aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/mcs814x/patches-3.14
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/mcs814x/patches-3.14')
0 files changed, 0 insertions, 0 deletions
id='n110' href='#n110'>110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901
% Generated using the yosys 'help -write-tex-command-reference-manual' command.

\section{abc -- use ABC for technology mapping}
\label{cmd:abc}
\begin{lstlisting}[numbers=left,frame=single]
    abc [options] [selection]

This pass uses the ABC tool [1] for technology mapping of yosys's internal gate
library to a target architecture.

    -exe <command>
        use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
        This can e.g. be used to call a specific version of ABC or a wrapper.

    -script <file>
        use the specified ABC script file instead of the default script.

        if <file> starts with a plus sign (+), then the rest of the filename
        string is interpreted as the command string to be passed to ABC. The
        leading plus sign is removed and all commas (,) in the string are
        replaced with blanks before the string is passed to ABC.

        if no -script parameter is given, the following scripts are used:

        for -liberty/-genlib without -constr:
          strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
               &nf {D}; &put

        for -liberty/-genlib with -constr:
          strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
               &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p

        for -lut/-luts (only one LUT size):
          strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2;
               lutpack {S}

        for -lut/-luts (different LUT sizes):
          strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2

        for -sop:
          strash; ifraig; scorr; dc2; dretime; strash; dch -f;
               cover {I} {P}

        otherwise:
          strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f;
               &nf {D}; &put

    -fast
        use different default scripts that are slightly faster (at the cost
        of output quality):

        for -liberty/-genlib without -constr:
          strash; dretime; map {D}

        for -liberty/-genlib with -constr:
          strash; dretime; map {D}; buffer; upsize {D}; dnsize {D};
               stime -p

        for -lut/-luts:
          strash; dretime; if

        for -sop:
          strash; dretime; cover {I} {P}

        otherwise:
          strash; dretime; map

    -liberty <file>
        generate netlists for the specified cell library (using the liberty
        file format).

    -genlib <file>
        generate netlists for the specified cell library (using the SIS Genlib
        file format).

    -constr <file>
        pass this file with timing constraints to ABC.
        use with -liberty/-genlib.

        a constr file contains two lines:
            set_driving_cell <cell_name>
            set_load <floating_point_number>

        the set_driving_cell statement defines which cell type is assumed to
        drive the primary inputs and the set_load statement sets the load in
        femtofarads for each primary output.

    -D <picoseconds>
        set delay target. the string {D} in the default scripts above is
        replaced by this option when used, and an empty string otherwise.
        this also replaces 'dretime' with 'dretime; retime -o {D}' in the
        default scripts above.

    -I <num>
        maximum number of SOP inputs.
        (replaces {I} in the default scripts above)

    -P <num>
        maximum number of SOP products.
        (replaces {P} in the default scripts above)

    -S <num>
        maximum number of LUT inputs shared.
        (replaces {S} in the default scripts above, default: -S 1)

    -lut <width>
        generate netlist using luts of (max) the specified width.

    -lut <w1>:<w2>
        generate netlist using luts of (max) the specified width <w2>. All
        luts with width <= <w1> have constant cost. for luts larger than <w1>
        the area cost doubles with each additional input bit. the delay cost
        is still constant for all lut widths.

    -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
        generate netlist using luts. Use the specified costs for luts with 1,
        2, 3, .. inputs.

    -sop
        map to sum-of-product cells and inverters

    -g type1,type2,...
        Map to the specified list of gate types. Supported gates types are:
           AND, NAND, OR, NOR, XOR, XNOR, ANDNOT, ORNOT, MUX,
           NMUX, AOI3, OAI3, AOI4, OAI4.
        (The NOT gate is always added to this list automatically.)

        The following aliases can be used to reference common sets of gate types:
          simple: AND OR XOR MUX
          cmos2:  NAND NOR
          cmos3:  NAND NOR AOI3 OAI3
          cmos4:  NAND NOR AOI3 OAI3 AOI4 OAI4
          cmos:   NAND NOR AOI3 OAI3 AOI4 OAI4 NMUX MUX XOR XNOR
          gates:  AND NAND OR NOR XOR XNOR ANDNOT ORNOT
          aig:    AND NAND OR NOR ANDNOT ORNOT

        The alias 'all' represent the full set of all gate types.

        Prefix a gate type with a '-' to remove it from the list. For example
        the arguments 'AND,OR,XOR' and 'simple,-MUX' are equivalent.

        The default is 'all,-NMUX,-AOI3,-OAI3,-AOI4,-OAI4'.

    -dff
        also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many
        clock domains are automatically partitioned in clock domains and each
        domain is passed through ABC independently.

    -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]
        use only the specified clock domain. this is like -dff, but only FF
        cells that belong to the specified clock domain are used.

    -keepff
        set the "keep" attribute on flip-flop output wires. (and thus preserve
        them, for example for equivalence checking.)

    -nocleanup
        when this option is used, the temporary files created by this pass
        are not removed. this is useful for debugging.

    -showtmp
        print the temp dir name in log. usually this is suppressed so that the
        command output is identical across runs.

    -markgroups
        set a 'abcgroup' attribute on all objects created by ABC. The value of
        this attribute is a unique integer for each ABC process started. This
        is useful for debugging the partitioning of clock domains.

    -dress
        run the 'dress' command after all other ABC commands. This aims to
        preserve naming by an equivalence check between the original and post-ABC
        netlists (experimental).

When no target cell library is specified the Yosys standard cell library is
loaded into ABC before the ABC script is executed.

Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as BLIF file with write_blif and then load that into ABC externally if
you want to use ABC to convert your design into another format.

[1] http://www.eecs.berkeley.edu/~alanmi/abc/
\end{lstlisting}

\section{abc9 -- use ABC9 for technology mapping}
\label{cmd:abc9}
\begin{lstlisting}[numbers=left,frame=single]
    abc9 [options] [selection]

This script pass performs a sequence of commands to facilitate the use of the ABC
tool [1] for technology mapping of the current design to a target FPGA
architecture. Only fully-selected modules are supported.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -exe <command>
        use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
        This can e.g. be used to call a specific version of ABC or a wrapper.

    -script <file>
        use the specified ABC script file instead of the default script.

        if <file> starts with a plus sign (+), then the rest of the filename
        string is interpreted as the command string to be passed to ABC. The
        leading plus sign is removed and all commas (,) in the string are
        replaced with blanks before the string is passed to ABC.

        if no -script parameter is given, the following scripts are used:
          &scorr; &sweep; &dc2; &dch -f; &ps; &if {C} {W} {D} {R} -v; &mfs

    -fast
        use different default scripts that are slightly faster (at the cost
        of output quality):
          &if {C} {W} {D} {R} -v

    -D <picoseconds>
        set delay target. the string {D} in the default scripts above is
        replaced by this option when used, and an empty string otherwise
        (indicating best possible delay).

    -lut <width>
        generate netlist using luts of (max) the specified width.

    -lut <w1>:<w2>
        generate netlist using luts of (max) the specified width <w2>. All
        luts with width <= <w1> have constant cost. for luts larger than <w1>
        the area cost doubles with each additional input bit. the delay cost
        is still constant for all lut widths.

    -lut <file>
        pass this file with lut library to ABC.

    -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
        generate netlist using luts. Use the specified costs for luts with 1,
        2, 3, .. inputs.

    -maxlut <width>
        when auto-generating the lut library, discard all luts equal to or
        greater than this size (applicable when neither -lut nor -luts is
        specified).

    -dff
        also pass $_DFF_[NP]_ cells through to ABC. modules with many clock
        domains are supported and automatically partitioned by ABC.

    -nocleanup
        when this option is used, the temporary files created by this pass
        are not removed. this is useful for debugging.

    -showtmp
        print the temp dir name in log. usually this is suppressed so that the
        command output is identical across runs.

    -box <file>
        pass this file with box library to ABC.

Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as an XAIGER file with `write_xaiger' and then load that into ABC
externally if you want to use ABC to convert your design into another format.

[1] http://www.eecs.berkeley.edu/~alanmi/abc/


    check:
        abc9_ops -check [-dff]    (option if -dff)

    map:
        abc9_ops -prep_hier [-dff]    (option if -dff)
        scc -specify -set_attr abc9_scc_id {}
        abc9_ops -prep_bypass [-prep_dff]    (option if -dff)
        design -stash $abc9
        design -load $abc9_map
        proc
        wbflip
        techmap -wb -map %$abc9 -map +/techmap.v A:abc9_flop
        opt -nodffe -nosdff
        abc9_ops -prep_dff_submod                                                     (only if -dff)
        setattr -set submod "$abc9_flop" t:$_DFF_?_ %ci* %co* t:$_DFF_?_ %d           (only if -dff)
        submod                                                                        (only if -dff)
        setattr -mod -set whitebox 1 -set abc9_flop 1 -set abc9_box 1 *_$abc9_flop    (only if -dff)
        foreach module in design
            rename <module-name>_$abc9_flop _TECHMAP_REPLACE_                         (only if -dff)
        abc9_ops -prep_dff_unmap                                                      (only if -dff)
        design -copy-to $abc9 =*_$abc9_flop                                           (only if -dff)
        delete =*_$abc9_flop                                                          (only if -dff)
        design -stash $abc9_map
        design -load $abc9
        design -delete $abc9
        techmap -wb -max_iter 1 -map %$abc9_map -map +/abc9_map.v [-D DFF]    (option if -dff)
        design -delete $abc9_map

    pre:
        read_verilog -icells -lib -specify +/abc9_model.v
        abc9_ops -break_scc -prep_delays -prep_xaiger [-dff]    (option for -dff)
        abc9_ops -prep_lut <maxlut>    (skip if -lut or -luts)
        abc9_ops -prep_box    (skip if -box)
        design -stash $abc9
        design -load $abc9_holes
        techmap -wb -map %$abc9 -map +/techmap.v
        opt -purge
        aigmap
        design -stash $abc9_holes
        design -load $abc9
        design -delete $abc9

    exe:
        aigmap
        foreach module in selection
            abc9_ops -write_lut <abc-temp-dir>/input.lut    (skip if '-lut' or '-luts')
            abc9_ops -write_box <abc-temp-dir>/input.box    (skip if '-box')
            write_xaiger -map <abc-temp-dir>/input.sym [-dff] <abc-temp-dir>/input.xaig
            abc9_exe [options] -cwd <abc-temp-dir> -lut [<abc-temp-dir>/input.lut] -box [<abc-temp-dir>/input.box]
            read_aiger -xaiger -wideports -module_name <module-name>$abc9 -map <abc-temp-dir>/input.sym <abc-temp-dir>/output.aig
            abc9_ops -reintegrate [-dff]

    unmap:
        techmap -wb -map %$abc9_unmap -map +/abc9_unmap.v
        design -delete $abc9_unmap
        design -delete $abc9_holes
        delete =*_$abc9_byp
        setattr -mod -unset abc9_box_id
\end{lstlisting}

\section{abc9\_exe -- use ABC9 for technology mapping}
\label{cmd:abc9_exe}
\begin{lstlisting}[numbers=left,frame=single]
    abc9_exe [options]

 
This pass uses the ABC tool [1] for technology mapping of the top module
(according to the (* top *) attribute or if only one module is currently selected)
to a target FPGA architecture.

    -exe <command>
        use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
        This can e.g. be used to call a specific version of ABC or a wrapper.

    -script <file>
        use the specified ABC script file instead of the default script.

        if <file> starts with a plus sign (+), then the rest of the filename
        string is interpreted as the command string to be passed to ABC. The
        leading plus sign is removed and all commas (,) in the string are
        replaced with blanks before the string is passed to ABC.

        if no -script parameter is given, the following scripts are used:
          &scorr; &sweep; &dc2; &dch -f; &ps; &if {C} {W} {D} {R} -v; &mfs

    -fast
        use different default scripts that are slightly faster (at the cost
        of output quality):
          &if {C} {W} {D} {R} -v

    -D <picoseconds>
        set delay target. the string {D} in the default scripts above is
        replaced by this option when used, and an empty string otherwise
        (indicating best possible delay).

    -lut <width>
        generate netlist using luts of (max) the specified width.

    -lut <w1>:<w2>
        generate netlist using luts of (max) the specified width <w2>. All
        luts with width <= <w1> have constant cost. for luts larger than <w1>
        the area cost doubles with each additional input bit. the delay cost
        is still constant for all lut widths.

    -lut <file>
        pass this file with lut library to ABC.

    -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
        generate netlist using luts. Use the specified costs for luts with 1,
        2, 3, .. inputs.

    -showtmp
        print the temp dir name in log. usually this is suppressed so that the
        command output is identical across runs.

    -box <file>
        pass this file with box library to ABC.

    -cwd <dir>
        use this as the current working directory, inside which the 'input.xaig'
        file is expected. temporary files will be created in this directory, and
        the mapped result will be written to 'output.aig'.

Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as BLIF file with write_blif and then load that into ABC externally if
you want to use ABC to convert your design into another format.

[1] http://www.eecs.berkeley.edu/~alanmi/abc/
\end{lstlisting}

\section{abc9\_ops -- helper functions for ABC9}
\label{cmd:abc9_ops}
\begin{lstlisting}[numbers=left,frame=single]
    abc9_ops [options] [selection]

This pass contains a set of supporting operations for use during ABC technology
mapping, and is expected to be called in conjunction with other operations from
the `abc9' script pass. Only fully-selected modules are supported.

    -check
        check that the design is valid, e.g. (* abc9_box_id *) values are unique,
        (* abc9_carry *) is only given for one input/output port, etc.

    -prep_hier
        derive all used (* abc9_box *) or (* abc9_flop *) (if -dff option)
        whitebox modules. with (* abc9_flop *) modules, only those containing
        $dff/$_DFF_[NP]_ cells with zero initial state -- due to an ABC limitation
        -- will be derived.

    -prep_bypass
        create techmap rules in the '$abc9_map' and '$abc9_unmap' designs for
        bypassing sequential (* abc9_box *) modules using a combinatorial box
        (named *_$abc9_byp). bypassing is necessary if sequential elements (e.g.
        $dff, $mem, etc.) are discovered inside so that any combinatorial paths
        will be correctly captured. this bypass box will only contain ports that
        are referenced by a simple path declaration ($specify2 cell) inside a
        specify block.

    -prep_dff
        select all (* abc9_flop *) modules instantiated in the design and store
        in the named selection '$abc9_flops'.

    -prep_dff_submod
        within (* abc9_flop *) modules, rewrite all edge-sensitive path
        declarations and $setup() timing checks ($specify3 and $specrule cells)
        that share a 'DST' port with the $_DFF_[NP]_.Q port from this 'Q' port to
        the DFF's 'D' port. this is to prepare such specify cells to be moved
        into the flop box.

    -prep_dff_unmap
        populate the '$abc9_unmap' design with techmap rules for mapping *_$abc9_flop
        cells back into their derived cell types (where the rules created by
        -prep_hier will then map back to the original cell with parameters).

    -prep_delays
        insert `$__ABC9_DELAY' blackbox cells into the design to account for
        certain required times.

    -break_scc
        for an arbitrarily chosen cell in each unique SCC of each selected module
        (tagged with an (* abc9_scc_id = <int> *) attribute) interrupt all wires
        driven by this cell's outputs with a temporary $__ABC9_SCC_BREAKER cell
        to break the SCC.

    -prep_xaiger
        prepare the design for XAIGER output. this includes computing the
        topological ordering of ABC9 boxes, as well as preparing the '$abc9_holes'
        design that contains the logic behaviour of ABC9 whiteboxes.

    -dff
        consider flop cells (those instantiating modules marked with (* abc9_flop *))
        during -prep_{delays,xaiger,box}.

    -prep_lut <maxlut>
        pre-compute the lut library by analysing all modules marked with
        (* abc9_lut=<area> *).

    -write_lut <dst>
        write the pre-computed lut library to <dst>.

    -prep_box
        pre-compute the box library by analysing all modules marked with
        (* abc9_box *).

    -write_box <dst>
        write the pre-computed box library to <dst>.

    -reintegrate
        for each selected module, re-intergrate the module '<module-name>$abc9'
        by first recovering ABC9 boxes, and then stitching in the remaining primary
        inputs and outputs.
\end{lstlisting}

\section{add -- add objects to the design}
\label{cmd:add}
\begin{lstlisting}[numbers=left,frame=single]
    add <command> [selection]

This command adds objects to the design. It operates on all fully selected
modules. So e.g. 'add -wire foo' will add a wire foo to all selected modules.


    add {-wire|-input|-inout|-output} <name> <width> [selection]

Add a wire (input, inout, output port) with the given name and width. The
command will fail if the object exists already and has different properties
than the object to be created.


    add -global_input <name> <width> [selection]

Like 'add -input', but also connect the signal between instances of the
selected modules.


    add {-assert|-assume|-live|-fair|-cover} <name1> [-if <name2>]

Add an $assert, $assume, etc. cell connected to a wire named name1, with its
enable signal optionally connected to a wire named name2 (default: 1'b1).


    add -mod <name[s]>

Add module[s] with the specified name[s].
\end{lstlisting}

\section{aigmap -- map logic to and-inverter-graph circuit}
\label{cmd:aigmap}
\begin{lstlisting}[numbers=left,frame=single]
    aigmap [options] [selection]

Replace all logic cells with circuits made of only $_AND_ and
$_NOT_ cells.

    -nand
        Enable creation of $_NAND_ cells

    -select
        Overwrite replaced cells in the current selection with new $_AND_,
        $_NOT_, and $_NAND_, cells
\end{lstlisting}

\section{alumacc -- extract ALU and MACC cells}
\label{cmd:alumacc}
\begin{lstlisting}[numbers=left,frame=single]
    alumacc [selection]

This pass translates arithmetic operations like $add, $mul, $lt, etc. to $alu
and $macc cells.
\end{lstlisting}

\section{anlogic\_eqn -- Anlogic: Calculate equations for luts}
\label{cmd:anlogic_eqn}
\begin{lstlisting}[numbers=left,frame=single]
    anlogic_eqn [selection]

Calculate equations for luts since bitstream generator depends on it.
\end{lstlisting}

\section{anlogic\_fixcarry -- Anlogic: fix carry chain}
\label{cmd:anlogic_fixcarry}
\begin{lstlisting}[numbers=left,frame=single]
    anlogic_fixcarry [options] [selection]

Add Anlogic adders to fix carry chain if needed.
\end{lstlisting}

\section{assertpmux -- adds asserts for parallel muxes}
\label{cmd:assertpmux}
\begin{lstlisting}[numbers=left,frame=single]
    assertpmux [options] [selection]

This command adds asserts to the design that assert that all parallel muxes
($pmux cells) have a maximum of one of their inputs enable at any time.

    -noinit
        do not enforce the pmux condition during the init state

    -always
        usually the $pmux condition is only checked when the $pmux output
        is used by the mux tree it drives. this option will deactivate this
        additional constraint and check the $pmux condition always.
\end{lstlisting}

\section{async2sync -- convert async FF inputs to sync circuits}
\label{cmd:async2sync}
\begin{lstlisting}[numbers=left,frame=single]
    async2sync [options] [selection]

This command replaces async FF inputs with sync circuits emulating the same
behavior for when the async signals are actually synchronized to the clock.

This pass assumes negative hold time for the async FF inputs. For example when
a reset deasserts with the clock edge, then the FF output will still drive the
reset value in the next cycle regardless of the data-in value at the time of
the clock edge.
\end{lstlisting}

\section{attrmap -- renaming attributes}
\label{cmd:attrmap}
\begin{lstlisting}[numbers=left,frame=single]
    attrmap [options] [selection]

This command renames attributes and/or maps key/value pairs to
other key/value pairs.

    -tocase <name>
        Match attribute names case-insensitively and set it to the specified
        name.

    -rename <old_name> <new_name>
        Rename attributes as specified

    -map <old_name>=<old_value> <new_name>=<new_value>
        Map key/value pairs as indicated.

    -imap <old_name>=<old_value> <new_name>=<new_value>
        Like -map, but use case-insensitive match for <old_value> when
        it is a string value.

    -remove <name>=<value>
        Remove attributes matching this pattern.

    -modattr
        Operate on module attributes instead of attributes on wires and cells.

For example, mapping Xilinx-style "keep" attributes to Yosys-style:

    attrmap -tocase keep -imap keep="true" keep=1 \
            -imap keep="false" keep=0 -remove keep=0
\end{lstlisting}

\section{attrmvcp -- move or copy attributes from wires to driving cells}
\label{cmd:attrmvcp}
\begin{lstlisting}[numbers=left,frame=single]
    attrmvcp [options] [selection]

Move or copy attributes on wires to the cells driving them.

    -copy
        By default, attributes are moved. This will only add
        the attribute to the cell, without removing it from
        the wire.

    -purge
        If no selected cell consumes the attribute, then it is
        left on the wire by default. This option will cause the
        attribute to be removed from the wire, even if no selected
        cell takes it.

    -driven
        By default, attriburtes are moved to the cell driving the
        wire. With this option set it will be moved to the cell
        driven by the wire instead.

    -attr <attrname>
        Move or copy this attribute. This option can be used
        multiple times.
\end{lstlisting}

\section{autoname -- automatically assign names to objects}
\label{cmd:autoname}
\begin{lstlisting}[numbers=left,frame=single]
    autoname [selection]

Assign auto-generated public names to objects with private names (the ones
with $-prefix).
\end{lstlisting}

\section{blackbox -- convert modules into blackbox modules}
\label{cmd:blackbox}
\begin{lstlisting}[numbers=left,frame=single]
    blackbox [options] [selection]

Convert modules into blackbox modules (remove contents and set the blackbox
module attribute).
\end{lstlisting}

\section{bugpoint -- minimize testcases}
\label{cmd:bugpoint}
\begin{lstlisting}[numbers=left,frame=single]
    bugpoint [options] [-script <filename> | -command "<command>"]

This command minimizes the current design that is known to crash Yosys with the
given script into a smaller testcase. It does this by removing an arbitrary part
of the design and recursively invokes a new Yosys process with this modified design
and the same script, repeating these steps while it can find a smaller design that
still causes a crash. Once this command finishes, it replaces the current design
with the smallest testcase it was able to produce.
In order to save the reduced testcase you must write this out to a file with
another command after `bugpoint` like `write_rtlil` or `write_verilog`.

    -script <filename> | -command "<command>"
        use this script file or command to crash Yosys. required.

    -yosys <filename>
        use this Yosys binary. if not specified, `yosys` is used.

    -grep "<string>"
        only consider crashes that place this string in the log file.

    -fast
        run `proc_clean; clean -purge` after each minimization step. converges
        faster, but produces larger testcases, and may fail to produce any
        testcase at all if the crash is related to dangling wires.

    -clean
        run `proc_clean; clean -purge` before checking testcase and after
        finishing. produces smaller and more useful testcases, but may fail to
        produce any testcase at all if the crash is related to dangling wires.

It is possible to constrain which parts of the design will be considered for
removal. Unless one or more of the following options are specified, all parts
will be considered.

    -modules
        try to remove modules. modules with a (* bugpoint_keep *) attribute
        will be skipped.

    -ports
        try to remove module ports. ports with a (* bugpoint_keep *) attribute
        will be skipped (useful for clocks, resets, etc.)

    -cells
        try to remove cells. cells with a (* bugpoint_keep *) attribute will
        be skipped.

    -connections
        try to reconnect ports to 'x.

    -processes
        try to remove processes. processes with a (* bugpoint_keep *) attribute
        will be skipped.

    -assigns
        try to remove process assigns from cases.

    -updates
        try to remove process updates from syncs.

    -runner "<prefix>"
        child process wrapping command, e.g., "timeout 30", or valgrind.
\end{lstlisting}

\section{cd -- a shortcut for 'select -module <name>'}
\label{cmd:cd}
\begin{lstlisting}[numbers=left,frame=single]
    cd <modname>

This is just a shortcut for 'select -module <modname>'.


    cd <cellname>

When no module with the specified name is found, but there is a cell
with the specified name in the current module, then this is equivalent
to 'cd <celltype>'.

    cd ..

Remove trailing substrings that start with '.' in current module name until
the name of a module in the current design is generated, then switch to that
module. Otherwise clear the current selection.

    cd

This is just a shortcut for 'select -clear'.
\end{lstlisting}

\section{check -- check for obvious problems in the design}
\label{cmd:check}
\begin{lstlisting}[numbers=left,frame=single]
    check [options] [selection]

This pass identifies the following problems in the current design:

  - combinatorial loops
  - two or more conflicting drivers for one wire
  - used wires that do not have a driver

Options:

    -noinit
        also check for wires which have the 'init' attribute set

    -initdrv
        also check for wires that have the 'init' attribute set and are not
        driven by an FF cell type

    -mapped
        also check for internal cells that have not been mapped to cells of the
        target architecture

    -allow-tbuf
        modify the -mapped behavior to still allow $_TBUF_ cells

    -assert
        produce a runtime error if any problems are found in the current design
\end{lstlisting}

\section{chformal -- change formal constraints of the design}
\label{cmd:chformal}
\begin{lstlisting}[numbers=left,frame=single]
    chformal [types] [mode] [options] [selection]

Make changes to the formal constraints of the design. The [types] options
the type of constraint to operate on. If none of the following options are given,
the command will operate on all constraint types:

    -assert       $assert cells, representing assert(...) constraints
    -assume       $assume cells, representing assume(...) constraints
    -live         $live cells, representing assert(s_eventually ...)
    -fair         $fair cells, representing assume(s_eventually ...)
    -cover        $cover cells, representing cover() statements

Exactly one of the following modes must be specified:

    -remove
        remove the cells and thus constraints from the design

    -early
        bypass FFs that only delay the activation of a constraint

    -delay <N>
        delay activation of the constraint by <N> clock cycles

    -skip <N>
        ignore activation of the constraint in the first <N> clock cycles

    -assert2assume
    -assume2assert
    -live2fair
    -fair2live
        change the roles of cells as indicated. these options can be combined
\end{lstlisting}

\section{chparam -- re-evaluate modules with new parameters}
\label{cmd:chparam}
\begin{lstlisting}[numbers=left,frame=single]
    chparam [ -set name value ]... [selection]

Re-evaluate the selected modules with new parameters. String values must be
passed in double quotes (").


    chparam -list [selection]

List the available parameters of the selected modules.
\end{lstlisting}

\section{chtype -- change type of cells in the design}
\label{cmd:chtype}
\begin{lstlisting}[numbers=left,frame=single]
    chtype [options] [selection]

Change the types of cells in the design.

    -set <type>
        set the cell type to the given type

    -map <old_type> <new_type>
        change cells types that match <old_type> to <new_type>
\end{lstlisting}

\section{clean -- remove unused cells and wires}
\label{cmd:clean}
\begin{lstlisting}[numbers=left,frame=single]
    clean [options] [selection]

This is identical to 'opt_clean', but less verbose.

When commands are separated using the ';;' token, this command will be executed
between the commands.

When commands are separated using the ';;;' token, this command will be executed
in -purge mode between the commands.
\end{lstlisting}

\section{clk2fflogic -- convert clocked FFs to generic \$ff cells}
\label{cmd:clk2fflogic}
\begin{lstlisting}[numbers=left,frame=single]
    clk2fflogic [options] [selection]

This command replaces clocked flip-flops with generic $ff cells that use the
implicit global clock. This is useful for formal verification of designs with
multiple clocks.
\end{lstlisting}

\section{clkbufmap -- insert clock buffers on clock networks}
\label{cmd:clkbufmap}
\begin{lstlisting}[numbers=left,frame=single]
    clkbufmap [options] [selection]

Inserts clock buffers between nets connected to clock inputs and their drivers.

In the absence of any selection, all wires without the 'clkbuf_inhibit'
attribute will be considered for clock buffer insertion.
Alternatively, to consider all wires without the 'buffer_type' attribute set to
'none' or 'bufr' one would specify:
  'w:* a:buffer_type=none a:buffer_type=bufr %u %d'
as the selection.

    -buf <celltype> <portname_out>:<portname_in>
        Specifies the cell type to use for the clock buffers
        and its port names.  The first port will be connected to
        the clock network sinks, and the second will be connected
        to the actual clock source.

    -inpad <celltype> <portname_out>:<portname_in>
        If specified, a PAD cell of the given type is inserted on
        clock nets that are also top module's inputs (in addition
        to the clock buffer, if any).

At least one of -buf or -inpad should be specified.
\end{lstlisting}

\section{connect -- create or remove connections}
\label{cmd:connect}
\begin{lstlisting}[numbers=left,frame=single]
    connect [-nomap] [-nounset] -set <lhs-expr> <rhs-expr>

Create a connection. This is equivalent to adding the statement 'assign
<lhs-expr> = <rhs-expr>;' to the Verilog input. Per default, all existing
drivers for <lhs-expr> are unconnected. This can be overwritten by using
the -nounset option.


    connect [-nomap] -unset <expr>

Unconnect all existing drivers for the specified expression.


    connect [-nomap] [-assert] -port <cell> <port> <expr>

Connect the specified cell port to the specified cell port.


Per default signal alias names are resolved and all signal names are mapped
the the signal name of the primary driver. Using the -nomap option deactivates
this behavior.

The connect command operates in one module only. Either only one module must
be selected or an active module must be set using the 'cd' command.

The -assert option verifies that the connection already exists, instead of
making it.

This command does not operate on module with processes.
\end{lstlisting}

\section{connect\_rpc -- connect to RPC frontend}
\label{cmd:connect_rpc}
\begin{lstlisting}[numbers=left,frame=single]
    connect_rpc -exec <command> [args...]
    connect_rpc -path <path>

Load modules using an out-of-process frontend.

