From 4fca4229cde716d312bee5bb4bbba425c4dbb8d0 Mon Sep 17 00:00:00 2001
From: Hauke Mehrtens <hauke@hauke-m.de>
Date: Fri, 1 May 2009 13:43:12 +0000
Subject: Update to compat-wireless-2009-05-01

SVN-Revision: 15536
---
 ...02-rt2x00-Implement-support-for-rt2800pci.patch | 5227 ++++++++++++++++++++
 1 file changed, 5227 insertions(+)
 create mode 100644 package/mac80211/patches/302-rt2x00-Implement-support-for-rt2800pci.patch

(limited to 'package/mac80211/patches/302-rt2x00-Implement-support-for-rt2800pci.patch')

diff --git a/package/mac80211/patches/302-rt2x00-Implement-support-for-rt2800pci.patch b/package/mac80211/patches/302-rt2x00-Implement-support-for-rt2800pci.patch
new file mode 100644
index 0000000000..7584e5a7d7
--- /dev/null
+++ b/package/mac80211/patches/302-rt2x00-Implement-support-for-rt2800pci.patch
@@ -0,0 +1,5227 @@
+From 67432230daedc23f808b79173703e27675fd0659 Mon Sep 17 00:00:00 2001
+From: Ivo van Doorn <IvDoorn@gmail.com>
+Date: Sun, 26 Apr 2009 15:54:03 +0200
+Subject: [PATCH 2/4] rt2x00: Implement support for rt2800pci
+
+Add support for the rt2800pci chipset.
+
+Includes various patches from Mattias, Mark, Felix and Xose.
+
+Signed-off-by: Xose Vazquez Perez <xose.vazquez@gmail.com>
+Signed-off-by: Mattias Nissler <mattias.nissler@gmx.de>
+Signed-off-by: Mark Asselstine <asselsm@gmail.com>
+Signed-off-by: Felix Fietkau <nbd@openwrt.org>
+Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com>
+---
+ drivers/net/wireless/rt2x00/Kconfig     |   26 +
+ drivers/net/wireless/rt2x00/Makefile    |    1 +
+ drivers/net/wireless/rt2x00/rt2800pci.c | 3245 +++++++++++++++++++++++++++++++
+ drivers/net/wireless/rt2x00/rt2800pci.h | 1927 ++++++++++++++++++
+ drivers/net/wireless/rt2x00/rt2x00.h    |    6 +
+ 5 files changed, 5205 insertions(+), 0 deletions(-)
+ create mode 100644 drivers/net/wireless/rt2x00/rt2800pci.c
+ create mode 100644 drivers/net/wireless/rt2x00/rt2800pci.h
+
+--- a/drivers/net/wireless/rt2x00/Makefile
++++ b/drivers/net/wireless/rt2x00/Makefile
+@@ -17,6 +17,7 @@ obj-$(CONFIG_RT2X00_LIB_USB)		+= rt2x00u
+ obj-$(CONFIG_RT2400PCI)			+= rt2400pci.o
+ obj-$(CONFIG_RT2500PCI)			+= rt2500pci.o
+ obj-$(CONFIG_RT61PCI)			+= rt61pci.o
++obj-$(CONFIG_RT2800PCI)			+= rt2800pci.o
+ obj-$(CONFIG_RT2500USB)			+= rt2500usb.o
+ obj-$(CONFIG_RT73USB)			+= rt73usb.o
+ obj-$(CONFIG_RT2800USB)			+= rt2800usb.o
+--- /dev/null
++++ b/drivers/net/wireless/rt2x00/rt2800pci.c
+@@ -0,0 +1,3245 @@
++/*
++	Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
++	<http://rt2x00.serialmonkey.com>
++
++	This program is free software; you can redistribute it and/or modify
++	it under the terms of the GNU General Public License as published by
++	the Free Software Foundation; either version 2 of the License, or
++	(at your option) any later version.
++
++	This program is distributed in the hope that it will be useful,
++	but WITHOUT ANY WARRANTY; without even the implied warranty of
++	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++	GNU General Public License for more details.
++
++	You should have received a copy of the GNU General Public License
++	along with this program; if not, write to the
++	Free Software Foundation, Inc.,
++	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
++ */
++
++/*
++	Module: rt2800pci
++	Abstract: rt2800pci device specific routines.
++	Supported chipsets: RT2800E & RT2800ED.
