ST))
++#define NFC_TRANS_DONE() (ra_inl(NFC_INT_ST) & INT_ST_ND_DONE)
++
++int is_nand_page_2048 = 0;
++const unsigned int nand_size_map[2][3] = {{25, 30, 30}, {20, 27, 30}};
++
++static int nfc_wait_ready(int snooze_ms);
++
++static const char * const mtk_probe_types[] = { "cmdlinepart", "ofpart", NULL };
++
++/**
++ * reset nand chip
++ */
++static int nfc_chip_reset(void)
++{
++ int status;
++
++ //ra_dbg("%s:\n", __func__);
++
++ // reset nand flash
++ ra_outl(NFC_CMD1, 0x0);
++ ra_outl(NFC_CMD2, 0xff);
++ ra_outl(NFC_ADDR, 0x0);
++ ra_outl(NFC_CONF, 0x0411);
++
++ status = nfc_wait_ready(5); //erase wait 5us
++ if (status & NAND_STATUS_FAIL) {
++ printk("%s: fail \n", __func__);
++ }
++
++ return (int)(status & NAND_STATUS_FAIL);
++
++}
++
++
++
++/**
++ * clear NFC and flash chip.
++ */
++static int nfc_all_reset(void)
++{
++ int retry;
++
++ ra_dbg("%s: \n", __func__);
++
++ // reset controller
++ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x02); //clear data buffer
++ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) & ~0x02); //clear data buffer
++
++ CLEAR_INT_STATUS();
++
++ retry = READ_STATUS_RETRY;
++ while ((ra_inl(NFC_INT_ST) & 0x02) != 0x02 && retry--);
++ if (retry <= 0) {
++ printk("nfc_all_reset: clean buffer fail \n");
++ return -1;
++ }
++
++ retry = READ_STATUS_RETRY;
++ while ((ra_inl(NFC_STATUS) & 0x1) != 0x0 && retry--) { //fixme, controller is busy ?
++ udelay(1);
++ }
++
++ nfc_chip_reset();
++
++ return 0;
++}
++
++/** NOTICE: only called by nfc_wait_ready().
++ * @return -1, nfc can not get transction done
++ * @return 0, ok.
++ */
++static int _nfc_read_status(char *status)
++{
++ unsigned long cmd1, conf;
++ int int_st, nfc_st;
++ int retry;
++
++ cmd1 = 0x70;
++ conf = 0x000101 | (1 << 20);
++
++ //fixme, should we check nfc status?
++ CLEAR_INT_STATUS();
++
++ ra_outl(NFC_CMD1, cmd1);
++ ra_outl(NFC_CONF, conf);
++
++ /* FIXME,
++ * 1. since we have no wired ready signal, directly
++ * calling this function is not gurantee to read right status under ready state.
++ * 2. the other side, we can not determine how long to become ready, this timeout retry is nonsense.
++ * 3. SUGGESTION: call nfc_read_status() from nfc_wait_ready(),
++ * that is aware about caller (in sementics) and has snooze plused nfc ND_DONE.
++ */
++ retry = READ_STATUS_RETRY;
++ do {
++ nfc_st = ra_inl(NFC_STATUS);
++ int_st = ra_inl(NFC_INT_ST);
++
++ ndelay(10);
++ } while (!(int_st & INT_ST_RX_BUF_RDY) && retry--);
++
++ if (!(int_st & INT_ST_RX_BUF_RDY)) {
++ printk("nfc_read_status: NFC fail, int_st(%x), retry:%x. nfc:%x, reset nfc and flash. \n",
++ int_st, retry, nfc_st);
++ nfc_all_reset();
++ *status = NAND_STATUS_FAIL;
++ return -1;
++ }
++
++ *status = (char)(le32_to_cpu(ra_inl(NFC_DATA)) & 0x0ff);
++ return 0;
++}
++
++/**
++ * @return !0, chip protect.
++ * @return 0, chip not protected.
++ */
++static int nfc_check_wp(void)
++{
++ /* Check the WP bit */
++#if !defined CONFIG_NOT_SUPPORT_WP
++ return !!(ra_inl(NFC_CTRL) & 0x01);
++#else
++ char result = 0;
++ int ret;
++
++ ret = _nfc_read_status(&result);
++ //FIXME, if ret < 0
++
++ return !(result & NAND_STATUS_WP);
++#endif
++}
++
++#if !defined CONFIG_NOT_SUPPORT_RB
++/*
++ * @return !0, chip ready.
++ * @return 0, chip busy.
++ */
++static int nfc_device_ready(void)
++{
++ /* Check the ready */
++ return !!(ra_inl(NFC_STATUS) & 0x04);
++}
++#endif
++
++
++/**
++ * generic function to get data from flash.
++ * @return data length reading from flash.
++ */
++static int _ra_nand_pull_data(char *buf, int len, int use_gdma)
++{
++#ifdef RW_DATA_BY_BYTE
++ char *p = buf;
++#else
++ __u32 *p = (__u32 *)buf;
++#endif
++ int retry, int_st;
++ unsigned int ret_data;
++ int ret_size;
++
++ // receive data by use_gdma
++ if (use_gdma) {
++ //if (_ra_nand_dma_pull((unsigned long)p, len)) {
++ if (1) {
++ printk("%s: fail \n", __func__);
++ len = -1; //return error
++ }
++
++ return len;
++ }
++
++ //fixme: retry count size?
++ retry = READ_STATUS_RETRY;
++ // no gdma
++ while (len > 0) {
++ int_st = ra_inl(NFC_INT_ST);
++ if (int_st & INT_ST_RX_BUF_RDY) {
++
++ ret_data = ra_inl(NFC_DATA);
++ ra_outl(NFC_INT_ST, INT_ST_RX_BUF_RDY);
++#ifdef RW_DATA_BY_BYTE
++ ret_size = sizeof(unsigned int);
++ ret_size = min(ret_size, len);
++ len -= ret_size;
++ while (ret_size-- > 0) {
++ //nfc is little endian
++ *p++ = ret_data & 0x0ff;
++ ret_data >>= 8;
++ }
++#else
++ ret_size = min(len, 4);
++ len -= ret_size;
++ if (ret_size == 4)
++ *p++ = ret_data;
++ else {
++ __u8 *q = (__u8 *)p;
++ while (ret_size-- > 0) {
++ *q++ = ret_data & 0x0ff;
++ ret_data >>= 8;
++ }
++ p = (__u32 *)q;
++ }
++#endif
++ retry = READ_STATUS_RETRY;
++ }
++ else if (int_st & INT_ST_ND_DONE) {
++ break;
++ }
++ else {
++ udelay(1);
++ if (retry-- < 0)
++ break;
++ }
++ }
++
++#ifdef RW_DATA_BY_BYTE
++ return (int)(p - buf);
++#else
++ return ((int)p - (int)buf);
++#endif
++}
++
++/**
++ * generic function to put data into flash.
++ * @return data length writing into flash.
++ */
++static int _ra_nand_push_data(char *buf, int len, int use_gdma)
++{
++#ifdef RW_DATA_BY_BYTE
++ char *p = buf;
++#else
++ __u32 *p = (__u32 *)buf;
++#endif
++ int retry, int_st;
++ unsigned int tx_data = 0;
++ int tx_size, iter = 0;
++
++ // receive data by use_gdma
++ if (use_gdma) {
++ //if (_ra_nand_dma_push((unsigned long)p, len))
++ if (1)
++ len = 0;
++ printk("%s: fail \n", __func__);
++ return len;
++ }
++
++ // no gdma
++ retry = READ_STATUS_RETRY;
++ while (len > 0) {
++ int_st = ra_inl(NFC_INT_ST);
++ if (int_st & INT_ST_TX_BUF_RDY) {
++#ifdef RW_DATA_BY_BYTE
++ tx_size = min(len, (int)sizeof(unsigned long));
++ for (iter = 0; iter < tx_size; iter++) {
++ tx_data |= (*p++ << (8*iter));
++ }
++#else
++ tx_size = min(len, 4);
++ if (tx_size == 4)
++ tx_data = (*p++);
++ else {
++ __u8 *q = (__u8 *)p;
++ for (iter = 0; iter < tx_size; iter++)
++ tx_data |= (*q++ << (8*iter));
++ p = (__u32 *)q;
++ }
++#endif
++ ra_outl(NFC_INT_ST, INT_ST_TX_BUF_RDY);
++ ra_outl(NFC_DATA, tx_data);
++ len -= tx_size;
++ retry = READ_STATUS_RETRY;
++ }
++ else if (int_st & INT_ST_ND_DONE) {
++ break;
++ }
++ else {
++ udelay(1);
++ if (retry-- < 0) {
++ ra_dbg("%s p:%p buf:%p \n", __func__, p, buf);
++ break;
++ }
++ }
++ }
++
++
++#ifdef RW_DATA_BY_BYTE
++ return (int)(p - buf);
++#else
++ return ((int)p - (int)buf);
++#endif
++
++}
++
++static int nfc_select_chip(struct ra_nand_chip *ra, int chipnr)
++{
++#if (CONFIG_NUMCHIPS == 1)
++ if (!(chipnr < CONFIG_NUMCHIPS))
++ return -1;
++ return 0;
++#else
++ BUG();
++#endif
++}
++
++/** @return -1: chip_select fail
++ * 0 : both CE and WP==0 are OK
++ * 1 : CE OK and WP==1
++ */
++static int nfc_enable_chip(struct ra_nand_chip *ra, unsigned int offs, int read_only)
++{
++ int chipnr = offs >> ra->chip_shift;
++
++ ra_dbg("%s: offs:%x read_only:%x \n", __func__, offs, read_only);
++
++ chipnr = nfc_select_chip(ra, chipnr);
++ if (chipnr < 0) {
++ printk("%s: chip select error, offs(%x)\n", __func__, offs);
++ return -1;
++ }
++
++ if (!read_only)
++ return nfc_check_wp();
++
++ return 0;
++}
++
++/** wait nand chip becomeing ready and return queried status.
++ * @param snooze: sleep time in ms unit before polling device ready.
++ * @return status of nand chip
++ * @return NAN_STATUS_FAIL if something unexpected.