    -exec <command> [args...]
        run <command> with arguments [args...]. send requests on stdin, read
        responses from stdout.

    -path <path>
        connect to Unix domain socket at <path>. (Unix)
        connect to bidirectional byte-type named pipe at <path>. (Windows)

A simple JSON-based, newline-delimited protocol is used for communicating with
the frontend. Yosys requests data from the frontend by sending exactly 1 line
of JSON. Frontend responds with data or error message by replying with exactly
1 line of JSON as well.

    -> {"method": "modules"}
    <- {"modules": ["<module-name>", ...]}
    <- {"error": "<error-message>"}
        request for the list of modules that can be derived by this frontend.
        the 'hierarchy' command will call back into this frontend if a cell
        with type <module-name> is instantiated in the design.

    -> {"method": "derive", "module": "<module-name">, "parameters": {
        "<param-name>": {"type": "[unsigned|signed|string|real]",
                           "value": "<param-value>"}, ...}}
    <- {"frontend": "[rtlil|verilog|...]","source": "<source>"}}
    <- {"error": "<error-message>"}
        request for the module <module-name> to be derived for a specific set of
        parameters. <param-name> starts with \ for named parameters, and with $
        for unnamed parameters, which are numbered starting at 1.<param-value>
        for integer parameters is always specified as a binary string of unlimited
        precision. the <source> returned by the frontend is hygienically parsed
        by a built-in Yosys <frontend>, allowing the RPC frontend to return any
        convenient representation of the module. the derived module is cached,
        so the response should be the same whenever the same set of parameters
        is provided.
\end{lstlisting}

\section{connwrappers -- match width of input-output port pairs}
\label{cmd:connwrappers}
\begin{lstlisting}[numbers=left,frame=single]
    connwrappers [options] [selection]

Wrappers are used in coarse-grain synthesis to wrap cells with smaller ports
in wrapper cells with a (larger) constant port size. I.e. the upper bits
of the wrapper output are signed/unsigned bit extended. This command uses this
knowledge to rewire the inputs of the driven cells to match the output of
the driving cell.

    -signed <cell_type> <port_name> <width_param>
    -unsigned <cell_type> <port_name> <width_param>
        consider the specified signed/unsigned wrapper output

    -port <cell_type> <port_name> <width_param> <sign_param>
        use the specified parameter to decide if signed or unsigned

The options -signed, -unsigned, and -port can be specified multiple times.
\end{lstlisting}

\section{coolrunner2\_fixup -- insert necessary buffer cells for CoolRunner-II architecture}
\label{cmd:coolrunner2_fixup}
\begin{lstlisting}[numbers=left,frame=single]
    coolrunner2_fixup [options] [selection]

Insert necessary buffer cells for CoolRunner-II architecture.
\end{lstlisting}

\section{coolrunner2\_sop -- break \$sop cells into ANDTERM/ORTERM cells}
\label{cmd:coolrunner2_sop}
\begin{lstlisting}[numbers=left,frame=single]
    coolrunner2_sop [options] [selection]

Break $sop cells into ANDTERM/ORTERM cells.
\end{lstlisting}

\section{copy -- copy modules in the design}
\label{cmd:copy}
\begin{lstlisting}[numbers=left,frame=single]
    copy old_name new_name

Copy the specified module. Note that selection patterns are not supported
by this command.
\end{lstlisting}

\section{cover -- print code coverage counters}
\label{cmd:cover}
\begin{lstlisting}[numbers=left,frame=single]
    cover [options] [pattern]

Print the code coverage counters collected using the cover() macro in the Yosys
C++ code. This is useful to figure out what parts of Yosys are utilized by a
test bench.

    -q
        Do not print output to the normal destination (console and/or log file)

    -o file
        Write output to this file, truncate if exists.

    -a file
        Write output to this file, append if exists.

    -d dir
        Write output to a newly created file in the specified directory.

When one or more pattern (shell wildcards) are specified, then only counters
matching at least one pattern are printed.


It is also possible to instruct Yosys to print the coverage counters on program
exit to a file using environment variables:

    YOSYS_COVER_DIR="{dir-name}" yosys {args}

        This will create a file (with an auto-generated name) in this
        directory and write the coverage counters to it.

    YOSYS_COVER_FILE="{file-name}" yosys {args}

        This will append the coverage counters to the specified file.


Hint: Use the following AWK command to consolidate Yosys coverage files:

    gawk '{ p[$3] = $1; c[$3] += $2; } END { for (i in p)
      printf "%-60s %10d %s\n", p[i], c[i], i; }' {files} | sort -k3


Coverage counters are only available in Yosys for Linux.
\end{lstlisting}

\section{cutpoint -- adds formal cut points to the design}
\label{cmd:cutpoint}
\begin{lstlisting}[numbers=left,frame=single]
    cutpoint [options] [selection]

This command adds formal cut points to the design.

    -undef
        set cupoint nets to undef (x). the default behavior is to create a
        $anyseq cell and drive the cutpoint net from that
\end{lstlisting}

\section{debug -- run command with debug log messages enabled}
\label{cmd:debug}
\begin{lstlisting}[numbers=left,frame=single]
    debug cmd

Execute the specified command with debug log messages enabled
\end{lstlisting}

\section{delete -- delete objects in the design}
\label{cmd:delete}
\begin{lstlisting}[numbers=left,frame=single]
    delete [selection]

Deletes the selected objects. This will also remove entire modules, if the
whole module is selected.


    delete {-input|-output|-port} [selection]

Does not delete any object but removes the input and/or output flag on the
selected wires, thus 'deleting' module ports.
\end{lstlisting}

\section{deminout -- demote inout ports to input or output}
\label{cmd:deminout}
\begin{lstlisting}[numbers=left,frame=single]
    deminout [options] [selection]

"Demote" inout ports to input or output ports, if possible.
\end{lstlisting}

\section{design -- save, restore and reset current design}
\label{cmd:design}
\begin{lstlisting}[numbers=left,frame=single]
    design -reset

Clear the current design.


    design -save <name>

Save the current design under the given name.


    design -stash <name>

Save the current design under the given name and then clear the current design.


    design -push

Push the current design to the stack and then clear the current design.


    design -push-copy

Push the current design to the stack without clearing the current design.


    design -pop

Reset the current design and pop the last design from the stack.


    design -load <name>

Reset the current design and load the design previously saved under the given
name.


    design -copy-from <name> [-as <new_mod_name>] <selection>

Copy modules from the specified design into the current one. The selection is
evaluated in the other design.


    design -copy-to <name> [-as <new_mod_name>] [selection]

Copy modules from the current design into the specified one.


    design -import <name> [-as <new_top_name>] [selection]

Import the specified design into the current design. The source design must
either have a selected top module or the selection must contain exactly one
module that is then used as top module for this command.


    design -reset-vlog

The Verilog front-end remembers defined macros and top-level declarations
between calls to 'read_verilog'. This command resets this memory.

    design -delete <name>

Delete the design previously saved under the given name.
\end{lstlisting}

\section{dffinit -- set INIT param on FF cells}
\label{cmd:dffinit}
\begin{lstlisting}[numbers=left,frame=single]
    dffinit [options] [selection]

This pass sets an FF cell parameter to the the initial value of the net it
drives. (This is primarily used in FPGA flows.)

    -ff <cell_name> <output_port> <init_param>
        operate on the specified cell type. this option can be used
        multiple times.

    -highlow
        use the string values "high" and "low" to represent a single-bit
        initial value of 1 or 0. (multi-bit values are not supported in this
        mode.)

    -strinit <string for high> <string for low> 
        use string values in the command line to represent a single-bit
        initial value of 1 or 0. (multi-bit values are not supported in this
        mode.)

    -noreinit
        fail if the FF cell has already a defined initial value set in other
        passes and the initial value of the net it drives is not equal to
        the already defined initial value.
\end{lstlisting}

\section{dfflegalize -- convert FFs to types supported by the target}
\label{cmd:dfflegalize}
\begin{lstlisting}[numbers=left,frame=single]
    dfflegalize [options] [selection]

Converts FFs to types supported by the target.

    -cell <cell_type_pattern> <init_values>
        specifies a supported group of FF cells.  <cell_type_pattern>
        is a yosys internal fine cell name, where ? characters can be
        as a wildcard matching any character.  <init_values> specifies
        which initialization values these FF cells can support, and can
        be one of:

        - x (no init value supported)
        - 0
        - 1
        - r (init value has to match reset value, only for some FF types)
        - 01 (both 0 and 1 supported).

    -mince <num>
        specifies a minimum number of FFs that should be using any given
        clock enable signal.  If a clock enable signal doesn't meet this
        threshold, it is unmapped into soft logic.

    -minsrst <num>
        specifies a minimum number of FFs that should be using any given
        sync set/reset signal.  If a sync set/reset signal doesn't meet this
        threshold, it is unmapped into soft logic.

The following cells are supported by this pass (ie. will be ingested,
and can be specified as allowed targets):

- $_DFF_[NP]_
- $_DFFE_[NP][NP]_
- $_DFF_[NP][NP][01]_
- $_DFFE_[NP][NP][01][NP]_
- $_ALDFF_[NP][NP]_
- $_ALDFFE_[NP][NP][NP]_
- $_DFFSR_[NP][NP][NP]_
- $_DFFSRE_[NP][NP][NP][NP]_
- $_SDFF_[NP][NP][01]_
- $_SDFFE_[NP][NP][01][NP]_
- $_SDFFCE_[NP][NP][01][NP]_
- $_SR_[NP][NP]_
- $_DLATCH_[NP]_
- $_DLATCH_[NP][NP][01]_
- $_DLATCHSR_[NP][NP][NP]_

The following transformations are performed by this pass:
- upconversion from a less capable cell to a more capable cell, if the less  capable cell is not supported (eg. dff -> dffe, or adff -> dffsr)
- unmapping FFs with clock enable (due to unsupported cell type or -mince)
- unmapping FFs with sync reset (due to unsupported cell type or -minsrst)
- adding inverters on the control pins (due to unsupported polarity)
- adding inverters on the D and Q pins and inverting the init/reset values
  (due to unsupported init or reset value)
- converting sr into adlatch (by tying D to 1 and using E as set input)
- emulating unsupported dffsr cell by adff + adff + sr + mux
- emulating unsupported dlatchsr cell by adlatch + adlatch + sr + mux
- emulating adff when the (reset, init) value combination is unsupported by
  dff + adff + dlatch + mux
- emulating adlatch when the (reset, init) value combination is unsupported by
- dlatch + adlatch + dlatch + mux
If the pass is unable to realize a given cell type (eg. adff when only plain dffis available), an error is raised.
\end{lstlisting}

\section{dfflibmap -- technology mapping of flip-flops}
\label{cmd:dfflibmap}
\begin{lstlisting}[numbers=left,frame=single]
    dfflibmap [-prepare] [-map-only] [-info] -liberty <file> [selection]

Map internal flip-flop cells to the flip-flop cells in the technology
library specified in the given liberty file.

This pass may add inverters as needed. Therefore it is recommended to
first run this pass and then map the logic paths to the target technology.

When called with -prepare, this command will convert the internal FF cells
to the internal cell types that best match the cells found in the given
liberty file, but won't actually map them to the target cells.

When called with -map-only, this command will only map internal cell
types that are already of exactly the right type to match the target
cells, leaving remaining internal cells untouched.

When called with -info, this command will only print the target cell
list, along with their associated internal cell types, and the argumentsthat would be passed to the dfflegalize pass.  The design will not be
changed.
\end{lstlisting}

\section{dffunmap -- unmap clock enable and synchronous reset from FFs}
\label{cmd:dffunmap}
\begin{lstlisting}[numbers=left,frame=single]
    dffunmap [options] [selection]

This pass transforms FF types with clock enable and/or synchronous reset into
their base type (with neither clock enable nor sync reset) by emulating the clock
enable and synchronous reset with multiplexers on the cell input.

    -ce-only
        unmap only clock enables, leave synchronous resets alone.

    -srst-only
        unmap only synchronous resets, leave clock enables alone.
\end{lstlisting}

\section{dump -- print parts of the design in RTLIL format}
\label{cmd:dump}
\begin{lstlisting}[numbers=left,frame=single]
    dump [options] [selection]

Write the selected parts of the design to the console or specified file in
RTLIL format.

    -m
        also dump the module headers, even if only parts of a single
        module is selected

    -n
        only dump the module headers if the entire module is selected

    -o <filename>
        write to the specified file.

    -a <filename>
        like -outfile but append instead of overwrite
\end{lstlisting}

\section{echo -- turning echoing back of commands on and off}
\label{cmd:echo}
\begin{lstlisting}[numbers=left,frame=single]
    echo on

Print all commands to log before executing them.


    echo off

Do not print all commands to log before executing them. (default)
\end{lstlisting}

\section{ecp5\_gsr -- ECP5: handle GSR}
\label{cmd:ecp5_gsr}
\begin{lstlisting}[numbers=left,frame=single]
    ecp5_gsr [options] [selection]

Trim active low async resets connected to GSR and resolve GSR parameter,
if a GSR or SGSR primitive is used in the design.

If any cell has the GSR parameter set to "AUTO", this will be resolved
to "ENABLED" if a GSR primitive is present and the (* nogsr *) attribute
is not set, otherwise it will be resolved to "DISABLED".
\end{lstlisting}

\section{edgetypes -- list all types of edges in selection}
\label{cmd:edgetypes}
\begin{lstlisting}[numbers=left,frame=single]
    edgetypes [options] [selection]

This command lists all unique types of 'edges' found in the selection. An 'edge'
is a 4-tuple of source and sink cell type and port name.
\end{lstlisting}

\section{efinix\_fixcarry -- Efinix: fix carry chain}
\label{cmd:efinix_fixcarry}
\begin{lstlisting}[numbers=left,frame=single]
    efinix_fixcarry [options] [selection]

Add Efinix adders to fix carry chain if needed.
\end{lstlisting}

\section{equiv\_add -- add a \$equiv cell}
\label{cmd:equiv_add}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_add [-try] gold_sig gate_sig

This command adds an $equiv cell for the specified signals.


    equiv_add [-try] -cell gold_cell gate_cell

This command adds $equiv cells for the ports of the specified cells.
\end{lstlisting}

\section{equiv\_induct -- proving \$equiv cells using temporal induction}
\label{cmd:equiv_induct}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_induct [options] [selection]

Uses a version of temporal induction to prove $equiv cells.

Only selected $equiv cells are proven and only selected cells are used to
perform the proof.

    -undef
        enable modelling of undef states

    -seq <N>
        the max. number of time steps to be considered (default = 4)

This command is very effective in proving complex sequential circuits, when
the internal state of the circuit quickly propagates to $equiv cells.

However, this command uses a weak definition of 'equivalence': This command
proves that the two circuits will not diverge after they produce equal
outputs (observable points via $equiv) for at least <N> cycles (the <N>
specified via -seq).

Combined with simulation this is very powerful because simulation can give
you confidence that the circuits start out synced for at least <N> cycles
after reset.
\end{lstlisting}

\section{equiv\_make -- prepare a circuit for equivalence checking}
\label{cmd:equiv_make}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_make [options] gold_module gate_module equiv_module

This creates a module annotated with $equiv cells from two presumably
equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'
to work with the created equivalent checking module.

    -inames
        Also match cells and wires with $... names.

    -blacklist <file>
        Do not match cells or signals that match the names in the file.

    -encfile <file>
        Match FSM encodings using the description from the file.
        See 'help fsm_recode' for details.

Note: The circuit created by this command is not a miter (with something like
a trigger output), but instead uses $equiv cells to encode the equivalence
checking problem. Use 'miter -equiv' if you want to create a miter circuit.
\end{lstlisting}

\section{equiv\_mark -- mark equivalence checking regions}
\label{cmd:equiv_mark}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_mark [options] [selection]

This command marks the regions in an equivalence checking module. Region 0 is
the proven part of the circuit. Regions with higher numbers are connected
unproven subcricuits. The integer attribute 'equiv_region' is set on all
wires and cells.
\end{lstlisting}

\section{equiv\_miter -- extract miter from equiv circuit}
\label{cmd:equiv_miter}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_miter [options] miter_module [selection]

This creates a miter module for further analysis of the selected $equiv cells.

    -trigger
        Create a trigger output

    -cmp
        Create cmp_* outputs for individual unproven $equiv cells

    -assert
        Create a $assert cell for each unproven $equiv cell

    -undef
        Create compare logic that handles undefs correctly
\end{lstlisting}

\section{equiv\_opt -- prove equivalence for optimized circuit}
\label{cmd:equiv_opt}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_opt [options] [command]

This command uses temporal induction to check circuit equivalence before and
after an optimization pass.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to the start of the command list, and empty to
        label is synonymous to the end of the command list.

    -map <filename>
        expand the modules in this file before proving equivalence. this is
        useful for handling architecture-specific primitives.

    -blacklist <file>
        Do not match cells or signals that match the names in the file
        (passed to equiv_make).

    -assert
        produce an error if the circuits are not equivalent.

    -multiclock
        run clk2fflogic before equivalence checking.

    -async2sync
        run async2sync before equivalence checking.

    -undef
        enable modelling of undef states during equiv_induct.

The following commands are executed by this verification command:

    run_pass:
        hierarchy -auto-top
        design -save preopt
        [command]
        design -stash postopt

    prepare:
        design -copy-from preopt  -as gold A:top
        design -copy-from postopt -as gate A:top

    techmap:    (only with -map)
        techmap -wb -D EQUIV -autoproc -map <filename> ...

    prove:
        clk2fflogic    (only with -multiclock)
        async2sync     (only with -async2sync)
        equiv_make -blacklist <filename> ... gold gate equiv
        equiv_induct [-undef] equiv
        equiv_status [-assert] equiv

    restore:
        design -load preopt
\end{lstlisting}

\section{equiv\_purge -- purge equivalence checking module}
\label{cmd:equiv_purge}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_purge [options] [selection]

This command removes the proven part of an equivalence checking module, leaving
only the unproven segments in the design. This will also remove and add module
ports as needed.
\end{lstlisting}

\section{equiv\_remove -- remove \$equiv cells}
\label{cmd:equiv_remove}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_remove [options] [selection]

This command removes the selected $equiv cells. If neither -gold nor -gate is
used then only proven cells are removed.

    -gold
        keep gold circuit

    -gate
        keep gate circuit
\end{lstlisting}

\section{equiv\_simple -- try proving simple \$equiv instances}
\label{cmd:equiv_simple}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_simple [options] [selection]

This command tries to prove $equiv cells using a simple direct SAT approach.

    -v
        verbose output

    -undef
        enable modelling of undef states

    -short
        create shorter input cones that stop at shared nodes. This yields
        simpler SAT problems but sometimes fails to prove equivalence.

    -nogroup
        disabling grouping of $equiv cells by output wire

    -seq <N>
        the max. number of time steps to be considered (default = 1)
\end{lstlisting}

\section{equiv\_status -- print status of equivalent checking module}
\label{cmd:equiv_status}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_status [options] [selection]

This command prints status information for all selected $equiv cells.

    -assert
        produce an error if any unproven $equiv cell is found
\end{lstlisting}

\section{equiv\_struct -- structural equivalence checking}
\label{cmd:equiv_struct}
\begin{lstlisting}[numbers=left,frame=single]
    equiv_struct [options] [selection]

This command adds additional $equiv cells based on the assumption that the
gold and gate circuit are structurally equivalent. Note that this can introduce
bad $equiv cells in cases where the netlists are not structurally equivalent,
for example when analyzing circuits with cells with commutative inputs. This
command will also de-duplicate gates.

    -fwd
        by default this command performans forward sweeps until nothing can
        be merged by forwards sweeps, then backward sweeps until forward
        sweeps are effective again. with this option set only forward sweeps
        are performed.

    -fwonly <cell_type>
        add the specified cell type to the list of cell types that are only
        merged in forward sweeps and never in backward sweeps. $equiv is in
        this list automatically.

    -icells
        by default, the internal RTL and gate cell types are ignored. add
        this option to also process those cell types with this command.

    -maxiter <N>
        maximum number of iterations to run before aborting
\end{lstlisting}

\section{eval -- evaluate the circuit given an input}
\label{cmd:eval}
\begin{lstlisting}[numbers=left,frame=single]
    eval [options] [selection]

This command evaluates the value of a signal given the value of all required
inputs.

    -set <signal> <value>
        set the specified signal to the specified value.

    -set-undef
        set all unspecified source signals to undef (x)

    -table <signal>
        create a truth table using the specified input signals

    -show <signal>
        show the value for the specified signal. if no -show option is passed
        then all output ports of the current module are used.
\end{lstlisting}

\section{exec -- execute commands in the operating system shell}
\label{cmd:exec}
\begin{lstlisting}[numbers=left,frame=single]
    exec [options] -- [command]

Execute a command in the operating system shell.  All supplied arguments are
concatenated and passed as a command to popen(3).  Whitespace is not guaranteed
to be preserved, even if quoted.  stdin and stderr are not connected, while stdout is
logged unless the "-q" option is specified.


    -q
        Suppress stdout and stderr from subprocess

    -expect-return <int>
        Generate an error if popen() does not return specified value.
        May only be specified once; the final specified value is controlling
        if specified multiple times.

    -expect-stdout <regex>
        Generate an error if the specified regex does not match any line
        in subprocess's stdout.  May be specified multiple times.

    -not-expect-stdout <regex>
        Generate an error if the specified regex matches any line
        in subprocess's stdout.  May be specified multiple times.


    Example: exec -q -expect-return 0 -- echo "bananapie" | grep "nana"
\end{lstlisting}

\section{expose -- convert internal signals to module ports}
\label{cmd:expose}
\begin{lstlisting}[numbers=left,frame=single]
    expose [options] [selection]

This command exposes all selected internal signals of a module as additional
outputs.

    -dff
        only consider wires that are directly driven by register cell.

    -cut
        when exposing a wire, create an input/output pair and cut the internal
        signal path at that wire.

    -input
        when exposing a wire, create an input port and disconnect the internal
        driver.

    -shared
        only expose those signals that are shared among the selected modules.
        this is useful for preparing modules for equivalence checking.

    -evert
        also turn connections to instances of other modules to additional
        inputs and outputs and remove the module instances.

    -evert-dff
        turn flip-flops to sets of inputs and outputs.

    -sep <separator>
        when creating new wire/port names, the original object name is suffixed
        with this separator (default: '.') and the port name or a type
        designator for the exposed signal.
\end{lstlisting}

\section{extract -- find subcircuits and replace them with cells}
\label{cmd:extract}
\begin{lstlisting}[numbers=left,frame=single]
    extract -map <map_file> [options] [selection]
    extract -mine <out_file> [options] [selection]

This pass looks for subcircuits that are isomorphic to any of the modules
in the given map file and replaces them with instances of this modules. The
map file can be a Verilog source file (*.v) or an RTLIL source file (*.il).

    -map <map_file>
        use the modules in this file as reference. This option can be used
        multiple times.

    -map %<design-name>
        use the modules in this in-memory design as reference. This option can
        be used multiple times.

    -verbose
        print debug output while analyzing

    -constports
        also find instances with constant drivers. this may be much
        slower than the normal operation.

    -nodefaultswaps
        normally builtin port swapping rules for internal cells are used per
        default. This turns that off, so e.g. 'a^b' does not match 'b^a'
        when this option is used.

    -compat <needle_type> <haystack_type>
        Per default, the cells in the map file (needle) must have the
        type as the cells in the active design (haystack). This option
        can be used to register additional pairs of types that should
        match. This option can be used multiple times.

    -swap <needle_type> <port1>,<port2>[,...]
        Register a set of swappable ports for a needle cell type.
        This option can be used multiple times.

    -perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]
        Register a valid permutation of swappable ports for a needle
        cell type. This option can be used multiple times.

    -cell_attr <attribute_name>
        Attributes on cells with the given name must match.

    -wire_attr <attribute_name>
        Attributes on wires with the given name must match.

    -ignore_parameters
        Do not use parameters when matching cells.

    -ignore_param <cell_type> <parameter_name>
        Do not use this parameter when matching cells.

This pass does not operate on modules with unprocessed processes in it.
(I.e. the 'proc' pass should be used first to convert processes to netlists.)

This pass can also be used for mining for frequent subcircuits. In this mode
the following options are to be used instead of the -map option.

    -mine <out_file>
        mine for frequent subcircuits and write them to the given RTLIL file

    -mine_cells_span <min> <max>
        only mine for subcircuits with the specified number of cells
        default value: 3 5

    -mine_min_freq <num>
        only mine for subcircuits with at least the specified number of matches
        default value: 10

    -mine_limit_matches_per_module <num>
        when calculating the number of matches for a subcircuit, don't count
        more than the specified number of matches per module

    -mine_max_fanout <num>
        don't consider internal signals with more than <num> connections

The modules in the map file may have the attribute 'extract_order' set to an
integer value. Then this value is used to determine the order in which the pass
tries to map the modules to the design (ascending, default value is 0).

See 'help techmap' for a pass that does the opposite thing.
\end{lstlisting}

\section{extract\_counter -- Extract GreenPak4 counter cells}
\label{cmd:extract_counter}
\begin{lstlisting}[numbers=left,frame=single]
    extract_counter [options] [selection]

This pass converts non-resettable or async resettable down counters to
counter cells. Use a target-specific 'techmap' map file to convert those cells
to the actual target cells.

    -maxwidth N
        Only extract counters up to N bits wide (default 64)

    -minwidth N
        Only extract counters at least N bits wide (default 2)

    -allow_arst yes|no
        Allow counters to have async reset (default yes)

    -dir up|down|both
        Look for up-counters, down-counters, or both (default down)

    -pout X,Y,...
        Only allow parallel output from the counter to the listed cell types
        (if not specified, parallel outputs are not restricted)
\end{lstlisting}

\section{extract\_fa -- find and extract full/half adders}
\label{cmd:extract_fa}
\begin{lstlisting}[numbers=left,frame=single]
    extract_fa [options] [selection]

This pass extracts full/half adders from a gate-level design.

    -fa, -ha
        Enable cell types (fa=full adder, ha=half adder)
        All types are enabled if none of this options is used

    -d <int>
        Set maximum depth for extracted logic cones (default=20)

    -b <int>
        Set maximum breadth for extracted logic cones (default=6)

    -v
        Verbose output
\end{lstlisting}

\section{extract\_reduce -- converts gate chains into \$reduce\_* cells}
\label{cmd:extract_reduce}
\begin{lstlisting}[numbers=left,frame=single]
    extract_reduce [options] [selection]

converts gate chains into $reduce_* cells

This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them
with their corresponding $reduce_* cells. Because this command only operates on
these cell types, it is recommended to map the design to only these cell types
using the `abc -g` command. Note that, in some cases, it may be more effective
to map the design to only $_AND_ cells, run extract_reduce, map the remaining
parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.

    -allow-off-chain
        Allows matching of cells that have loads outside the chain. These cells
        will be replicated and folded into the $reduce_* cell, but the original
        cell will remain, driving its original loads.
\end{lstlisting}

\section{extractinv -- extract explicit inverter cells for invertible cell pins}
\label{cmd:extractinv}
\begin{lstlisting}[numbers=left,frame=single]
    extractinv [options] [selection]

Searches the design for all cells with invertible pins controlled by a cell
parameter (eg. IS_CLK_INVERTED on many Xilinx cells) and removes the parameter.
If the parameter was set to 1, inserts an explicit inverter cell in front of
the pin instead.  Normally used for output to ISE, which does not support the
inversion parameters.

To mark a cell port as invertible, use (* invertible_pin = "param_name" *)
on the wire in the blackbox module.  The parameter value should have
the same width as the port, and will be effectively XORed with it.

    -inv <celltype> <portname_out>:<portname_in>
        Specifies the cell type to use for the inverters and its port names.
        This option is required.
\end{lstlisting}

\section{flatten -- flatten design}
\label{cmd:flatten}
\begin{lstlisting}[numbers=left,frame=single]
    flatten [options] [selection]

This pass flattens the design by replacing cells by their implementation. This
pass is very similar to the 'techmap' pass. The only difference is that this
pass is using the current design as mapping library.

Cells and/or modules with the 'keep_hierarchy' attribute set will not be
flattened by this command.

    -wb
        Ignore the 'whitebox' attribute on cell implementations.
\end{lstlisting}

\section{flowmap -- pack LUTs with FlowMap}
\label{cmd:flowmap}
\begin{lstlisting}[numbers=left,frame=single]
    flowmap [options] [selection]

This pass uses the FlowMap technology mapping algorithm to pack logic gates
into k-LUTs with optimal depth. It allows mapping any circuit elements that can
be evaluated with the `eval` pass, including cells with multiple output ports
and multi-bit input and output ports.

    -maxlut k
        perform technology mapping for a k-LUT architecture. if not specified,
        defaults to 3.

    -minlut n
        only produce n-input or larger LUTs. if not specified, defaults to 1.

    -cells <cell>[,<cell>,...]
        map specified cells. if not specified, maps $_NOT_, $_AND_, $_OR_,
        $_XOR_ and $_MUX_, which are the outputs of the `simplemap` pass.

    -relax
        perform depth relaxation and area minimization.

    -r-alpha n, -r-beta n, -r-gamma n
        parameters of depth relaxation heuristic potential function.
        if not specified, alpha=8, beta=2, gamma=1.

    -optarea n
        optimize for area by trading off at most n logic levels for fewer LUTs.
        n may be zero, to optimize for area without increasing depth.
        implies -relax.