++ */
++
++#include <linux/crc-ccitt.h>
++#include <linux/delay.h>
++#include <linux/etherdevice.h>
++#include <linux/init.h>
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/platform_device.h>
++#include <linux/eeprom_93cx6.h>
++
++#include "rt2x00.h"
++#include "rt2x00pci.h"
++#include "rt2x00soc.h"
++#include "rt2800pci.h"
++
++#ifdef CONFIG_RT2800PCI_PCI_MODULE
++#define CONFIG_RT2800PCI_PCI
++#endif
++
++#ifdef CONFIG_RT2800PCI_WISOC_MODULE
++#define CONFIG_RT2800PCI_WISOC
++#endif
++
++/*
++ * Allow hardware encryption to be disabled.
++ */
++static int modparam_nohwcrypt = 0;
++module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
++MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
++
++/*
++ * Register access.
++ * BBP and RF register require indirect register access,
++ * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
++ * These indirect registers work with busy bits,
++ * and we will try maximal REGISTER_BUSY_COUNT times to access
++ * the register while taking a REGISTER_BUSY_DELAY us delay
++ * between each attampt. When the busy bit is still set at that time,
++ * the access attempt is considered to have failed,
++ * and we will print an error.
++ */
++#define WAIT_FOR_BBP(__dev, __reg) \
++	rt2x00pci_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
++#define WAIT_FOR_RFCSR(__dev, __reg) \
++	rt2x00pci_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
++#define WAIT_FOR_RF(__dev, __reg) \
++	rt2x00pci_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
++#define WAIT_FOR_MCU(__dev, __reg) \
++	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
++			       H2M_MAILBOX_CSR_OWNER, (__reg))
++
++static void rt2800pci_bbp_write(struct rt2x00_dev *rt2x00dev,
++				const unsigned int word, const u8 value)
++{
++	u32 reg;
++
++	mutex_lock(&rt2x00dev->csr_mutex);
++
++	/*
++	 * Wait until the BBP becomes available, afterwards we
++	 * can safely write the new data into the register.
++	 */
++	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
++		reg = 0;
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
++
++		rt2x00pci_register_write(rt2x00dev, BBP_CSR_CFG, reg);
++	}
++
++	mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
++static void rt2800pci_bbp_read(struct rt2x00_dev *rt2x00dev,
++			       const unsigned int word, u8 *value)
++{
++	u32 reg;
++
++	mutex_lock(&rt2x00dev->csr_mutex);
++
++	/*
++	 * Wait until the BBP becomes available, afterwards we
++	 * can safely write the read request into the register.
++	 * After the data has been written, we wait until hardware
++	 * returns the correct value, if at any time the register
++	 * doesn't become available in time, reg will be 0xffffffff
++	 * which means we return 0xff to the caller.
++	 */
++	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
++		reg = 0;
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
++		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
++
++		rt2x00pci_register_write(rt2x00dev, BBP_CSR_CFG, reg);
++
++		WAIT_FOR_BBP(rt2x00dev, &reg);
++	}
++
++	*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
++
++	mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
++static void rt2800pci_rfcsr_write(struct rt2x00_dev *rt2x00dev,
++				  const unsigned int word, const u8 value)
++{
++	u32 reg;
++
++	mutex_lock(&rt2x00dev->csr_mutex);
++
++	/*
++	 * Wait until the RFCSR becomes available, afterwards we
++	 * can safely write the new data into the register.
++	 */
++	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
++		reg = 0;
++		rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
++		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
++		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
++		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
++
++		rt2x00pci_register_write(rt2x00dev, RF_CSR_CFG, reg);
++	}
++
++	mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
++static void rt2800pci_rfcsr_read(struct rt2x00_dev *rt2x00dev,
++				 const unsigned int word, u8 *value)
++{
++	u32 reg;
++
++	mutex_lock(&rt2x00dev->csr_mutex);
++
++	/*
++	 * Wait until the RFCSR becomes available, afterwards we
++	 * can safely write the read request into the register.
++	 * After the data has been written, we wait until hardware
++	 * returns the correct value, if at any time the register
++	 * doesn't become available in time, reg will be 0xffffffff
++	 * which means we return 0xff to the caller.
++	 */
++	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
++		reg = 0;
++		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
++		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
++		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
++
++		rt2x00pci_register_write(rt2x00dev, RF_CSR_CFG, reg);
++
++		WAIT_FOR_RFCSR(rt2x00dev, &reg);
++	}
++
++	*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
++
++	mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
++static void rt2800pci_rf_write(struct rt2x00_dev *rt2x00dev,
++			       const unsigned int word, const u32 value)
++{
++	u32 reg;
++
++	mutex_lock(&rt2x00dev->csr_mutex);
++
++	/*
++	 * Wait until the RF becomes available, afterwards we
++	 * can safely write the new data into the register.