++ */
++static int nfc_wait_ready(int snooze_ms)
++{
++ int retry;
++ char status;
++
++ // wait nfc idle,
++ if (snooze_ms == 0)
++ snooze_ms = 1;
++ else
++ schedule_timeout(snooze_ms * HZ / 1000);
++
++ snooze_ms = retry = snooze_ms *1000000 / 100 ; // ndelay(100)
++
++ while (!NFC_TRANS_DONE() && retry--) {
++ if (!cond_resched())
++ ndelay(100);
++ }
++
++ if (!NFC_TRANS_DONE()) {
++ printk("nfc_wait_ready: no transaction done \n");
++ return NAND_STATUS_FAIL;
++ }
++
++#if !defined (CONFIG_NOT_SUPPORT_RB)
++ //fixme
++ while(!(status = nfc_device_ready()) && retry--) {
++ ndelay(100);
++ }
++
++ if (status == 0) {
++ printk("nfc_wait_ready: no device ready. \n");
++ return NAND_STATUS_FAIL;
++ }
++
++ _nfc_read_status(&status);
++ return status;
++#else
++
++ while(retry--) {
++ _nfc_read_status(&status);
++ if (status & NAND_STATUS_READY)
++ break;
++ ndelay(100);
++ }
++ if (retry<0)
++ printk("nfc_wait_ready 2: no device ready, status(%x). \n", status);
++
++ return status;
++#endif
++}
++
++/**
++ * return 0: erase OK
++ * return -EIO: fail
++ */
++int nfc_erase_block(struct ra_nand_chip *ra, int row_addr)
++{
++ unsigned long cmd1, cmd2, bus_addr, conf;
++ char status;
++
++ cmd1 = 0x60;
++ cmd2 = 0xd0;
++ bus_addr = row_addr;
++ conf = 0x00511 | ((CFG_ROW_ADDR_CYCLE)<<16);
++
++ // set NFC
++ ra_dbg("%s: cmd1: %lx, cmd2:%lx bus_addr: %lx, conf: %lx \n",
++ __func__, cmd1, cmd2, bus_addr, conf);
++
++ //fixme, should we check nfc status?
++ CLEAR_INT_STATUS();
++
++ ra_outl(NFC_CMD1, cmd1);
++ ra_outl(NFC_CMD2, cmd2);
++ ra_outl(NFC_ADDR, bus_addr);
++ ra_outl(NFC_CONF, conf);
++
++ status = nfc_wait_ready(3); //erase wait 3ms
++ if (status & NAND_STATUS_FAIL) {
++ printk("%s: fail \n", __func__);
++ return -EIO;
++ }
++
++ return 0;
++
++}
++
++static inline int _nfc_read_raw_data(int cmd1, int cmd2, int bus_addr, int bus_addr2, int conf, char *buf, int len, int flags)
++{
++ int ret;
++
++ CLEAR_INT_STATUS();
++ ra_outl(NFC_CMD1, cmd1);
++ ra_outl(NFC_CMD2, cmd2);
++ ra_outl(NFC_ADDR, bus_addr);
++#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
++ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
++ ra_outl(NFC_ADDR2, bus_addr2);
++#endif
++ ra_outl(NFC_CONF, conf);
++
++ ret = _ra_nand_pull_data(buf, len, 0);
++ if (ret != len) {
++ ra_dbg("%s: ret:%x (%x) \n", __func__, ret, len);
++ return NAND_STATUS_FAIL;
++ }
++
++ //FIXME, this section is not necessary
++ ret = nfc_wait_ready(0); //wait ready
++ /* to prevent the DATA FIFO 's old data from next operation */
++ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x02); //clear data buffer
++ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) & ~0x02); //clear data buffer
++
++ if (ret & NAND_STATUS_FAIL) {
++ printk("%s: fail \n", __func__);
++ return NAND_STATUS_FAIL;
++ }
++
++ return 0;
++}
++
++static inline int _nfc_write_raw_data(int cmd1, int cmd3, int bus_addr, int bus_addr2, int conf, char *buf, int len, int flags)
++{
++ int ret;
++
++ CLEAR_INT_STATUS();
++ ra_outl(NFC_CMD1, cmd1);
++ ra_outl(NFC_CMD3, cmd3);
++ ra_outl(NFC_ADDR, bus_addr);
++#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
++ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
++ ra_outl(NFC_ADDR2, bus_addr2);
++#endif
++ ra_outl(NFC_CONF, conf);
++
++ ret = _ra_nand_push_data(buf, len, 0);
++ if (ret != len) {
++ ra_dbg("%s: ret:%x (%x) \n", __func__, ret, len);
++ return NAND_STATUS_FAIL;
++ }
++
++ ret = nfc_wait_ready(1); //write wait 1ms
++ /* to prevent the DATA FIFO 's old data from next operation */
++ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x02); //clear data buffer
++ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) & ~0x02); //clear data buffer
++
++ if (ret & NAND_STATUS_FAIL) {
++ printk("%s: fail \n", __func__);
++ return NAND_STATUS_FAIL;
++ }
++
++ return 0;
++}
++
++/**
++ * @return !0: fail
++ * @return 0: OK
++ */
++int nfc_read_oob(struct ra_nand_chip *ra, int page, unsigned int offs, char *buf, int len, int flags)
++{
++ unsigned int cmd1 = 0, cmd2 = 0, conf = 0;
++ unsigned int bus_addr = 0, bus_addr2 = 0;
++ unsigned int ecc_en;
++ int use_gdma;
++ int status;
++
++ int pages_perblock = 1<<(ra->erase_shift - ra->page_shift);
++ // constrain of nfc read function
++
++#if defined (WORKAROUND_RX_BUF_OV)
++ BUG_ON (len > 60); //problem of rx-buffer overrun
++#endif
++ BUG_ON (offs >> ra->oob_shift); //page boundry
++ BUG_ON ((unsigned int)(((offs + len) >> ra->oob_shift) + page) >
++ ((page + pages_perblock) & ~(pages_perblock-1))); //block boundry
++
++ use_gdma = flags & FLAG_USE_GDMA;
++ ecc_en = flags & FLAG_ECC_EN;
++ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)) | (offs & ((1<<CFG_COLUMN_ADDR_CYCLE*8) - 1));
++
++ if (is_nand_page_2048) {
++ bus_addr += CFG_PAGESIZE;
++ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
++ cmd1 = 0x0;
++ cmd2 = 0x30;
++ conf = 0x000511| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
++ }
++ else {
++ cmd1 = 0x50;
++ conf = 0x000141| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
++ }
++ if (ecc_en)
++ conf |= (1<<3);
++ if (use_gdma)
++ conf |= (1<<2);
++
++ ra_dbg("%s: cmd1:%x, bus_addr:%x, conf:%x, len:%x, flag:%x\n",
++ __func__, cmd1, bus_addr, conf, len, flags);
++
++ status = _nfc_read_raw_data(cmd1, cmd2, bus_addr, bus_addr2, conf, buf, len, flags);
++ if (status & NAND_STATUS_FAIL) {
++ printk("%s: fail\n", __func__);
++ return -EIO;
++ }
++
++ return 0;
++}
++
++/**
++ * @return !0: fail
++ * @return 0: OK
++ */
++int nfc_write_oob(struct ra_nand_chip *ra, int page, unsigned int offs, char *buf, int len, int flags)
++{
++ unsigned int cmd1 = 0, cmd3=0, conf = 0;
++ unsigned int bus_addr = 0, bus_addr2 = 0;
++ int use_gdma;
++ int status;
++
++ int pages_perblock = 1<<(ra->erase_shift - ra->page_shift);
++ // constrain of nfc read function
++
++ BUG_ON (offs >> ra->oob_shift); //page boundry
++ BUG_ON ((unsigned int)(((offs + len) >> ra->oob_shift) + page) >
++ ((page + pages_perblock) & ~(pages_perblock-1))); //block boundry
++
++ use_gdma = flags & FLAG_USE_GDMA;
++ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)) | (offs & ((1<<CFG_COLUMN_ADDR_CYCLE*8) - 1));
++
++ if (is_nand_page_2048) {
++ cmd1 = 0x80;
++ cmd3 = 0x10;
++ bus_addr += CFG_PAGESIZE;
++ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
++ conf = 0x001123 | ((CFG_ADDR_CYCLE)<<16) | ((len) << 20);
++ }
++ else {
++ cmd1 = 0x08050;
++ cmd3 = 0x10;
++ conf = 0x001223 | ((CFG_ADDR_CYCLE)<<16) | ((len) << 20);
++ }
++ if (use_gdma)
++ conf |= (1<<2);
++
++ // set NFC
++ ra_dbg("%s: cmd1: %x, cmd3: %x bus_addr: %x, conf: %x, len:%x\n",
++ __func__, cmd1, cmd3, bus_addr, conf, len);
++
++ status = _nfc_write_raw_data(cmd1, cmd3, bus_addr, bus_addr2, conf, buf, len, flags);
++ if (status & NAND_STATUS_FAIL) {
++ printk("%s: fail \n", __func__);
++ return -EIO;
++ }
++
++ return 0;
++}
++
++
++int nfc_read_page(struct ra_nand_chip *ra, char *buf, int page, int flags);
++int nfc_write_page(struct ra_nand_chip *ra, char *buf, int page, int flags);
++
++
++#if !defined (WORKAROUND_RX_BUF_OV)
++static int one_bit_correction(char *ecc, char *expected, int *bytes, int *bits);
++int nfc_ecc_verify(struct ra_nand_chip *ra, char *buf, int page, int mode)
++{
++ int ret, i;
++ char *p, *e;
++ int ecc;
++
++ //ra_dbg("%s, page:%x mode:%d\n", __func__, page, mode);
++
++ if (mode == FL_WRITING) {
++ int len = CFG_PAGESIZE + CFG_PAGE_OOBSIZE;
++ int conf = 0x000141| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
++ conf |= (1<<3); //(ecc_en)
++ //conf |= (1<<2); // (use_gdma)
++
++ p = ra->readback_buffers;
++ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_ECC_EN);
++ if (ret == 0)
++ goto ecc_check;
++
++ //FIXME, double comfirm
++ printk("%s: read back fail, try again \n",__func__);
++ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_ECC_EN);
++ if (ret != 0) {
++ printk("\t%s: read back fail agian \n",__func__);
++ goto bad_block;
++ }
++ }
++ else if (mode == FL_READING) {
++ p = buf;
++ }
++ else
++ return -2;
++
++ecc_check:
++ p += CFG_PAGESIZE;
++ if (!is_nand_page_2048) {
++ ecc = ra_inl(NFC_ECC);
++ if (ecc == 0) //clean page.