    -debug
        dump intermediate graphs.

    -debug-relax
        explain decisions performed during depth relaxation.
\end{lstlisting}

\section{fmcombine -- combine two instances of a cell into one}
\label{cmd:fmcombine}
\begin{lstlisting}[numbers=left,frame=single]
    fmcombine [options] module_name gold_cell gate_cell

This pass takes two cells, which are instances of the same module, and replaces
them with one instance of a special 'combined' module, that effectively
contains two copies of the original module, plus some formal properties.

This is useful for formal test benches that check what differences in behavior
a slight difference in input causes in a module.

    -initeq
        Insert assumptions that initially all FFs in both circuits have the
        same initial values.

    -anyeq
        Do not duplicate $anyseq/$anyconst cells.

    -fwd
        Insert forward hint assumptions into the combined module.

    -bwd
        Insert backward hint assumptions into the combined module.
        (Backward hints are logically equivalend to fordward hits, but
        some solvers are faster with bwd hints, or even both -bwd and -fwd.)

    -nop
        Don't insert hint assumptions into the combined module.
        (This should not provide any speedup over the original design, but
        strangely sometimes it does.)

If none of -fwd, -bwd, and -nop is given, then -fwd is used as default.
\end{lstlisting}

\section{fminit -- set init values/sequences for formal}
\label{cmd:fminit}
\begin{lstlisting}[numbers=left,frame=single]
    fminit [options] <selection>

This pass creates init constraints (for example for reset sequences) in a formal
model.

    -seq <signal> <sequence>
        Set sequence using comma-separated list of values, use 'z for
        unconstrained bits. The last value is used for the remainder of the
        trace.

    -set <signal> <value>
        Add constant value constraint

    -posedge <signal>
    -negedge <signal>
        Set clock for init sequences
\end{lstlisting}

\section{freduce -- perform functional reduction}
\label{cmd:freduce}
\begin{lstlisting}[numbers=left,frame=single]
    freduce [options] [selection]

This pass performs functional reduction in the circuit. I.e. if two nodes are
equivalent, they are merged to one node and one of the redundant drivers is
disconnected. A subsequent call to 'clean' will remove the redundant drivers.

    -v, -vv
        enable verbose or very verbose output

    -inv
        enable explicit handling of inverted signals

    -stop <n>
        stop after <n> reduction operations. this is mostly used for
        debugging the freduce command itself.

    -dump <prefix>
        dump the design to <prefix>_<module>_<num>.il after each reduction
        operation. this is mostly used for debugging the freduce command.

This pass is undef-aware, i.e. it considers don't-care values for detecting
equivalent nodes.

All selected wires are considered for rewiring. The selected cells cover the
circuit that is analyzed.
\end{lstlisting}

\section{fsm -- extract and optimize finite state machines}
\label{cmd:fsm}
\begin{lstlisting}[numbers=left,frame=single]
    fsm [options] [selection]

This pass calls all the other fsm_* passes in a useful order. This performs
FSM extraction and optimization. It also calls opt_clean as needed:

    fsm_detect          unless got option -nodetect
    fsm_extract

    fsm_opt
    opt_clean
    fsm_opt

    fsm_expand          if got option -expand
    opt_clean           if got option -expand
    fsm_opt             if got option -expand

    fsm_recode          unless got option -norecode

    fsm_info

    fsm_export          if got option -export
    fsm_map             unless got option -nomap

Options:

    -expand, -norecode, -export, -nomap
        enable or disable passes as indicated above

    -fullexpand
        call expand with -full option

    -encoding type
    -fm_set_fsm_file file
    -encfile file
        passed through to fsm_recode pass
\end{lstlisting}

\section{fsm\_detect -- finding FSMs in design}
\label{cmd:fsm_detect}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_detect [selection]

This pass detects finite state machines by identifying the state signal.
The state signal is then marked by setting the attribute 'fsm_encoding'
on the state signal to "auto".

Existing 'fsm_encoding' attributes are not changed by this pass.

Signals can be protected from being detected by this pass by setting the
'fsm_encoding' attribute to "none".
\end{lstlisting}

\section{fsm\_expand -- expand FSM cells by merging logic into it}
\label{cmd:fsm_expand}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_expand [-full] [selection]

The fsm_extract pass is conservative about the cells that belong to a finite
state machine. This pass can be used to merge additional auxiliary gates into
the finite state machine.

By default, fsm_expand is still a bit conservative regarding merging larger
word-wide cells. Call with -full to consider all cells for merging.
\end{lstlisting}

\section{fsm\_export -- exporting FSMs to KISS2 files}
\label{cmd:fsm_export}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_export [-noauto] [-o filename] [-origenc] [selection]

This pass creates a KISS2 file for every selected FSM. For FSMs with the
'fsm_export' attribute set, the attribute value is used as filename, otherwise
the module and cell name is used as filename. If the parameter '-o' is given,
the first exported FSM is written to the specified filename. This overwrites
the setting as specified with the 'fsm_export' attribute. All other FSMs are
exported to the default name as mentioned above.

    -noauto
        only export FSMs that have the 'fsm_export' attribute set

    -o filename
        filename of the first exported FSM

    -origenc
        use binary state encoding as state names instead of s0, s1, ...
\end{lstlisting}

\section{fsm\_extract -- extracting FSMs in design}
\label{cmd:fsm_extract}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_extract [selection]

This pass operates on all signals marked as FSM state signals using the
'fsm_encoding' attribute. It consumes the logic that creates the state signal
and uses the state signal to generate control signal and replaces it with an
FSM cell.

The generated FSM cell still generates the original state signal with its
original encoding. The 'fsm_opt' pass can be used in combination with the
'opt_clean' pass to eliminate this signal.
\end{lstlisting}

\section{fsm\_info -- print information on finite state machines}
\label{cmd:fsm_info}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_info [selection]

This pass dumps all internal information on FSM cells. It can be useful for
analyzing the synthesis process and is called automatically by the 'fsm'
pass so that this information is included in the synthesis log file.
\end{lstlisting}

\section{fsm\_map -- mapping FSMs to basic logic}
\label{cmd:fsm_map}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_map [selection]

This pass translates FSM cells to flip-flops and logic.
\end{lstlisting}

\section{fsm\_opt -- optimize finite state machines}
\label{cmd:fsm_opt}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_opt [selection]

This pass optimizes FSM cells. It detects which output signals are actually
not used and removes them from the FSM. This pass is usually used in
combination with the 'opt_clean' pass (see also 'help fsm').
\end{lstlisting}

\section{fsm\_recode -- recoding finite state machines}
\label{cmd:fsm_recode}
\begin{lstlisting}[numbers=left,frame=single]
    fsm_recode [options] [selection]

This pass reassign the state encodings for FSM cells. At the moment only
one-hot encoding and binary encoding is supported.
    -encoding <type>
        specify the encoding scheme used for FSMs without the
        'fsm_encoding' attribute or with the attribute set to `auto'.

    -fm_set_fsm_file <file>
        generate a file containing the mapping from old to new FSM encoding
        in form of Synopsys Formality set_fsm_* commands.

    -encfile <file>
        write the mappings from old to new FSM encoding to a file in the
        following format:

            .fsm <module_name> <state_signal>
            .map <old_bitpattern> <new_bitpattern>
\end{lstlisting}

\section{greenpak4\_dffinv -- merge greenpak4 inverters and DFF/latches}
\label{cmd:greenpak4_dffinv}
\begin{lstlisting}[numbers=left,frame=single]
    greenpak4_dffinv [options] [selection]

Merge GP_INV cells with GP_DFF* and GP_DLATCH* cells.
\end{lstlisting}

\section{help -- display help messages}
\label{cmd:help}
\begin{lstlisting}[numbers=left,frame=single]
    help  ................  list all commands
    help <command>  ......  print help message for given command
    help -all  ...........  print complete command reference

    help -cells ..........  list all cell types
    help <celltype>  .....  print help message for given cell type
    help <celltype>+  ....  print verilog code for given cell type
\end{lstlisting}

\section{hierarchy -- check, expand and clean up design hierarchy}
\label{cmd:hierarchy}
\begin{lstlisting}[numbers=left,frame=single]
    hierarchy [-check] [-top <module>]
    hierarchy -generate <cell-types> <port-decls>

In parametric designs, a module might exists in several variations with
different parameter values. This pass looks at all modules in the current
design and re-runs the language frontends for the parametric modules as
needed. It also resolves assignments to wired logic data types (wand/wor),
resolves positional module parameters, unrolls array instances, and more.

    -check
        also check the design hierarchy. this generates an error when
        an unknown module is used as cell type.

    -simcheck
        like -check, but also throw an error if blackbox modules are
        instantiated, and throw an error if the design has no top module.

    -purge_lib
        by default the hierarchy command will not remove library (blackbox)
        modules. use this option to also remove unused blackbox modules.

    -libdir <directory>
        search for files named <module_name>.v in the specified directory
        for unknown modules and automatically run read_verilog for each
        unknown module.

    -keep_positionals
        per default this pass also converts positional arguments in cells
        to arguments using port names. This option disables this behavior.

    -keep_portwidths
        per default this pass adjusts the port width on cells that are
        module instances when the width does not match the module port. This
        option disables this behavior.

    -nodefaults
        do not resolve input port default values

    -nokeep_asserts
        per default this pass sets the "keep" attribute on all modules
        that directly or indirectly contain one or more formal properties.
        This option disables this behavior.

    -top <module>
        use the specified top module to build the design hierarchy. Modules
        outside this tree (unused modules) are removed.

        when the -top option is used, the 'top' attribute will be set on the
        specified top module. otherwise a module with the 'top' attribute set
        will implicitly be used as top module, if such a module exists.

    -auto-top
        automatically determine the top of the design hierarchy and mark it.

    -chparam name value 
       elaborate the top module using this parameter value. Modules on which
       this parameter does not exist may cause a warning message to be output.
       This option can be specified multiple times to override multiple
       parameters. String values must be passed in double quotes (").

In -generate mode this pass generates blackbox modules for the given cell
types (wildcards supported). For this the design is searched for cells that
match the given types and then the given port declarations are used to
determine the direction of the ports. The syntax for a port declaration is:

    {i|o|io}[@<num>]:<portname>

Input ports are specified with the 'i' prefix, output ports with the 'o'
prefix and inout ports with the 'io' prefix. The optional <num> specifies
the position of the port in the parameter list (needed when instantiated
using positional arguments). When <num> is not specified, the <portname> can
also contain wildcard characters.

This pass ignores the current selection and always operates on all modules
in the current design.
\end{lstlisting}

\section{hilomap -- technology mapping of constant hi- and/or lo-drivers}
\label{cmd:hilomap}
\begin{lstlisting}[numbers=left,frame=single]
    hilomap [options] [selection]

Map constants to 'tielo' and 'tiehi' driver cells.

    -hicell <celltype> <portname>
        Replace constant hi bits with this cell.

    -locell <celltype> <portname>
        Replace constant lo bits with this cell.

    -singleton
        Create only one hi/lo cell and connect all constant bits
        to that cell. Per default a separate cell is created for
        each constant bit.
\end{lstlisting}

\section{history -- show last interactive commands}
\label{cmd:history}
\begin{lstlisting}[numbers=left,frame=single]
    history

This command prints all commands in the shell history buffer. This are
all commands executed in an interactive session, but not the commands
from executed scripts.
\end{lstlisting}

\section{ice40\_braminit -- iCE40: perform SB\_RAM40\_4K initialization from file}
\label{cmd:ice40_braminit}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_braminit

This command processes all SB_RAM40_4K blocks with a non-empty INIT_FILE
parameter and converts it into the required INIT_x attributes
\end{lstlisting}

\section{ice40\_dsp -- iCE40: map multipliers}
\label{cmd:ice40_dsp}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_dsp [options] [selection]

Map multipliers ($mul/SB_MAC16) and multiply-accumulate ($mul/SB_MAC16 + $add)
cells into iCE40 DSP resources.
Currently, only the 16x16 multiply mode is supported and not the 2 x 8x8 mode.

Pack input registers (A, B, {C,D}; with optional hold), pipeline registers
({F,J,K,G}, H), output registers (O -- full 32-bits or lower 16-bits only; with
optional hold), and post-adder into into the SB_MAC16 resource.

Multiply-accumulate operations using the post-adder with feedback on the {C,D}
input will be folded into the DSP. In this scenario only, resetting the
the accumulator to an arbitrary value can be inferred to use the {C,D} input.
\end{lstlisting}

\section{ice40\_opt -- iCE40: perform simple optimizations}
\label{cmd:ice40_opt}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_opt [options] [selection]

This command executes the following script:

    do
        <ice40 specific optimizations>
        opt_expr -mux_undef -undriven [-full]
        opt_merge
        opt_dff
        opt_clean
    while <changed design>
\end{lstlisting}

\section{ice40\_wrapcarry -- iCE40: wrap carries}
\label{cmd:ice40_wrapcarry}
\begin{lstlisting}[numbers=left,frame=single]
    ice40_wrapcarry [selection]

Wrap manually instantiated SB_CARRY cells, along with their associated SB_LUT4s,
into an internal $__ICE40_CARRY_WRAPPER cell for preservation across technology
mapping.

Attributes on both cells will have their names prefixed with 'SB_CARRY.' or
'SB_LUT4.' and attached to the wrapping cell.
A (* keep *) attribute on either cell will be logically OR-ed together.

    -unwrap
        unwrap $__ICE40_CARRY_WRAPPER cells back into SB_CARRYs and SB_LUT4s,
        including restoring their attributes.
\end{lstlisting}

\section{insbuf -- insert buffer cells for connected wires}
\label{cmd:insbuf}
\begin{lstlisting}[numbers=left,frame=single]
    insbuf [options] [selection]

Insert buffer cells into the design for directly connected wires.

    -buf <celltype> <in-portname> <out-portname>
        Use the given cell type instead of $_BUF_. (Notice that the next
        call to "clean" will remove all $_BUF_ in the design.)
\end{lstlisting}

\section{iopadmap -- technology mapping of i/o pads (or buffers)}
\label{cmd:iopadmap}
\begin{lstlisting}[numbers=left,frame=single]
    iopadmap [options] [selection]

Map module inputs/outputs to PAD cells from a library. This pass
can only map to very simple PAD cells. Use 'techmap' to further map
the resulting cells to more sophisticated PAD cells.

    -inpad <celltype> <in_port>[:<ext_port>]
        Map module input ports to the given cell type with the
        given output port name. if a 2nd portname is given, the
        signal is passed through the pad call, using the 2nd
        portname as the port facing the module port.

    -outpad <celltype> <out_port>[:<ext_port>]
    -inoutpad <celltype> <io_port>[:<ext_port>]
        Similar to -inpad, but for output and inout ports.

    -toutpad <celltype> <oe_port>:<out_port>[:<ext_port>]
        Merges $_TBUF_ cells into the output pad cell. This takes precedence
        over the other -outpad cell. The first portname is the enable input
        of the tristate driver, which can be prefixed with `~` for negative
        polarity enable.

    -tinoutpad <celltype> <oe_port>:<in_port>:<out_port>[:<ext_port>]
        Merges $_TBUF_ cells into the inout pad cell. This takes precedence
        over the other -inoutpad cell. The first portname is the enable input
        of the tristate driver and the 2nd portname is the internal output
        buffering the external signal.  Like with `-toutpad`, the enable can
        be marked as negative polarity by prefixing the name with `~`.

    -ignore <celltype> <portname>[:<portname>]*
        Skips mapping inputs/outputs that are already connected to given
        ports of the given cell.  Can be used multiple times.  This is in
        addition to the cells specified as mapping targets.

    -widthparam <param_name>
        Use the specified parameter name to set the port width.

    -nameparam <param_name>
        Use the specified parameter to set the port name.

    -bits
        create individual bit-wide buffers even for ports that
        are wider. (the default behavior is to create word-wide
        buffers using -widthparam to set the word size on the cell.)

Tristate PADS (-toutpad, -tinoutpad) always operate in -bits mode.
\end{lstlisting}

\section{json -- write design in JSON format}
\label{cmd:json}
\begin{lstlisting}[numbers=left,frame=single]
    json [options] [selection]

Write a JSON netlist of all selected objects.

    -o <filename>
        write to the specified file.

    -aig
        also include AIG models for the different gate types

    -compat-int
        emit 32-bit or smaller fully-defined parameter values directly
        as JSON numbers (for compatibility with old parsers)

See 'help write_json' for a description of the JSON format used.
\end{lstlisting}

\section{log -- print text and log files}
\label{cmd:log}
\begin{lstlisting}[numbers=left,frame=single]
    log string

Print the given string to the screen and/or the log file. This is useful for TCL
scripts, because the TCL command "puts" only goes to stdout but not to
logfiles.

    -stdout
        Print the output to stdout too. This is useful when all Yosys is executed
        with a script and the -q (quiet operation) argument to notify the user.

    -stderr
        Print the output to stderr too.

    -nolog
        Don't use the internal log() command. Use either -stdout or -stderr,
        otherwise no output will be generated at all.

    -n
        do not append a newline
\end{lstlisting}

\section{logger -- set logger properties}
\label{cmd:logger}
\begin{lstlisting}[numbers=left,frame=single]
    logger [options]

This command sets global logger properties, also available using command line
options.

    -[no]time
        enable/disable display of timestamp in log output.

    -[no]stderr
        enable/disable logging errors to stderr.

    -warn regex
        print a warning for all log messages matching the regex.

    -nowarn regex
        if a warning message matches the regex, it is printed as regular
        message instead.

    -werror regex
        if a warning message matches the regex, it is printed as error
        message instead and the tool terminates with a nonzero return code.

    -[no]debug
        globally enable/disable debug log messages.

    -experimental <feature>
        do not print warnings for the specified experimental feature

    -expect <type> <regex> <expected_count>
        expect log, warning or error to appear. matched errors will terminate
        with exit code 0.

    -expect-no-warnings
        gives error in case there is at least one warning that is not expected.

    -check-expected
        verifies that the patterns previously set up by -expect have actually
        been met, then clears the expected log list.  If this is not called
        manually, the check will happen at yosys exist time instead.
\end{lstlisting}

\section{ls -- list modules or objects in modules}
\label{cmd:ls}
\begin{lstlisting}[numbers=left,frame=single]
    ls [selection]

When no active module is selected, this prints a list of modules.

When an active module is selected, this prints a list of objects in the module.
\end{lstlisting}

\section{ltp -- print longest topological path}
\label{cmd:ltp}
\begin{lstlisting}[numbers=left,frame=single]
    ltp [options] [selection]

This command prints the longest topological path in the design. (Only considers
paths within a single module, so the design must be flattened.)

    -noff
        automatically exclude FF cell types
\end{lstlisting}

\section{lut2mux -- convert \$lut to \$\_MUX\_}
\label{cmd:lut2mux}
\begin{lstlisting}[numbers=left,frame=single]
    lut2mux [options] [selection]

This pass converts $lut cells to $_MUX_ gates.
\end{lstlisting}

\section{maccmap -- mapping macc cells}
\label{cmd:maccmap}
\begin{lstlisting}[numbers=left,frame=single]
    maccmap [-unmap] [selection]

This pass maps $macc cells to yosys $fa and $alu cells. When the -unmap option
is used then the $macc cell is mapped to $add, $sub, etc. cells instead.
\end{lstlisting}

\section{memory -- translate memories to basic cells}
\label{cmd:memory}
\begin{lstlisting}[numbers=left,frame=single]
    memory [-nomap] [-nordff] [-nowiden] [-nosat] [-memx] [-bram <bram_rules>] [selection]

This pass calls all the other memory_* passes in a useful order:

    opt_mem
    opt_mem_priority
    opt_mem_feedback
    memory_dff                          (skipped if called with -nordff or -memx)
    opt_clean
    memory_share [-nowiden] [-nosat]
    opt_mem_widen
    memory_memx                         (when called with -memx)
    opt_clean
    memory_collect
    memory_bram -rules <bram_rules>     (when called with -bram)
    memory_map                          (skipped if called with -nomap)

This converts memories to word-wide DFFs and address decoders
or multiport memory blocks if called with the -nomap option.
\end{lstlisting}

\section{memory\_bram -- map memories to block rams}
\label{cmd:memory_bram}
\begin{lstlisting}[numbers=left,frame=single]
    memory_bram -rules <rule_file> [selection]

This pass converts the multi-port $mem memory cells into block ram instances.
The given rules file describes the available resources and how they should be
used.

The rules file contains configuration options, a set of block ram description
and a sequence of match rules.

The option 'attr_icase' configures how attribute values are matched. The value 0
means case-sensitive, 1 means case-insensitive.

A block ram description looks like this:

    bram RAMB1024X32     # name of BRAM cell
      init 1             # set to '1' if BRAM can be initialized
      abits 10           # number of address bits
      dbits 32           # number of data bits
      groups 2           # number of port groups
      ports  1 1         # number of ports in each group
      wrmode 1 0         # set to '1' if this groups is write ports
      enable 4 1         # number of enable bits
      transp 0 2         # transparent (for read ports)
      clocks 1 2         # clock configuration
      clkpol 2 2         # clock polarity configuration
    endbram

For the option 'transp' the value 0 means non-transparent, 1 means transparent
and a value greater than 1 means configurable. All groups with the same
value greater than 1 share the same configuration bit.

For the option 'clocks' the value 0 means non-clocked, and a value greater
than 0 means clocked. All groups with the same value share the same clock
signal.

For the option 'clkpol' the value 0 means negative edge, 1 means positive edge
and a value greater than 1 means configurable. All groups with the same value
greater than 1 share the same configuration bit.

Using the same bram name in different bram blocks will create different variants
of the bram. Verilog configuration parameters for the bram are created as needed.

It is also possible to create variants by repeating statements in the bram block
and appending '@<label>' to the individual statements.

A match rule looks like this:

    match RAMB1024X32
      max waste 16384    # only use this bram if <= 16k ram bits are unused
      min efficiency 80  # only use this bram if efficiency is at least 80%
    endmatch

It is possible to match against the following values with min/max rules:

    words  ........  number of words in memory in design
    abits  ........  number of address bits on memory in design
    dbits  ........  number of data bits on memory in design
    wports  .......  number of write ports on memory in design
    rports  .......  number of read ports on memory in design
    ports  ........  number of ports on memory in design
    bits  .........  number of bits in memory in design
    dups ..........  number of duplications for more read ports

    awaste  .......  number of unused address slots for this match
    dwaste  .......  number of unused data bits for this match
    bwaste  .......  number of unused bram bits for this match
    waste  ........  total number of unused bram bits (bwaste*dups)
    efficiency  ...  total percentage of used and non-duplicated bits

    acells  .......  number of cells in 'address-direction'
    dcells  .......  number of cells in 'data-direction'
    cells  ........  total number of cells (acells*dcells*dups)

A match containing the command 'attribute' followed by a list of space
separated 'name[=string_value]' values requires that the memory contains any
one of the given attribute name and string values (where specified), or name
and integer 1 value (if no string_value given, since Verilog will interpret
'(* attr *)' as '(* attr=1 *)').
A name prefixed with '!' indicates that the attribute must not exist.

The interface for the created bram instances is derived from the bram
description. Use 'techmap' to convert the created bram instances into
instances of the actual bram cells of your target architecture.

A match containing the command 'or_next_if_better' is only used if it
has a higher efficiency than the next match (and the one after that if
the next also has 'or_next_if_better' set, and so forth).

A match containing the command 'make_transp' will add external circuitry
to simulate 'transparent read', if necessary.

A match containing the command 'make_outreg' will add external flip-flops
to implement synchronous read ports, if necessary.

A match containing the command 'shuffle_enable A' will re-organize
the data bits to accommodate the enable pattern of port A.
\end{lstlisting}

\section{memory\_collect -- creating multi-port memory cells}
\label{cmd:memory_collect}
\begin{lstlisting}[numbers=left,frame=single]
    memory_collect [selection]

This pass collects memories and memory ports and creates generic multiport
memory cells.
\end{lstlisting}

\section{memory\_dff -- merge input/output DFFs into memory read ports}
\label{cmd:memory_dff}
\begin{lstlisting}[numbers=left,frame=single]
    memory_dff [options] [selection]

This pass detects DFFs at memory read ports and merges them into the memory port.
I.e. it consumes an asynchronous memory port and the flip-flops at its
interface and yields a synchronous memory port.
\end{lstlisting}

\section{memory\_map -- translate multiport memories to basic cells}
\label{cmd:memory_map}
\begin{lstlisting}[numbers=left,frame=single]
    memory_map [options] [selection]

This pass converts multiport memory cells as generated by the memory_collect
pass to word-wide DFFs and address decoders.

    -attr !<name>
        do not map memories that have attribute <name> set.

    -attr <name>[=<value>]
        for memories that have attribute <name> set, only map them if its value
        is a string <value> (if specified), or an integer 1 (otherwise). if this
        option is specified multiple times, map the memory if the attribute is
        to any of the values.

    -iattr
        for -attr, ignore case of <value>.
\end{lstlisting}

\section{memory\_memx -- emulate vlog sim behavior for mem ports}
\label{cmd:memory_memx}
\begin{lstlisting}[numbers=left,frame=single]
    memory_memx [selection]

This pass adds additional circuitry that emulates the Verilog simulation
behavior for out-of-bounds memory reads and writes.
\end{lstlisting}

\section{memory\_narrow -- split up wide memory ports}
\label{cmd:memory_narrow}
\begin{lstlisting}[numbers=left,frame=single]
    memory_narrow [options] [selection]

This pass splits up wide memory ports into several narrow ports.
\end{lstlisting}

\section{memory\_nordff -- extract read port FFs from memories}
\label{cmd:memory_nordff}
\begin{lstlisting}[numbers=left,frame=single]
    memory_nordff [options] [selection]

This pass extracts FFs from memory read ports. This results in a netlist
similar to what one would get from not calling memory_dff.
\end{lstlisting}

\section{memory\_share -- consolidate memory ports}
\label{cmd:memory_share}
\begin{lstlisting}[numbers=left,frame=single]
    memory_share [-nosat] [-nowiden] [selection]

This pass merges share-able memory ports into single memory ports.

The following methods are used to consolidate the number of memory ports:

  - When multiple write ports access the same address then this is converted
    to a single write port with a more complex data and/or enable logic path.

  - When multiple read or write ports access adjacent aligned addresses, they are
    merged to a single wide read or write port.  This transformation can be
    disabled with the "-nowiden" option.

  - When multiple write ports are never accessed at the same time (a SAT
    solver is used to determine this), then the ports are merged into a single
    write port.  This transformation can be disabled with the "-nosat" option.

Note that in addition to the algorithms implemented in this pass, the $memrd
and $memwr cells are also subject to generic resource sharing passes (and other
optimizations) such as "share" and "opt_merge".
\end{lstlisting}

\section{memory\_unpack -- unpack multi-port memory cells}
\label{cmd:memory_unpack}
\begin{lstlisting}[numbers=left,frame=single]
    memory_unpack [selection]

This pass converts the multi-port $mem memory cells into individual $memrd and
$memwr cells. It is the counterpart to the memory_collect pass.
\end{lstlisting}

\section{miter -- automatically create a miter circuit}
\label{cmd:miter}
\begin{lstlisting}[numbers=left,frame=single]
    miter -equiv [options] gold_name gate_name miter_name

Creates a miter circuit for equivalence checking. The gold- and gate- modules
must have the same interfaces. The miter circuit will have all inputs of the
two source modules, prefixed with 'in_'. The miter circuit has a 'trigger'
output that goes high if an output mismatch between the two source modules is
detected.

    -ignore_gold_x
        a undef (x) bit in the gold module output will match any value in
        the gate module output.

    -make_outputs
        also route the gold- and gate-outputs to 'gold_*' and 'gate_*' outputs
        on the miter circuit.

    -make_outcmp
        also create a cmp_* output for each gold/gate output pair.

    -make_assert
        also create an 'assert' cell that checks if trigger is always low.

    -flatten
        call 'flatten -wb; opt_expr -keepdc -undriven;;' on the miter circuit.


    miter -assert [options] module [miter_name]

Creates a miter circuit for property checking. All input ports are kept,
output ports are discarded. An additional output 'trigger' is created that
goes high when an assert is violated. Without a miter_name, the existing
module is modified.

    -make_outputs
        keep module output ports.

    -flatten
        call 'flatten -wb; opt_expr -keepdc -undriven;;' on the miter circuit.
\end{lstlisting}

\section{mutate -- generate or apply design mutations}
\label{cmd:mutate}
\begin{lstlisting}[numbers=left,frame=single]
    mutate -list N [options] [selection]

Create a list of N mutations using an even sampling.

    -o filename
        Write list to this file instead of console output

    -s filename
        Write a list of all src tags found in the design to the specified file

    -seed N
        RNG seed for selecting mutations

    -none
        Include a "none" mutation in the output

    -ctrl name width value
        Add -ctrl options to the output. Use 'value' for first mutation, then
        simply count up from there.

    -mode name
    -module name
    -cell name
    -port name
    -portbit int
    -ctrlbit int
    -wire name
    -wirebit int
    -src string
        Filter list of mutation candidates to those matching
        the given parameters.

    -cfg option int
        Set a configuration option. Options available:
          weight_pq_w weight_pq_b weight_pq_c weight_pq_s
          weight_pq_mw weight_pq_mb weight_pq_mc weight_pq_ms
          weight_cover pick_cover_prcnt


    mutate -mode MODE [options]

Apply the given mutation.

    -ctrl name width value
        Add a control signal with the given name and width. The mutation is
        activated if the control signal equals the given value.