++	 */
++	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
++		reg = 0;
++		rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
++		rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
++		rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
++		rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
++
++		rt2x00pci_register_write(rt2x00dev, RF_CSR_CFG0, reg);
++		rt2x00_rf_write(rt2x00dev, word, value);
++	}
++
++	mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
++static void rt2800pci_mcu_request(struct rt2x00_dev *rt2x00dev,
++				  const u8 command, const u8 token,
++				  const u8 arg0, const u8 arg1)
++{
++	u32 reg;
++
++	/*
++	 * RT2880 and RT3052 don't support MCU requests.
++	 */
++	if (rt2x00_rt(&rt2x00dev->chip, RT2880) ||
++	    rt2x00_rt(&rt2x00dev->chip, RT3052))
++		return;
++
++	mutex_lock(&rt2x00dev->csr_mutex);
++
++	/*
++	 * Wait until the MCU becomes available, afterwards we
++	 * can safely write the new data into the register.
++	 */
++	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
++		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
++		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
++		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
++		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
++		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
++
++		reg = 0;
++		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
++		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
++	}
++
++	mutex_unlock(&rt2x00dev->csr_mutex);
++}
++
++static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
++{
++	unsigned int i;
++	u32 reg;
++
++	for (i = 0; i < 200; i++) {
++		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
++
++		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
++		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
++		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
++		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
++			break;
++
++		udelay(REGISTER_BUSY_DELAY);
++	}
++
++	if (i == 200)
++		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
++
++	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
++	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
++}
++
++#ifdef CONFIG_RT2800PCI_WISOC
++static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
++{
++	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
++
++	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
++}
++#else
++static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
++{
++}
++#endif /* CONFIG_RT2800PCI_WISOC */
++
++#ifdef CONFIG_RT2800PCI_PCI
++static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
++{
++	struct rt2x00_dev *rt2x00dev = eeprom->data;
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
++
++	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
++	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
++	eeprom->reg_data_clock =
++	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
++	eeprom->reg_chip_select =
++	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
++}
++
++static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
++{
++	struct rt2x00_dev *rt2x00dev = eeprom->data;
++	u32 reg = 0;
++
++	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
++	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
++	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
++			   !!eeprom->reg_data_clock);
++	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
++			   !!eeprom->reg_chip_select);
++
++	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
++}
++
++static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
++{
++	struct eeprom_93cx6 eeprom;
++	u32 reg;
++ 
++	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
++
++	eeprom.data = rt2x00dev;
++	eeprom.register_read = rt2800pci_eepromregister_read;
++	eeprom.register_write = rt2800pci_eepromregister_write;
++	eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
++	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
++	eeprom.reg_data_in = 0;
++	eeprom.reg_data_out = 0;
++	eeprom.reg_data_clock = 0;
++	eeprom.reg_chip_select = 0;
++
++	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
++			       EEPROM_SIZE / sizeof(u16));
++}
++#else
++static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
++{
++}
++#endif /* CONFIG_RT2800PCI_PCI */
++
++#ifdef CONFIG_RT2X00_LIB_DEBUGFS
++static const struct rt2x00debug rt2800pci_rt2x00debug = {
++	.owner	= THIS_MODULE,
++	.csr	= {
++		.read		= rt2x00pci_register_read,
++		.write		= rt2x00pci_register_write,
++		.flags		= RT2X00DEBUGFS_OFFSET,
++		.word_base	= CSR_REG_BASE,
++		.word_size	= sizeof(u32),
++		.word_count	= CSR_REG_SIZE / sizeof(u32),
++	},
++	.eeprom	= {
++		.read		= rt2x00_eeprom_read,
++		.write		= rt2x00_eeprom_write,
++		.word_base	= EEPROM_BASE,
++		.word_size	= sizeof(u16),
++		.word_count	= EEPROM_SIZE / sizeof(u16),
++	},
++	.bbp	= {
++		.read		= rt2800pci_bbp_read,
++		.write		= rt2800pci_bbp_write,
++		.word_base	= BBP_BASE,
++		.word_size	= sizeof(u8),
++		.word_count	= BBP_SIZE / sizeof(u8),
++	},
++	.rf	= {
++		.read		= rt2x00_rf_read,
++		.write		= rt2800pci_rf_write,
++		.word_base	= RF_BASE,
++		.word_size	= sizeof(u32),
++		.word_count	= RF_SIZE / sizeof(u32),
++	},
++};
++#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
++
++#ifdef CONFIG_RT2X00_LIB_RFKILL