++ return 0;
++ e = (char*)&ecc;
++ for (i=0; i<CONFIG_ECC_BYTES; i++) {
++ int eccpos = CONFIG_ECC_OFFSET + i;
++ if (*(p + eccpos) != (char)0xff)
++ break;
++ if (i == CONFIG_ECC_BYTES - 1) {
++ printk("skip ecc 0xff at page %x\n", page);
++ return 0;
++ }
++ }
++ for (i=0; i<CONFIG_ECC_BYTES; i++) {
++ int eccpos = CONFIG_ECC_OFFSET + i;
++ if (*(p + eccpos) != *(e + i)) {
++ printk("%s mode:%s, invalid ecc, page: %x read:%x %x %x, ecc:%x \n",
++ __func__, (mode == FL_READING)?"read":"write", page,
++ *(p+ CONFIG_ECC_OFFSET), *(p+ CONFIG_ECC_OFFSET+1), *(p+ CONFIG_ECC_OFFSET +2), ecc);
++ return -1;
++ }
++ }
++ }
++#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
++ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
++ else {
++ int ecc2, ecc3, ecc4, qsz;
++ char *e2, *e3, *e4;
++ int correction_flag = 0;
++ ecc = ra_inl(NFC_ECC_P1);
++ ecc2 = ra_inl(NFC_ECC_P2);
++ ecc3 = ra_inl(NFC_ECC_P3);
++ ecc4 = ra_inl(NFC_ECC_P4);
++ e = (char*)&ecc;
++ e2 = (char*)&ecc2;
++ e3 = (char*)&ecc3;
++ e4 = (char*)&ecc4;
++ qsz = CFG_PAGE_OOBSIZE / 4;
++ if (ecc == 0 && ecc2 == 0 && ecc3 == 0 && ecc4 == 0)
++ return 0;
++ for (i=0; i<CONFIG_ECC_BYTES; i++) {
++ int eccpos = CONFIG_ECC_OFFSET + i;
++ if (*(p + eccpos) != (char)0xff)
++ break;
++ else if (*(p + eccpos + qsz) != (char)0xff)
++ break;
++ else if (*(p + eccpos + qsz*2) != (char)0xff)
++ break;
++ else if (*(p + eccpos + qsz*3) != (char)0xff)
++ break;
++ if (i == CONFIG_ECC_BYTES - 1) {
++ printk("skip ecc 0xff at page %x\n", page);
++ return 0;
++ }
++ }
++ for (i=0; i<CONFIG_ECC_BYTES; i++) {
++ int eccpos = CONFIG_ECC_OFFSET + i;
++ if (*(p + eccpos) != *(e + i)) {
++ printk("%s mode:%s, invalid ecc, page: %x read:%x %x %x, ecc:%x \n",
++ __func__, (mode == FL_READING)?"read":"write", page,
++ *(p+ CONFIG_ECC_OFFSET), *(p+ CONFIG_ECC_OFFSET+1), *(p+ CONFIG_ECC_OFFSET +2), ecc);
++ correction_flag |= 0x1;
++ }
++ if (*(p + eccpos + qsz) != *(e2 + i)) {
++ printk("%s mode:%s, invalid ecc2, page: %x read:%x %x %x, ecc2:%x \n",
++ __func__, (mode == FL_READING)?"read":"write", page,
++ *(p+CONFIG_ECC_OFFSET+qsz), *(p+ CONFIG_ECC_OFFSET+1+qsz), *(p+ CONFIG_ECC_OFFSET+2+qsz), ecc2);
++ correction_flag |= 0x2;
++ }
++ if (*(p + eccpos + qsz*2) != *(e3 + i)) {
++ printk("%s mode:%s, invalid ecc3, page: %x read:%x %x %x, ecc3:%x \n",
++ __func__, (mode == FL_READING)?"read":"write", page,
++ *(p+CONFIG_ECC_OFFSET+qsz*2), *(p+ CONFIG_ECC_OFFSET+1+qsz*2), *(p+ CONFIG_ECC_OFFSET+2+qsz*2), ecc3);
++ correction_flag |= 0x4;
++ }
++ if (*(p + eccpos + qsz*3) != *(e4 + i)) {
++ printk("%s mode:%s, invalid ecc4, page: %x read:%x %x %x, ecc4:%x \n",
++ __func__, (mode == FL_READING)?"read":"write", page,
++ *(p+CONFIG_ECC_OFFSET+qsz*3), *(p+ CONFIG_ECC_OFFSET+1+qsz*3), *(p+ CONFIG_ECC_OFFSET+2+qsz*3), ecc4);
++ correction_flag |= 0x8;
++ }
++ }
++
++ if (correction_flag)
++ {
++ printk("trying to do correction!\n");
++ if (correction_flag & 0x1)
++ {
++ int bytes, bits;
++ char *pBuf = p - CFG_PAGESIZE;
++
++ if (one_bit_correction(p + CONFIG_ECC_OFFSET, e, &bytes, &bits) == 0)
++ {
++ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
++ printk("1. correct byte %d, bit %d!\n", bytes, bits);
++ }
++ else
++ {
++ printk("failed to correct!\n");
++ return -1;
++ }
++ }
++
++ if (correction_flag & 0x2)
++ {
++ int bytes, bits;
++ char *pBuf = (p - CFG_PAGESIZE) + CFG_PAGESIZE/4;
++
++ if (one_bit_correction((p + CONFIG_ECC_OFFSET + qsz), e2, &bytes, &bits) == 0)
++ {
++ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
++ printk("2. correct byte %d, bit %d!\n", bytes, bits);
++ }
++ else
++ {
++ printk("failed to correct!\n");
++ return -1;
++ }
++ }
++ if (correction_flag & 0x4)
++ {
++ int bytes, bits;
++ char *pBuf = (p - CFG_PAGESIZE) + CFG_PAGESIZE/2;
++
++ if (one_bit_correction((p + CONFIG_ECC_OFFSET + qsz * 2), e3, &bytes, &bits) == 0)
++ {
++ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
++ printk("3. correct byte %d, bit %d!\n", bytes, bits);
++ }
++ else
++ {
++ printk("failed to correct!\n");
++ return -1;
++ }
++ }
++ if (correction_flag & 0x8)
++ {
++ int bytes, bits;
++ char *pBuf = (p - CFG_PAGESIZE) + CFG_PAGESIZE*3/4;
++
++ if (one_bit_correction((p + CONFIG_ECC_OFFSET + qsz * 3), e4, &bytes, &bits) == 0)
++ {
++ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
++ printk("4. correct byte %d, bit %d!\n", bytes, bits);
++ }
++ else
++ {
++ printk("failed to correct!\n");
++ return -1;
++ }
++ }
++ }
++
++ }
++#endif
++ return 0;
++
++bad_block:
++ return -1;
++}
++
++#else
++
++void ranfc_dump(void)
++{
++ int i;
++ for (i=0; i<11; i++) {
++ if (i==6)
++ continue;
++ printk("%x: %x \n", NFC_BASE + i*4, ra_inl(NFC_BASE + i*4));
++ }
++}
++
++/**
++ * @return 0, ecc OK or corrected.
++ * @return NAND_STATUS_FAIL, ecc fail.
++ */
++
++int nfc_ecc_verify(struct ra_nand_chip *ra, char *buf, int page, int mode)
++{
++ int ret, i;
++ char *p, *e;
++ int ecc;
++
++ if (ranfc_verify == 0)
++ return 0;
++
++ ra_dbg("%s, page:%x mode:%d\n", __func__, page, mode);
++
++ if (mode == FL_WRITING) { // read back and memcmp
++ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_NONE);
++ if (ret != 0) //double comfirm
++ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_NONE);
++
++ if (ret != 0) {
++ printk("%s: mode:%x read back fail \n", __func__, mode);
++ return -1;
++ }
++ return memcmp(buf, ra->readback_buffers, 1<<ra->page_shift);
++ }
++
++ if (mode == FL_READING) {
++#if 0
++ if (ra->sandbox_page == 0)
++ return 0;
++
++ ret = nfc_write_page(ra, buf, ra->sandbox_page, FLAG_USE_GDMA | FLAG_ECC_EN);
++ if (ret != 0) {
++ printk("%s, fail write sandbox_page \n", __func__);
++ return -1;
++ }
++#else
++ /** @note:
++ * The following command is actually not 'write' command to drive NFC to write flash.
++ * However, it can make NFC to calculate ECC, that will be used to compare with original ones.
++ * --YT
++ */
++ unsigned int conf = 0x001223| (CFG_ADDR_CYCLE<<16) | (0x200 << 20) | (1<<3) | (1<<2);
++ _nfc_write_raw_data(0xff, 0xff, ra->sandbox_page<<ra->page_shift, conf, buf, 0x200, FLAG_USE_GDMA);
++#endif
++
++ ecc = ra_inl(NFC_ECC);
++ if (ecc == 0) //clean page.