    -module name
    -cell name
    -port name
    -portbit int
    -ctrlbit int
        Mutation parameters, as generated by 'mutate -list N'.

    -wire name
    -wirebit int
    -src string
        Ignored. (They are generated by -list for documentation purposes.)
\end{lstlisting}

\section{muxcover -- cover trees of MUX cells with wider MUXes}
\label{cmd:muxcover}
\begin{lstlisting}[numbers=left,frame=single]
    muxcover [options] [selection]

Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells

    -mux4[=cost], -mux8[=cost], -mux16[=cost]
        Cover $_MUX_ trees using the specified types of MUXes (with optional
        integer costs). If none of these options are given, the effect is the
        same as if all of them are.
        Default costs: $_MUX4_ = 220, $_MUX8_ = 460, 
                       $_MUX16_ = 940

    -mux2=cost
        Use the specified cost for $_MUX_ cells when making covering decisions.
        Default cost: $_MUX_ = 100

    -dmux=cost
        Use the specified cost for $_MUX_ cells used in decoders.
        Default cost: 90

    -nodecode
        Do not insert decoder logic. This reduces the number of possible
        substitutions, but guarantees that the resulting circuit is not
        less efficient than the original circuit.

    -nopartial
        Do not consider mappings that use $_MUX<N>_ to select from less
        than <N> different signals.
\end{lstlisting}

\section{muxpack -- \$mux/\$pmux cascades to \$pmux}
\label{cmd:muxpack}
\begin{lstlisting}[numbers=left,frame=single]
    muxpack [selection]

This pass converts cascaded chains of $pmux cells (e.g. those create from case
constructs) and $mux cells (e.g. those created by if-else constructs) into
$pmux cells.

This optimisation is conservative --- it will only pack $mux or $pmux cells
whose select lines are driven by '$eq' cells with other such cells if it can be
certain that their select inputs are mutually exclusive.
\end{lstlisting}

\section{nlutmap -- map to LUTs of different sizes}
\label{cmd:nlutmap}
\begin{lstlisting}[numbers=left,frame=single]
    nlutmap [options] [selection]

This pass uses successive calls to 'abc' to map to an architecture. That
provides a small number of differently sized LUTs.

    -luts N_1,N_2,N_3,...
        The number of LUTs with 1, 2, 3, ... inputs that are
        available in the target architecture.

    -assert
        Create an error if not all logic can be mapped

Excess logic that does not fit into the specified LUTs is mapped back
to generic logic gates ($_AND_, etc.).
\end{lstlisting}

\section{onehot -- optimize \$eq cells for onehot signals}
\label{cmd:onehot}
\begin{lstlisting}[numbers=left,frame=single]
    onehot [options] [selection]

This pass optimizes $eq cells that compare one-hot signals against constants

    -v, -vv
        verbose output
\end{lstlisting}

\section{opt -- perform simple optimizations}
\label{cmd:opt}
\begin{lstlisting}[numbers=left,frame=single]
    opt [options] [selection]

This pass calls all the other opt_* passes in a useful order. This performs
a series of trivial optimizations and cleanups. This pass executes the other
passes in the following order:

    opt_expr [-mux_undef] [-mux_bool] [-undriven] [-noclkinv] [-fine] [-full] [-keepdc]
    opt_merge [-share_all] -nomux

    do
        opt_muxtree
        opt_reduce [-fine] [-full]
        opt_merge [-share_all]
        opt_share  (-full only)
        opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat]  (except when called with -noff)
        opt_clean [-purge]
        opt_expr [-mux_undef] [-mux_bool] [-undriven] [-noclkinv] [-fine] [-full] [-keepdc]
    while <changed design>

When called with -fast the following script is used instead:

    do
        opt_expr [-mux_undef] [-mux_bool] [-undriven] [-noclkinv] [-fine] [-full] [-keepdc]
        opt_merge [-share_all]
        opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat]  (except when called with -noff)
        opt_clean [-purge]
    while <changed design in opt_dff>

Note: Options in square brackets (such as [-keepdc]) are passed through to
the opt_* commands when given to 'opt'.
\end{lstlisting}

\section{opt\_clean -- remove unused cells and wires}
\label{cmd:opt_clean}
\begin{lstlisting}[numbers=left,frame=single]
    opt_clean [options] [selection]

This pass identifies wires and cells that are unused and removes them. Other
passes often remove cells but leave the wires in the design or reconnect the
wires but leave the old cells in the design. This pass can be used to clean up
after the passes that do the actual work.

This pass only operates on completely selected modules without processes.

    -purge
        also remove internal nets if they have a public name
\end{lstlisting}

\section{opt\_demorgan -- Optimize reductions with DeMorgan equivalents}
\label{cmd:opt_demorgan}
\begin{lstlisting}[numbers=left,frame=single]
    opt_demorgan [selection]

This pass pushes inverters through $reduce_* cells if this will reduce the
overall gate count of the circuit
\end{lstlisting}

\section{opt\_dff -- perform DFF optimizations}
\label{cmd:opt_dff}
\begin{lstlisting}[numbers=left,frame=single]
    opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat] [selection]

This pass converts flip-flops to a more suitable type by merging clock enables
and synchronous reset multiplexers, removing unused control inputs, or potentially
removes the flip-flop altogether, converting it to a constant driver.

    -nodffe
        disables dff -> dffe conversion, and other transforms recognizing clock enable

    -nosdff
        disables dff -> sdff conversion, and other transforms recognizing sync resets

    -simple-dffe
        only enables clock enable recognition transform for obvious cases

    -sat
        additionally invoke SAT solver to detect and remove flip-flops (with
        non-constant inputs) that can also be replaced with a constant driver

    -keepdc
        some optimizations change the behavior of the circuit with respect to
        don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
        all result bits to be set to x. this behavior changes when 'a+0' is
        replaced by 'a'. the -keepdc option disables all such optimizations.
\end{lstlisting}

\section{opt\_expr -- perform const folding and simple expression rewriting}
\label{cmd:opt_expr}
\begin{lstlisting}[numbers=left,frame=single]
    opt_expr [options] [selection]

This pass performs const folding on internal cell types with constant inputs.
It also performs some simple expression rewriting.

    -mux_undef
        remove 'undef' inputs from $mux, $pmux and $_MUX_ cells

    -mux_bool
        replace $mux cells with inverters or buffers when possible

    -undriven
        replace undriven nets with undef (x) constants

    -noclkinv
        do not optimize clock inverters by changing FF types

    -fine
        perform fine-grain optimizations

    -full
        alias for -mux_undef -mux_bool -undriven -fine

    -keepdc
        some optimizations change the behavior of the circuit with respect to
        don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
        all result bits to be set to x. this behavior changes when 'a+0' is
        replaced by 'a'. the -keepdc option disables all such optimizations.
\end{lstlisting}

\section{opt\_lut -- optimize LUT cells}
\label{cmd:opt_lut}
\begin{lstlisting}[numbers=left,frame=single]
    opt_lut [options] [selection]

This pass combines cascaded $lut cells with unused inputs.

    -dlogic <type>:<cell-port>=<LUT-input>[:<cell-port>=<LUT-input>...]
        preserve connections to dedicated logic cell <type> that has ports
        <cell-port> connected to LUT inputs <LUT-input>. this includes
        the case where both LUT and dedicated logic input are connected to
        the same constant.

    -limit N
        only perform the first N combines, then stop. useful for debugging.
\end{lstlisting}

\section{opt\_lut\_ins -- discard unused LUT inputs}
\label{cmd:opt_lut_ins}
\begin{lstlisting}[numbers=left,frame=single]
    opt_lut_ins [options] [selection]

This pass removes unused inputs from LUT cells (that is, inputs that can not
influence the output signal given this LUT's value).  While such LUTs cannot
be directly emitted by ABC, they can be a result of various post-ABC
transformations, such as mapping wide LUTs (not all sub-LUTs will use the
full set of inputs) or optimizations such as xilinx_dffopt.

    -tech <technology>
        Instead of generic $lut cells, operate on LUT cells specific
        to the given technology.  Valid values are: xilinx, ecp5, gowin.
\end{lstlisting}

\section{opt\_mem -- optimize memories}
\label{cmd:opt_mem}
\begin{lstlisting}[numbers=left,frame=single]
    opt_mem [options] [selection]

This pass performs various optimizations on memories in the design.
\end{lstlisting}

\section{opt\_mem\_feedback -- convert memory read-to-write port feedback paths to write enables}
\label{cmd:opt_mem_feedback}
\begin{lstlisting}[numbers=left,frame=single]
    opt_mem_feedback [selection]

This pass detects cases where an asynchronous read port is only connected via
a mux tree to a write port with the same address.  When such a connection is
found, it is replaced with a new condition on an enable signal, allowing
for removal of the read port.
\end{lstlisting}

\section{opt\_mem\_priority -- remove priority relations between write ports that can never collide}
\label{cmd:opt_mem_priority}
\begin{lstlisting}[numbers=left,frame=single]
    opt_mem_priority [selection]

This pass detects cases where one memory write port has priority over another
even though they can never collide with each other -- ie. there can never be
a situation where a given memory bit is written by both ports at the same
time, for example because of always-different addresses, or mutually exclusive
enable signals. In such cases, the priority relation is removed.
\end{lstlisting}

\section{opt\_mem\_widen -- optimize memories where all ports are wide}
\label{cmd:opt_mem_widen}
\begin{lstlisting}[numbers=left,frame=single]
    opt_mem_widen [options] [selection]

This pass looks for memories where all ports are wide and adjusts the base
memory width up until that stops being the case.
\end{lstlisting}

\section{opt\_merge -- consolidate identical cells}
\label{cmd:opt_merge}
\begin{lstlisting}[numbers=left,frame=single]
    opt_merge [options] [selection]

This pass identifies cells with identical type and input signals. Such cells
are then merged to one cell.

    -nomux
        Do not merge MUX cells.

    -share_all
        Operate on all cell types, not just built-in types.
\end{lstlisting}

\section{opt\_muxtree -- eliminate dead trees in multiplexer trees}
\label{cmd:opt_muxtree}
\begin{lstlisting}[numbers=left,frame=single]
    opt_muxtree [selection]

This pass analyzes the control signals for the multiplexer trees in the design
and identifies inputs that can never be active. It then removes this dead
branches from the multiplexer trees.

This pass only operates on completely selected modules without processes.
\end{lstlisting}

\section{opt\_reduce -- simplify large MUXes and AND/OR gates}
\label{cmd:opt_reduce}
\begin{lstlisting}[numbers=left,frame=single]
    opt_reduce [options] [selection]

This pass performs two interlinked optimizations:

1. it consolidates trees of large AND gates or OR gates and eliminates
duplicated inputs.

2. it identifies duplicated inputs to MUXes and replaces them with a single
input with the original control signals OR'ed together.

    -fine
      perform fine-grain optimizations

    -full
      alias for -fine
\end{lstlisting}

\section{opt\_share -- merge mutually exclusive cells of the same type that share an input signal}
\label{cmd:opt_share}
\begin{lstlisting}[numbers=left,frame=single]
    opt_share [selection]

This pass identifies mutually exclusive cells of the same type that:
    (a) share an input signal,
    (b) drive the same $mux, $_MUX_, or $pmux multiplexing cell,

allowing the cell to be merged and the multiplexer to be moved from
multiplexing its output to multiplexing the non-shared input signals.
\end{lstlisting}

\section{paramap -- renaming cell parameters}
\label{cmd:paramap}
\begin{lstlisting}[numbers=left,frame=single]
    paramap [options] [selection]

This command renames cell parameters and/or maps key/value pairs to
other key/value pairs.

    -tocase <name>
        Match attribute names case-insensitively and set it to the specified
        name.

    -rename <old_name> <new_name>
        Rename attributes as specified

    -map <old_name>=<old_value> <new_name>=<new_value>
        Map key/value pairs as indicated.

    -imap <old_name>=<old_value> <new_name>=<new_value>
        Like -map, but use case-insensitive match for <old_value> when
        it is a string value.

    -remove <name>=<value>
        Remove attributes matching this pattern.

For example, mapping Diamond-style ECP5 "init" attributes to Yosys-style:

    paramap -tocase INIT t:LUT4
\end{lstlisting}

\section{peepopt -- collection of peephole optimizers}
\label{cmd:peepopt}
\begin{lstlisting}[numbers=left,frame=single]
    peepopt [options] [selection]

This pass applies a collection of peephole optimizers to the current design.
\end{lstlisting}

\section{plugin -- load and list loaded plugins}
\label{cmd:plugin}
\begin{lstlisting}[numbers=left,frame=single]
    plugin [options]

Load and list loaded plugins.

    -i <plugin_filename>
        Load (install) the specified plugin.

    -a <alias_name>
        Register the specified alias name for the loaded plugin

    -l
        List loaded plugins
\end{lstlisting}

\section{pmux2shiftx -- transform \$pmux cells to \$shiftx cells}
\label{cmd:pmux2shiftx}
\begin{lstlisting}[numbers=left,frame=single]
    pmux2shiftx [options] [selection]

This pass transforms $pmux cells to $shiftx cells.

    -v, -vv
        verbose output

    -min_density <percentage>
        specifies the minimum density for the shifter
        default: 50

    -min_choices <int>
        specified the minimum number of choices for a control signal
        default: 3

    -onehot ignore|pmux|shiftx
        select strategy for one-hot encoded control signals
        default: pmux

    -norange
        disable $sub inference for "range decoders"
\end{lstlisting}

\section{pmuxtree -- transform \$pmux cells to trees of \$mux cells}
\label{cmd:pmuxtree}
\begin{lstlisting}[numbers=left,frame=single]
    pmuxtree [selection]

This pass transforms $pmux cells to trees of $mux cells.
\end{lstlisting}

\section{portlist -- list (top-level) ports}
\label{cmd:portlist}
\begin{lstlisting}[numbers=left,frame=single]
    portlist [options] [selection]

This command lists all module ports found in the selected modules.

If no selection is provided then it lists the ports on the top module.

  -m
    print verilog blackbox module definitions instead of port lists
\end{lstlisting}

\section{prep -- generic synthesis script}
\label{cmd:prep}
\begin{lstlisting}[numbers=left,frame=single]
    prep [options]

This command runs a conservative RTL synthesis. A typical application for this
is the preparation stage of a verification flow. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -auto-top
        automatically determine the top of the design hierarchy

    -flatten
        flatten the design before synthesis. this will pass '-auto-top' to
        'hierarchy' if no top module is specified.

    -ifx
        passed to 'proc'. uses verilog simulation behavior for verilog if/case
        undef handling. this also prevents 'wreduce' from being run.

    -memx
        simulate verilog simulation behavior for out-of-bounds memory accesses
        using the 'memory_memx' pass.

    -nomem
        do not run any of the memory_* passes

    -rdff
        call 'memory_dff'. This enables merging of FFs into
        memory read ports.

    -nokeepdc
        do not call opt_* with -keepdc

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top> | -auto-top]

    coarse:
        proc [-ifx]
        flatten    (if -flatten)
        opt_expr -keepdc
        opt_clean
        check
        opt -noff -keepdc
        wreduce -keepdc [-memx]
        memory_dff    (if -rdff)
        memory_memx    (if -memx)
        opt_clean
        memory_collect
        opt -noff -keepdc -fast

    check:
        stat
        check
\end{lstlisting}

\section{printattrs -- print attributes of selected objects}
\label{cmd:printattrs}
\begin{lstlisting}[numbers=left,frame=single]
    printattrs [selection]

Print all attributes of the selected objects.
\end{lstlisting}

\section{proc -- translate processes to netlists}
\label{cmd:proc}
\begin{lstlisting}[numbers=left,frame=single]
    proc [options] [selection]

This pass calls all the other proc_* passes in the most common order.

    proc_clean
    proc_rmdead
    proc_prune
    proc_init
    proc_arst
    proc_mux
    proc_dlatch
    proc_dff
    proc_memwr
    proc_clean
    opt_expr -keepdc

This replaces the processes in the design with multiplexers,
flip-flops and latches.

The following options are supported:

    -nomux
        Will omit the proc_mux pass.

    -global_arst [!]<netname>
        This option is passed through to proc_arst.

    -ifx
        This option is passed through to proc_mux. proc_rmdead is not
        executed in -ifx mode.

    -noopt
        Will omit the opt_expr pass.
\end{lstlisting}

\section{proc\_arst -- detect asynchronous resets}
\label{cmd:proc_arst}
\begin{lstlisting}[numbers=left,frame=single]
    proc_arst [-global_arst [!]<netname>] [selection]

This pass identifies asynchronous resets in the processes and converts them
to a different internal representation that is suitable for generating
flip-flop cells with asynchronous resets.

    -global_arst [!]<netname>
        In modules that have a net with the given name, use this net as async
        reset for registers that have been assign initial values in their
        declaration ('reg foobar = constant_value;'). Use the '!' modifier for
        active low reset signals. Note: the frontend stores the default value
        in the 'init' attribute on the net.
\end{lstlisting}

\section{proc\_clean -- remove empty parts of processes}
\label{cmd:proc_clean}
\begin{lstlisting}[numbers=left,frame=single]
    proc_clean [options] [selection]

    -quiet
        do not print any messages.

This pass removes empty parts of processes and ultimately removes a process
if it contains only empty structures.
\end{lstlisting}

\section{proc\_dff -- extract flip-flops from processes}
\label{cmd:proc_dff}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dff [selection]

This pass identifies flip-flops in the processes and converts them to
d-type flip-flop cells.
\end{lstlisting}

\section{proc\_dlatch -- extract latches from processes}
\label{cmd:proc_dlatch}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dlatch [selection]

This pass identifies latches in the processes and converts them to
d-type latches.
\end{lstlisting}

\section{proc\_init -- convert initial block to init attributes}
\label{cmd:proc_init}
\begin{lstlisting}[numbers=left,frame=single]
    proc_init [selection]

This pass extracts the 'init' actions from processes (generated from Verilog
'initial' blocks) and sets the initial value to the 'init' attribute on the
respective wire.
\end{lstlisting}

\section{proc\_memwr -- extract memory writes from processes}
\label{cmd:proc_memwr}
\begin{lstlisting}[numbers=left,frame=single]
    proc_memwr [selection]

This pass converts memory writes in processes into $memwr cells.
\end{lstlisting}

\section{proc\_mux -- convert decision trees to multiplexers}
\label{cmd:proc_mux}
\begin{lstlisting}[numbers=left,frame=single]
    proc_mux [options] [selection]

This pass converts the decision trees in processes (originating from if-else
and case statements) to trees of multiplexer cells.

    -ifx
        Use Verilog simulation behavior with respect to undef values in
        'case' expressions and 'if' conditions.
\end{lstlisting}

\section{proc\_prune -- remove redundant assignments}
\label{cmd:proc_prune}
\begin{lstlisting}[numbers=left,frame=single]
    proc_prune [selection]

This pass identifies assignments in processes that are always overwritten by
a later assignment to the same signal and removes them.
\end{lstlisting}

\section{proc\_rmdead -- eliminate dead trees in decision trees}
\label{cmd:proc_rmdead}
\begin{lstlisting}[numbers=left,frame=single]
    proc_rmdead [selection]

This pass identifies unreachable branches in decision trees and removes them.
\end{lstlisting}

\section{qbfsat -- solve a 2QBF-SAT problem in the circuit}
\label{cmd:qbfsat}
\begin{lstlisting}[numbers=left,frame=single]
    qbfsat [options] [selection]

This command solves an "exists-forall" 2QBF-SAT problem defined over the currently
selected module. Existentially-quantified variables are declared by assigning a wire
"$anyconst". Universally-quantified variables may be explicitly declared by assigning
a wire "$allconst", but module inputs will be treated as universally-quantified
variables by default.

    -nocleanup
        Do not delete temporary files and directories. Useful for debugging.

    -dump-final-smt2 <file>
        Pass the --dump-smt2 option to yosys-smtbmc.

    -assume-outputs
        Add an "$assume" cell for the conjunction of all one-bit module output wires.

    -assume-negative-polarity
        When adding $assume cells for one-bit module output wires, assume they are
        negative polarity signals and should always be low, for example like the
        miters created with the `miter` command.

    -nooptimize
        Ignore "\minimize" and "\maximize" attributes, do not emit "(maximize)" or
        "(minimize)" in the SMT-LIBv2, and generally make no attempt to optimize anything.

    -nobisection
        If a wire is marked with the "\minimize" or "\maximize" attribute, do not
        attempt to optimize that value with the default iterated solving and threshold
        bisection approach. Instead, have yosys-smtbmc emit a "(minimize)" or "(maximize)"
        command in the SMT-LIBv2 output and hope that the solver supports optimizing
        quantified bitvector problems.

    -solver <solver>
        Use a particular solver. Choose one of: "z3", "yices", and "cvc4".
        (default: yices)

    -solver-option <name> <value>
        Set the specified solver option in the SMT-LIBv2 problem file.

    -timeout <value>
        Set the per-iteration timeout in seconds.
        (default: no timeout)

    -O0, -O1, -O2
        Control the use of ABC to simplify the QBF-SAT problem before solving.

    -sat
        Generate an error if the solver does not return "sat".

    -unsat
        Generate an error if the solver does not return "unsat".

    -show-smtbmc
        Print the output from yosys-smtbmc.

    -specialize
        If the problem is satisfiable, replace each "$anyconst" cell with its
        corresponding constant value from the model produced by the solver.

    -specialize-from-file <solution file>
        Do not run the solver, but instead only attempt to replace each "$anyconst"
        cell in the current module with a constant value provided by the specified file.

    -write-solution <solution file>
        If the problem is satisfiable, write the corresponding constant value for each
        "$anyconst" cell from the model produced by the solver to the specified file.
\end{lstlisting}

\section{qwp -- quadratic wirelength placer}
\label{cmd:qwp}
\begin{lstlisting}[numbers=left,frame=single]
    qwp [options] [selection]

This command runs quadratic wirelength placement on the selected modules and
annotates the cells in the design with 'qwp_position' attributes.

    -ltr
        Add left-to-right constraints: constrain all inputs on the left border
        outputs to the right border.

    -alpha
        Add constraints for inputs/outputs to be placed in alphanumerical
        order along the y-axis (top-to-bottom).

    -grid N
        Number of grid divisions in x- and y-direction. (default=16)

    -dump <html_file_name>
        Dump a protocol of the placement algorithm to the html file.

    -v
        Verbose solver output for profiling or debugging

Note: This implementation of a quadratic wirelength placer uses exact
dense matrix operations. It is only a toy-placer for small circuits.
\end{lstlisting}

\section{read -- load HDL designs}
\label{cmd:read}
\begin{lstlisting}[numbers=left,frame=single]
    read {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv|-formal} <verilog-file>..

Load the specified Verilog/SystemVerilog files. (Full SystemVerilog support
is only available via Verific.)

Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.


    read {-f|-F} <command-file>

Load and execute the specified command file. (Requires Verific.)
Check verific command for more information about supported commands in file.


    read -define <macro>[=<value>]..

Set global Verilog/SystemVerilog defines.


    read -undef <macro>..

Unset global Verilog/SystemVerilog defines.


    read -incdir <directory>

Add directory to global Verilog/SystemVerilog include directories.


    read -verific
    read -noverific

Subsequent calls to 'read' will either use or not use Verific. Calling 'read'
with -verific will result in an error on Yosys binaries that are built without
Verific support. The default is to use Verific if it is available.
\end{lstlisting}

\section{read\_aiger -- read AIGER file}
\label{cmd:read_aiger}
\begin{lstlisting}[numbers=left,frame=single]
    read_aiger [options] [filename]

Load module from an AIGER file into the current design.

    -module_name <module_name>
        name of module to be created (default: <filename>)

    -clk_name <wire_name>
        if specified, AIGER latches to be transformed into $_DFF_P_ cells
        clocked by wire of this name. otherwise, $_FF_ cells will be used

    -map <filename>
        read file with port and latch symbols

    -wideports
        merge ports that match the pattern 'name[int]' into a single
        multi-bit port 'name'

    -xaiger
        read XAIGER extensions
\end{lstlisting}

\section{read\_blif -- read BLIF file}
\label{cmd:read_blif}
\begin{lstlisting}[numbers=left,frame=single]
    read_blif [options] [filename]

Load modules from a BLIF file into the current design.

    -sop
        Create $sop cells instead of $lut cells

    -wideports
        Merge ports that match the pattern 'name[int]' into a single
        multi-bit port 'name'.
\end{lstlisting}

\section{read\_ilang -- (deprecated) alias of read\_rtlil}
\label{cmd:read_ilang}
\begin{lstlisting}[numbers=left,frame=single]
See `help read_rtlil`.
\end{lstlisting}

\section{read\_json -- read JSON file}
\label{cmd:read_json}
\begin{lstlisting}[numbers=left,frame=single]
    read_json [filename]

Load modules from a JSON file into the current design See "help write_json"
for a description of the file format.
\end{lstlisting}

\section{read\_liberty -- read cells from liberty file}
\label{cmd:read_liberty}
\begin{lstlisting}[numbers=left,frame=single]
    read_liberty [filename]

Read cells from liberty file as modules into current design.

    -lib
        only create empty blackbox modules

    -nooverwrite
        ignore re-definitions of modules. (the default behavior is to
        create an error message if the existing module is not a blackbox
        module, and overwrite the existing module if it is  a blackbox module.)

    -overwrite
        overwrite existing modules with the same name

    -ignore_miss_func
        ignore cells with missing function specification of outputs

    -ignore_miss_dir
        ignore cells with a missing or invalid direction
        specification on a pin

    -ignore_miss_data_latch
        ignore latches with missing data and/or enable pins

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules
\end{lstlisting}

\section{read\_rtlil -- read modules from RTLIL file}
\label{cmd:read_rtlil}
\begin{lstlisting}[numbers=left,frame=single]
    read_rtlil [filename]

Load modules from an RTLIL file to the current design. (RTLIL is a text
representation of a design in yosys's internal format.)

    -nooverwrite
        ignore re-definitions of modules. (the default behavior is to
        create an error message if the existing module is not a blackbox
        module, and overwrite the existing module if it is a blackbox module.)

    -overwrite
        overwrite existing modules with the same name

    -lib
        only create empty blackbox modules
\end{lstlisting}

\section{read\_verilog -- read modules from Verilog file}
\label{cmd:read_verilog}
\begin{lstlisting}[numbers=left,frame=single]
    read_verilog [options] [filename]

Load modules from a Verilog file to the current design. A large subset of
Verilog-2005 is supported.

    -sv
        enable support for SystemVerilog features. (only a small subset
        of SystemVerilog is supported)

    -formal
        enable support for SystemVerilog assertions and some Yosys extensions
        replace the implicit -D SYNTHESIS with -D FORMAL

    -nosynthesis
        don't add implicit -D SYNTHESIS

    -noassert
        ignore assert() statements

    -noassume
        ignore assume() statements

    -norestrict
        ignore restrict() statements

    -assume-asserts
        treat all assert() statements like assume() statements

    -assert-assumes
        treat all assume() statements like assert() statements

    -debug
        alias for -dump_ast1 -dump_ast2 -dump_vlog1 -dump_vlog2 -yydebug

    -dump_ast1
        dump abstract syntax tree (before simplification)

    -dump_ast2
        dump abstract syntax tree (after simplification)

    -no_dump_ptr
        do not include hex memory addresses in dump (easier to diff dumps)

    -dump_vlog1
        dump ast as Verilog code (before simplification)

    -dump_vlog2
        dump ast as Verilog code (after simplification)

    -dump_rtlil
        dump generated RTLIL netlist

    -yydebug
        enable parser debug output

    -nolatches
        usually latches are synthesized into logic loops
        this option prohibits this and sets the output to 'x'
        in what would be the latches hold condition

        this behavior can also be achieved by setting the
        'nolatches' attribute on the respective module or
        always block.

    -nomem2reg
        under certain conditions memories are converted to registers
        early during simplification to ensure correct handling of
        complex corner cases. this option disables this behavior.

        this can also be achieved by setting the 'nomem2reg'
        attribute on the respective module or register.

        This is potentially dangerous. Usually the front-end has good
        reasons for converting an array to a list of registers.
        Prohibiting this step will likely result in incorrect synthesis
        results.

    -mem2reg
        always convert memories to registers. this can also be
        achieved by setting the 'mem2reg' attribute on the respective
        module or register.

    -nomeminit
        do not infer $meminit cells and instead convert initialized
        memories to registers directly in the front-end.

    -ppdump
        dump Verilog code after pre-processor

    -nopp
        do not run the pre-processor

    -nodpi
        disable DPI-C support

    -noblackbox
        do not automatically add a (* blackbox *) attribute to an
        empty module.

    -lib
        only create empty blackbox modules. This implies -DBLACKBOX.
        modules with the (* whitebox *) attribute will be preserved.
        (* lib_whitebox *) will be treated like (* whitebox *).

    -nowb
        delete (* whitebox *) and (* lib_whitebox *) attributes from
        all modules.

    -specify
        parse and import specify blocks

    -noopt
        don't perform basic optimizations (such as const folding) in the
        high-level front-end.

    -icells
        interpret cell types starting with '$' as internal cell types

    -pwires
        add a wire for each module parameter

    -nooverwrite
        ignore re-definitions of modules. (the default behavior is to
        create an error message if the existing module is not a black box
        module, and overwrite the existing module otherwise.)

    -overwrite
        overwrite existing modules with the same name

    -defer
        only read the abstract syntax tree and defer actual compilation
        to a later 'hierarchy' command. Useful in cases where the default
        parameters of modules yield invalid or not synthesizable code.