++static int rt2800pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
++{
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
++	return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
++}
++#else
++#define rt2800pci_rfkill_poll	NULL
++#endif /* CONFIG_RT2X00_LIB_RFKILL */
++
++#ifdef CONFIG_RT2X00_LIB_LEDS
++static void rt2800pci_brightness_set(struct led_classdev *led_cdev,
++				     enum led_brightness brightness)
++{
++	struct rt2x00_led *led =
++	    container_of(led_cdev, struct rt2x00_led, led_dev);
++	unsigned int enabled = brightness != LED_OFF;
++	unsigned int bg_mode =
++	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
++	unsigned int polarity =
++		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
++				   EEPROM_FREQ_LED_POLARITY);
++	unsigned int ledmode =
++		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
++				   EEPROM_FREQ_LED_MODE);
++
++	if (led->type == LED_TYPE_RADIO) {
++		rt2800pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
++				      enabled ? 0x20 : 0);
++	} else if (led->type == LED_TYPE_ASSOC) {
++		rt2800pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
++				      enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
++	} else if (led->type == LED_TYPE_QUALITY) {
++		/*
++		 * The brightness is divided into 6 levels (0 - 5),
++		 * The specs tell us the following levels:
++		 *	0, 1 ,3, 7, 15, 31
++		 * to determine the level in a simple way we can simply
++		 * work with bitshifting:
++		 *	(1 << level) - 1
++		 */
++		rt2800pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
++				      (1 << brightness / (LED_FULL / 6)) - 1,
++				      polarity);
++	}
++}
++
++static int rt2800pci_blink_set(struct led_classdev *led_cdev,
++			       unsigned long *delay_on,
++			       unsigned long *delay_off)
++{
++	struct rt2x00_led *led =
++	    container_of(led_cdev, struct rt2x00_led, led_dev);
++	u32 reg;
++
++	rt2x00pci_register_read(led->rt2x00dev, LED_CFG, &reg);
++	rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
++	rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
++	rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
++	rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
++	rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 12);
++	rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
++	rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
++	rt2x00pci_register_write(led->rt2x00dev, LED_CFG, reg);
++
++	return 0;
++}
++
++static void rt2800pci_init_led(struct rt2x00_dev *rt2x00dev,
++			       struct rt2x00_led *led,
++			       enum led_type type)
++{
++	led->rt2x00dev = rt2x00dev;
++	led->type = type;
++	led->led_dev.brightness_set = rt2800pci_brightness_set;
++	led->led_dev.blink_set = rt2800pci_blink_set;
++	led->flags = LED_INITIALIZED;
++}
++#endif /* CONFIG_RT2X00_LIB_LEDS */
++
++/*
++ * Configuration handlers.
++ */
++static void rt2800pci_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
++				       struct rt2x00lib_crypto *crypto,
++				       struct ieee80211_key_conf *key)
++{
++	struct mac_wcid_entry wcid_entry;
++	struct mac_iveiv_entry iveiv_entry;
++	u32 offset;
++	u32 reg;
++
++	offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
++
++	rt2x00pci_register_read(rt2x00dev, offset, &reg);
++	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
++			   !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
++	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
++			   (crypto->cmd == SET_KEY) * crypto->cipher);
++	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
++			   (crypto->cmd == SET_KEY) * crypto->bssidx);
++	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
++	rt2x00pci_register_write(rt2x00dev, offset, reg);
++
++	offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
++
++	memset(&iveiv_entry, 0, sizeof(iveiv_entry));
++	if ((crypto->cipher == CIPHER_TKIP) ||
++	    (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
++	    (crypto->cipher == CIPHER_AES))
++		iveiv_entry.iv[3] |= 0x20;
++	iveiv_entry.iv[3] |= key->keyidx << 6;
++	rt2x00pci_register_multiwrite(rt2x00dev, offset,
++				      &iveiv_entry, sizeof(iveiv_entry));
++
++	offset = MAC_WCID_ENTRY(key->hw_key_idx);
++
++	memset(&wcid_entry, 0, sizeof(wcid_entry));
++	if (crypto->cmd == SET_KEY)
++		memcpy(&wcid_entry, crypto->address, ETH_ALEN);
++	rt2x00pci_register_multiwrite(rt2x00dev, offset,
++				      &wcid_entry, sizeof(wcid_entry));
++}
++
++static int rt2800pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
++				       struct rt2x00lib_crypto *crypto,
++				       struct ieee80211_key_conf *key)
++{
++	struct hw_key_entry key_entry;
++	struct rt2x00_field32 field;
++	u32 offset;
++	u32 reg;
++
++	if (crypto->cmd == SET_KEY) {
++		key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
++
++		memcpy(key_entry.key, crypto->key,
++		       sizeof(key_entry.key));
++		memcpy(key_entry.tx_mic, crypto->tx_mic,
++		       sizeof(key_entry.tx_mic));
++		memcpy(key_entry.rx_mic, crypto->rx_mic,
++		       sizeof(key_entry.rx_mic));
++
++		offset = SHARED_KEY_ENTRY(key->hw_key_idx);
++		rt2x00pci_register_multiwrite(rt2x00dev, offset,
++					      &key_entry, sizeof(key_entry));
++	}
++
++	/*
++	 * The cipher types are stored over multiple registers
++	 * starting with SHARED_KEY_MODE_BASE each word will have
++	 * 32 bits and contains the cipher types for 2 bssidx each.