++ return 0;
++ e = (char*)&ecc;
++ p = buf + (1<<ra->page_shift);
++ for (i=0; i<CONFIG_ECC_BYTES; i++) {
++ int eccpos = CONFIG_ECC_OFFSET + i;
++ if (*(p + eccpos) != *(e + i)) {
++ printk("%s mode:%s, invalid ecc, page: %x read:%x %x %x, write:%x \n",
++ __func__, (mode == FL_READING)?"read":"write", page,
++ *(p+ CONFIG_ECC_OFFSET), *(p+ CONFIG_ECC_OFFSET+1), *(p+ CONFIG_ECC_OFFSET +2), ecc);
++
++ for (i=0; i<528; i++)
++ printk("%-2x \n", *(buf + i));
++ return -1;
++ }
++ }
++ return 0;
++ }
++
++ return -1;
++
++}
++
++#endif
++
++
++/**
++ * @return -EIO, writing size is less than a page
++ * @return 0, OK
++ */
++int nfc_read_page(struct ra_nand_chip *ra, char *buf, int page, int flags)
++{
++ unsigned int cmd1 = 0, cmd2 = 0, conf = 0;
++ unsigned int bus_addr = 0, bus_addr2 = 0;
++ unsigned int ecc_en;
++ int use_gdma;
++ int size, offs;
++ int status = 0;
++
++ use_gdma = flags & FLAG_USE_GDMA;
++ ecc_en = flags & FLAG_ECC_EN;
++
++ page = page & (CFG_CHIPSIZE - 1); // chip boundary
++ size = CFG_PAGESIZE + CFG_PAGE_OOBSIZE; //add oobsize
++ offs = 0;
++
++ while (size > 0) {
++ int len;
++#if defined (WORKAROUND_RX_BUF_OV)
++ len = min(60, size);
++#else
++ len = size;
++#endif
++ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)) | (offs & ((1<<CFG_COLUMN_ADDR_CYCLE*8)-1));
++ if (is_nand_page_2048) {
++ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
++ cmd1 = 0x0;
++ cmd2 = 0x30;
++ conf = 0x000511| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
++ }
++ else {
++ if (offs & ~(CFG_PAGESIZE-1))
++ cmd1 = 0x50;
++ else if (offs & ~((1<<CFG_COLUMN_ADDR_CYCLE*8)-1))
++ cmd1 = 0x01;
++ else
++ cmd1 = 0;
++
++ conf = 0x000141| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
++ }
++#if !defined (WORKAROUND_RX_BUF_OV)
++ if (ecc_en)
++ conf |= (1<<3);
++#endif
++ if (use_gdma)
++ conf |= (1<<2);
++
++ status = _nfc_read_raw_data(cmd1, cmd2, bus_addr, bus_addr2, conf, buf+offs, len, flags);
++ if (status & NAND_STATUS_FAIL) {
++ printk("%s: fail \n", __func__);
++ return -EIO;
++ }
++
++ offs += len;
++ size -= len;
++ }
++
++ // verify and correct ecc
++ if ((flags & (FLAG_VERIFY | FLAG_ECC_EN)) == (FLAG_VERIFY | FLAG_ECC_EN)) {
++ status = nfc_ecc_verify(ra, buf, page, FL_READING);
++ if (status != 0) {
++ printk("%s: fail, buf:%x, page:%x, flag:%x\n",
++ __func__, (unsigned int)buf, page, flags);
++ return -EBADMSG;
++ }
++ }
++ else {
++ // fix,e not yet support
++ ra->buffers_page = -1; //cached
++ }
++
++ return 0;
++}
++
++
++/**
++ * @return -EIO, fail to write
++ * @return 0, OK
++ */
++int nfc_write_page(struct ra_nand_chip *ra, char *buf, int page, int flags)
++{
++ unsigned int cmd1 = 0, cmd3, conf = 0;
++ unsigned int bus_addr = 0, bus_addr2 = 0;
++ unsigned int ecc_en;
++ int use_gdma;
++ int size;
++ char status;
++ uint8_t *oob = buf + (1<<ra->page_shift);
++
++ use_gdma = flags & FLAG_USE_GDMA;
++ ecc_en = flags & FLAG_ECC_EN;
++
++ oob[ra->badblockpos] = 0xff; //tag as good block.
++ ra->buffers_page = -1; //cached
++
++ page = page & (CFG_CHIPSIZE-1); //chip boundary
++ size = CFG_PAGESIZE + CFG_PAGE_OOBSIZE; //add oobsize
++ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)); //write_page always write from offset 0.
++
++ if (is_nand_page_2048) {
++ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
++ cmd1 = 0x80;
++ cmd3 = 0x10;
++ conf = 0x001123| ((CFG_ADDR_CYCLE)<<16) | (size << 20);
++ }
++ else {
++ cmd1 = 0x8000;
++ cmd3 = 0x10;
++ conf = 0x001223| ((CFG_ADDR_CYCLE)<<16) | (size << 20);
++}
++ if (ecc_en)
++ conf |= (1<<3); //enable ecc
++ if (use_gdma)
++ conf |= (1<<2);
++
++ // set NFC
++ ra_dbg("nfc_write_page: cmd1: %x, cmd3: %x bus_addr: %x, conf: %x, len:%x\n",
++ cmd1, cmd3, bus_addr, conf, size);
++
++ status = _nfc_write_raw_data(cmd1, cmd3, bus_addr, bus_addr2, conf, buf, size, flags);
++ if (status & NAND_STATUS_FAIL) {
++ printk("%s: fail \n", __func__);
++ return -EIO;
++ }
++
++
++ if (flags & FLAG_VERIFY) { // verify and correct ecc
++ status = nfc_ecc_verify(ra, buf, page, FL_WRITING);
++
++#ifdef RANDOM_GEN_BAD_BLOCK
++ if (((random32() & 0x1ff) == 0x0) && (page >= 0x100)) // randomly create bad block
++ {
++ printk("hmm... create a bad block at page %x\n", (bus_addr >> 16));
++ status = -1;
++ }
++#endif
++
++ if (status != 0) {
++ printk("%s: ecc_verify fail: ret:%x \n", __func__, status);
++ oob[ra->badblockpos] = 0x33;
++ page -= page % (CFG_BLOCKSIZE/CFG_PAGESIZE);
++ printk("create a bad block at page %x\n", page);
++ if (!is_nand_page_2048)
++ status = nfc_write_oob(ra, page, ra->badblockpos, oob+ra->badblockpos, 1, flags);
++ else
++ {
++ status = _nfc_write_raw_data(cmd1, cmd3, bus_addr, bus_addr2, conf, buf, size, flags);
++ nfc_write_oob(ra, page, 0, oob, 16, FLAG_NONE);
++ }
++ return -EBADMSG;
++ }
++ }
++
++
++ ra->buffers_page = page; //cached
++ return 0;
++}
++
++
++
++/*************************************************************
++ * nand internal process
++ *************************************************************/
++
++/**
++ * nand_release_device - [GENERIC] release chip
++ * @mtd: MTD device structure
++ *
++ * Deselect, release chip lock and wake up anyone waiting on the device
++ */
++static void nand_release_device(struct ra_nand_chip *ra)
++{
++ /* De-select the NAND device */
++ nfc_select_chip(ra, -1);
++
++ /* Release the controller and the chip */
++ ra->state = FL_READY;
++
++ mutex_unlock(ra->controller);
++}
++
++/**
++ * nand_get_device - [GENERIC] Get chip for selected access
++ * @chip: the nand chip descriptor
++ * @mtd: MTD device structure
++ * @new_state: the state which is requested
++ *
++ * Get the device and lock it for exclusive access
++ */
++static int
++nand_get_device(struct ra_nand_chip *ra, int new_state)
++{
++ int ret = 0;
++
++ ret = mutex_lock_interruptible(ra->controller);
++ if (!ret)
++ ra->state = new_state;
++
++ return ret;
++
++}
++
++
++
++/*************************************************************
++ * nand internal process
++ *************************************************************/
++
++int nand_bbt_get(struct ra_nand_chip *ra, int block)
++{
++ int byte, bits;
++ bits = block * BBTTAG_BITS;
++
++ byte = bits / 8;
++ bits = bits % 8;
++
++ return (ra->bbt[byte] >> bits) & BBTTAG_BITS_MASK;
++}
++
++int nand_bbt_set(struct ra_nand_chip *ra, int block, int tag)
++{
++ int byte, bits;
++ bits = block * BBTTAG_BITS;
++
++ byte = bits / 8;
++ bits = bits % 8;
++
++ // If previous tag is bad, dont overwrite it
++ if (((ra->bbt[byte] >> bits) & BBTTAG_BITS_MASK) == BBT_TAG_BAD)
++ {
++ return BBT_TAG_BAD;
++ }
++
++ ra->bbt[byte] = (ra->bbt[byte] & ~(BBTTAG_BITS_MASK << bits)) | ((tag & BBTTAG_BITS_MASK) << bits);
++
++ return tag;
++}
++
++/**
++ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
++ * @mtd: MTD device structure
++ * @ofs: offset from device start
++ *
++ * Check, if the block is bad. Either by reading the bad block table or
++ * calling of the scan function.
++ */
++int nand_block_checkbad(struct ra_nand_chip *ra, loff_t offs)
++{
++ int page, block;
++ int ret = 4;
++ unsigned int tag;
++ char *str[]= {"UNK", "RES", "BAD", "GOOD"};
++
++ if (ranfc_bbt == 0)
++ return 0;
++
++ {
++ // align with chip
++
++ offs = offs & ((1<<ra->chip_shift) -1);
++
++ page = offs >> ra->page_shift;
++ block = offs >> ra->erase_shift;
++ }
++
++ tag = nand_bbt_get(ra, block);
++
++ if (tag == BBT_TAG_UNKNOWN) {
++ ret = nfc_read_oob(ra, page, ra->badblockpos, (char*)&tag, 1, FLAG_NONE);
++ if (ret == 0)
++ tag = ((le32_to_cpu(tag) & 0x0ff) == 0x0ff) ? BBT_TAG_GOOD : BBT_TAG_BAD;
++ else
++ tag = BBT_TAG_BAD;
++
++ nand_bbt_set(ra, block, tag);
++ }
++
++ if (tag != BBT_TAG_GOOD) {
++ printk("%s: offs:%x tag: %s \n", __func__, (unsigned int)offs, str[tag]);
++ return 1;
++ }
++ else
++ return 0;
++
++}
++
++
++
++/**
++ * nand_block_markbad -
++ */
++int nand_block_markbad(struct ra_nand_chip *ra, loff_t offs)
++{
++ int page, block;
++ int ret = 4;
++ unsigned int tag;
++ char *ecc;
++
++ // align with chip
++ ra_dbg("%s offs: %x \n", __func__, (int)offs);
++
++ offs = offs & ((1<<ra->chip_shift) -1);
++
++ page = offs >> ra->page_shift;
++ block = offs >> ra->erase_shift;
++
++ tag = nand_bbt_get(ra, block);
++
++ if (tag == BBT_TAG_BAD) {
++ printk("%s: mark repeatedly \n", __func__);
++ return 0;
++ }
++
++ // new tag as bad
++ tag =BBT_TAG_BAD;
++ ret = nfc_read_page(ra, ra->buffers, page, FLAG_NONE);
++ if (ret != 0) {
++ printk("%s: fail to read bad block tag \n", __func__);
++ goto tag_bbt;
++ }
++
++ ecc = &ra->buffers[(1<<ra->page_shift)+ra->badblockpos];
++ if (*ecc == (char)0x0ff) {
++ //tag into flash
++ *ecc = (char)tag;
++ ret = nfc_write_page(ra, ra->buffers, page, FLAG_USE_GDMA);
++ if (ret)
++ printk("%s: fail to write bad block tag \n", __func__);
++
++ }
++
++tag_bbt:
++ //update bbt
++ nand_bbt_set(ra, block, tag);
++
++ return 0;
++}
++
++
++#if defined (WORKAROUND_RX_BUF_OV)
++/**
++ * to find a bad block for ecc verify of read_page
++ */
++unsigned int nand_bbt_find_sandbox(struct ra_nand_chip *ra)
++{
++ loff_t offs = 0;
++ int chipsize = 1 << ra->chip_shift;
++ int blocksize = 1 << ra->erase_shift;
++
++
++ while (offs < chipsize) {
++ if (nand_block_checkbad(ra, offs)) //scan and verify the unknown tag
++ break;
++ offs += blocksize;
++ }
++
++ if (offs >= chipsize) {
++ offs = chipsize - blocksize;
++ }
++
++ nand_bbt_set(ra, (unsigned int)offs>>ra->erase_shift, BBT_TAG_RES); // tag bbt only, instead of update badblockpos of flash.