    -noautowire
        make the default of `default_nettype be "none" instead of "wire".

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules

    -Dname[=definition]
        define the preprocessor symbol 'name' and set its optional value
        'definition'

    -Idir
        add 'dir' to the directories which are used when searching include
        files

The command 'verilog_defaults' can be used to register default options for
subsequent calls to 'read_verilog'.

Note that the Verilog frontend does a pretty good job of processing valid
verilog input, but has not very good error reporting. It generally is
recommended to use a simulator (for example Icarus Verilog) for checking
the syntax of the code, rather than to rely on read_verilog for that.

Depending on if read_verilog is run in -formal mode, either the macro
SYNTHESIS or FORMAL is defined automatically, unless -nosynthesis is used.
In addition, read_verilog always defines the macro YOSYS.

See the Yosys README file for a list of non-standard Verilog features
supported by the Yosys Verilog front-end.
\end{lstlisting}

\section{rename -- rename object in the design}
\label{cmd:rename}
\begin{lstlisting}[numbers=left,frame=single]
    rename old_name new_name

Rename the specified object. Note that selection patterns are not supported
by this command.



    rename -output old_name new_name

Like above, but also make the wire an output. This will fail if the object is
not a wire.


    rename -src [selection]

Assign names auto-generated from the src attribute to all selected wires and
cells with private names.


    rename -wire [selection]

Assign auto-generated names based on the wires they drive to all selected
cells with private names. Ignores cells driving privatly named wires.


    rename -enumerate [-pattern <pattern>] [selection]

Assign short auto-generated names to all selected wires and cells with private
names. The -pattern option can be used to set the pattern for the new names.
The character % in the pattern is replaced with a integer number. The default
pattern is '_%_'.


    rename -hide [selection]

Assign private names (the ones with $-prefix) to all selected wires and cells
with public names. This ignores all selected ports.


    rename -top new_name

Rename top module.
\end{lstlisting}

\section{rmports -- remove module ports with no connections}
\label{cmd:rmports}
\begin{lstlisting}[numbers=left,frame=single]
    rmports [selection]

This pass identifies ports in the selected modules which are not used or
driven and removes them.
\end{lstlisting}

\section{sat -- solve a SAT problem in the circuit}
\label{cmd:sat}
\begin{lstlisting}[numbers=left,frame=single]
    sat [options] [selection]

This command solves a SAT problem defined over the currently selected circuit
and additional constraints passed as parameters.

    -all
        show all solutions to the problem (this can grow exponentially, use
        -max <N> instead to get <N> solutions)

    -max <N>
        like -all, but limit number of solutions to <N>

    -enable_undef
        enable modeling of undef value (aka 'x-bits')
        this option is implied by -set-def, -set-undef et. cetera

    -max_undef
        maximize the number of undef bits in solutions, giving a better
        picture of which input bits are actually vital to the solution.

    -set <signal> <value>
        set the specified signal to the specified value.

    -set-def <signal>
        add a constraint that all bits of the given signal must be defined

    -set-any-undef <signal>
        add a constraint that at least one bit of the given signal is undefined

    -set-all-undef <signal>
        add a constraint that all bits of the given signal are undefined

    -set-def-inputs
        add -set-def constraints for all module inputs

    -show <signal>
        show the model for the specified signal. if no -show option is
        passed then a set of signals to be shown is automatically selected.

    -show-inputs, -show-outputs, -show-ports
        add all module (input/output) ports to the list of shown signals

    -show-regs, -show-public, -show-all
        show all registers, show signals with 'public' names, show all signals

    -ignore_div_by_zero
        ignore all solutions that involve a division by zero

    -ignore_unknown_cells
        ignore all cells that can not be matched to a SAT model

The following options can be used to set up a sequential problem:

    -seq <N>
        set up a sequential problem with <N> time steps. The steps will
        be numbered from 1 to N.

        note: for large <N> it can be significantly faster to use
        -tempinduct-baseonly -maxsteps <N> instead of -seq <N>.

    -set-at <N> <signal> <value>
    -unset-at <N> <signal>
        set or unset the specified signal to the specified value in the
        given timestep. this has priority over a -set for the same signal.

    -set-assumes
        set all assumptions provided via $assume cells

    -set-def-at <N> <signal>
    -set-any-undef-at <N> <signal>
    -set-all-undef-at <N> <signal>
        add undef constraints in the given timestep.

    -set-init <signal> <value>
        set the initial value for the register driving the signal to the value

    -set-init-undef
        set all initial states (not set using -set-init) to undef

    -set-init-def
        do not force a value for the initial state but do not allow undef

    -set-init-zero
        set all initial states (not set using -set-init) to zero

    -dump_vcd <vcd-file-name>
        dump SAT model (counter example in proof) to VCD file

    -dump_json <json-file-name>
        dump SAT model (counter example in proof) to a WaveJSON file.

    -dump_cnf <cnf-file-name>
        dump CNF of SAT problem (in DIMACS format). in temporal induction
        proofs this is the CNF of the first induction step.

The following additional options can be used to set up a proof. If also -seq
is passed, a temporal induction proof is performed.

    -tempinduct
        Perform a temporal induction proof. In a temporal induction proof it is
        proven that the condition holds forever after the number of time steps
        specified using -seq.

    -tempinduct-def
        Perform a temporal induction proof. Assume an initial state with all
        registers set to defined values for the induction step.

    -tempinduct-baseonly
        Run only the basecase half of temporal induction (requires -maxsteps)

    -tempinduct-inductonly
        Run only the induction half of temporal induction

    -tempinduct-skip <N>
        Skip the first <N> steps of the induction proof.

        note: this will assume that the base case holds for <N> steps.
        this must be proven independently with "-tempinduct-baseonly
        -maxsteps <N>". Use -initsteps if you just want to set a
        minimal induction length.

    -prove <signal> <value>
        Attempt to proof that <signal> is always <value>.

    -prove-x <signal> <value>
        Like -prove, but an undef (x) bit in the lhs matches any value on
        the right hand side. Useful for equivalence checking.

    -prove-asserts
        Prove that all asserts in the design hold.

    -prove-skip <N>
        Do not enforce the prove-condition for the first <N> time steps.

    -maxsteps <N>
        Set a maximum length for the induction.

    -initsteps <N>
        Set initial length for the induction.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -stepsize <N>
        Increase the size of the induction proof in steps of <N>.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -timeout <N>
        Maximum number of seconds a single SAT instance may take.

    -verify
        Return an error and stop the synthesis script if the proof fails.

    -verify-no-timeout
        Like -verify but do not return an error for timeouts.

    -falsify
        Return an error and stop the synthesis script if the proof succeeds.

    -falsify-no-timeout
        Like -falsify but do not return an error for timeouts.
\end{lstlisting}

\section{scatter -- add additional intermediate nets}
\label{cmd:scatter}
\begin{lstlisting}[numbers=left,frame=single]
    scatter [selection]

This command adds additional intermediate nets on all cell ports. This is used
for testing the correct use of the SigMap helper in passes. If you don't know
what this means: don't worry -- you only need this pass when testing your own
extensions to Yosys.

Use the opt_clean command to get rid of the additional nets.
\end{lstlisting}

\section{scc -- detect strongly connected components (logic loops)}
\label{cmd:scc}
\begin{lstlisting}[numbers=left,frame=single]
    scc [options] [selection]

This command identifies strongly connected components (aka logic loops) in the
design.

    -expect <num>
        expect to find exactly <num> SCCs. A different number of SCCs will
        produce an error.

    -max_depth <num>
        limit to loops not longer than the specified number of cells. This
        can e.g. be useful in identifying small local loops in a module that
        implements one large SCC.

    -nofeedback
        do not count cells that have their output fed back into one of their
        inputs as single-cell scc.

    -all_cell_types
        Usually this command only considers internal non-memory cells. With
        this option set, all cells are considered. For unknown cells all ports
        are assumed to be bidirectional 'inout' ports.

    -set_attr <name> <value>
        set the specified attribute on all cells that are part of a logic
        loop. the special token {} in the value is replaced with a unique
        identifier for the logic loop.

    -select
        replace the current selection with a selection of all cells and wires
        that are part of a found logic loop

    -specify
        examine specify rules to detect logic loops in whitebox/blackbox cells
\end{lstlisting}

\section{scratchpad -- get/set values in the scratchpad}
\label{cmd:scratchpad}
\begin{lstlisting}[numbers=left,frame=single]
    scratchpad [options]

This pass allows to read and modify values from the scratchpad of the current
design. Options:

    -get <identifier>
        print the value saved in the scratchpad under the given identifier.

    -set <identifier> <value>
        save the given value in the scratchpad under the given identifier.

    -unset <identifier>
        remove the entry for the given identifier from the scratchpad.

    -copy <identifier_from> <identifier_to>
        copy the value of the first identifier to the second identifier.

    -assert <identifier> <value>
        assert that the entry for the given identifier is set to the given value.

    -assert-set <identifier>
        assert that the entry for the given identifier exists.

    -assert-unset <identifier>
        assert that the entry for the given identifier does not exist.

The identifier may not contain whitespace. By convention, it is usually prefixed
by the name of the pass that uses it, e.g. 'opt.did_something'. If the value
contains whitespace, it must be enclosed in double quotes.
\end{lstlisting}

\section{script -- execute commands from file or wire}
\label{cmd:script}
\begin{lstlisting}[numbers=left,frame=single]
    script <filename> [<from_label>:<to_label>]
    script -scriptwire [selection]

This command executes the yosys commands in the specified file (default
behaviour), or commands embedded in the constant text value connected to the
selected wires.

In the default (file) case, the 2nd argument can be used to only execute the
section of the file between the specified labels. An empty from label is
synonymous with the beginning of the file and an empty to label is synonymous
with the end of the file.

If only one label is specified (without ':') then only the block
marked with that label (until the next label) is executed.

In "-scriptwire" mode, the commands on the selected wire(s) will be executed
in the scope of (and thus, relative to) the wires' owning module(s). This
'-module' mode can be exited by using the 'cd' command.
\end{lstlisting}

\section{select -- modify and view the list of selected objects}
\label{cmd:select}
\begin{lstlisting}[numbers=left,frame=single]
    select [ -add | -del | -set <name> ] {-read <filename> | <selection>}
    select [ -unset <name> ]
    select [ <assert_option> ] {-read <filename> | <selection>}
    select [ -list | -write <filename> | -count | -clear ]
    select -module <modname>

Most commands use the list of currently selected objects to determine which part
of the design to operate on. This command can be used to modify and view this
list of selected objects.

Note that many commands support an optional [selection] argument that can be
used to override the global selection for the command. The syntax of this
optional argument is identical to the syntax of the <selection> argument
described here.

    -add, -del
        add or remove the given objects to the current selection.
        without this options the current selection is replaced.

    -set <name>
        do not modify the current selection. instead save the new selection
        under the given name (see @<name> below). to save the current selection,
        use "select -set <name> %"

    -unset <name>
        do not modify the current selection. instead remove a previously saved
        selection under the given name (see @<name> below).
    -assert-none
        do not modify the current selection. instead assert that the given
        selection is empty. i.e. produce an error if any object matching the
        selection is found.

    -assert-any
        do not modify the current selection. instead assert that the given
        selection is non-empty. i.e. produce an error if no object matching
        the selection is found.

    -assert-count N
        do not modify the current selection. instead assert that the given
        selection contains exactly N objects.

    -assert-max N
        do not modify the current selection. instead assert that the given
        selection contains less than or exactly N objects.

    -assert-min N
        do not modify the current selection. instead assert that the given
        selection contains at least N objects.

    -list
        list all objects in the current selection

    -write <filename>
        like -list but write the output to the specified file

    -read <filename>
        read the specified file (written by -write)

    -count
        count all objects in the current selection

    -clear
        clear the current selection. this effectively selects the whole
        design. it also resets the selected module (see -module). use the
        command 'select *' to select everything but stay in the current module.

    -none
        create an empty selection. the current module is unchanged.

    -module <modname>
        limit the current scope to the specified module.
        the difference between this and simply selecting the module
        is that all object names are interpreted relative to this
        module after this command until the selection is cleared again.

When this command is called without an argument, the current selection
is displayed in a compact form (i.e. only the module name when a whole module
is selected).

The <selection> argument itself is a series of commands for a simple stack
machine. Each element on the stack represents a set of selected objects.
After this commands have been executed, the union of all remaining sets
on the stack is computed and used as selection for the command.

Pushing (selecting) object when not in -module mode:

    <mod_pattern>
        select the specified module(s)

    <mod_pattern>/<obj_pattern>
        select the specified object(s) from the module(s)

Pushing (selecting) object when in -module mode:

    <obj_pattern>
        select the specified object(s) from the current module

By default, patterns will not match black/white-box modules or theircontents. To include such objects, prefix the pattern with '='.

A <mod_pattern> can be a module name, wildcard expression (*, ?, [..])
matching module names, or one of the following:

    A:<pattern>, A:<pattern>=<pattern>
        all modules with an attribute matching the given pattern
        in addition to = also <, <=, >=, and > are supported

    N:<pattern>
        all modules with a name matching the given pattern
        (i.e. 'N:' is optional as it is the default matching rule)

An <obj_pattern> can be an object name, wildcard expression, or one of
the following:

    w:<pattern>
        all wires with a name matching the given wildcard pattern

    i:<pattern>, o:<pattern>, x:<pattern>
        all inputs (i:), outputs (o:) or any ports (x:) with matching names

    s:<size>, s:<min>:<max>
        all wires with a matching width

    m:<pattern>
        all memories with a name matching the given pattern

    c:<pattern>
        all cells with a name matching the given pattern

    t:<pattern>
        all cells with a type matching the given pattern

    p:<pattern>
        all processes with a name matching the given pattern

    a:<pattern>
        all objects with an attribute name matching the given pattern

    a:<pattern>=<pattern>
        all objects with a matching attribute name-value-pair.
        in addition to = also <, <=, >=, and > are supported

    r:<pattern>, r:<pattern>=<pattern>
        cells with matching parameters. also with <, <=, >= and >.

    n:<pattern>
        all objects with a name matching the given pattern
        (i.e. 'n:' is optional as it is the default matching rule)

    @<name>
        push the selection saved prior with 'select -set <name> ...'

The following actions can be performed on the top sets on the stack:

    %
        push a copy of the current selection to the stack

    %%
        replace the stack with a union of all elements on it

    %n
        replace top set with its invert

    %u
        replace the two top sets on the stack with their union

    %i
        replace the two top sets on the stack with their intersection

    %d
        pop the top set from the stack and subtract it from the new top

    %D
        like %d but swap the roles of two top sets on the stack

    %c
        create a copy of the top set from the stack and push it

    %x[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        expand top set <num1> num times according to the specified rules.
        (i.e. select all cells connected to selected wires and select all
        wires connected to selected cells) The rules specify which cell
        ports to use for this. the syntax for a rule is a '-' for exclusion
        and a '+' for inclusion, followed by an optional comma separated
        list of cell types followed by an optional comma separated list of
        cell ports in square brackets. a rule can also be just a cell or wire
        name that limits the expansion (is included but does not go beyond).
        select at most <num2> objects. a warning message is printed when this
        limit is reached. When '*' is used instead of <num1> then the process
        is repeated until no further object are selected.

    %ci[<num1>|*][.<num2>][:<rule>[:<rule>..]]
    %co[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        similar to %x, but only select input (%ci) or output cones (%co)

    %xe[...] %cie[...] %coe
        like %x, %ci, and %co but only consider combinatorial cells

    %a
        expand top set by selecting all wires that are (at least in part)
        aliases for selected wires.

    %s
        expand top set by adding all modules that implement cells in selected
        modules

    %m
        expand top set by selecting all modules that contain selected objects

    %M
        select modules that implement selected cells

    %C
        select cells that implement selected modules

    %R[<num>]
        select <num> random objects from top selection (default 1)

Example: the following command selects all wires that are connected to a
'GATE' input of a 'SWITCH' cell:

    select */t:SWITCH %x:+[GATE] */t:SWITCH %d
\end{lstlisting}

\section{setattr -- set/unset attributes on objects}
\label{cmd:setattr}
\begin{lstlisting}[numbers=left,frame=single]
    setattr [ -mod ] [ -set name value | -unset name ]... [selection]

Set/unset the given attributes on the selected objects. String values must be
passed in double quotes (").

When called with -mod, this command will set and unset attributes on modules
instead of objects within modules.
\end{lstlisting}

\section{setparam -- set/unset parameters on objects}
\label{cmd:setparam}
\begin{lstlisting}[numbers=left,frame=single]
    setparam [ -type cell_type ] [ -set name value | -unset name ]... [selection]

Set/unset the given parameters on the selected cells. String values must be
passed in double quotes (").

The -type option can be used to change the cell type of the selected cells.
\end{lstlisting}

\section{setundef -- replace undef values with defined constants}
\label{cmd:setundef}
\begin{lstlisting}[numbers=left,frame=single]
    setundef [options] [selection]

This command replaces undef (x) constants with defined (0/1) constants.

    -undriven
        also set undriven nets to constant values

    -expose
        also expose undriven nets as inputs (use with -undriven)

    -zero
        replace with bits cleared (0)

    -one
        replace with bits set (1)

    -undef
        replace with undef (x) bits, may be used with -undriven

    -anyseq
        replace with $anyseq drivers (for formal)

    -anyconst
        replace with $anyconst drivers (for formal)

    -random <seed>
        replace with random bits using the specified integer as seed
        value for the random number generator.

    -init
        also create/update init values for flip-flops

    -params
        replace undef in cell parameters
\end{lstlisting}

\section{share -- perform sat-based resource sharing}
\label{cmd:share}
\begin{lstlisting}[numbers=left,frame=single]
    share [options] [selection]

This pass merges shareable resources into a single resource. A SAT solver
is used to determine if two resources are share-able.

  -force
    Per default the selection of cells that is considered for sharing is
    narrowed using a list of cell types. With this option all selected
    cells are considered for resource sharing.

    IMPORTANT NOTE: If the -all option is used then no cells with internal
    state must be selected!

  -aggressive
    Per default some heuristics are used to reduce the number of cells
    considered for resource sharing to only large resources. This options
    turns this heuristics off, resulting in much more cells being considered
    for resource sharing.

  -fast
    Only consider the simple part of the control logic in SAT solving, resulting
    in much easier SAT problems at the cost of maybe missing some opportunities
    for resource sharing.

  -limit N
    Only perform the first N merges, then stop. This is useful for debugging.
\end{lstlisting}

\section{shell -- enter interactive command mode}
\label{cmd:shell}
\begin{lstlisting}[numbers=left,frame=single]
    shell

This command enters the interactive command mode. This can be useful
in a script to interrupt the script at a certain point and allow for
interactive inspection or manual synthesis of the design at this point.

The command prompt of the interactive shell indicates the current
selection (see 'help select'):

    yosys>
        the entire design is selected

    yosys*>
        only part of the design is selected

    yosys [modname]>
        the entire module 'modname' is selected using 'select -module modname'

    yosys [modname]*>
        only part of current module 'modname' is selected

When in interactive shell, some errors (e.g. invalid command arguments)
do not terminate yosys but return to the command prompt.

This command is the default action if nothing else has been specified
on the command line.

Press Ctrl-D or type 'exit' to leave the interactive shell.
\end{lstlisting}

\section{show -- generate schematics using graphviz}
\label{cmd:show}
\begin{lstlisting}[numbers=left,frame=single]
    show [options] [selection]

Create a graphviz DOT file for the selected part of the design and compile it
to a graphics file (usually SVG or PostScript).

    -viewer <viewer>
        Run the specified command with the graphics file as parameter.
        On Windows, this pauses yosys until the viewer exits.

    -format <format>
        Generate a graphics file in the specified format. Use 'dot' to just
        generate a .dot file, or other <format> strings such as 'svg' or 'ps'
        to generate files in other formats (this calls the 'dot' command).

    -lib <verilog_or_rtlil_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

        note: in most cases it is better to load the library before calling
        show with 'read_verilog -lib <filename>'. it is also possible to
        load liberty files with 'read_liberty -lib <filename>'.

    -prefix <prefix>
        generate <prefix>.* instead of ~/.yosys_show.*

    -color <color> <object>
        assign the specified color to the specified object. The object can be
        a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -label <text> <object>
        assign the specified label text to the specified object. The object can
        be a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -colors <seed>
        Randomly assign colors to the wires. The integer argument is the seed
        for the random number generator. Change the seed value if the colored
        graph still is ambiguous. A seed of zero deactivates the coloring.

    -colorattr <attribute_name>
        Use the specified attribute to assign colors. A unique color is
        assigned to each unique value of this attribute.

    -width
        annotate buses with a label indicating the width of the bus.

    -signed
        mark ports (A, B) that are declared as signed (using the [AB]_SIGNED
        cell parameter) with an asterisk next to the port name.

    -stretch
        stretch the graph so all inputs are on the left side and all outputs
        (including inout ports) are on the right side.

    -pause
        wait for the user to press enter to before returning

    -enum
        enumerate objects with internal ($-prefixed) names

    -long
        do not abbreviate objects with internal ($-prefixed) names

    -notitle
        do not add the module name as graph title to the dot file

    -nobg
        don't run viewer in the background, IE wait for the viewer tool to
        exit before returning

When no <format> is specified, 'dot' is used. When no <format> and <viewer> is
specified, 'xdot' is used to display the schematic (POSIX systems only).

The generated output files are '~/.yosys_show.dot' and '~/.yosys_show.<format>',
unless another prefix is specified using -prefix <prefix>.

Yosys on Windows and YosysJS use different defaults: The output is written
to 'show.dot' in the current directory and new viewer is launched each time
the 'show' command is executed.
\end{lstlisting}

\section{shregmap -- map shift registers}
\label{cmd:shregmap}
\begin{lstlisting}[numbers=left,frame=single]
    shregmap [options] [selection]

This pass converts chains of $_DFF_[NP]_ gates to target specific shift register
primitives. The generated shift register will be of type $__SHREG_DFF_[NP]_ and
will use the same interface as the original $_DFF_*_ cells. The cell parameter
'DEPTH' will contain the depth of the shift register. Use a target-specific
'techmap' map file to convert those cells to the actual target cells.

    -minlen N
        minimum length of shift register (default = 2)
        (this is the length after -keep_before and -keep_after)

    -maxlen N
        maximum length of shift register (default = no limit)
        larger chains will be mapped to multiple shift register instances

    -keep_before N
        number of DFFs to keep before the shift register (default = 0)

    -keep_after N
        number of DFFs to keep after the shift register (default = 0)

    -clkpol pos|neg|any
        limit match to only positive or negative edge clocks. (default = any)

    -enpol pos|neg|none|any_or_none|any
        limit match to FFs with the specified enable polarity. (default = none)

    -match <cell_type>[:<d_port_name>:<q_port_name>]
        match the specified cells instead of $_DFF_N_ and $_DFF_P_. If
        ':<d_port_name>:<q_port_name>' is omitted then 'D' and 'Q' is used
        by default. E.g. the option '-clkpol pos' is just an alias for
        '-match $_DFF_P_', which is an alias for '-match $_DFF_P_:D:Q'.

    -params
        instead of encoding the clock and enable polarity in the cell name by
        deriving from the original cell name, simply name all generated cells
        $__SHREG_ and use CLKPOL and ENPOL parameters. An ENPOL value of 2 is
        used to denote cells without enable input. The ENPOL parameter is
        omitted when '-enpol none' (or no -enpol option) is passed.

    -zinit
        assume the shift register is automatically zero-initialized, so it
        becomes legal to merge zero initialized FFs into the shift register.

    -init
        map initialized registers to the shift reg, add an INIT parameter to
        generated cells with the initialization value. (first bit to shift out
        in LSB position)

    -tech greenpak4
        map to greenpak4 shift registers.
\end{lstlisting}

\section{sim -- simulate the circuit}
\label{cmd:sim}
\begin{lstlisting}[numbers=left,frame=single]
    sim [options] [top-level]

This command simulates the circuit using the given top-level module.

    -vcd <filename>
        write the simulation results to the given VCD file

    -clock <portname>
        name of top-level clock input

    -clockn <portname>
        name of top-level clock input (inverse polarity)

    -reset <portname>
        name of top-level reset input (active high)

    -resetn <portname>
        name of top-level inverted reset input (active low)

    -rstlen <integer>
        number of cycles reset should stay active (default: 1)

    -zinit
        zero-initialize all uninitialized regs and memories

    -timescale <string>
        include the specified timescale declaration in the vcd

    -n <integer>
        number of cycles to simulate (default: 20)

    -a
        include all nets in VCD output, not just those with public names

    -w
        writeback mode: use final simulation state as new init state

    -d
        enable debug output
\end{lstlisting}

\section{simplemap -- mapping simple coarse-grain cells}
\label{cmd:simplemap}
\begin{lstlisting}[numbers=left,frame=single]
    simplemap [selection]

This pass maps a small selection of simple coarse-grain cells to yosys gate
primitives. The following internal cell types are mapped by this pass:

  $not, $pos, $and, $or, $xor, $xnor
  $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor, $reduce_bool
  $logic_not, $logic_and, $logic_or, $mux, $tribuf
  $sr, $ff, $dff, $dffe, $dffsr, $dffsre, $adff, $adffe, $aldff, $aldffe, $sdff, $sdffe, $sdffce, $dlatch, $adlatch, $dlatchsr
\end{lstlisting}

\section{splice -- create explicit splicing cells}
\label{cmd:splice}
\begin{lstlisting}[numbers=left,frame=single]
    splice [options] [selection]

This command adds $slice and $concat cells to the design to make the splicing
of multi-bit signals explicit. This for example is useful for coarse grain
synthesis, where dedicated hardware is needed to splice signals.

    -sel_by_cell
        only select the cell ports to rewire by the cell. if the selection
        contains a cell, than all cell inputs are rewired, if necessary.

    -sel_by_wire
        only select the cell ports to rewire by the wire. if the selection
        contains a wire, than all cell ports driven by this wire are wired,
        if necessary.

    -sel_any_bit
        it is sufficient if the driver of any bit of a cell port is selected.
        by default all bits must be selected.

    -wires
        also add $slice and $concat cells to drive otherwise unused wires.

    -no_outputs
        do not rewire selected module outputs.

    -port <name>
        only rewire cell ports with the specified name. can be used multiple
        times. implies -no_output.

    -no_port <name>
        do not rewire cell ports with the specified name. can be used multiple
        times. can not be combined with -port <name>.

By default selected output wires and all cell ports of selected cells driven
by selected wires are rewired.
\end{lstlisting}

\section{splitnets -- split up multi-bit nets}
\label{cmd:splitnets}
\begin{lstlisting}[numbers=left,frame=single]
    splitnets [options] [selection]

This command splits multi-bit nets into single-bit nets.

    -format char1[char2[char3]]
        the first char is inserted between the net name and the bit index, the
        second char is appended to the netname. e.g. -format () creates net
        names like 'mysignal(42)'. the 3rd character is the range separation
        character when creating multi-bit wires. the default is '[]:'.

    -ports
        also split module ports. per default only internal signals are split.

    -driver
        don't blindly split nets in individual bits. instead look at the driver
        and split nets so that no driver drives only part of a net.
\end{lstlisting}

\section{sta -- perform static timing analysis}
\label{cmd:sta}
\begin{lstlisting}[numbers=left,frame=single]
    sta [options] [selection]

This command performs static timing analysis on the design. (Only considers
paths within a single module, so the design must be flattened.)
\end{lstlisting}

\section{stat -- print some statistics}
\label{cmd:stat}
\begin{lstlisting}[numbers=left,frame=single]
    stat [options] [selection]

Print some statistics (number of objects) on the selected portion of the
design.

    -top <module>
        print design hierarchy with this module as top. if the design is fully
        selected and a module has the 'top' attribute set, this module is used
        default value for this option.

    -liberty <liberty_file>
        use cell area information from the provided liberty file

    -tech <technology>
        print area estemate for the specified technology. Currently supported
        values for <technology>: xilinx, cmos

    -width
        annotate internal cell types with their word width.
        e.g. $add_8 for an 8 bit wide $add cell.
\end{lstlisting}

\section{submod -- moving part of a module to a new submodule}
\label{cmd:submod}
\begin{lstlisting}[numbers=left,frame=single]
    submod [options] [selection]

This pass identifies all cells with the 'submod' attribute and moves them to
a newly created module. The value of the attribute is used as name for the
cell that replaces the group of cells with the same attribute value.

This pass can be used to create a design hierarchy in flat design. This can
be useful for analyzing or reverse-engineering a design.

This pass only operates on completely selected modules with no processes
or memories.

    -copy
        by default the cells are 'moved' from the source module and the source
        module will use an instance of the new module after this command is
        finished. call with -copy to not modify the source module.

    -name <name>
        don't use the 'submod' attribute but instead use the selection. only
        objects from one module might be selected. the value of the -name option
        is used as the value of the 'submod' attribute instead.

    -hidden
        instead of creating submodule ports with public names, create ports with
        private names so that a subsequent 'flatten; clean' call will restore the
        original module with original public names.
\end{lstlisting}

\section{supercover -- add hi/lo cover cells for each wire bit}
\label{cmd:supercover}
\begin{lstlisting}[numbers=left,frame=single]
    supercover [options] [selection]

This command adds two cover cells for each bit of each selected wire, one
checking for a hi signal level and one checking for lo level.
\end{lstlisting}

\section{synth -- generic synthesis script}
\label{cmd:synth}
\begin{lstlisting}[numbers=left,frame=single]
    synth [options]

This command runs the default synthesis script. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -auto-top
        automatically determine the top of the design hierarchy

    -flatten
        flatten the design before synthesis. this will pass '-auto-top' to
        'hierarchy' if no top module is specified.