++	 * Using the correct defines correctly will cause overhead,
++	 * so just calculate the correct offset.
++	 */
++	field.bit_offset = 4 * (key->hw_key_idx % 8);
++	field.bit_mask = 0x7 << field.bit_offset;
++
++	offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
++
++	rt2x00pci_register_read(rt2x00dev, offset, &reg);
++	rt2x00_set_field32(&reg, field,
++			   (crypto->cmd == SET_KEY) * crypto->cipher);
++	rt2x00pci_register_write(rt2x00dev, offset, reg);
++
++	/*
++	 * Update WCID information
++	 */
++	rt2800pci_config_wcid_attr(rt2x00dev, crypto, key);
++
++	return 0;
++}
++
++static int rt2800pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
++					 struct rt2x00lib_crypto *crypto,
++					 struct ieee80211_key_conf *key)
++{
++	struct hw_key_entry key_entry;
++	u32 offset;
++
++	if (crypto->cmd == SET_KEY) {
++		/*
++		 * 1 pairwise key is possible per AID, this means that the AID
++		 * equals our hw_key_idx. Make sure the WCID starts _after_ the
++		 * last possible shared key entry.
++		 */
++		if (crypto->aid > (256 - 32))
++			return -ENOSPC;
++
++		key->hw_key_idx = 32 + crypto->aid;
++
++
++		memcpy(key_entry.key, crypto->key,
++		       sizeof(key_entry.key));
++		memcpy(key_entry.tx_mic, crypto->tx_mic,
++		       sizeof(key_entry.tx_mic));
++		memcpy(key_entry.rx_mic, crypto->rx_mic,
++		       sizeof(key_entry.rx_mic));
++
++		offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
++		rt2x00pci_register_multiwrite(rt2x00dev, offset,
++					      &key_entry, sizeof(key_entry));
++	}
++
++	/*
++	 * Update WCID information
++	 */
++	rt2800pci_config_wcid_attr(rt2x00dev, crypto, key);
++
++	return 0;
++}
++
++static void rt2800pci_config_filter(struct rt2x00_dev *rt2x00dev,
++				    const unsigned int filter_flags)
++{
++	u32 reg;
++
++	/*
++	 * Start configuration steps.
++	 * Note that the version error will always be dropped
++	 * and broadcast frames will always be accepted since
++	 * there is no filter for it at this time.
++	 */
++	rt2x00pci_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
++			   !(filter_flags & FIF_FCSFAIL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
++			   !(filter_flags & FIF_PLCPFAIL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
++			   !(filter_flags & FIF_PROMISC_IN_BSS));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
++			   !(filter_flags & FIF_ALLMULTI));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
++			   !(filter_flags & FIF_CONTROL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
++			   !(filter_flags & FIF_CONTROL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
++			   !(filter_flags & FIF_CONTROL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
++			   !(filter_flags & FIF_CONTROL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
++			   !(filter_flags & FIF_CONTROL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
++			   !(filter_flags & FIF_CONTROL));
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
++	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
++			   !(filter_flags & FIF_CONTROL));
++	rt2x00pci_register_write(rt2x00dev, RX_FILTER_CFG, reg);
++}
++
++static void rt2800pci_config_intf(struct rt2x00_dev *rt2x00dev,
++				  struct rt2x00_intf *intf,
++				  struct rt2x00intf_conf *conf,
++				  const unsigned int flags)
++{
++	unsigned int beacon_base;
++	u32 reg;
++
++	if (flags & CONFIG_UPDATE_TYPE) {
++		/*
++		 * Clear current synchronisation setup.