++ return (offs >> ra->page_shift);
++}
++#endif
++
++
++
++/**
++ * nand_erase_nand - [Internal] erase block(s)
++ * @mtd: MTD device structure
++ * @instr: erase instruction
++ * @allowbbt: allow erasing the bbt area
++ *
++ * Erase one ore more blocks
++ */
++int _nand_erase_nand(struct ra_nand_chip *ra, struct erase_info *instr)
++{
++ int page, len, status, ret;
++ unsigned int addr, blocksize = 1<<ra->erase_shift;
++
++ ra_dbg("%s: start:%x, len:%x \n", __func__,
++ (unsigned int)instr->addr, (unsigned int)instr->len);
++
++//#define BLOCK_ALIGNED(a) ((a) & (blocksize - 1)) // already defined
++
++ if (BLOCK_ALIGNED(instr->addr) || BLOCK_ALIGNED(instr->len)) {
++ ra_dbg("%s: erase block not aligned, addr:%x len:%x\n", __func__, instr->addr, instr->len);
++ return -EINVAL;
++ }
++
++ instr->fail_addr = 0xffffffff;
++
++ len = instr->len;
++ addr = instr->addr;
++ instr->state = MTD_ERASING;
++
++ while (len) {
++
++ page = (int)(addr >> ra->page_shift);
++
++ /* select device and check wp */
++ if (nfc_enable_chip(ra, addr, 0)) {
++ printk("%s: nand is write protected \n", __func__);
++ instr->state = MTD_ERASE_FAILED;
++ goto erase_exit;
++ }
++
++ /* if we have a bad block, we do not erase bad blocks */
++ if (nand_block_checkbad(ra, addr)) {
++ printk(KERN_WARNING "nand_erase: attempt to erase a "
++ "bad block at 0x%08x\n", addr);
++ instr->state = MTD_ERASE_FAILED;
++ goto erase_exit;
++ }
++
++ /*
++ * Invalidate the page cache, if we erase the block which
++ * contains the current cached page
++ */
++ if (BLOCK_ALIGNED(addr) == BLOCK_ALIGNED(ra->buffers_page << ra->page_shift))
++ ra->buffers_page = -1;
++
++ status = nfc_erase_block(ra, page);
++ /* See if block erase succeeded */
++ if (status) {
++ printk("%s: failed erase, page 0x%08x\n", __func__, page);
++ instr->state = MTD_ERASE_FAILED;
++ instr->fail_addr = (page << ra->page_shift);
++ goto erase_exit;
++ }
++
++
++ /* Increment page address and decrement length */
++ len -= blocksize;
++ addr += blocksize;
++
++ }
++ instr->state = MTD_ERASE_DONE;
++
++erase_exit:
++
++ ret = ((instr->state == MTD_ERASE_DONE) ? 0 : -EIO);
++ /* Do call back function */
++ if (!ret)
++ mtd_erase_callback(instr);
++
++ if (ret) {
++ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_BAD);
++ }
++
++ /* Return more or less happy */
++ return ret;
++}
++
++static int
++nand_write_oob_buf(struct ra_nand_chip *ra, uint8_t *buf, uint8_t *oob, size_t size,
++ int mode, int ooboffs)
++{
++ size_t oobsize = 1<<ra->oob_shift;
++ struct nand_oobfree *free;
++ uint32_t woffs = ooboffs;
++ int retsize = 0;
++
++ ra_dbg("%s: size:%x, mode:%x, offs:%x \n", __func__, size, mode, ooboffs);
++
++ switch(mode) {
++ case MTD_OPS_PLACE_OOB:
++ case MTD_OPS_RAW:
++ if (ooboffs > oobsize)
++ return -1;
++
++ size = min(size, oobsize - ooboffs);
++ memcpy(buf + ooboffs, oob, size);
++ retsize = size;
++ break;
++
++ case MTD_OPS_AUTO_OOB:
++ if (ooboffs > ra->oob->oobavail)
++ return -1;
++
++ while (size) {
++ for(free = ra->oob->oobfree; free->length && size; free++) {
++ int wlen = free->length - woffs;
++ int bytes = 0;
++
++ /* Write request not from offset 0 ? */
++ if (wlen <= 0) {
++ woffs = -wlen;
++ continue;
++ }
++
++ bytes = min_t(size_t, size, wlen);
++ memcpy (buf + free->offset + woffs, oob, bytes);
++ woffs = 0;
++ oob += bytes;
++ size -= bytes;
++ retsize += bytes;
++ }
++ buf += oobsize;
++ }
++ break;
++
++ default:
++ BUG();
++ }
++
++ return retsize;
++}
++
++static int nand_read_oob_buf(struct ra_nand_chip *ra, uint8_t *oob, size_t size,
++ int mode, int ooboffs)
++{
++ size_t oobsize = 1<<ra->oob_shift;
++ uint8_t *buf = ra->buffers + (1<<ra->page_shift);
++ int retsize=0;
++
++ ra_dbg("%s: size:%x, mode:%x, offs:%x \n", __func__, size, mode, ooboffs);
++
++ switch(mode) {
++ case MTD_OPS_PLACE_OOB:
++ case MTD_OPS_RAW:
++ if (ooboffs > oobsize)
++ return -1;
++
++ size = min(size, oobsize - ooboffs);
++ memcpy(oob, buf + ooboffs, size);
++ return size;
++
++ case MTD_OPS_AUTO_OOB: {
++ struct nand_oobfree *free;
++ uint32_t woffs = ooboffs;
++
++ if (ooboffs > ra->oob->oobavail)
++ return -1;
++
++ size = min(size, ra->oob->oobavail - ooboffs);
++ for(free = ra->oob->oobfree; free->length && size; free++) {
++ int wlen = free->length - woffs;
++ int bytes = 0;
++
++ /* Write request not from offset 0 ? */
++ if (wlen <= 0) {
++ woffs = -wlen;
++ continue;
++ }
++
++ bytes = min_t(size_t, size, wlen);
++ memcpy (oob, buf + free->offset + woffs, bytes);
++ woffs = 0;
++ oob += bytes;
++ size -= bytes;
++ retsize += bytes;
++ }
++ return retsize;
++ }
++ default:
++ BUG();
++ }
++
++ return -1;
++}
++
++/**
++ * nand_do_write_ops - [Internal] NAND write with ECC
++ * @mtd: MTD device structure
++ * @to: offset to write to
++ * @ops: oob operations description structure
++ *
++ * NAND write with ECC
++ */
++static int nand_do_write_ops(struct ra_nand_chip *ra, loff_t to,
++ struct mtd_oob_ops *ops)
++{
++ int page;
++ uint32_t datalen = ops->len;
++ uint32_t ooblen = ops->ooblen;
++ uint8_t *oob = ops->oobbuf;
++ uint8_t *data = ops->datbuf;
++ int pagesize = (1<<ra->page_shift);
++ int pagemask = (pagesize -1);
++ int oobsize = 1<<ra->oob_shift;
++ loff_t addr = to;
++ //int i = 0; //for ra_dbg only
++
++ ra_dbg("%s: to:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x oobmode:%x \n",
++ __func__, (unsigned int)to, data, oob, datalen, ooblen, ops->ooboffs, ops->mode);
++
++ ops->retlen = 0;
++ ops->oobretlen = 0;
++
++
++ /* Invalidate the page cache, when we write to the cached page */
++ ra->buffers_page = -1;
++
++
++ if (data ==0)
++ datalen = 0;
++
++ // oob sequential (burst) write
++ if (datalen == 0 && ooblen) {
++ int len = ((ooblen + ops->ooboffs) + (ra->oob->oobavail - 1)) / ra->oob->oobavail * oobsize;
++
++ /* select chip, and check if it is write protected */
++ if (nfc_enable_chip(ra, addr, 0))
++ return -EIO;
++
++ //FIXME, need sanity check of block boundary
++ page = (int)((to & ((1<<ra->chip_shift)-1)) >> ra->page_shift); //chip boundary
++ memset(ra->buffers, 0x0ff, pagesize);
++ //fixme, should we reserve the original content?
++ if (ops->mode == MTD_OPS_AUTO_OOB) {
++ nfc_read_oob(ra, page, 0, ra->buffers, len, FLAG_NONE);
++ }
++ //prepare buffers
++ if (ooblen != 8)
++ {
++ nand_write_oob_buf(ra, ra->buffers, oob, ooblen, ops->mode, ops->ooboffs);
++ // write out buffer to chip
++ nfc_write_oob(ra, page, 0, ra->buffers, len, FLAG_USE_GDMA);
++ }
++
++ ops->oobretlen = ooblen;
++ ooblen = 0;
++ }
++
++ // data sequential (burst) write
++ if (datalen && ooblen == 0) {
++ // ranfc can not support write_data_burst, since hw-ecc and fifo constraints..
++ }
++
++ // page write
++ while(datalen || ooblen) {
++ int len;
++ int ret;
++ int offs;
++ int ecc_en = 0;
++
++ ra_dbg("%s (%d): addr:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x \n",
++ __func__, i++, (unsigned int)addr, data, oob, datalen, ooblen, ops->ooboffs);
++
++ page = (int)((addr & ((1<<ra->chip_shift)-1)) >> ra->page_shift); //chip boundary
++
++ /* select chip, and check if it is write protected */
++ if (nfc_enable_chip(ra, addr, 0))
++ return -EIO;
++
++ // oob write
++ if (ops->mode == MTD_OPS_AUTO_OOB) {
++ //fixme, this path is not yet varified
++ nfc_read_oob(ra, page, 0, ra->buffers + pagesize, oobsize, FLAG_NONE);
++ }
++ if (oob && ooblen > 0) {
++ len = nand_write_oob_buf(ra, ra->buffers + pagesize, oob, ooblen, ops->mode, ops->ooboffs);
++ if (len < 0)
++ return -EINVAL;
++
++ oob += len;
++ ops->oobretlen += len;
++ ooblen -= len;
++ }
++
++ // data write
++ offs = addr & pagemask;
++ len = min_t(size_t, datalen, pagesize - offs);
++ if (data && len > 0) {
++ memcpy(ra->buffers + offs, data, len); // we can not sure ops->buf wether is DMA-able.