    -encfile <file>
        passed to 'fsm_recode' via 'fsm'

    -lut <k>
        perform synthesis for a k-LUT architecture.

    -nofsm
        do not run FSM optimization

    -noabc
        do not run abc (as if yosys was compiled without ABC support)

    -noalumacc
        do not run 'alumacc' pass. i.e. keep arithmetic operators in
        their direct form ($add, $sub, etc.).

    -nordff
        passed to 'memory'. prohibits merging of FFs into memory read ports

    -noshare
        do not run SAT-based resource sharing

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -abc9
        use new ABC9 flow (EXPERIMENTAL)

    -flowmap
        use FlowMap LUT techmapping instead of ABC


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top> | -auto-top]

    coarse:
        proc
        flatten      (if -flatten)
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm          (unless -nofsm)
        opt
        wreduce
        peepopt
        opt_clean
        techmap -map +/cmp2lut.v -map +/cmp2lcu.v     (if -lut)
        alumacc      (unless -noalumacc)
        share        (unless -noshare)
        opt
        memory -nomap
        opt_clean

    fine:
        opt -fast -full
        memory_map
        opt -full
        techmap
        techmap -map +/gate2lut.v    (if -noabc and -lut)
        clean; opt_lut               (if -noabc and -lut)
        flowmap -maxlut K            (if -flowmap and -lut)
        opt -fast
        abc -fast           (unless -noabc, unless -lut)
        abc -fast -lut k    (unless -noabc, if -lut)
        opt -fast           (unless -noabc)

    check:
        hierarchy -check
        stat
        check
\end{lstlisting}

\section{synth\_achronix -- synthesis for Acrhonix Speedster22i FPGAs.}
\label{cmd:synth_achronix}
\begin{lstlisting}[numbers=left,frame=single]
    synth_achronix [options]

This command runs synthesis for Achronix Speedster eFPGAs. This work is still experimental.

    -top <module>
        use the specified module as top module (default='top')

    -vout <file>
        write the design to the specified Verilog netlist file. writing of an
        output file is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options


The following commands are executed by this synthesis command:

    begin:
        read_verilog -sv -lib +/achronix/speedster22i/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine -full
        memory_map
        opt -undriven -fine
        opt -fine
        techmap -map +/techmap.v
        opt -full
        clean -purge
        setundef -undriven -zero
        dfflegalize -cell $_DFF_P_ x
        abc -markgroups -dff -D 1    (only if -retime)

    map_luts:
        abc -lut 4
        clean

    map_cells:
        iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I
        techmap -map +/achronix/speedster22i/cells_map.v
        clean -purge

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    vout:
        write_verilog -nodec -attr2comment -defparam -renameprefix syn_ <file-name>
\end{lstlisting}

\section{synth\_anlogic -- synthesis for Anlogic FPGAs}
\label{cmd:synth_anlogic}
\begin{lstlisting}[numbers=left,frame=single]
    synth_anlogic [options]

This command runs synthesis for Anlogic FPGAs.

    -top <module>
        use the specified module as top module

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options

    -nolutram
        do not use EG_LOGIC_DRAM16X4 cells in output netlist


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/anlogic/cells_sim.v +/anlogic/eagle_bb.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    map_lutram:    (skip if -nolutram)
        memory_bram -rules +/anlogic/lutrams.txt
        techmap -map +/anlogic/lutrams_map.v
        setundef -zero -params t:EG_LOGIC_DRAM16X4

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine

    map_gates:
        techmap -map +/techmap.v -map +/anlogic/arith_map.v
        opt -fast
        abc -dff -D 1    (only if -retime)

    map_ffs:
        dfflegalize -cell $_DFFE_P??P_ r -cell $_SDFFE_P??P_ r -cell $_DLATCH_N??_ r
        techmap -D NO_LUT -map +/anlogic/cells_map.v
        opt_expr -mux_undef
        simplemap

    map_luts:
        abc -lut 4:6
        clean

    map_cells:
        techmap -map +/anlogic/cells_map.v
        clean

    map_anlogic:
        anlogic_fixcarry
        anlogic_eqn

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    edif:
        write_edif <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_coolrunner2 -- synthesis for Xilinx Coolrunner-II CPLDs}
\label{cmd:synth_coolrunner2}
\begin{lstlisting}[numbers=left,frame=single]
    synth_coolrunner2 [options]

This command runs synthesis for Coolrunner-II CPLDs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.

    -top <module>
        use the specified module as top module (default='top')

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/coolrunner2/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic

    coarse:
        synth -run coarse

    fine:
        extract_counter -dir up -allow_arst no
        techmap -map +/coolrunner2/cells_counter_map.v
        clean
        opt -fast -full
        techmap -map +/techmap.v -map +/coolrunner2/cells_latch.v
        opt -fast
        dfflibmap -prepare -liberty +/coolrunner2/xc2_dff.lib

    map_tff:
        abc -g AND,XOR
        clean
        extract -map +/coolrunner2/tff_extract.v

    map_pla:
        abc -sop -I 40 -P 56
        clean

    map_cells:
        dfflibmap -liberty +/coolrunner2/xc2_dff.lib
        dffinit -ff FDCP Q INIT
        dffinit -ff FDCP_N Q INIT
        dffinit -ff FTCP Q INIT
        dffinit -ff FTCP_N Q INIT
        dffinit -ff LDCP Q INIT
        dffinit -ff LDCP_N Q INIT
        coolrunner2_sop
        clean
        iopadmap -bits -inpad IBUF O:I -outpad IOBUFE I:IO -inoutpad IOBUFE O:IO -toutpad IOBUFE E:I:IO -tinoutpad IOBUFE E:O:I:IO
        attrmvcp -attr src -attr LOC t:IOBUFE n:*
        attrmvcp -attr src -attr LOC -driven t:IBUF n:*
        coolrunner2_fixup
        splitnets
        clean

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_easic -- synthesis for eASIC platform}
\label{cmd:synth_easic}
\begin{lstlisting}[numbers=left,frame=single]
    synth_easic [options]

This command runs synthesis for eASIC platform.

    -top <module>
        use the specified module as top module

    -vlog <file>
        write the design to the specified structural Verilog file. writing of
        an output file is omitted if this parameter is not specified.

    -etools <path>
        set path to the eTools installation. (default=/opt/eTools)

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options


The following commands are executed by this synthesis command:

    begin:
        read_liberty -lib <etools_phys_clk_lib>
        read_liberty -lib <etools_logic_lut_lib>
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap
        opt -fast
        abc -dff -D 1     (only if -retime)
        opt_clean    (only if -retime)

    map:
        dfflibmap -liberty <etools_phys_clk_lib>
        abc -liberty <etools_logic_lut_lib>
        opt_clean

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    vlog:
        write_verilog -noexpr -attr2comment <file-name>
\end{lstlisting}

\section{synth\_ecp5 -- synthesis for ECP5 FPGAs}
\label{cmd:synth_ecp5}
\begin{lstlisting}[numbers=left,frame=single]
    synth_ecp5 [options]

This command runs synthesis for ECP5 FPGAs.

    -top <module>
        use the specified module as top module

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -dff
        run 'abc'/'abc9' with -dff option

    -retime
        run 'abc' with '-dff -D 1' options

    -noccu2
        do not use CCU2 cells in output netlist

    -nodffe
        do not use flipflops with CE in output netlist

    -nobram
        do not use block RAM cells in output netlist

    -nolutram
        do not use LUT RAM cells in output netlist

    -nowidelut
        do not use PFU muxes to implement LUTs larger than LUT4s

    -asyncprld
        use async PRLD mode to implement ALDFF (EXPERIMENTAL)

    -abc2
        run two passes of 'abc' for slightly improved logic density

    -abc9
        use new ABC9 flow (EXPERIMENTAL)

    -vpr
        generate an output netlist (and BLIF file) suitable for VPR
        (this feature is experimental and incomplete)

    -nodsp
        do not map multipliers to MULT18X18D


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib -specify +/ecp5/cells_sim.v +/ecp5/cells_bb.v
        hierarchy -check -top <top>

    coarse:
        proc
        flatten
        tribuf -logic
        deminout
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm
        opt
        wreduce
        peepopt
        opt_clean
        share
        techmap -map +/cmp2lut.v -D LUT_WIDTH=4
        opt_expr
        opt_clean
        techmap -map +/mul2dsp.v -map +/ecp5/dsp_map.v -D DSP_A_MAXWIDTH=18 -D DSP_B_MAXWIDTH=18  -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2  -D DSP_NAME=$__MUL18X18    (unless -nodsp)
        chtype -set $mul t:$__soft_mul    (unless -nodsp)
        alumacc
        opt
        memory -nomap
        opt_clean

    map_bram:    (skip if -nobram)
        memory_bram -rules +/ecp5/brams.txt
        techmap -map +/ecp5/brams_map.v

    map_lutram:    (skip if -nolutram)
        memory_bram -rules +/ecp5/lutrams.txt
        techmap -map +/ecp5/lutrams_map.v

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map -iattr -attr !ram_block -attr !rom_block -attr logic_block -attr syn_ramstyle=auto -attr syn_ramstyle=registers -attr syn_romstyle=auto -attr syn_romstyle=logic
        opt -undriven -fine

    map_gates:
        techmap -map +/techmap.v -map +/ecp5/arith_map.v
        opt -fast
        abc -dff -D 1    (only if -retime)

    map_ffs:
        opt_clean
        dfflegalize -cell $_DFF_?_ 01 -cell $_DFF_?P?_ r -cell $_SDFF_?P?_ r [-cell $_DFFE_??_ 01 -cell $_DFFE_?P??_ r -cell $_SDFFE_?P??_ r] [-cell $_ALDFF_?P_ x -cell $_ALDFFE_?P?_ x] [-cell $_DLATCH_?_ x]    ($_ALDFF_*_ only if -asyncprld, $_DLATCH_* only if not -asyncprld, $_*DFFE_* only if not -nodffe)
        zinit -all w:* t:$_DFF_?_ t:$_DFFE_??_ t:$_SDFF*    (only if -abc9 and -dff)
        techmap -D NO_LUT -map +/ecp5/cells_map.v
        opt_expr -undriven -mux_undef
        simplemap
        ecp5_gsr
        attrmvcp -copy -attr syn_useioff
        opt_clean

    map_luts:
        abc          (only if -abc2)
        techmap -map +/ecp5/latches_map.v    (skip if -asyncprld)
        abc -dress -lut 4:7
        clean

    map_cells:
        techmap -map +/ecp5/cells_map.v    (skip if -vpr)
        opt_lut_ins -tech ecp5
        clean

    check:
        autoname
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    blif:
        opt_clean -purge                                     (vpr mode)
        write_blif -attr -cname -conn -param <file-name>     (vpr mode)
        write_blif -gates -attr -param <file-name>           (non-vpr mode)

    edif:
        write_edif <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_efinix -- synthesis for Efinix FPGAs}
\label{cmd:synth_efinix}
\begin{lstlisting}[numbers=left,frame=single]
    synth_efinix [options]

This command runs synthesis for Efinix FPGAs.

    -top <module>
        use the specified module as top module

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options

    -nobram
        do not use EFX_RAM_5K cells in output netlist


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/efinix/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse
        memory_bram -rules +/efinix/brams.txt
        techmap -map +/efinix/brams_map.v
        setundef -zero -params t:EFX_RAM_5K

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine

    map_gates:
        techmap -map +/techmap.v -map +/efinix/arith_map.v
        opt -fast
        abc -dff -D 1    (only if -retime)

    map_ffs:
        dfflegalize -cell $_DFFE_????_ 0 -cell $_SDFFE_????_ 0 -cell $_SDFFCE_????_ 0 -cell $_DLATCH_?_ x
        techmap -D NO_LUT -map +/efinix/cells_map.v
        opt_expr -mux_undef
        simplemap

    map_luts:
        abc -lut 4
        clean

    map_cells:
        techmap -map +/efinix/cells_map.v
        clean

    map_gbuf:
        clkbufmap -buf $__EFX_GBUF O:I
        techmap -map +/efinix/gbuf_map.v
        efinix_fixcarry
        clean

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    edif:
        write_edif <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_gatemate -- synthesis for Cologne Chip GateMate FPGAs}
\label{cmd:synth_gatemate}
\begin{lstlisting}[numbers=left,frame=single]
    synth_gatemate [options]

This command runs synthesis for Cologne Chip AG GateMate FPGAs.

    -top <module>
        use the specified module as top module.

    -vlog <file>
        write the design to the specified verilog file. Writing of an output
        file is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. Writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). An empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis.

    -nobram
        do not use CC_BRAM_20K or CC_BRAM_40K cells in output netlist.

    -noaddf
        do not use CC_ADDF full adder cells in output netlist.

    -nomult
        do not use CC_MULT multiplier cells in output netlist.

    -nomx8, -nomx4
        do not use CC_MX{8,4} multiplexer cells in output netlist.

    -dff
        run 'abc' with -dff option

    -retime
        run 'abc' with '-dff -D 1' options

    -noiopad
        disable I/O buffer insertion (useful for hierarchical or 
        out-of-context flows).

    -noclkbuf
        disable automatic clock buffer insertion.

The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib -specify +/gatemate/cells_sim.v +/gatemate/cells_bb.v
        hierarchy -check -top <top>

    prepare:
        proc
        flatten
        tribuf -logic
        deminout
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm
        opt
        wreduce
        peepopt
        opt_clean
        muxpack
        share
        techmap -map +/cmp2lut.v -D LUT_WIDTH=4
        opt_expr
        opt_clean

    map_mult:    (skip if '-nomult')
        techmap -map +/gatemate/mul_map.v

    coarse:
        alumacc
        opt
        memory -nomap
        opt_clean

    map_bram:    (skip if '-nobram')
        memory_bram -rules +/gatemate/brams.txt
        setundef -zero -params t:$__CC_BRAM_CASCADE t:$__CC_BRAM_40K_SDP t:$__CC_BRAM_20K_SDP t:$__CC_BRAM_20K_TDP t:$__CC_BRAM_40K_TDP 
        techmap -map +/gatemate/brams_map.v

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine

    map_gates:
        techmap -map +/techmap.v  -map +/gatemate/arith_map.v
        opt -fast

    map_io:    (skip if '-noiopad')
        iopadmap -bits -inpad CC_IBUF Y:I -outpad CC_OBUF A:O -toutpad CC_TOBUF ~T:A:O -tinoutpad CC_IOBUF ~T:Y:A:IO
        clean

    map_regs:
        opt_clean
        dfflegalize -cell $_DFFE_????_ x -cell $_DLATCH_???_ x
        techmap -map +/gatemate/reg_map.v
        opt_expr -mux_undef
        simplemap
        opt_clean

    map_muxs:
        muxcover  -mux4 -mux8
        opt -full
        techmap -map +/gatemate/mux_map.v

    map_luts:
        abc  -dress -lut 4
        clean

    map_cells:
        techmap -map +/gatemate/lut_map.v
        clean

    map_bufg:    (skip if '-noclkbuf')
        clkbufmap -buf CC_BUFG O:I
        clean

    check:
        hierarchy -check
        stat -width
        check -noinit
        blackbox =A:whitebox

    vlog:
        opt_clean -purge
        write_verilog -noattr <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_gowin -- synthesis for Gowin FPGAs}
\label{cmd:synth_gowin}
\begin{lstlisting}[numbers=left,frame=single]
    synth_gowin [options]

This command runs synthesis for Gowin FPGAs. This work is experimental.

    -top <module>
        use the specified module as top module (default='top')

    -vout <file>
        write the design to the specified Verilog netlist file. writing of an
        output file is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON netlist file. writing of an
        output file is omitted if this parameter is not specified.
        This disables features not yet supported by nexpnr-gowin.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -nodffe
        do not use flipflops with CE in output netlist

    -nobram
        do not use BRAM cells in output netlist

    -nolutram
        do not use distributed RAM cells in output netlist

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options

    -nowidelut
        do not use muxes to implement LUTs larger than LUT4s

    -noiopads
        do not emit IOB at top level ports

    -noalu
        do not use ALU cells

    -abc9
        use new ABC9 flow (EXPERIMENTAL)


The following commands are executed by this synthesis command:

    begin:
        read_verilog -specify -lib +/gowin/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    map_bram:    (skip if -nobram)
        memory_bram -rules +/gowin/brams.txt
        techmap -map +/gowin/brams_map.v

    map_lutram:    (skip if -nolutram)
        memory_bram -rules +/gowin/lutrams.txt
        techmap -map +/gowin/lutrams_map.v
        setundef -params -zero t:RAM16S4

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine

    map_gates:
        techmap -map +/techmap.v -map +/gowin/arith_map.v
        opt -fast
        abc -dff -D 1    (only if -retime)
        iopadmap -bits -inpad IBUF O:I -outpad OBUF I:O -toutpad TBUF ~OEN:I:O -tinoutpad IOBUF ~OEN:O:I:IO    (unless -noiopads)

    map_ffs:
        opt_clean
        dfflegalize -cell $_DFF_?_ 0 -cell $_DFFE_?P_ 0 -cell $_SDFF_?P?_ r -cell $_SDFFE_?P?P_ r -cell $_DFF_?P?_ r -cell $_DFFE_?P?P_ r
        techmap -map +/gowin/cells_map.v
        opt_expr -mux_undef
        simplemap

    map_luts:
        abc -lut 4:8
        clean

    map_cells:
        techmap -map +/gowin/cells_map.v
        opt_lut_ins -tech gowin
        setundef -undriven -params -zero
        hilomap -singleton -hicell VCC V -locell GND G
        splitnets -ports    (only if -vout used)
        clean
        autoname

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    vout:
        write_verilog -simple-lhs -decimal -attr2comment -defparam -renameprefix gen <file-name>
        write_json <file-name>
\end{lstlisting}

\section{synth\_greenpak4 -- synthesis for GreenPAK4 FPGAs}
\label{cmd:synth_greenpak4}
\begin{lstlisting}[numbers=left,frame=single]
    synth_greenpak4 [options]

This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.

    -top <module>
        use the specified module as top module (default='top')

    -part <part>
        synthesize for the specified part. Valid values are SLG46140V,
        SLG46620V, and SLG46621V (default).

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/greenpak4/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic

    coarse:
        synth -run coarse

    fine:
        extract_counter -pout GP_DCMP,GP_DAC -maxwidth 14
        clean
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap -map +/techmap.v -map +/greenpak4/cells_latch.v
        dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib
        opt -fast -noclkinv -noff
        abc -dff -D 1    (only if -retime)

    map_luts:
        nlutmap -assert -luts 0,6,8,2     (for -part SLG46140V)
        nlutmap -assert -luts 2,8,16,2    (for -part SLG46620V)
        nlutmap -assert -luts 2,8,16,2    (for -part SLG46621V)
        clean

    map_cells:
        shregmap -tech greenpak4
        dfflibmap -liberty +/greenpak4/gp_dff.lib
        dffinit -ff GP_DFF Q INIT
        dffinit -ff GP_DFFR Q INIT
        dffinit -ff GP_DFFS Q INIT
        dffinit -ff GP_DFFSR Q INIT
        iopadmap -bits -inpad GP_IBUF OUT:IN -outpad GP_OBUF IN:OUT -inoutpad GP_OBUF OUT:IN -toutpad GP_OBUFT OE:IN:OUT -tinoutpad GP_IOBUF OE:OUT:IN:IO
        attrmvcp -attr src -attr LOC t:GP_OBUF t:GP_OBUFT t:GP_IOBUF n:*
        attrmvcp -attr src -attr LOC -driven t:GP_IBUF n:*
        techmap -map +/greenpak4/cells_map.v
        greenpak4_dffinv
        clean

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_ice40 -- synthesis for iCE40 FPGAs}
\label{cmd:synth_ice40}
\begin{lstlisting}[numbers=left,frame=single]
    synth_ice40 [options]

This command runs synthesis for iCE40 FPGAs.

    -device < hx | lp | u >
        relevant only for '-abc9' flow, optimise timing for the specified device.
        default: hx

    -top <module>
        use the specified module as top module

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -dff
        run 'abc'/'abc9' with -dff option

    -retime
        run 'abc' with '-dff -D 1' options

    -nocarry
        do not use SB_CARRY cells in output netlist

    -nodffe
        do not use SB_DFFE* cells in output netlist

    -dffe_min_ce_use <min_ce_use>
        do not use SB_DFFE* cells if the resulting CE line would go to less
        than min_ce_use SB_DFFE* in output netlist

    -nobram
        do not use SB_RAM40_4K* cells in output netlist

    -dsp
        use iCE40 UltraPlus DSP cells for large arithmetic

    -noabc
        use built-in Yosys LUT techmapping instead of abc

    -abc2
        run two passes of 'abc' for slightly improved logic density

    -vpr
        generate an output netlist (and BLIF file) suitable for VPR
        (this feature is experimental and incomplete)

    -abc9
        use new ABC9 flow (EXPERIMENTAL)

    -flowmap
        use FlowMap LUT techmapping instead of abc (EXPERIMENTAL)


The following commands are executed by this synthesis command:

    begin:
        read_verilog -D ICE40_HX -lib -specify +/ice40/cells_sim.v
        hierarchy -check -top <top>
        proc

    flatten:    (unless -noflatten)
        flatten
        tribuf -logic
        deminout

    coarse:
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm
        opt
        wreduce
        peepopt
        opt_clean
        share
        techmap -map +/cmp2lut.v -D LUT_WIDTH=4
        opt_expr
        opt_clean
        memory_dff
        wreduce t:$mul
        techmap -map +/mul2dsp.v -map +/ice40/dsp_map.v -D DSP_A_MAXWIDTH=16 -D DSP_B_MAXWIDTH=16 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_Y_MINWIDTH=11 -D DSP_NAME=$__MUL16X16    (if -dsp)
        select a:mul2dsp                  (if -dsp)
        setattr -unset mul2dsp            (if -dsp)
        opt_expr -fine                    (if -dsp)
        wreduce                           (if -dsp)
        select -clear                     (if -dsp)
        ice40_dsp                         (if -dsp)
        chtype -set $mul t:$__soft_mul    (if -dsp)
        alumacc
        opt
        memory -nomap
        opt_clean

    map_bram:    (skip if -nobram)
        memory_bram -rules +/ice40/brams.txt
        techmap -map +/ice40/brams_map.v
        ice40_braminit

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map -iattr -attr !ram_block -attr !rom_block -attr logic_block -attr syn_ramstyle=auto -attr syn_ramstyle=registers -attr syn_romstyle=auto -attr syn_romstyle=logic
        opt -undriven -fine

    map_gates:
        ice40_wrapcarry
        techmap -map +/techmap.v -map +/ice40/arith_map.v
        opt -fast
        abc -dff -D 1    (only if -retime)
        ice40_opt

    map_ffs:
        dfflegalize -cell $_DFF_?_ 0 -cell $_DFFE_?P_ 0 -cell $_DFF_?P?_ 0 -cell $_DFFE_?P?P_ 0 -cell $_SDFF_?P?_ 0 -cell $_SDFFCE_?P?P_ 0 -cell $_DLATCH_?_ x -mince -1
        techmap -map +/ice40/ff_map.v
        opt_expr -mux_undef
        simplemap
        ice40_opt -full

    map_luts:
        abc          (only if -abc2)
        ice40_opt    (only if -abc2)
        techmap -map +/ice40/latches_map.v
        simplemap                                   (if -noabc or -flowmap)
        techmap -map +/gate2lut.v -D LUT_WIDTH=4    (only if -noabc)
        flowmap -maxlut 4    (only if -flowmap)
        abc -dress -lut 4     (skip if -noabc)
        ice40_wrapcarry -unwrap
        techmap -map +/ice40/ff_map.v
        clean
        opt_lut -dlogic SB_CARRY:I0=1:I1=2:CI=3 -dlogic SB_CARRY:CO=3

    map_cells:
        techmap -map +/ice40/cells_map.v    (skip if -vpr)
        clean

    check:
        autoname
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    blif:
        opt_clean -purge                                     (vpr mode)
        write_blif -attr -cname -conn -param <file-name>     (vpr mode)
        write_blif -gates -attr -param <file-name>           (non-vpr mode)

    edif:
        write_edif <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_intel -- synthesis for Intel (Altera) FPGAs.}
\label{cmd:synth_intel}
\begin{lstlisting}[numbers=left,frame=single]
    synth_intel [options]

This command runs synthesis for Intel FPGAs.

    -family <max10 | cyclone10lp | cycloneiv | cycloneive>
        generate the synthesis netlist for the specified family.
        MAX10 is the default target if no family argument specified.
        For Cyclone IV GX devices, use cycloneiv argument; for Cyclone IV E, use cycloneive.
        For Cyclone V and Cyclone 10 GX, use the synth_intel_alm backend instead.

    -top <module>
        use the specified module as top module (default='top')

    -vqm <file>
        write the design to the specified Verilog Quartus Mapping File. Writing of an
        output file is omitted if this parameter is not specified.
        Note that this backend has not been tested and is likely incompatible
        with recent versions of Quartus.

    -vpr <file>
        write BLIF files for VPR flow experiments. The synthesized BLIF output file is not
        compatible with the Quartus flow. Writing of an
        output file is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -iopads
        use IO pad cells in output netlist

    -nobram
        do not use block RAM cells in output netlist

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with '-dff -D 1' options

The following commands are executed by this synthesis command:

    begin:

    family:
        read_verilog -sv -lib +/intel/max10/cells_sim.v
        read_verilog -sv -lib +/intel/common/m9k_bb.v
        read_verilog -sv -lib +/intel/common/altpll_bb.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    map_bram:    (skip if -nobram)
        memory_bram -rules +/intel/common/brams_m9k.txt    (if applicable for family)
        techmap -map +/intel/common/brams_map_m9k.v    (if applicable for family)

    map_ffram:
        opt -fast -mux_undef -undriven -fine -full
        memory_map
        opt -undriven -fine
        techmap -map +/techmap.v
        opt -full
        clean -purge
        setundef -undriven -zero
        abc -markgroups -dff -D 1    (only if -retime)

    map_ffs:
        dfflegalize -cell $_DFFE_PN0P_ 01
        techmap -map +/intel/common/ff_map.v

    map_luts:
        abc -lut 4
        clean

    map_cells:
        iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I    (if -iopads)
        techmap -map +/intel/max10/cells_map.v
        clean -purge

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    vqm:
        write_verilog -attr2comment -defparam -nohex -decimal -renameprefix syn_ <file-name>

    vpr:
        opt_clean -purge
        write_blif <file-name>


WARNING: THE 'synth_intel' COMMAND IS EXPERIMENTAL.
\end{lstlisting}

\section{synth\_intel\_alm -- synthesis for ALM-based Intel (Altera) FPGAs.}
\label{cmd:synth_intel_alm}
\begin{lstlisting}[numbers=left,frame=single]
    synth_intel_alm [options]

This command runs synthesis for ALM-based Intel FPGAs.

    -top <module>
        use the specified module as top module

    -family <family>
        target one of:
        "cyclonev"    - Cyclone V (default)
        "arriav"      - Arria V (non-GZ)        "cyclone10gx" - Cyclone 10GX

    -vqm <file>
        write the design to the specified Verilog Quartus Mapping File. Writing of an
        output file is omitted if this parameter is not specified. Implies -quartus.

    -noflatten
        do not flatten design before synthesis; useful for per-module area statistics

    -quartus
        output a netlist using Quartus cells instead of MISTRAL_* cells

    -dff
        pass DFFs to ABC to perform sequential logic optimisations (EXPERIMENTAL)

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -nolutram
        do not use LUT RAM cells in output netlist

    -nobram
        do not use block RAM cells in output netlist

    -nodsp
        do not map multipliers to MISTRAL_MUL cells

    -noiopad
        do not instantiate IO buffers

    -noclkbuf
        do not insert global clock buffers

The following commands are executed by this synthesis command:

    begin:
        read_verilog -specify -lib -D <family> +/intel_alm/common/alm_sim.v
        read_verilog -specify -lib -D <family> +/intel_alm/common/dff_sim.v
        read_verilog -specify -lib -D <family> +/intel_alm/common/dsp_sim.v
        read_verilog -specify -lib -D <family> +/intel_alm/common/mem_sim.v
        read_verilog -specify -lib -D <family> +/intel_alm/common/misc_sim.v
        read_verilog -specify -lib -D <family> -icells +/intel_alm/common/abc9_model.v
        read_verilog -lib +/intel/common/altpll_bb.v
        read_verilog -lib +/intel_alm/common/megafunction_bb.v
        hierarchy -check -top <top>

    coarse:
        proc
        flatten    (skip if -noflatten)
        tribuf -logic
        deminout
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm
        opt
        wreduce
        peepopt
        opt_clean
        share
        techmap -map +/cmp2lut.v -D LUT_WIDTH=6
        opt_expr
        opt_clean
        techmap -map +/mul2dsp.v [...]    (unless -nodsp)
        alumacc
        iopadmap -bits -outpad MISTRAL_OB I:PAD -inpad MISTRAL_IB O:PAD -toutpad MISTRAL_IO OE:O:PAD -tinoutpad MISTRAL_IO OE:O:I:PAD A:top    (unless -noiopad)
        techmap -map +/intel_alm/common/arith_alm_map.v -map +/intel_alm/common/dsp_map.v
        opt
        memory -nomap
        opt_clean

    map_bram:    (skip if -nobram)
        memory_bram -rules +/intel_alm/common/bram_<bram_type>.txt
        techmap -map +/intel_alm/common/bram_<bram_type>_map.v

    map_lutram:    (skip if -nolutram)
        memory_bram -rules +/intel_alm/common/lutram_mlab.txt    (for Cyclone V / Cyclone 10GX)

    map_ffram:
        memory_map
        opt -full

    map_ffs:
        techmap
        dfflegalize -cell $_DFFE_PN0P_ 0 -cell $_SDFFCE_PP0P_ 0
        techmap -map +/intel_alm/common/dff_map.v
        opt -full -undriven -mux_undef
        clean -purge
        clkbufmap -buf MISTRAL_CLKBUF Q:A    (unless -noclkbuf)

    map_luts:
        techmap -map +/intel_alm/common/abc9_map.v
        abc9 [-dff] -maxlut 6 -W 600
        techmap -map +/intel_alm/common/abc9_unmap.v
        techmap -map +/intel_alm/common/alm_map.v
        opt -fast
        autoname
        clean

    check:
        hierarchy -check
        stat
        check
        blackbox =A:whitebox

    quartus:
        rename -hide w:*[* w:*]*
        setundef -zero
        hilomap -singleton -hicell __MISTRAL_VCC Q -locell __MISTRAL_GND Q
        techmap -D <family> -map +/intel_alm/common/quartus_rename.v

    vqm:
        write_verilog -attr2comment -defparam -nohex -decimal <file-name>
\end{lstlisting}

\section{synth\_machxo2 -- synthesis for MachXO2 FPGAs. This work is experimental.}
\label{cmd:synth_machxo2}
\begin{lstlisting}[numbers=left,frame=single]
    synth_machxo2 [options]

This command runs synthesis for MachXO2 FPGAs.