++		 * For the Beacon base registers we only need to clear
++		 * the first byte since that byte contains the VALID and OWNER
++		 * bits which (when set to 0) will invalidate the entire beacon.
++		 */
++		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
++		rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
++
++		/*
++		 * Enable synchronisation.
++		 */
++		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
++		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
++		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
++		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
++		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
++	}
++
++	if (flags & CONFIG_UPDATE_MAC) {
++		reg = le32_to_cpu(conf->mac[1]);
++		rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
++		conf->mac[1] = cpu_to_le32(reg);
++
++		rt2x00pci_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
++					      conf->mac, sizeof(conf->mac));
++	}
++
++	if (flags & CONFIG_UPDATE_BSSID) {
++		reg = le32_to_cpu(conf->bssid[1]);
++		rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 0);
++		rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
++		conf->bssid[1] = cpu_to_le32(reg);
++
++		rt2x00pci_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
++					      conf->bssid, sizeof(conf->bssid));
++	}
++}
++
++static void rt2800pci_config_erp(struct rt2x00_dev *rt2x00dev,
++				 struct rt2x00lib_erp *erp)
++{
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
++	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT,
++			   DIV_ROUND_UP(erp->ack_timeout, erp->slot_time));
++	rt2x00pci_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
++	rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
++			   !!erp->short_preamble);
++	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
++			   !!erp->short_preamble);
++	rt2x00pci_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
++			   erp->cts_protection ? 2 : 0);
++	rt2x00pci_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
++
++	rt2x00pci_register_write(rt2x00dev, LEGACY_BASIC_RATE,
++				 erp->basic_rates);
++	rt2x00pci_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
++
++	rt2x00pci_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
++	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time);
++	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
++	rt2x00pci_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
++	rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, erp->sifs);
++	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, erp->sifs);
++	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
++	rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
++	rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
++	rt2x00pci_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
++}
++
++static void rt2800pci_config_ant(struct rt2x00_dev *rt2x00dev,
++				 struct antenna_setup *ant)
++{
++	u8 r1;
++	u8 r3;
++
++	rt2800pci_bbp_read(rt2x00dev, 1, &r1);
++	rt2800pci_bbp_read(rt2x00dev, 3, &r3);
++
++	/*
++	 * Configure the TX antenna.
++	 */
++	switch ((int)ant->tx) {
++	case 1:
++		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
++		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
++		break;
++	case 2:
++		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
++		break;
++	case 3:
++		/* Do nothing */
++		break;
++	}
++
++	/*
++	 * Configure the RX antenna.
++	 */
++	switch ((int)ant->rx) {
++	case 1:
++		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
++		break;
++	case 2:
++		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
++		break;
++	case 3:
++		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
++		break;
++	}
++
++	rt2800pci_bbp_write(rt2x00dev, 3, r3);
++	rt2800pci_bbp_write(rt2x00dev, 1, r1);
++}
++
++static void rt2800pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
++				      struct rt2x00lib_conf *libconf)
++{
++	u16 eeprom;
++	short lna_gain;
++
++	if (libconf->rf.channel <= 14) {
++		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
++		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
++	} else if (libconf->rf.channel <= 64) {
++		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
++		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
++	} else if (libconf->rf.channel <= 128) {
++		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
++		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
++	} else {
++		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
++		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
++	}
++
++	rt2x00dev->lna_gain = lna_gain;
++}
++
++static void rt2800pci_config_channel_rt2x(struct rt2x00_dev *rt2x00dev,
++					  struct ieee80211_conf *conf,
++					  struct rf_channel *rf,
++					  struct channel_info *info)
++{
++	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
++
++	if (rt2x00dev->default_ant.tx == 1)
++		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
++
++	if (rt2x00dev->default_ant.rx == 1) {
++		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
++		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
++	} else if (rt2x00dev->default_ant.rx == 2)
++		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
++
++	if (rf->channel > 14) {
++		/*
++		 * When TX power is below 0, we should increase it by 7 to
++		 * make it a positive value (Minumum value is -7).
++		 * However this means that values between 0 and 7 have
++		 * double meaning, and we should set a 7DBm boost flag.