++
++ data += len;
++ datalen -= len;
++ ops->retlen += len;
++
++ ecc_en = FLAG_ECC_EN;
++ }
++ ret = nfc_write_page(ra, ra->buffers, page, FLAG_USE_GDMA | FLAG_VERIFY |
++ ((ops->mode == MTD_OPS_RAW || ops->mode == MTD_OPS_PLACE_OOB) ? 0 : ecc_en ));
++ if (ret) {
++ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_BAD);
++ return ret;
++ }
++
++ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_GOOD);
++
++ addr = (page+1) << ra->page_shift;
++
++ }
++ return 0;
++}
++
++/**
++ * nand_do_read_ops - [Internal] Read data with ECC
++ *
++ * @mtd: MTD device structure
++ * @from: offset to read from
++ * @ops: oob ops structure
++ *
++ * Internal function. Called with chip held.
++ */
++static int nand_do_read_ops(struct ra_nand_chip *ra, loff_t from,
++ struct mtd_oob_ops *ops)
++{
++ int page;
++ uint32_t datalen = ops->len;
++ uint32_t ooblen = ops->ooblen;
++ uint8_t *oob = ops->oobbuf;
++ uint8_t *data = ops->datbuf;
++ int pagesize = (1<<ra->page_shift);
++ int pagemask = (pagesize -1);
++ loff_t addr = from;
++ //int i = 0; //for ra_dbg only
++
++ ra_dbg("%s: addr:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x \n",
++ __func__, (unsigned int)addr, data, oob, datalen, ooblen, ops->ooboffs);
++
++ ops->retlen = 0;
++ ops->oobretlen = 0;
++ if (data == 0)
++ datalen = 0;
++
++
++ while(datalen || ooblen) {
++ int len;
++ int ret;
++ int offs;
++
++ ra_dbg("%s (%d): addr:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x \n",
++ __func__, i++, (unsigned int)addr, data, oob, datalen, ooblen, ops->ooboffs);
++ /* select chip */
++ if (nfc_enable_chip(ra, addr, 1) < 0)
++ return -EIO;
++
++ page = (int)((addr & ((1<<ra->chip_shift)-1)) >> ra->page_shift);
++
++ ret = nfc_read_page(ra, ra->buffers, page, FLAG_VERIFY |
++ ((ops->mode == MTD_OPS_RAW || ops->mode == MTD_OPS_PLACE_OOB) ? 0: FLAG_ECC_EN ));
++ //FIXME, something strange here, some page needs 2 more tries to guarantee read success.
++ if (ret) {
++ printk("read again:\n");
++ ret = nfc_read_page(ra, ra->buffers, page, FLAG_VERIFY |
++ ((ops->mode == MTD_OPS_RAW || ops->mode == MTD_OPS_PLACE_OOB) ? 0: FLAG_ECC_EN ));
++
++ if (ret) {
++ printk("read again fail \n");
++ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_BAD);
++ if ((ret != -EUCLEAN) && (ret != -EBADMSG)) {
++ return ret;
++ }
++ else {
++ /* ecc verification fail, but data need to be returned. */
++ }
++ }
++ else {
++ printk(" read agian susccess \n");
++ }
++ }
++
++ // oob read
++ if (oob && ooblen > 0) {
++ len = nand_read_oob_buf(ra, oob, ooblen, ops->mode, ops->ooboffs);
++ if (len < 0) {
++ printk("nand_read_oob_buf: fail return %x \n", len);
++ return -EINVAL;
++ }
++
++ oob += len;
++ ops->oobretlen += len;
++ ooblen -= len;
++ }
++
++ // data read
++ offs = addr & pagemask;
++ len = min_t(size_t, datalen, pagesize - offs);
++ if (data && len > 0) {
++ memcpy(data, ra->buffers + offs, len); // we can not sure ops->buf wether is DMA-able.
++
++ data += len;
++ datalen -= len;
++ ops->retlen += len;
++ if (ret)
++ return ret;
++ }
++
++
++ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_GOOD);
++ // address go further to next page, instead of increasing of length of write. This avoids some special cases wrong.
++ addr = (page+1) << ra->page_shift;
++ }
++ return 0;
++}
++
++static int
++ramtd_nand_erase(struct mtd_info *mtd, struct erase_info *instr)
++{
++ struct ra_nand_chip *ra = (struct ra_nand_chip *)mtd->priv;
++ int ret;
++
++ ra_dbg("%s: start:%x, len:%x \n", __func__,
++ (unsigned int)instr->addr, (unsigned int)instr->len);
++
++ nand_get_device(ra, FL_ERASING);
++ ret = _nand_erase_nand((struct ra_nand_chip *)mtd->priv, instr);
++ nand_release_device(ra);
++
++ return ret;
++}
++
++static int
++ramtd_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
++ size_t *retlen, const uint8_t *buf)
++{
++ struct ra_nand_chip *ra = mtd->priv;
++ struct mtd_oob_ops ops;
++ int ret;
++
++ ra_dbg("%s: to 0x%x len=0x%x\n", __func__, to, len);
++
++ if ((to + len) > mtd->size)
++ return -EINVAL;
++
++ if (!len)
++ return 0;
++
++ nand_get_device(ra, FL_WRITING);
++
++ memset(&ops, 0, sizeof(ops));
++ ops.len = len;
++ ops.datbuf = (uint8_t *)buf;
++ ops.oobbuf = NULL;
++ ops.mode = MTD_OPS_AUTO_OOB;
++
++ ret = nand_do_write_ops(ra, to, &ops);
++
++ *retlen = ops.retlen;
++
++ nand_release_device(ra);
++
++ return ret;
++}
++
++static int
++ramtd_nand_read(struct mtd_info *mtd, loff_t from, size_t len,
++ size_t *retlen, uint8_t *buf)
++{
++
++ struct ra_nand_chip *ra = mtd->priv;
++ int ret;
++ struct mtd_oob_ops ops;
++
++ ra_dbg("%s: mtd:%p from:%x, len:%x, buf:%p \n", __func__, mtd, (unsigned int)from, len, buf);
++
++ /* Do not allow reads past end of device */
++ if ((from + len) > mtd->size)
++ return -EINVAL;
++ if (!len)
++ return 0;
++
++ nand_get_device(ra, FL_READING);
++
++ memset(&ops, 0, sizeof(ops));
++ ops.len = len;
++ ops.datbuf = buf;
++ ops.oobbuf = NULL;
++ ops.mode = MTD_OPS_AUTO_OOB;
++
++ ret = nand_do_read_ops(ra, from, &ops);
++
++ *retlen = ops.retlen;
++
++ nand_release_device(ra);
++
++ return ret;
++
++}
++
++static int
++ramtd_nand_readoob(struct mtd_info *mtd, loff_t from,
++ struct mtd_oob_ops *ops)
++{
++ struct ra_nand_chip *ra = mtd->priv;
++ int ret;
++
++ ra_dbg("%s: \n", __func__);
++
++ nand_get_device(ra, FL_READING);
++
++ ret = nand_do_read_ops(ra, from, ops);
++
++ nand_release_device(ra);
++
++ return ret;
++}
++
++static int
++ramtd_nand_writeoob(struct mtd_info *mtd, loff_t to,
++ struct mtd_oob_ops *ops)
++{
++ struct ra_nand_chip *ra = mtd->priv;
++ int ret;
++
++ nand_get_device(ra, FL_READING);
++ ret = nand_do_write_ops(ra, to, ops);
++ nand_release_device(ra);
++
++ return ret;
++}
++
++static int
++ramtd_nand_block_isbad(struct mtd_info *mtd, loff_t offs)
++{
++ if (offs > mtd->size)
++ return -EINVAL;
++
++ return nand_block_checkbad((struct ra_nand_chip *)mtd->priv, offs);
++}
++
++static int
++ramtd_nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
++{
++ struct ra_nand_chip *ra = mtd->priv;
++ int ret;
++
++ ra_dbg("%s: \n", __func__);
++ nand_get_device(ra, FL_WRITING);
++ ret = nand_block_markbad(ra, ofs);
++ nand_release_device(ra);
++
++ return ret;
++}
++
++// 1-bit error detection
++static int one_bit_correction(char *ecc1, char *ecc2, int *bytes, int *bits)
++{
++ // check if ecc and expected are all valid
++ char *p, nibble, crumb;
++ int i, xor, iecc1 = 0, iecc2 = 0;
++
++ printk("correction : %x %x %x\n", ecc1[0], ecc1[1], ecc1[2]);
++ printk("correction : %x %x %x\n", ecc2[0], ecc2[1], ecc2[2]);
++
++ p = (char *)ecc1;
++ for (i = 0; i < CONFIG_ECC_BYTES; i++)
++ {
++ nibble = *(p+i) & 0xf;
++ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
++ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
++ return -1;
++ nibble = ((*(p+i)) >> 4) & 0xf;
++ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
++ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
++ return -1;
++ }
++
++ p = (char *)ecc2;
++ for (i = 0; i < CONFIG_ECC_BYTES; i++)
++ {
++ nibble = *(p+i) & 0xf;
++ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
++ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
++ return -1;
++ nibble = ((*(p+i)) >> 4) & 0xf;
++ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
++ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
++ return -1;
++ }
++
++ memcpy(&iecc1, ecc1, 3);
++ memcpy(&iecc2, ecc2, 3);
++
++ xor = iecc1 ^ iecc2;
++ printk("xor = %x (%x %x)\n", xor, iecc1, iecc2);
++
++ *bytes = 0;
++ for (i = 0; i < 9; i++)
++ {
++ crumb = (xor >> (2*i)) & 0x3;
++ if ((crumb == 0x0) || (crumb == 0x3))
++ return -1;
++ if (crumb == 0x2)
++ *bytes += (1 << i);
++ }
++
++ *bits = 0;
++ for (i = 0; i < 3; i++)
++ {
++ crumb = (xor >> (18 + 2*i)) & 0x3;
++ if ((crumb == 0x0) || (crumb == 0x3))
++ return -1;
++ if (crumb == 0x2)
++ *bits += (1 << i);
++ }
++
++ return 0;
++}
++
++
++
++/************************************************************
++ * the init/exit section.
++ */
++
++static struct nand_ecclayout ra_oob_layout = {
++ .eccbytes = CONFIG_ECC_BYTES,
++ .eccpos = {5, 6, 7},
++ .oobfree = {
++ {.offset = 0, .length = 4},
++ {.offset = 8, .length = 8},
++ {.offset = 0, .length = 0}
++ },
++#define RA_CHIP_OOB_AVAIL (4+8)
++ .oobavail = RA_CHIP_OOB_AVAIL,
++ // 5th byte is bad-block flag.