    -top <module>
        use the specified module as top module

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -noiopad
        do not insert IO buffers

    -vpr
        generate an output netlist (and BLIF file) suitable for VPR
        (this feature is experimental and incomplete)


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib -icells +/machxo2/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    fine:
        memory_map
        opt -full
        techmap -map +/techmap.v
        opt -fast

    map_ios:    (unless -noiopad)
        iopadmap -bits -outpad $__FACADE_OUTPAD I:O -inpad $__FACADE_INPAD O:I -toutpad $__FACADE_TOUTPAD ~T:I:O -tinoutpad $__FACADE_TINOUTPAD ~T:O:I:B A:top
        attrmvcp -attr src -attr LOC t:$__FACADE_OUTPAD %x:+[O] t:$__FACADE_TOUTPAD %x:+[O] t:$__FACADE_TINOUTPAD %x:+[B]
        attrmvcp -attr src -attr LOC -driven t:$__FACADE_INPAD %x:+[I]

    map_ffs:
        dfflegalize -cell $_DFF_P_ 0

    map_luts:
        abc -lut 4 -dress
        clean

    map_cells:
        techmap -map +/machxo2/cells_map.v
        clean

    check:
        hierarchy -check
        stat
        blackbox =A:whitebox

    blif:
        opt_clean -purge                                     (vpr mode)
        write_blif -attr -cname -conn -param <file-name>     (vpr mode)
        write_blif -gates -attr -param <file-name>           (non-vpr mode)

    edif:
        write_edif <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_nexus -- synthesis for Lattice Nexus FPGAs}
\label{cmd:synth_nexus}
\begin{lstlisting}[numbers=left,frame=single]
    synth_nexus [options]

This command runs synthesis for Lattice Nexus FPGAs.

    -top <module>
        use the specified module as top module

    -family <device>
        run synthesis for the specified Nexus device
        supported values: lifcl, lfd2nx

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -vm <file>
        write the design to the specified structural Verilog file. writing of
        an output file is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -dff
        run 'abc'/'abc9' with -dff option

    -retime
        run 'abc' with '-dff -D 1' options

    -noccu2
        do not use CCU2 cells in output netlist

    -nodffe
        do not use flipflops with CE in output netlist

    -nolram
        do not use large RAM cells in output netlist
        note that large RAM must be explicitly requested with a (* lram *)
        attribute on the memory.

    -nobram
        do not use block RAM cells in output netlist

    -nolutram
        do not use LUT RAM cells in output netlist

    -nowidelut
        do not use PFU muxes to implement LUTs larger than LUT4s

    -noiopad
        do not insert IO buffers

    -nodsp
        do not infer DSP multipliers

    -abc9
        use new ABC9 flow (EXPERIMENTAL)

The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib -specify +/nexus/cells_sim.v +/nexus/cells_xtra.v
        hierarchy -check -top <top>

    coarse:
        proc
        flatten
        tribuf -logic
        deminout
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm
        opt
        wreduce
        peepopt
        opt_clean
        share
        techmap -map +/cmp2lut.v -D LUT_WIDTH=4
        opt_expr
        opt_clean
        techmap -map +/mul2dsp.v [...]    (unless -nodsp)
        techmap -map +/nexus/dsp_map.v    (unless -nodsp)
        alumacc
        opt
        memory -nomap
        opt_clean

    map_lram:    (skip if -nolram)
        memory_bram -rules +/nexus/lrams.txt
        setundef -zero -params t:$__NX_PDPSC512K
        techmap -map +/nexus/lrams_map.v

    map_bram:    (skip if -nobram)
        memory_bram -rules +/nexus/brams.txt
        setundef -zero -params t:$__NX_PDP16K
        techmap -map +/nexus/brams_map.v

    map_lutram:    (skip if -nolutram)
        memory_bram -rules +/nexus/lutrams.txt
        setundef -zero -params t:$__NEXUS_DPR16X4
        techmap -map +/nexus/lutrams_map.v

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map -iattr -attr !ram_block -attr !rom_block -attr logic_block -attr syn_ramstyle=auto -attr syn_ramstyle=registers -attr syn_romstyle=auto -attr syn_romstyle=logic
        opt -undriven -fine

    map_gates:
        techmap -map +/techmap.v -map +/nexus/arith_map.v
        iopadmap -bits -outpad OB I:O -inpad IB O:I -toutpad OBZ ~T:I:O -tinoutpad BB ~T:O:I:B A:top    (skip if '-noiopad')
        opt -fast
        abc -dff -D 1    (only if -retime)

    map_ffs:
        opt_clean
        dfflegalize -cell $_DFF_P_ 01 -cell $_DFF_PP?_ r -cell $_SDFF_PP?_ r -cell $_DLATCH_?_ x [-cell $_DFFE_PP_ 01 -cell $_DFFE_PP?P_ r -cell $_SDFFE_PP?P_ r]    ($_*DFFE_* only if not -nodffe)
        zinit -all w:* t:$_DFF_?_ t:$_DFFE_??_ t:$_SDFF*    (only if -abc9 and -dff
        techmap -D NO_LUT -map +/nexus/cells_map.v
        opt_expr -undriven -mux_undef
        simplemap
        attrmvcp -copy -attr syn_useioff
        opt_clean

    map_luts:
        techmap -map +/nexus/latches_map.v
        abc -dress -lut 4:5
        clean

    map_cells:
        techmap -map +/nexus/cells_map.v
        setundef -zero
        hilomap -singleton -hicell VHI Z -locell VLO Z
        clean

    check:
        autoname
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    json:
        write_json <file-name>

    vm:
        write_verilog <file-name>
\end{lstlisting}

\section{synth\_quicklogic -- Synthesis for QuickLogic FPGAs}
\label{cmd:synth_quicklogic}
\begin{lstlisting}[numbers=left,frame=single]
   synth_quicklogic [options]
This command runs synthesis for QuickLogic FPGAs

    -top <module>
         use the specified module as top module

    -family <family>
        run synthesis for the specified QuickLogic architecture
        generate the synthesis netlist for the specified family.
        supported values:
        - pp3: PolarPro 3 

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -verilog <file>
        write the design to the specified verilog file. writing of an output file
        is omitted if this parameter is not specified.

    -abc
        use old ABC flow, which has generally worse mapping results but is less
        likely to have bugs.

The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib -specify +/quicklogic/cells_sim.v +/quicklogic/pp3_cells_sim.v
        read_verilog -lib -specify +/quicklogic/lut_sim.v
        hierarchy -check -top <top>

    coarse:
        proc
        flatten
        tribuf -logic
        deminout
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm
        opt
        wreduce
        peepopt
        opt_clean
        share
        techmap -map +/cmp2lut.v -D LUT_WIDTH=4
        opt_expr
        opt_clean
        alumacc
        pmuxtree
        opt
        memory -nomap
        opt_clean

    map_ffram:
        opt -fast -mux_undef -undriven -fine
        memory_map -iattr -attr !ram_block -attr !rom_block -attr logic_block -attr syn_ramstyle=auto -attr syn_ramstyle=registers -attr syn_romstyle=auto -attr syn_romstyle=logic
        opt -undriven -fine

    map_gates:
        techmap
        opt -fast
        muxcover -mux8 -mux4

    map_ffs:
        opt_expr
        dfflegalize -cell $_DFFSRE_PPPP_ 0 -cell $_DLATCH_?_ x
        techmap -map +/quicklogic/pp3_cells_map.v -map +/quicklogic/pp3_ffs_map.v
        opt_expr -mux_undef

    map_luts:
        techmap -map +/quicklogic/pp3_latches_map.v
        read_verilog -lib -specify -icells +/quicklogic/abc9_model.v
        techmap -map +/quicklogic/abc9_map.v
        abc9 -maxlut 4 -dff
        techmap -map +/quicklogic/abc9_unmap.v
        clean

    map_cells:
        techmap -map +/quicklogic/pp3_lut_map.v
        clean

    check:
        autoname
        hierarchy -check
        stat
        check -noinit

    iomap:
        clkbufmap -inpad ckpad Q:P
        iopadmap -bits -outpad outpad A:P -inpad inpad Q:P -tinoutpad bipad EN:Q:A:P A:top

    finalize:
        setundef -zero -params -undriven
        hilomap -hicell logic_1 A -locell logic_0 A -singleton A:top
        opt_clean -purge
        check
        blackbox =A:whitebox

    blif:
        write_blif -attr -param -auto-top 

    verilog:
\end{lstlisting}

\section{synth\_sf2 -- synthesis for SmartFusion2 and IGLOO2 FPGAs}
\label{cmd:synth_sf2}
\begin{lstlisting}[numbers=left,frame=single]
    synth_sf2 [options]

This command runs synthesis for SmartFusion2 and IGLOO2 FPGAs.

    -top <module>
        use the specified module as top module

    -edif <file>
        write the design to the specified EDIF file. writing of an output file
        is omitted if this parameter is not specified.

    -vlog <file>
        write the design to the specified Verilog file. writing of an output file
        is omitted if this parameter is not specified.

    -json <file>
        write the design to the specified JSON file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -noiobs
        run synthesis in "block mode", i.e. do not insert IO buffers

    -clkbuf
        insert direct PAD->global_net buffers

    -retime
        run 'abc' with '-dff -D 1' options


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/sf2/cells_sim.v
        hierarchy -check -top <top>

    flatten:    (unless -noflatten)
        proc
        flatten
        tribuf -logic
        deminout

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap -map +/techmap.v -map +/sf2/arith_map.v
        opt -fast
        abc -dff -D 1    (only if -retime)

    map_ffs:
        dfflegalize -cell $_DFFE_PN?P_ x -cell $_SDFFCE_PN?P_ x -cell $_DLATCH_PN?_ x
        techmap -D NO_LUT -map +/sf2/cells_map.v
        opt_expr -mux_undef
        simplemap

    map_luts:
        abc -lut 4
        clean

    map_cells:
        techmap -map +/sf2/cells_map.v
        clean

    map_iobs:
        clkbufmap -buf CLKINT Y:A [-inpad CLKBUF Y:PAD]    (unless -noiobs, -inpad only passed if -clkbuf)
        iopadmap -bits -inpad INBUF Y:PAD -outpad OUTBUF D:PAD -toutpad TRIBUFF E:D:PAD -tinoutpad BIBUF E:Y:D:PAD    (unless -noiobs
        clean

    check:
        hierarchy -check
        stat
        check -noinit
        blackbox =A:whitebox

    edif:
        write_edif -gndvccy <file-name>

    vlog:
        write_verilog <file-name>

    json:
        write_json <file-name>
\end{lstlisting}

\section{synth\_xilinx -- synthesis for Xilinx FPGAs}
\label{cmd:synth_xilinx}
\begin{lstlisting}[numbers=left,frame=single]
    synth_xilinx [options]

This command runs synthesis for Xilinx FPGAs. This command does not operate on
partly selected designs. At the moment this command creates netlists that are
compatible with 7-Series Xilinx devices.

    -top <module>
        use the specified module as top module

    -family <family>
        run synthesis for the specified Xilinx architecture
        generate the synthesis netlist for the specified family.
        supported values:
        - xcup: Ultrascale Plus
        - xcu: Ultrascale
        - xc7: Series 7 (default)
        - xc6s: Spartan 6
        - xc6v: Virtex 6
        - xc5v: Virtex 5 (EXPERIMENTAL)
        - xc4v: Virtex 4 (EXPERIMENTAL)
        - xc3sda: Spartan 3A DSP (EXPERIMENTAL)
        - xc3sa: Spartan 3A (EXPERIMENTAL)
        - xc3se: Spartan 3E (EXPERIMENTAL)
        - xc3s: Spartan 3 (EXPERIMENTAL)
        - xc2vp: Virtex 2 Pro (EXPERIMENTAL)
        - xc2v: Virtex 2 (EXPERIMENTAL)
        - xcve: Virtex E, Spartan 2E (EXPERIMENTAL)
        - xcv: Virtex, Spartan 2 (EXPERIMENTAL)

    -edif <file>
        write the design to the specified edif file. writing of an output file
        is omitted if this parameter is not specified.

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -ise
        generate an output netlist suitable for ISE

    -nobram
        do not use block RAM cells in output netlist

    -nolutram
        do not use distributed RAM cells in output netlist

    -nosrl
        do not use distributed SRL cells in output netlist

    -nocarry
        do not use XORCY/MUXCY/CARRY4 cells in output netlist

    -nowidelut
        do not use MUXF[5-9] resources to implement LUTs larger than native for the target

    -nodsp
        do not use DSP48*s to implement multipliers and associated logic

    -noiopad
        disable I/O buffer insertion (useful for hierarchical or 
        out-of-context flows)

    -noclkbuf
        disable automatic clock buffer insertion

    -uram
        infer URAM288s for large memories (xcup only)

    -widemux <int>
        enable inference of hard multiplexer resources (MUXF[78]) for muxes at or
        above this number of inputs (minimum value 2, recommended value >= 5).
        default: 0 (no inference)

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -flatten
        flatten design before synthesis

    -dff
        run 'abc'/'abc9' with -dff option

    -retime
        run 'abc' with '-D 1' option to enable flip-flop retiming.
        implies -dff.

    -abc9
        use new ABC9 flow (EXPERIMENTAL)


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib -specify +/xilinx/cells_sim.v
        read_verilog -lib +/xilinx/cells_xtra.v
        hierarchy -check -auto-top

    prepare:
        proc
        flatten    (with '-flatten')
        tribuf -logic
        deminout
        opt_expr
        opt_clean
        check
        opt -nodffe -nosdff
        fsm
        opt
        wreduce [-keepdc]    (option for '-widemux')
        peepopt
        opt_clean
        muxpack        ('-widemux' only)
        pmux2shiftx    (skip if '-nosrl' and '-widemux=0')
        clean          (skip if '-nosrl' and '-widemux=0')

    map_dsp:    (skip if '-nodsp')
        memory_dff
        techmap -map +/mul2dsp.v -map +/xilinx/{family}_dsp_map.v {options}
        select a:mul2dsp
        setattr -unset mul2dsp
        opt_expr -fine
        wreduce
        select -clear
        xilinx_dsp -family <family>
        chtype -set $mul t:$__soft_mul

    coarse:
        techmap -map +/cmp2lut.v -map +/cmp2lcu.v -D LUT_WIDTH=[46]
        alumacc
        share
        opt
        memory -nomap
        opt_clean

    map_uram:    (only if '-uram')
        memory_bram -rules +/xilinx/{family}_urams.txt
        techmap -map +/xilinx/{family}_urams_map.v

    map_bram:    (skip if '-nobram')
        memory_bram -rules +/xilinx/{family}_brams.txt
        techmap -map +/xilinx/{family}_brams_map.v

    map_lutram:    (skip if '-nolutram')
        memory_bram -rules +/xilinx/lut[46]_lutrams.txt
        techmap -map +/xilinx/lutrams_map.v

    map_ffram:
        opt -fast -full
        memory_map

    fine:
        simplemap t:$mux    ('-widemux' only)
        muxcover <internal options>    ('-widemux' only)
        opt -full
        xilinx_srl -variable -minlen 3    (skip if '-nosrl')
        techmap  -map +/techmap.v -D LUT_SIZE=[46] [-map +/xilinx/mux_map.v] -map +/xilinx/arith_map.v
        opt -fast

    map_cells:
        iopadmap -bits -outpad OBUF I:O -inpad IBUF O:I -toutpad OBUFT ~T:I:O -tinoutpad IOBUF ~T:O:I:IO A:top    (skip if '-noiopad')
        techmap -map +/techmap.v -map +/xilinx/cells_map.v
        clean

    map_ffs:
        dfflegalize -cell $_DFFE_?P?P_ 01 -cell $_SDFFE_?P?P_ 01 -cell $_DLATCH_?P?_ 01    (for xc6v, xc7, xcu, xcup)
        zinit -all w:* t:$_SDFFE_*    ('-dff' only)
        techmap -map +/xilinx/ff_map.v    ('-abc9' only)

    map_luts:
        opt_expr -mux_undef -noclkinv
        abc -luts 2:2,3,6:5[,10,20] [-dff] [-D 1]    (option for '-nowidelut', '-dff', '-retime')
        clean
        techmap -map +/xilinx/ff_map.v    (only if not '-abc9')
        xilinx_srl -fixed -minlen 3    (skip if '-nosrl')
        techmap -map +/xilinx/lut_map.v -map +/xilinx/cells_map.v -D LUT_WIDTH=[46]
        xilinx_dffopt [-lut4]
        opt_lut_ins -tech xilinx

    finalize:
        clkbufmap -buf BUFG O:I    (skip if '-noclkbuf')
        extractinv -inv INV O:I    (only if '-ise')
        clean

    check:
        hierarchy -check
        stat -tech xilinx
        check -noinit
        blackbox =A:whitebox

    edif:
        write_edif -pvector bra 

    blif:
        write_blif 
\end{lstlisting}

\section{tcl -- execute a TCL script file}
\label{cmd:tcl}
\begin{lstlisting}[numbers=left,frame=single]
    tcl <filename> [args]

This command executes the tcl commands in the specified file.
Use 'yosys cmd' to run the yosys command 'cmd' from tcl.

The tcl command 'yosys -import' can be used to import all yosys
commands directly as tcl commands to the tcl shell. Yosys commands
'proc' and 'rename' are wrapped to tcl commands 'procs' and 'renames'
in order to avoid a name collision with the built in commands.

If any arguments are specified, these arguments are provided to the script via
the standard $argc and $argv variables.
\end{lstlisting}

\section{techmap -- generic technology mapper}
\label{cmd:techmap}
\begin{lstlisting}[numbers=left,frame=single]
    techmap [-map filename] [selection]

This pass implements a very simple technology mapper that replaces cells in
the design with implementations given in form of a Verilog or RTLIL source
file.

    -map filename
        the library of cell implementations to be used.
        without this parameter a builtin library is used that
        transforms the internal RTL cells to the internal gate
        library.

    -map %<design-name>
        like -map above, but with an in-memory design instead of a file.

    -extern
        load the cell implementations as separate modules into the design
        instead of inlining them.

    -max_iter <number>
        only run the specified number of iterations on each module.
        default: unlimited

    -recursive
        instead of the iterative breadth-first algorithm use a recursive
        depth-first algorithm. both methods should yield equivalent results,
        but may differ in performance.

    -autoproc
        Automatically call "proc" on implementations that contain processes.

    -wb
        Ignore the 'whitebox' attribute on cell implementations.

    -assert
        this option will cause techmap to exit with an error if it can't map
        a selected cell. only cell types that end on an underscore are accepted
        as final cell types by this mode.

    -D <define>, -I <incdir>
        this options are passed as-is to the Verilog frontend for loading the
        map file. Note that the Verilog frontend is also called with the
        '-nooverwrite' option set.

When a module in the map file has the 'techmap_celltype' attribute set, it will
match cells with a type that match the text value of this attribute. Otherwise
the module name will be used to match the cell.  Multiple space-separated cell
types can be listed, and wildcards using [] will be expanded (ie. "$_DFF_[PN]_"
is the same as "$_DFF_P_ $_DFF_N_").

When a module in the map file has the 'techmap_simplemap' attribute set, techmap
will use 'simplemap' (see 'help simplemap') to map cells matching the module.

When a module in the map file has the 'techmap_maccmap' attribute set, techmap
will use 'maccmap' (see 'help maccmap') to map cells matching the module.

When a module in the map file has the 'techmap_wrap' attribute set, techmap
will create a wrapper for the cell and then run the command string that the
attribute is set to on the wrapper module.

When a port on a module in the map file has the 'techmap_autopurge' attribute
set, and that port is not connected in the instantiation that is mapped, then
then a cell port connected only to such wires will be omitted in the mapped
version of the circuit.

All wires in the modules from the map file matching the pattern _TECHMAP_*
or *._TECHMAP_* are special wires that are used to pass instructions from
the mapping module to the techmap command. At the moment the following special
wires are supported:

    _TECHMAP_FAIL_
        When this wire is set to a non-zero constant value, techmap will not
        use this module and instead try the next module with a matching
        'techmap_celltype' attribute.

        When such a wire exists but does not have a constant value after all
        _TECHMAP_DO_* commands have been executed, an error is generated.

    _TECHMAP_DO_*
        This wires are evaluated in alphabetical order. The constant text value
        of this wire is a yosys command (or sequence of commands) that is run
        by techmap on the module. A common use case is to run 'proc' on modules
        that are written using always-statements.

        When such a wire has a non-constant value at the time it is to be
        evaluated, an error is produced. That means it is possible for such a
        wire to start out as non-constant and evaluate to a constant value
        during processing of other _TECHMAP_DO_* commands.

        A _TECHMAP_DO_* command may start with the special token 'CONSTMAP; '.
        in this case techmap will create a copy for each distinct configuration
        of constant inputs and shorted inputs at this point and import the
        constant and connected bits into the map module. All further commands
        are executed in this copy. This is a very convenient way of creating
        optimized specializations of techmap modules without using the special
        parameters described below.

        A _TECHMAP_DO_* command may start with the special token 'RECURSION; '.
        then techmap will recursively replace the cells in the module with their
        implementation. This is not affected by the -max_iter option.

        It is possible to combine both prefixes to 'RECURSION; CONSTMAP; '.

    _TECHMAP_REMOVEINIT_<port-name>_
        When this wire is set to a constant value, the init attribute of the wire(s)
        connected to this port will be consumed.  This wire must have the same
        width as the given port, and for every bit that is set to 1 in the value,
        the corresponding init attribute bit will be changed to 1'bx.  If all
        bits of an init attribute are left as x, it will be removed.

In addition to this special wires, techmap also supports special parameters in
modules in the map file:

    _TECHMAP_CELLTYPE_
        When a parameter with this name exists, it will be set to the type name
        of the cell that matches the module.

    _TECHMAP_CELLNAME_
        When a parameter with this name exists, it will be set to the name
        of the cell that matches the module.

    _TECHMAP_CONSTMSK_<port-name>_
    _TECHMAP_CONSTVAL_<port-name>_
        When this pair of parameters is available in a module for a port, then
        former has a 1-bit for each constant input bit and the latter has the
        value for this bit. The unused bits of the latter are set to undef (x).

    _TECHMAP_WIREINIT_<port-name>_
        When a parameter with this name exists, it will be set to the initial
        value of the wire(s) connected to the given port, as specified by the init
        attribute. If the attribute doesn't exist, x will be filled for the
        missing bits.  To remove the init attribute bits used, use the
        _TECHMAP_REMOVEINIT_*_ wires.

    _TECHMAP_BITS_CONNMAP_
    _TECHMAP_CONNMAP_<port-name>_
        For an N-bit port, the _TECHMAP_CONNMAP_<port-name>_ parameter, if it
        exists, will be set to an N*_TECHMAP_BITS_CONNMAP_ bit vector containing
        N words (of _TECHMAP_BITS_CONNMAP_ bits each) that assign each single
        bit driver a unique id. The values 0-3 are reserved for 0, 1, x, and z.
        This can be used to detect shorted inputs.

When a module in the map file has a parameter where the according cell in the
design has a port, the module from the map file is only used if the port in
the design is connected to a constant value. The parameter is then set to the
constant value.

A cell with the name _TECHMAP_REPLACE_ in the map file will inherit the name
and attributes of the cell that is being replaced.
A cell with a name of the form `_TECHMAP_REPLACE_.<suffix>` in the map file will
be named thus but with the `_TECHMAP_REPLACE_' prefix substituted with the name
of the cell being replaced.
Similarly, a wire named in the form `_TECHMAP_REPLACE_.<suffix>` will cause a
new wire alias to be created and named as above but with the `_TECHMAP_REPLACE_'
prefix also substituted.

See 'help extract' for a pass that does the opposite thing.

See 'help flatten' for a pass that does flatten the design (which is
essentially techmap but using the design itself as map library).
\end{lstlisting}

\section{tee -- redirect command output to file}
\label{cmd:tee}
\begin{lstlisting}[numbers=left,frame=single]
    tee [-q] [-o logfile|-a logfile] cmd

Execute the specified command, optionally writing the commands output to the
specified logfile(s).

    -q
        Do not print output to the normal destination (console and/or log file).

    -o logfile
        Write output to this file, truncate if exists.

    -a logfile
        Write output to this file, append if exists.

    +INT, -INT
        Add/subtract INT from the -v setting for this command.
\end{lstlisting}

\section{test\_abcloop -- automatically test handling of loops in abc command}
\label{cmd:test_abcloop}
\begin{lstlisting}[numbers=left,frame=single]
    test_abcloop [options]

Test handling of logic loops in ABC.

    -n {integer}
        create this number of circuits and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).
\end{lstlisting}

\section{test\_autotb -- generate simple test benches}
\label{cmd:test_autotb}
\begin{lstlisting}[numbers=left,frame=single]
    test_autotb [options] [filename]

Automatically create primitive Verilog test benches for all modules in the
design. The generated testbenches toggle the input pins of the module in
a semi-random manner and dumps the resulting output signals.

This can be used to check the synthesis results for simple circuits by
comparing the testbench output for the input files and the synthesis results.

The backend automatically detects clock signals. Additionally a signal can
be forced to be interpreted as clock signal by setting the attribute
'gentb_clock' on the signal.

The attribute 'gentb_constant' can be used to force a signal to a constant
value after initialization. This can e.g. be used to force a reset signal
low in order to explore more inner states in a state machine.

The attribute 'gentb_skip' can be attached to modules to suppress testbench
generation.

    -n <int>
        number of iterations the test bench should run (default = 1000)

    -seed <int>
        seed used for pseudo-random number generation (default = 0).
        a value of 0 will cause an arbitrary seed to be chosen, based on
        the current system time.
\end{lstlisting}

\section{test\_cell -- automatically test the implementation of a cell type}
\label{cmd:test_cell}
\begin{lstlisting}[numbers=left,frame=single]
    test_cell [options] {cell-types}

Tests the internal implementation of the given cell type (for example '$add')
by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..

Run with 'all' instead of a cell type to run the test on all supported
cell types. Use for example 'all /$add' for all cell types except $add.

    -n {integer}
        create this number of cell instances and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).

    -f {rtlil_file}
        don't generate circuits. instead load the specified RTLIL file.

    -w {filename_prefix}
        don't test anything. just generate the circuits and write them
        to RTLIL files with the specified prefix

    -map {filename}
        pass this option to techmap.

    -simlib
        use "techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc"

    -aigmap
        instead of calling "techmap", call "aigmap"

    -muxdiv
        when creating test benches with dividers, create an additional mux
        to mask out the division-by-zero case

    -script {script_file}
        instead of calling "techmap", call "script {script_file}".

    -const
        set some input bits to random constant values

    -nosat
        do not check SAT model or run SAT equivalence checking

    -noeval
        do not check const-eval models

    -edges
        test cell edges db creator against sat-based implementation

    -v
        print additional debug information to the console

    -vlog {filename}
        create a Verilog test bench to test simlib and write_verilog
\end{lstlisting}

\section{test\_pmgen -- test pass for pmgen}
\label{cmd:test_pmgen}
\begin{lstlisting}[numbers=left,frame=single]
    test_pmgen -reduce_chain [options] [selection]

Demo for recursive pmgen patterns. Map chains of AND/OR/XOR to $reduce_*.


    test_pmgen -reduce_tree [options] [selection]

Demo for recursive pmgen patterns. Map trees of AND/OR/XOR to $reduce_*.


    test_pmgen -eqpmux [options] [selection]

Demo for recursive pmgen patterns. Optimize EQ/NE/PMUX circuits.


    test_pmgen -generate [options] <pattern_name>

Create modules that match the specified pattern.
\end{lstlisting}

\section{torder -- print cells in topological order}
\label{cmd:torder}
\begin{lstlisting}[numbers=left,frame=single]
    torder [options] [selection]

This command prints the selected cells in topological order.