++		 */
++		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
++				   (info->tx_power1 >= 0));
++
++		if (info->tx_power1 < 0)
++			info->tx_power1 += 7;
++
++		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A,
++				   TXPOWER_A_TO_DEV(info->tx_power1));
++
++		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
++				   (info->tx_power2 >= 0));
++
++		if (info->tx_power2 < 0)
++			info->tx_power2 += 7;
++
++		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A,
++				   TXPOWER_A_TO_DEV(info->tx_power2));
++	} else {
++		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G,
++				   TXPOWER_G_TO_DEV(info->tx_power1));
++		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G,
++				   TXPOWER_G_TO_DEV(info->tx_power2));
++	}
++
++	rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
++
++	rt2800pci_rf_write(rt2x00dev, 1, rf->rf1);
++	rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
++	rt2800pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
++	rt2800pci_rf_write(rt2x00dev, 4, rf->rf4);
++
++	udelay(200);
++
++	rt2800pci_rf_write(rt2x00dev, 1, rf->rf1);
++	rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
++	rt2800pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
++	rt2800pci_rf_write(rt2x00dev, 4, rf->rf4);
++
++	udelay(200);
++
++	rt2800pci_rf_write(rt2x00dev, 1, rf->rf1);
++	rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
++	rt2800pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
++	rt2800pci_rf_write(rt2x00dev, 4, rf->rf4);
++}
++
++static void rt2800pci_config_channel_rt3x(struct rt2x00_dev *rt2x00dev,
++					  struct ieee80211_conf *conf,
++					  struct rf_channel *rf,
++					  struct channel_info *info)
++{
++	u8 rfcsr;
++
++	rt2800pci_rfcsr_write(rt2x00dev, 2, rf->rf1);
++	rt2800pci_rfcsr_write(rt2x00dev, 2, rf->rf3);
++
++	rt2800pci_rfcsr_read(rt2x00dev, 6, &rfcsr);
++	rt2x00_set_field8(&rfcsr, RFCSR6_R, rf->rf2);
++	rt2800pci_rfcsr_write(rt2x00dev, 6, rfcsr);
++
++	rt2800pci_rfcsr_read(rt2x00dev, 12, &rfcsr);
++	rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
++			  TXPOWER_G_TO_DEV(info->tx_power1));
++	rt2800pci_rfcsr_write(rt2x00dev, 12, rfcsr);
++
++	rt2800pci_rfcsr_read(rt2x00dev, 23, &rfcsr);
++	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
++	rt2800pci_rfcsr_write(rt2x00dev, 23, rfcsr);
++
++	rt2800pci_rfcsr_write(rt2x00dev, 24,
++			      rt2x00dev->calibration[conf_is_ht40(conf)]);
++
++	rt2800pci_rfcsr_read(rt2x00dev, 23, &rfcsr);
++	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
++	rt2800pci_rfcsr_write(rt2x00dev, 23, rfcsr);
++}
++
++static void rt2800pci_config_channel(struct rt2x00_dev *rt2x00dev,
++				     struct ieee80211_conf *conf,
++				     struct rf_channel *rf,
++				     struct channel_info *info)
++{
++	u32 reg;
++	unsigned int tx_pin;
++	u8 bbp;
++
++	if (rt2x00_rev(&rt2x00dev->chip) != RT3070_VERSION)
++		rt2800pci_config_channel_rt2x(rt2x00dev, conf, rf, info);
++	else
++		rt2800pci_config_channel_rt3x(rt2x00dev, conf, rf, info);
++
++	/*
++	 * Change BBP settings
++	 */
++	rt2800pci_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
++	rt2800pci_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
++	rt2800pci_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
++	rt2800pci_bbp_write(rt2x00dev, 86, 0);
++
++	if (rf->channel <= 14) {
++		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
++			rt2800pci_bbp_write(rt2x00dev, 82, 0x62);
++			rt2800pci_bbp_write(rt2x00dev, 75, 0x46);
++		} else {
++			rt2800pci_bbp_write(rt2x00dev, 82, 0x84);
++			rt2800pci_bbp_write(rt2x00dev, 75, 0x50);
++		}
++	} else {
++		rt2800pci_bbp_write(rt2x00dev, 82, 0xf2);
++
++		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
++			rt2800pci_bbp_write(rt2x00dev, 75, 0x46);
++		else
++			rt2800pci_bbp_write(rt2x00dev, 75, 0x50);
++	}
++
++	rt2x00pci_register_read(rt2x00dev, TX_BAND_CFG, &reg);
++	rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_PLUS, conf_is_ht40_plus(conf));
++	rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
++	rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
++	rt2x00pci_register_write(rt2x00dev, TX_BAND_CFG, reg);
++
++	tx_pin = 0;
++
++	/* Turn on unused PA or LNA when not using 1T or 1R */
++	if (rt2x00dev->default_ant.tx != 1) {
++		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
++		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
++	}
++
++	/* Turn on unused PA or LNA when not using 1T or 1R */
++	if (rt2x00dev->default_ant.rx != 1) {
++		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
++		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
++	}
++
++	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
++	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
++	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
++	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
++	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
++	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
++
++	rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
++
++	rt2800pci_bbp_read(rt2x00dev, 4, &bbp);
++	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
++	rt2800pci_bbp_write(rt2x00dev, 4, bbp);
++
++	rt2800pci_bbp_read(rt2x00dev, 3, &bbp);
++	rt2x00_set_field8(&bbp, BBP3_HT40_PLUS, conf_is_ht40_plus(conf));
++	rt2800pci_bbp_write(rt2x00dev, 3, bbp);
++
++	if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
++		if (conf_is_ht40(conf)) {
++			rt2800pci_bbp_write(rt2x00dev, 69, 0x1a);