++};
++
++static int
++mtk_nand_probe(struct platform_device *pdev)
++{
++ struct mtd_part_parser_data ppdata;
++ struct ra_nand_chip *ra;
++ int alloc_size, bbt_size, buffers_size, reg, err;
++ unsigned char chip_mode = 12;
++
++/* if(ra_check_flash_type()!=BOOT_FROM_NAND) {
++ return 0;
++ }*/
++
++ //FIXME: config 512 or 2048-byte page according to HWCONF
++#if defined (CONFIG_RALINK_RT6855A)
++ reg = ra_inl(RALINK_SYSCTL_BASE+0x8c);
++ chip_mode = ((reg>>28) & 0x3)|(((reg>>22) & 0x3)<<2);
++ if (chip_mode == 1) {
++ printk("! nand 2048\n");
++ ra_or(NFC_CONF1, 1);
++ is_nand_page_2048 = 1;
++ nand_addrlen = 5;
++ }
++ else {
++ printk("! nand 512\n");
++ ra_and(NFC_CONF1, ~1);
++ is_nand_page_2048 = 0;
++ nand_addrlen = 4;
++ }
++#elif (defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_RT6855))
++ ra_outl(RALINK_SYSCTL_BASE+0x60, ra_inl(RALINK_SYSCTL_BASE+0x60) & ~(0x3<<18));
++ reg = ra_inl(RALINK_SYSCTL_BASE+0x10);
++ chip_mode = (reg & 0x0F);
++ if((chip_mode==1)||(chip_mode==11)) {
++ ra_or(NFC_CONF1, 1);
++ is_nand_page_2048 = 1;
++ nand_addrlen = ((chip_mode!=11) ? 4 : 5);
++ printk("!!! nand page size = 2048, addr len=%d\n", nand_addrlen);
++ }
++ else {
++ ra_and(NFC_CONF1, ~1);
++ is_nand_page_2048 = 0;
++ nand_addrlen = ((chip_mode!=10) ? 3 : 4);
++ printk("!!! nand page size = 512, addr len=%d\n", nand_addrlen);
++ }
++#else
++ is_nand_page_2048 = 0;
++ nand_addrlen = 3;
++ printk("!!! nand page size = 512, addr len=%d\n", nand_addrlen);
++#endif
++
++#if defined (CONFIG_RALINK_RT6855A) || defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_RT6855)
++ //config ECC location
++ ra_and(NFC_CONF1, 0xfff000ff);
++ ra_or(NFC_CONF1, ((CONFIG_ECC_OFFSET + 2) << 16) +
++ ((CONFIG_ECC_OFFSET + 1) << 12) +
++ (CONFIG_ECC_OFFSET << 8));
++#endif
++
++#define ALIGNE_16(a) (((unsigned long)(a)+15) & ~15)
++ buffers_size = ALIGNE_16((1<<CONFIG_PAGE_SIZE_BIT) + (1<<CONFIG_OOBSIZE_PER_PAGE_BIT)); //ra->buffers
++ bbt_size = BBTTAG_BITS * (1<<(CONFIG_CHIP_SIZE_BIT - (CONFIG_PAGE_SIZE_BIT + CONFIG_NUMPAGE_PER_BLOCK_BIT))) / 8; //ra->bbt
++ bbt_size = ALIGNE_16(bbt_size);
++
++ alloc_size = buffers_size + bbt_size;
++ alloc_size += buffers_size; //for ra->readback_buffers
++ alloc_size += sizeof(*ra);
++ alloc_size += sizeof(*ranfc_mtd);
++
++ //make sure gpio-0 is input
++ ra_outl(RALINK_PIO_BASE+0x24, ra_inl(RALINK_PIO_BASE+0x24) & ~0x01);
++
++ ra = (struct ra_nand_chip *)kzalloc(alloc_size, GFP_KERNEL | GFP_DMA);
++ if (!ra) {
++ printk("%s: mem alloc fail \n", __func__);
++ return -ENOMEM;
++ }
++ memset(ra, 0, alloc_size);
++
++ //dynamic
++ ra->buffers = (char *)((char *)ra + sizeof(*ra));
++ ra->readback_buffers = ra->buffers + buffers_size;
++ ra->bbt = ra->readback_buffers + buffers_size;
++ ranfc_mtd = (struct mtd_info *)(ra->bbt + bbt_size);
++
++ //static
++ ra->numchips = CONFIG_NUMCHIPS;
++ ra->chip_shift = CONFIG_CHIP_SIZE_BIT;
++ ra->page_shift = CONFIG_PAGE_SIZE_BIT;
++ ra->oob_shift = CONFIG_OOBSIZE_PER_PAGE_BIT;
++ ra->erase_shift = (CONFIG_PAGE_SIZE_BIT + CONFIG_NUMPAGE_PER_BLOCK_BIT);
++ ra->badblockpos = CONFIG_BAD_BLOCK_POS;
++ ra_oob_layout.eccpos[0] = CONFIG_ECC_OFFSET;
++ ra_oob_layout.eccpos[1] = CONFIG_ECC_OFFSET + 1;
++ ra_oob_layout.eccpos[2] = CONFIG_ECC_OFFSET + 2;
++ ra->oob = &ra_oob_layout;
++ ra->buffers_page = -1;
++
++#if defined (WORKAROUND_RX_BUF_OV)
++ if (ranfc_verify) {
++ ra->sandbox_page = nand_bbt_find_sandbox(ra);
++ }
++#endif
++ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x01); //set wp to high
++ nfc_all_reset();
++
++ ranfc_mtd->type = MTD_NANDFLASH;
++ ranfc_mtd->flags = MTD_CAP_NANDFLASH;
++ ranfc_mtd->size = CONFIG_NUMCHIPS * CFG_CHIPSIZE;
++ ranfc_mtd->erasesize = CFG_BLOCKSIZE;
++ ranfc_mtd->writesize = CFG_PAGESIZE;
++ ranfc_mtd->oobsize = CFG_PAGE_OOBSIZE;
++ ranfc_mtd->oobavail = RA_CHIP_OOB_AVAIL;
++ ranfc_mtd->name = "ra_nfc";
++ //ranfc_mtd->index
++ ranfc_mtd->ecclayout = &ra_oob_layout;
++ //ranfc_mtd->numberaseregions
++ //ranfc_mtd->eraseregions
++ //ranfc_mtd->bansize
++ ranfc_mtd->_erase = ramtd_nand_erase;
++ //ranfc_mtd->point
++ //ranfc_mtd->unpoint
++ ranfc_mtd->_read = ramtd_nand_read;
++ ranfc_mtd->_write = ramtd_nand_write;
++ ranfc_mtd->_read_oob = ramtd_nand_readoob;
++ ranfc_mtd->_write_oob = ramtd_nand_writeoob;
++ //ranfc_mtd->get_fact_prot_info; ranfc_mtd->read_fact_prot_reg;
++ //ranfc_mtd->get_user_prot_info; ranfc_mtd->read_user_prot_reg;
++ //ranfc_mtd->write_user_prot_reg; ranfc_mtd->lock_user_prot_reg;
++ //ranfc_mtd->writev; ranfc_mtd->sync; ranfc_mtd->lock; ranfc_mtd->unlock; ranfc_mtd->suspend; ranfc_mtd->resume;
++ ranfc_mtd->_block_isbad = ramtd_nand_block_isbad;
++ ranfc_mtd->_block_markbad = ramtd_nand_block_markbad;
++ //ranfc_mtd->reboot_notifier
++ //ranfc_mtd->ecc_stats;
++ // subpage_sht;
++
++ //ranfc_mtd->get_device; ranfc_mtd->put_device
++ ranfc_mtd->priv = ra;
++
++ ranfc_mtd->owner = THIS_MODULE;
++ ra->controller = &ra->hwcontrol;
++ mutex_init(ra->controller);
++
++ printk("%s: alloc %x, at %p , btt(%p, %x), ranfc_mtd:%p\n",
++ __func__ , alloc_size, ra, ra->bbt, bbt_size, ranfc_mtd);
++
++ ppdata.of_node = pdev->dev.of_node;
++ err = mtd_device_parse_register(ranfc_mtd, mtk_probe_types,
++ &ppdata, NULL, 0);
++
++ return err;
++}
++
++static int
++mtk_nand_remove(struct platform_device *pdev)
++{
++ struct ra_nand_chip *ra;
++
++ if (ranfc_mtd) {
++ ra = (struct ra_nand_chip *)ranfc_mtd->priv;
++
++ /* Deregister partitions */
++ //del_mtd_partitions(ranfc_mtd);
++ kfree(ra);
++ }
++ return 0;
++}
++
++static const struct of_device_id mtk_nand_match[] = {
++ { .compatible = "mtk,mt7620-nand" },
++ {},
++};
++MODULE_DEVICE_TABLE(of, mtk_nand_match);
++
++static struct platform_driver mtk_nand_driver = {
++ .probe = mtk_nand_probe,
++ .remove = mtk_nand_remove,
++ .driver = {
++ .name = "mt7620_nand",
++ .owner = THIS_MODULE,
++ .of_match_table = mtk_nand_match,
++ },
++};
++
++module_platform_driver(mtk_nand_driver);
++
++
++MODULE_LICENSE("GPL");
+Index: linux-3.10.18/drivers/mtd/maps/ralink_nand.h
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ linux-3.10.18/drivers/mtd/maps/ralink_nand.h 2013-11-17 17:51:50.549024547 +0100
+@@ -0,0 +1,232 @@
++#ifndef RT2880_NAND_H
++#define RT2880_NAND_H
++
++#include <linux/mtd/mtd.h>
++
++//#include "gdma.h"
++
++#define RALINK_SYSCTL_BASE 0xB0000000
++#define RALINK_PIO_BASE 0xB0000600
++#define RALINK_NAND_CTRL_BASE 0xB0000810
++#define CONFIG_RALINK_MT7620
++
++#define SKIP_BAD_BLOCK
++//#define RANDOM_GEN_BAD_BLOCK
++
++#define ra_inl(addr) (*(volatile unsigned int *)(addr))
++#define ra_outl(addr, value) (*(volatile unsigned int *)(addr) = (value))
++#define ra_aor(addr, a_mask, o_value) ra_outl(addr, (ra_inl(addr) & (a_mask)) | (o_value))
++#define ra_and(addr, a_mask) ra_aor(addr, a_mask, 0)
++#define ra_or(addr, o_value) ra_aor(addr, -1, o_value)
++
++
++#define CONFIG_NUMCHIPS 1
++#define CONFIG_NOT_SUPPORT_WP //rt3052 has no WP signal for chip.