    -stop <cell_type> <cell_port>
        do not use the specified cell port in topological sorting

    -noautostop
        by default Q outputs of internal FF cells and memory read port outputs
        are not used in topological sorting. this option deactivates that.
\end{lstlisting}

\section{trace -- redirect command output to file}
\label{cmd:trace}
\begin{lstlisting}[numbers=left,frame=single]
    trace cmd

Execute the specified command, logging all changes the command performs on
the design in real time.
\end{lstlisting}

\section{tribuf -- infer tri-state buffers}
\label{cmd:tribuf}
\begin{lstlisting}[numbers=left,frame=single]
    tribuf [options] [selection]

This pass transforms $mux cells with 'z' inputs to tristate buffers.

    -merge
        merge multiple tri-state buffers driving the same net
        into a single buffer.

    -logic
        convert tri-state buffers that do not drive output ports
        to non-tristate logic. this option implies -merge.
\end{lstlisting}

\section{uniquify -- create unique copies of modules}
\label{cmd:uniquify}
\begin{lstlisting}[numbers=left,frame=single]
    uniquify [selection]

By default, a module that is instantiated by several other modules is only
kept once in the design. This preserves the original modularity of the design
and reduces the overall size of the design in memory. But it prevents certain
optimizations and other operations on the design. This pass creates unique
modules for all selected cells. The created modules are marked with the
'unique' attribute.

This commands only operates on modules that by themself have the 'unique'
attribute set (the 'top' module is unique implicitly).
\end{lstlisting}

\section{verific -- load Verilog and VHDL designs using Verific}
\label{cmd:verific}
\begin{lstlisting}[numbers=left,frame=single]
    verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv} <verilog-file>..

Load the specified Verilog/SystemVerilog files into Verific.

All files specified in one call to this command are one compilation unit.
Files passed to different calls to this command are treated as belonging to
different compilation units.

Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.
The macros SYNTHESIS and VERIFIC are defined implicitly.


    verific -formal <verilog-file>..

Like -sv, but define FORMAL instead of SYNTHESIS.


    verific {-f|-F} <command-file>

Load and execute the specified command file.

Command file parser supports following commands:
    +define    - defines macro
    -u         - upper case all identifier (makes Verilog parser case insensitive)
    -v         - register library name (file)
    -y         - register library name (directory)
    +incdir    - specify include dir
    +libext    - specify library extension
    +liborder  - add library in ordered list
    +librescan - unresolved modules will be always searched starting with the first
                 library specified by -y/-v options.
    -f/-file   - nested -f option
    -F         - nested -F option

    parse mode:
        -ams
        +systemverilogext
        +v2k
        +verilog1995ext
        +verilog2001ext
        -sverilog


    verific [-work <libname>] {-sv|-vhdl|...} <hdl-file>

Load the specified Verilog/SystemVerilog/VHDL file into the specified library.
(default library when -work is not present: "work")


    verific [-L <libname>] {-sv|-vhdl|...} <hdl-file>

Look up external definitions in the specified library.
(-L may be used more than once)


    verific -vlog-incdir <directory>..

Add Verilog include directories.


    verific -vlog-libdir <directory>..

Add Verilog library directories. Verific will search in this directories to
find undefined modules.


    verific -vlog-define <macro>[=<value>]..

Add Verilog defines.


    verific -vlog-undef <macro>..

Remove Verilog defines previously set with -vlog-define.


    verific -set-error <msg_id>..
    verific -set-warning <msg_id>..
    verific -set-info <msg_id>..
    verific -set-ignore <msg_id>..

Set message severity. <msg_id> is the string in square brackets when a message
is printed, such as VERI-1209.


    verific -import [options] <top-module>..

Elaborate the design for the specified top modules, import to Yosys and
reset the internal state of Verific.

Import options:

  -all
    Elaborate all modules, not just the hierarchy below the given top
    modules. With this option the list of modules to import is optional.

  -gates
    Create a gate-level netlist.

  -flatten
    Flatten the design in Verific before importing.

  -extnets
    Resolve references to external nets by adding module ports as needed.

  -autocover
    Generate automatic cover statements for all asserts

  -fullinit
    Keep all register initializations, even those for non-FF registers.

  -chparam name value 
    Elaborate the specified top modules (all modules when -all given) using
    this parameter value. Modules on which this parameter does not exist will
    cause Verific to produce a VERI-1928 or VHDL-1676 message. This option
    can be specified multiple times to override multiple parameters.
    String values must be passed in double quotes (").

  -v, -vv
    Verbose log messages. (-vv is even more verbose than -v.)

The following additional import options are useful for debugging the Verific
bindings (for Yosys and/or Verific developers):

  -k
    Keep going after an unsupported verific primitive is found. The
    unsupported primitive is added as blockbox module to the design.
    This will also add all SVA related cells to the design parallel to
    the checker logic inferred by it.

  -V
    Import Verific netlist as-is without translating to Yosys cell types. 

  -nosva
    Ignore SVA properties, do not infer checker logic.

  -L <int>
    Maximum number of ctrl bits for SVA checker FSMs (default=16).

  -n
    Keep all Verific names on instances and nets. By default only
    user-declared names are preserved.

  -d <dump_file>
    Dump the Verific netlist as a verilog file.


    verific [-work <libname>] -pp [options] <filename> [<module>]..

Pretty print design (or just module) to the specified file from the
specified library. (default library when -work is not present: "work")

Pretty print options:

  -verilog
    Save output for Verilog/SystemVerilog design modules (default).

  -vhdl
    Save output for VHDL design units.


    verific -app <application>..

Execute YosysHQ formal application on loaded Verilog files.

Application options:

    -module <module>
        Run formal application only on specified module.

    -blacklist <filename[:lineno]>
        Do not run application on modules from files that match the filename
        or filename and line number if provided in such format.
        Parameter can also contain comma separated list of file locations.

    -blfile <file>
        Do not run application on locations specified in file, they can represent filename
        or filename and location in file.

Applications:

  WARNING: Applications only available in commercial build.


    verific -template <name> <top_module>..

Generate template for specified top module of loaded design.

Template options:

  -out
    Specifies output file for generated template, by default output is stdout

  -chparam name value 
    Generate template using this parameter value. Otherwise default parameter
    values will be used for templat generate functionality. This option
    can be specified multiple times to override multiple parameters.
    String values must be passed in double quotes (").

Templates:

  WARNING: Templates only available in commercial build.



    verific -cfg [<name> [<value>]]

Get/set Verific runtime flags.


Use YosysHQ Tabby CAD Suite if you need Yosys+Verific.
https://www.yosyshq.com/

Contact office@yosyshq.com for free evaluation
binaries of YosysHQ Tabby CAD Suite.
\end{lstlisting}

\section{verilog\_defaults -- set default options for read\_verilog}
\label{cmd:verilog_defaults}
\begin{lstlisting}[numbers=left,frame=single]
    verilog_defaults -add [options]

Add the specified options to the list of default options to read_verilog.


    verilog_defaults -clear

Clear the list of Verilog default options.


    verilog_defaults -push
    verilog_defaults -pop

Push or pop the list of default options to a stack. Note that -push does
not imply -clear.
\end{lstlisting}

\section{verilog\_defines -- define and undefine verilog defines}
\label{cmd:verilog_defines}
\begin{lstlisting}[numbers=left,frame=single]
    verilog_defines [options]

Define and undefine verilog preprocessor macros.

    -Dname[=definition]
        define the preprocessor symbol 'name' and set its optional value
        'definition'

    -Uname[=definition]
        undefine the preprocessor symbol 'name'

    -reset
        clear list of defined preprocessor symbols

    -list
        list currently defined preprocessor symbols
\end{lstlisting}

\section{wbflip -- flip the whitebox attribute}
\label{cmd:wbflip}
\begin{lstlisting}[numbers=left,frame=single]
    wbflip [selection]

Flip the whitebox attribute on selected cells. I.e. if it's set, unset it, and
vice-versa. Blackbox cells are not effected by this command.
\end{lstlisting}

\section{wreduce -- reduce the word size of operations if possible}
\label{cmd:wreduce}
\begin{lstlisting}[numbers=left,frame=single]
    wreduce [options] [selection]

This command reduces the word size of operations. For example it will replace
the 32 bit adders in the following code with adders of more appropriate widths:

    module test(input [3:0] a, b, c, output [7:0] y);
        assign y = a + b + c + 1;
    endmodule

Options:

    -memx
        Do not change the width of memory address ports. Use this options in
        flows that use the 'memory_memx' pass.

    -keepdc
        Do not optimize explicit don't-care values.
\end{lstlisting}

\section{write\_aiger -- write design to AIGER file}
\label{cmd:write_aiger}
\begin{lstlisting}[numbers=left,frame=single]
    write_aiger [options] [filename]

Write the current design to an AIGER file. The design must be flattened and
must not contain any cell types except $_AND_, $_NOT_, simple FF types,
$assert and $assume cells, and $initstate cells.

$assert and $assume cells are converted to AIGER bad state properties and
invariant constraints.

    -ascii
        write ASCII version of AIGER format

    -zinit
        convert FFs to zero-initialized FFs, adding additional inputs for
        uninitialized FFs.

    -miter
        design outputs are AIGER bad state properties

    -symbols
        include a symbol table in the generated AIGER file

    -map <filename>
        write an extra file with port and latch symbols

    -vmap <filename>
        like -map, but more verbose

    -I, -O, -B, -L
        If the design contains no input/output/assert/flip-flop then create one
        dummy input/output/bad_state-pin or latch to make the tools reading the
        AIGER file happy.
\end{lstlisting}

\section{write\_blif -- write design to BLIF file}
\label{cmd:write_blif}
\begin{lstlisting}[numbers=left,frame=single]
    write_blif [options] [filename]

Write the current design to an BLIF file.

    -top top_module
        set the specified module as design top module

    -buf <cell-type> <in-port> <out-port>
        use cells of type <cell-type> with the specified port names for buffers

    -unbuf <cell-type> <in-port> <out-port>
        replace buffer cells with the specified name and port names with
        a .names statement that models a buffer

    -true <cell-type> <out-port>
    -false <cell-type> <out-port>
    -undef <cell-type> <out-port>
        use the specified cell types to drive nets that are constant 1, 0, or
        undefined. when '-' is used as <cell-type>, then <out-port> specifies
        the wire name to be used for the constant signal and no cell driving
        that wire is generated. when '+' is used as <cell-type>, then <out-port>
        specifies the wire name to be used for the constant signal and a .names
        statement is generated to drive the wire.

    -noalias
        if a net name is aliasing another net name, then by default a net
        without fanout is created that is driven by the other net. This option
        suppresses the generation of this nets without fanout.

The following options can be useful when the generated file is not going to be
read by a BLIF parser but a custom tool. It is recommended to not name the output
file *.blif when any of this options is used.

    -icells
        do not translate Yosys's internal gates to generic BLIF logic
        functions. Instead create .subckt or .gate lines for all cells.

    -gates
        print .gate instead of .subckt lines for all cells that are not
        instantiations of other modules from this design.

    -conn
        do not generate buffers for connected wires. instead use the
        non-standard .conn statement.

    -attr
        use the non-standard .attr statement to write cell attributes

    -param
        use the non-standard .param statement to write cell parameters

    -cname
        use the non-standard .cname statement to write cell names

    -iname, -iattr
        enable -cname and -attr functionality for .names statements
        (the .cname and .attr statements will be included in the BLIF
        output after the truth table for the .names statement)

    -blackbox
        write blackbox cells with .blackbox statement.

    -impltf
        do not write definitions for the $true, $false and $undef wires.
\end{lstlisting}

\section{write\_btor -- write design to BTOR file}
\label{cmd:write_btor}
\begin{lstlisting}[numbers=left,frame=single]
    write_btor [options] [filename]

Write a BTOR description of the current design.

  -v
    Add comments and indentation to BTOR output file

  -s
    Output only a single bad property for all asserts

  -c
    Output cover properties using 'bad' statements instead of asserts

  -i <filename>
    Create additional info file with auxiliary information

  -x
    Output symbols for internal netnames (starting with '$')
\end{lstlisting}

\section{write\_cxxrtl -- convert design to C++ RTL simulation}
\label{cmd:write_cxxrtl}
\begin{lstlisting}[numbers=left,frame=single]
    write_cxxrtl [options] [filename]

Write C++ code that simulates the design. The generated code requires a driver
that instantiates the design, toggles its clock, and interacts with its ports.

The following driver may be used as an example for a design with a single clock
driving rising edge triggered flip-flops:

    #include "top.cc"

    int main() {
      cxxrtl_design::p_top top;
      top.step();
      while (1) {
        /* user logic */
        top.p_clk.set(false);
        top.step();
        top.p_clk.set(true);
        top.step();
      }
    }

Note that CXXRTL simulations, just like the hardware they are simulating, are
subject to race conditions. If, in the example above, the user logic would run
simultaneously with the rising edge of the clock, the design would malfunction.

This backend supports replacing parts of the design with black boxes implemented
in C++. If a module marked as a CXXRTL black box, its implementation is ignored,
and the generated code consists only of an interface and a factory function.
The driver must implement the factory function that creates an implementation of
the black box, taking into account the parameters it is instantiated with.

For example, the following Verilog code defines a CXXRTL black box interface for
a synchronous debug sink:

    (* cxxrtl_blackbox *)
    module debug(...);
      (* cxxrtl_edge = "p" *) input clk;
      input en;
      input [7:0] i_data;
      (* cxxrtl_sync *) output [7:0] o_data;
    endmodule

For this HDL interface, this backend will generate the following C++ interface:

    struct bb_p_debug : public module {
      value<1> p_clk;
      bool posedge_p_clk() const { /* ... */ }
      value<1> p_en;
      value<8> p_i_data;
      wire<8> p_o_data;

      bool eval() override;
      bool commit() override;

      static std::unique_ptr<bb_p_debug>
      create(std::string name, metadata_map parameters, metadata_map attributes);
    };

The `create' function must be implemented by the driver. For example, it could
always provide an implementation logging the values to standard error stream:

    namespace cxxrtl_design {

    struct stderr_debug : public bb_p_debug {
      bool eval() override {
        if (posedge_p_clk() && p_en)
          fprintf(stderr, "debug: %02x\n", p_i_data.data[0]);
        p_o_data.next = p_i_data;
        return bb_p_debug::eval();
      }
    };

    std::unique_ptr<bb_p_debug>
    bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,
                       cxxrtl::metadata_map attributes) {
      return std::make_unique<stderr_debug>();
    }

    }

For complex applications of black boxes, it is possible to parameterize their
port widths. For example, the following Verilog code defines a CXXRTL black box
interface for a configurable width debug sink:

    (* cxxrtl_blackbox, cxxrtl_template = "WIDTH" *)
    module debug(...);
      parameter WIDTH = 8;
      (* cxxrtl_edge = "p" *) input clk;
      input en;
      (* cxxrtl_width = "WIDTH" *) input [WIDTH - 1:0] i_data;
      (* cxxrtl_width = "WIDTH" *) output [WIDTH - 1:0] o_data;
    endmodule

For this parametric HDL interface, this backend will generate the following C++
interface (only the differences are shown):

    template<size_t WIDTH>
    struct bb_p_debug : public module {
      // ...
      value<WIDTH> p_i_data;
      wire<WIDTH> p_o_data;
      // ...
      static std::unique_ptr<bb_p_debug<WIDTH>>
      create(std::string name, metadata_map parameters, metadata_map attributes);
    };

The `create' function must be implemented by the driver, specialized for every
possible combination of template parameters. (Specialization is necessary to
enable separate compilation of generated code and black box implementations.)

    template<size_t SIZE>
    struct stderr_debug : public bb_p_debug<SIZE> {
      // ...
    };

    template<>
    std::unique_ptr<bb_p_debug<8>>
    bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,
                          cxxrtl::metadata_map attributes) {
      return std::make_unique<stderr_debug<8>>();
    }

The following attributes are recognized by this backend:

    cxxrtl_blackbox
        only valid on modules. if specified, the module contents are ignored,
        and the generated code includes only the module interface and a factory
        function, which will be called to instantiate the module.

    cxxrtl_edge
        only valid on inputs of black boxes. must be one of "p", "n", "a".
        if specified on signal `clk`, the generated code includes edge detectors
        `posedge_p_clk()` (if "p"), `negedge_p_clk()` (if "n"), or both (if
        "a"), simplifying implementation of clocked black boxes.

    cxxrtl_template
        only valid on black boxes. must contain a space separated sequence of
        identifiers that have a corresponding black box parameters. for each
        of them, the generated code includes a `size_t` template parameter.

    cxxrtl_width
        only valid on ports of black boxes. must be a constant expression, which
        is directly inserted into generated code.

    cxxrtl_comb, cxxrtl_sync
        only valid on outputs of black boxes. if specified, indicates that every
        bit of the output port is driven, correspondingly, by combinatorial or
        synchronous logic. this knowledge is used for scheduling optimizations.
        if neither is specified, the output will be pessimistically treated as
        driven by both combinatorial and synchronous logic.

The following options are supported by this backend:

    -print-wire-types, -print-debug-wire-types
        enable additional debug logging, for pass developers.

    -header
        generate separate interface (.h) and implementation (.cc) files.
        if specified, the backend must be called with a filename, and filename
        of the interface is derived from filename of the implementation.
        otherwise, interface and implementation are generated together.

    -namespace <ns-name>
        place the generated code into namespace <ns-name>. if not specified,
        "cxxrtl_design" is used.

    -nohierarchy
        use design hierarchy as-is. in most designs, a top module should be
        present as it is exposed through the C API and has unbuffered outputs
        for improved performance; it will be determined automatically if absent.

    -noflatten
        don't flatten the design. fully flattened designs can evaluate within
        one delta cycle if they have no combinatorial feedback.
        note that the debug interface and waveform dumps use full hierarchical
        names for all wires even in flattened designs.

    -noproc
        don't convert processes to netlists. in most designs, converting
        processes significantly improves evaluation performance at the cost of
        slight increase in compilation time.

    -O <level>
        set the optimization level. the default is -O6. higher optimization
        levels dramatically decrease compile and run time, and highest level
        possible for a design should be used.

    -O0
        no optimization.

    -O1
        unbuffer internal wires if possible.

    -O2
        like -O1, and localize internal wires if possible.

    -O3
        like -O2, and inline internal wires if possible.

    -O4
        like -O3, and unbuffer public wires not marked (*keep*) if possible.

    -O5
        like -O4, and localize public wires not marked (*keep*) if possible.

    -O6
        like -O5, and inline public wires not marked (*keep*) if possible.

    -g <level>
        set the debug level. the default is -g4. higher debug levels provide
        more visibility and generate more code, but do not pessimize evaluation.

    -g0
        no debug information. the C API is disabled.

    -g1
        include bare minimum of debug information necessary to access all design
        state. the C API is enabled.

    -g2
        like -g1, but include debug information for all public wires that are
        directly accessible through the C++ interface.

    -g3
        like -g2, and include debug information for public wires that are tied
        to a constant or another public wire.

    -g4
        like -g3, and compute debug information on demand for all public wires
        that were optimized out.
\end{lstlisting}

\section{write\_edif -- write design to EDIF netlist file}
\label{cmd:write_edif}
\begin{lstlisting}[numbers=left,frame=single]
    write_edif [options] [filename]

Write the current design to an EDIF netlist file.

    -top top_module
        set the specified module as design top module

    -nogndvcc
        do not create "GND" and "VCC" cells. (this will produce an error
        if the design contains constant nets. use "hilomap" to map to custom
        constant drivers first)

    -gndvccy
        create "GND" and "VCC" cells with "Y" outputs. (the default is "G"
        for "GND" and "P" for "VCC".)

    -attrprop
        create EDIF properties for cell attributes

    -keep
        create extra KEEP nets by allowing a cell to drive multiple nets.

    -pvector {par|bra|ang}
        sets the delimiting character for module port rename clauses to
        parentheses, square brackets, or angle brackets.

Unfortunately there are different "flavors" of the EDIF file format. This
command generates EDIF files for the Xilinx place&route tools. It might be
necessary to make small modifications to this command when a different tool
is targeted.
\end{lstlisting}

\section{write\_file -- write a text to a file}
\label{cmd:write_file}
\begin{lstlisting}[numbers=left,frame=single]
    write_file [options] output_file [input_file]

Write the text from the input file to the output file.

    -a
        Append to output file (instead of overwriting)


Inside a script the input file can also can a here-document:

    write_file hello.txt <<EOT
    Hello World!
    EOT
\end{lstlisting}

\section{write\_firrtl -- write design to a FIRRTL file}
\label{cmd:write_firrtl}
\begin{lstlisting}[numbers=left,frame=single]
    write_firrtl [options] [filename]

Write a FIRRTL netlist of the current design.
The following commands are executed by this command:
        pmuxtree
\end{lstlisting}

\section{write\_ilang -- (deprecated) alias of write\_rtlil}
\label{cmd:write_ilang}
\begin{lstlisting}[numbers=left,frame=single]
See `help write_rtlil`.
\end{lstlisting}

\section{write\_intersynth -- write design to InterSynth netlist file}
\label{cmd:write_intersynth}
\begin{lstlisting}[numbers=left,frame=single]
    write_intersynth [options] [filename]

Write the current design to an 'intersynth' netlist file. InterSynth is
a tool for Coarse-Grain Example-Driven Interconnect Synthesis.

    -notypes
        do not generate celltypes and conntypes commands. i.e. just output
        the netlists. this is used for postsilicon synthesis.

    -lib <verilog_or_rtlil_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

    -selected
        only write selected modules. modules must be selected entirely or
        not at all.

http://bygone.clairexen.net/intersynth/
\end{lstlisting}

\section{write\_json -- write design to a JSON file}
\label{cmd:write_json}
\begin{lstlisting}[numbers=left,frame=single]
    write_json [options] [filename]

Write a JSON netlist of the current design.

    -aig
        include AIG models for the different gate types

    -compat-int
        emit 32-bit or smaller fully-defined parameter values directly
        as JSON numbers (for compatibility with old parsers)


The general syntax of the JSON output created by this command is as follows:

    {
      "creator": "Yosys <version info>",
      "modules": {
        <module_name>: {
          "attributes": {
            <attribute_name>: <attribute_value>,
            ...
          },
          "parameter_default_values": {
            <parameter_name>: <parameter_value>,
            ...
          },
          "ports": {
            <port_name>: <port_details>,
            ...
          },
          "cells": {
            <cell_name>: <cell_details>,
            ...
          },
          "memories": {
            <memory_name>: <memory_details>,
            ...
          },
          "netnames": {
            <net_name>: <net_details>,
            ...
          }
        }
      },
      "models": {
        ...
      },
    }

Where <port_details> is:

    {
      "direction": <"input" | "output" | "inout">,
      "bits": <bit_vector>
      "offset": <the lowest bit index in use, if non-0>
      "upto": <1 if the port bit indexing is MSB-first>
    }

The "offset" and "upto" fields are skipped if their value would be 0.They don't affect connection semantics, and are only used to preserve originalHDL bit indexing.And <cell_details> is:

    {
      "hide_name": <1 | 0>,
      "type": <cell_type>,
      "model": <AIG model name, if -aig option used>,
      "parameters": {
        <parameter_name>: <parameter_value>,
        ...
      },
      "attributes": {
        <attribute_name>: <attribute_value>,
        ...
      },
      "port_directions": {
        <port_name>: <"input" | "output" | "inout">,
        ...
      },
      "connections": {
        <port_name>: <bit_vector>,
        ...
      },
    }

And <memory_details> is:

    {
      "hide_name": <1 | 0>,
      "attributes": {
        <attribute_name>: <attribute_value>,
        ...
      },
      "width": <memory width>
      "start_offset": <the lowest valid memory address>
      "size": <memory size>
    }

And <net_details> is:

    {
      "hide_name": <1 | 0>,
      "bits": <bit_vector>
      "offset": <the lowest bit index in use, if non-0>
      "upto": <1 if the port bit indexing is MSB-first>
    }

The "hide_name" fields are set to 1 when the name of this cell or net is
automatically created and is likely not of interest for a regular user.

The "port_directions" section is only included for cells for which the
interface is known.

Module and cell ports and nets can be single bit wide or vectors of multiple
bits. Each individual signal bit is assigned a unique integer. The <bit_vector>
values referenced above are vectors of this integers. Signal bits that are
connected to a constant driver are denoted as string "0", "1", "x", or
"z" instead of a number.

Bit vectors (including integers) are written as string holding the binaryrepresentation of the value. Strings are written as strings, with an appendedblank in cases of strings of the form /[01xz]* */.

For example the following Verilog code:

    module test(input x, y);
      (* keep *) foo #(.P(42), .Q(1337))
          foo_inst (.A({x, y}), .B({y, x}), .C({4'd10, {4{x}}}));
    endmodule

Translates to the following JSON output:

    {
      "creator": "Yosys 0.9+2406 (git sha1 fb1168d8, clang 9.0.1 -fPIC -Os)",
      "modules": {
        "test": {
          "attributes": {
            "cells_not_processed": "00000000000000000000000000000001",
            "src": "test.v:1.1-4.10"
          },
          "ports": {
            "x": {
              "direction": "input",
              "bits": [ 2 ]
            },
            "y": {
              "direction": "input",
              "bits": [ 3 ]
            }
          },
          "cells": {
            "foo_inst": {
              "hide_name": 0,
              "type": "foo",
              "parameters": {
                "P": "00000000000000000000000000101010",
                "Q": "00000000000000000000010100111001"
              },
              "attributes": {
                "keep": "00000000000000000000000000000001",
                "module_not_derived": "00000000000000000000000000000001",
                "src": "test.v:3.1-3.55"
              },
              "connections": {
                "A": [ 3, 2 ],
                "B": [ 2, 3 ],
                "C": [ 2, 2, 2, 2, "0", "1", "0", "1" ]
              }
            }
          },
          "netnames": {
            "x": {
              "hide_name": 0,
              "bits": [ 2 ],
              "attributes": {
                "src": "test.v:1.19-1.20"
              }
            },
            "y": {
              "hide_name": 0,
              "bits": [ 3 ],
              "attributes": {
                "src": "test.v:1.22-1.23"
              }
            }
          }
        }
      }
    }

The models are given as And-Inverter-Graphs (AIGs) in the following form:

    "models": {
      <model_name>: [
        /*   0 */ [ <node-spec> ],
        /*   1 */ [ <node-spec> ],
        /*   2 */ [ <node-spec> ],
        ...
      ],
      ...
    },

The following node-types may be used:

    [ "port", <portname>, <bitindex>, <out-list> ]
      - the value of the specified input port bit

    [ "nport", <portname>, <bitindex>, <out-list> ]
      - the inverted value of the specified input port bit

    [ "and", <node-index>, <node-index>, <out-list> ]
      - the ANDed value of the specified nodes

    [ "nand", <node-index>, <node-index>, <out-list> ]
      - the inverted ANDed value of the specified nodes

    [ "true", <out-list> ]
      - the constant value 1

    [ "false", <out-list> ]
      - the constant value 0

All nodes appear in topological order. I.e. only nodes with smaller indices
are referenced by "and" and "nand" nodes.

The optional <out-list> at the end of a node specification is a list of
output portname and bitindex pairs, specifying the outputs driven by this node.

For example, the following is the model for a 3-input 3-output $reduce_and cell
inferred by the following code:

    module test(input [2:0] in, output [2:0] out);
      assign in = &out;
    endmodule

    "$reduce_and:3U:3": [
      /*   0 */ [ "port", "A", 0 ],
      /*   1 */ [ "port", "A", 1 ],
      /*   2 */ [ "and", 0, 1 ],
      /*   3 */ [ "port", "A", 2 ],
      /*   4 */ [ "and", 2, 3, "Y", 0 ],
      /*   5 */ [ "false", "Y", 1, "Y", 2 ]
    ]

Future version of Yosys might add support for additional fields in the JSON
format. A program processing this format must ignore all unknown fields.
\end{lstlisting}

\section{write\_rtlil -- write design to RTLIL file}
\label{cmd:write_rtlil}
\begin{lstlisting}[numbers=left,frame=single]
    write_rtlil [filename]

Write the current design to an RTLIL file. (RTLIL is a text representation
of a design in yosys's internal format.)

    -selected
        only write selected parts of the design.
\end{lstlisting}

\section{write\_simplec -- convert design to simple C code}
\label{cmd:write_simplec}
\begin{lstlisting}[numbers=left,frame=single]
    write_simplec [options] [filename]

Write simple C code for simulating the design. The C code written can be used to
simulate the design in a C environment, but the purpose of this command is to
generate code that works well with C-based formal verification.

    -verbose
        this will print the recursive walk used to export the modules.

    -i8, -i16, -i32, -i64
        set the maximum integer bit width to use in the generated code.

THIS COMMAND IS UNDER CONSTRUCTION
\end{lstlisting}

\section{write\_smt2 -- write design to SMT-LIBv2 file}
\label{cmd:write_smt2}
\begin{lstlisting}[numbers=left,frame=single]
    write_smt2 [options] [filename]

Write a SMT-LIBv2 [1] description of the current design. For a module with name
'<mod>' this will declare the sort '<mod>_s' (state of the module) and will
define and declare functions operating on that state.

The following SMT2 functions are generated for a module with name '<mod>'.
Some declarations/definitions are printed with a special comment. A prover
using the SMT2 files can use those comments to collect all relevant metadata