++//#define CONFIG_NOT_SUPPORT_RB
++
++extern int is_nand_page_2048;
++extern const unsigned int nand_size_map[2][3];
++
++//chip
++// chip geometry: SAMSUNG small size 32MB.
++#define CONFIG_CHIP_SIZE_BIT (nand_size_map[is_nand_page_2048][nand_addrlen-3]) //! (1<<NAND_SIZE_BYTE) MB
++//#define CONFIG_CHIP_SIZE_BIT (is_nand_page_2048? 29 : 25) //! (1<<NAND_SIZE_BYTE) MB
++#define CONFIG_PAGE_SIZE_BIT (is_nand_page_2048? 11 : 9) //! (1<<PAGE_SIZE) MB
++//#define CONFIG_SUBPAGE_BIT 1 //! these bits will be compensate by command cycle
++#define CONFIG_NUMPAGE_PER_BLOCK_BIT (is_nand_page_2048? 6 : 5) //! order of number of pages a block.
++#define CONFIG_OOBSIZE_PER_PAGE_BIT (is_nand_page_2048? 6 : 4) //! byte number of oob a page.
++#define CONFIG_BAD_BLOCK_POS (is_nand_page_2048? 0 : 4) //! offset of byte to denote bad block.
++#define CONFIG_ECC_BYTES 3 //! ecc has 3 bytes
++#define CONFIG_ECC_OFFSET (is_nand_page_2048? 6 : 5) //! ecc starts from offset 5.
++
++//this section should not be modified.
++//#define CFG_COLUMN_ADDR_MASK ((1 << (CONFIG_PAGE_SIZE_BIT - CONFIG_SUBPAGE_BIT)) - 1)
++//#define CFG_COLUMN_ADDR_CYCLE (((CONFIG_PAGE_SIZE_BIT - CONFIG_SUBPAGE_BIT) + 7)/8)
++//#define CFG_ROW_ADDR_CYCLE ((CONFIG_CHIP_SIZE_BIT - CONFIG_PAGE_SIZE_BIT + 7)/8)
++//#define CFG_ADDR_CYCLE (CFG_COLUMN_ADDR_CYCLE + CFG_ROW_ADDR_CYCLE)
++
++#define CFG_COLUMN_ADDR_CYCLE (is_nand_page_2048? 2 : 1)
++#define CFG_ROW_ADDR_CYCLE (nand_addrlen - CFG_COLUMN_ADDR_CYCLE)
++#define CFG_ADDR_CYCLE (CFG_COLUMN_ADDR_CYCLE + CFG_ROW_ADDR_CYCLE)
++
++#define CFG_CHIPSIZE (1 << ((CONFIG_CHIP_SIZE_BIT>=32)? 31 : CONFIG_CHIP_SIZE_BIT))
++//#define CFG_CHIPSIZE (1 << CONFIG_CHIP_SIZE_BIT)
++#define CFG_PAGESIZE (1 << CONFIG_PAGE_SIZE_BIT)
++#define CFG_BLOCKSIZE (CFG_PAGESIZE << CONFIG_NUMPAGE_PER_BLOCK_BIT)
++#define CFG_NUMPAGE (1 << (CONFIG_CHIP_SIZE_BIT - CONFIG_PAGE_SIZE_BIT))
++#define CFG_NUMBLOCK (CFG_NUMPAGE >> CONFIG_NUMPAGE_PER_BLOCK_BIT)
++#define CFG_BLOCK_OOBSIZE (1 << (CONFIG_OOBSIZE_PER_PAGE_BIT + CONFIG_NUMPAGE_PER_BLOCK_BIT))
++#define CFG_PAGE_OOBSIZE (1 << CONFIG_OOBSIZE_PER_PAGE_BIT)
++
++#define NAND_BLOCK_ALIGN(addr) ((addr) & (CFG_BLOCKSIZE-1))
++#define NAND_PAGE_ALIGN(addr) ((addr) & (CFG_PAGESIZE-1))
++
++
++#define NFC_BASE RALINK_NAND_CTRL_BASE
++#define NFC_CTRL (NFC_BASE + 0x0)
++#define NFC_CONF (NFC_BASE + 0x4)
++#define NFC_CMD1 (NFC_BASE + 0x8)
++#define NFC_CMD2 (NFC_BASE + 0xc)
++#define NFC_CMD3 (NFC_BASE + 0x10)
++#define NFC_ADDR (NFC_BASE + 0x14)
++#define NFC_DATA (NFC_BASE + 0x18)
++#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
++ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
++#define NFC_ECC (NFC_BASE + 0x30)
++#else
++#define NFC_ECC (NFC_BASE + 0x1c)
++#endif
++#define NFC_STATUS (NFC_BASE + 0x20)
++#define NFC_INT_EN (NFC_BASE + 0x24)
++#define NFC_INT_ST (NFC_BASE + 0x28)
++#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
++ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
++#define NFC_CONF1 (NFC_BASE + 0x2c)
++#define NFC_ECC_P1 (NFC_BASE + 0x30)
++#define NFC_ECC_P2 (NFC_BASE + 0x34)
++#define NFC_ECC_P3 (NFC_BASE + 0x38)
++#define NFC_ECC_P4 (NFC_BASE + 0x3c)
++#define NFC_ECC_ERR1 (NFC_BASE + 0x40)
++#define NFC_ECC_ERR2 (NFC_BASE + 0x44)
++#define NFC_ECC_ERR3 (NFC_BASE + 0x48)
++#define NFC_ECC_ERR4 (NFC_BASE + 0x4c)
++#define NFC_ADDR2 (NFC_BASE + 0x50)
++#endif
++
++enum _int_stat {
++ INT_ST_ND_DONE = 1<<0,
++ INT_ST_TX_BUF_RDY = 1<<1,
++ INT_ST_RX_BUF_RDY = 1<<2,
++ INT_ST_ECC_ERR = 1<<3,
++ INT_ST_TX_TRAS_ERR = 1<<4,
++ INT_ST_RX_TRAS_ERR = 1<<5,
++ INT_ST_TX_KICK_ERR = 1<<6,
++ INT_ST_RX_KICK_ERR = 1<<7
++};
++
++
++//#define WORKAROUND_RX_BUF_OV 1
++
++
++/*************************************************************
++ * stolen from nand.h
++ *************************************************************/
++
++/*
++ * Standard NAND flash commands
++ */
++#define NAND_CMD_READ0 0
++#define NAND_CMD_READ1 1
++#define NAND_CMD_RNDOUT 5
++#define NAND_CMD_PAGEPROG 0x10
++#define NAND_CMD_READOOB 0x50
++#define NAND_CMD_ERASE1 0x60
++#define NAND_CMD_STATUS 0x70
++#define NAND_CMD_STATUS_MULTI 0x71
++#define NAND_CMD_SEQIN 0x80
++#define NAND_CMD_RNDIN 0x85
++#define NAND_CMD_READID 0x90
++#define NAND_CMD_ERASE2 0xd0
++#define NAND_CMD_RESET 0xff
++
++/* Extended commands for large page devices */
++#define NAND_CMD_READSTART 0x30
++#define NAND_CMD_RNDOUTSTART 0xE0
++#define NAND_CMD_CACHEDPROG 0x15
++
++/* Extended commands for AG-AND device */
++/*
++ * Note: the command for NAND_CMD_DEPLETE1 is really 0x00 but
++ * there is no way to distinguish that from NAND_CMD_READ0
++ * until the remaining sequence of commands has been completed
++ * so add a high order bit and mask it off in the command.
++ */
++#define NAND_CMD_DEPLETE1 0x100
++#define NAND_CMD_DEPLETE2 0x38
++#define NAND_CMD_STATUS_MULTI 0x71
++#define NAND_CMD_STATUS_ERROR 0x72
++/* multi-bank error status (banks 0-3) */
++#define NAND_CMD_STATUS_ERROR0 0x73
++#define NAND_CMD_STATUS_ERROR1 0x74
++#define NAND_CMD_STATUS_ERROR2 0x75
++#define NAND_CMD_STATUS_ERROR3 0x76
++#define NAND_CMD_STATUS_RESET 0x7f
++#define NAND_CMD_STATUS_CLEAR 0xff
++
++#define NAND_CMD_NONE -1
++
++/* Status bits */
++#define NAND_STATUS_FAIL 0x01
++#define NAND_STATUS_FAIL_N1 0x02
++#define NAND_STATUS_TRUE_READY 0x20
++#define NAND_STATUS_READY 0x40
++#define NAND_STATUS_WP 0x80
++
++typedef enum {
++ FL_READY,
++ FL_READING,
++ FL_WRITING,
++ FL_ERASING,
++ FL_SYNCING,
++ FL_CACHEDPRG,
++ FL_PM_SUSPENDED,
++} nand_state_t;
++
++/*************************************************************/
++
++
++
++typedef enum _ra_flags {
++ FLAG_NONE = 0,
++ FLAG_ECC_EN = (1<<0),
++ FLAG_USE_GDMA = (1<<1),
++ FLAG_VERIFY = (1<<2),
++} RA_FLAGS;
++
++
++#define BBTTAG_BITS 2
++#define BBTTAG_BITS_MASK ((1<<BBTTAG_BITS) -1)
++enum BBT_TAG {
++ BBT_TAG_UNKNOWN = 0, //2'b01
++ BBT_TAG_GOOD = 3, //2'b11
++ BBT_TAG_BAD = 2, //2'b10
++ BBT_TAG_RES = 1, //2'b01
++};
++
++struct ra_nand_chip {
++ int numchips;
++ int chip_shift;
++ int page_shift;
++ int erase_shift;
++ int oob_shift;
++ int badblockpos;
++#if !defined (__UBOOT__)
++ struct mutex hwcontrol;
++ struct mutex *controller;
++#endif
++ struct nand_ecclayout *oob;
++ int state;
++ unsigned int buffers_page;
++ char *buffers; //[CFG_PAGESIZE + CFG_PAGE_OOBSIZE];
++ char *readback_buffers;
++ unsigned char *bbt;
++#if defined (WORKAROUND_RX_BUF_OV)
++ unsigned int sandbox_page; // steal a page (block) for read ECC verification
++#endif
++
++};
++
++
++
++//fixme, gdma api
++int nand_dma_sync(void);
++void release_dma_buf(void);
++int set_gdma_ch(unsigned long dst,
++ unsigned long src, unsigned int len, int burst_size,
++ int soft_mode, int src_req_type, int dst_req_type,
++ int src_burst_mode, int dst_burst_mode);
++
++
++
++
++#endif