++			rt2800pci_bbp_write(rt2x00dev, 70, 0x0a);
++			rt2800pci_bbp_write(rt2x00dev, 73, 0x16);
++		} else {
++			rt2800pci_bbp_write(rt2x00dev, 69, 0x16);
++			rt2800pci_bbp_write(rt2x00dev, 70, 0x08);
++			rt2800pci_bbp_write(rt2x00dev, 73, 0x11);
++		}
++	}
++
++	msleep(1);
++}
++
++static void rt2800pci_config_txpower(struct rt2x00_dev *rt2x00dev,
++				     const int txpower)
++{
++	u32 reg;
++	u32 value = TXPOWER_G_TO_DEV(txpower);
++	u8 r1;
++
++	rt2800pci_bbp_read(rt2x00dev, 1, &r1);
++	rt2x00_set_field8(&reg, BBP1_TX_POWER, 0);
++	rt2800pci_bbp_write(rt2x00dev, 1, r1);
++
++	rt2x00pci_register_read(rt2x00dev, TX_PWR_CFG_0, &reg);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_1MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_2MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_55MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_11MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_6MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_9MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_12MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_0_18MBS, value);
++	rt2x00pci_register_write(rt2x00dev, TX_PWR_CFG_0, reg);
++
++	rt2x00pci_register_read(rt2x00dev, TX_PWR_CFG_1, &reg);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_24MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_36MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_48MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_54MBS, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS0, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS1, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS2, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS3, value);
++	rt2x00pci_register_write(rt2x00dev, TX_PWR_CFG_1, reg);
++
++	rt2x00pci_register_read(rt2x00dev, TX_PWR_CFG_2, &reg);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS4, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS5, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS6, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS7, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS8, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS9, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS10, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS11, value);
++	rt2x00pci_register_write(rt2x00dev, TX_PWR_CFG_2, reg);
++
++	rt2x00pci_register_read(rt2x00dev, TX_PWR_CFG_3, &reg);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS12, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS13, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS14, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS15, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN1, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN2, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN3, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN4, value);
++	rt2x00pci_register_write(rt2x00dev, TX_PWR_CFG_3, reg);
++
++	rt2x00pci_register_read(rt2x00dev, TX_PWR_CFG_4, &reg);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN5, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN6, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN7, value);
++	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN8, value);
++	rt2x00pci_register_write(rt2x00dev, TX_PWR_CFG_4, reg);
++}
++
++static void rt2800pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
++					 struct rt2x00lib_conf *libconf)
++{
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, TX_RTY_CFG, &reg);
++	rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
++			   libconf->conf->short_frame_max_tx_count);
++	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
++			   libconf->conf->long_frame_max_tx_count);
++	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
++	rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
++	rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
++	rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
++	rt2x00pci_register_write(rt2x00dev, TX_RTY_CFG, reg);
++}
++
++static void rt2800pci_config_duration(struct rt2x00_dev *rt2x00dev,
++				      struct rt2x00lib_conf *libconf)
++{
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
++			   libconf->conf->beacon_int * 16);
++	rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
++}
++
++static void rt2800pci_config_ps(struct rt2x00_dev *rt2x00dev,
++				struct rt2x00lib_conf *libconf)
++{
++	enum dev_state state =
++	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
++		STATE_SLEEP : STATE_AWAKE;
++	u32 reg;
++
++	if (state == STATE_SLEEP) {
++		rt2x00pci_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
++
++		rt2x00pci_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
++		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
++		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
++				   libconf->conf->listen_interval - 1);
++		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
++		rt2x00pci_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
++
++		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
++	} else {
++		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
++
++		rt2x00pci_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
++		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
++		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
++		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
++		rt2x00pci_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
++	}
++}
++
++static void rt2800pci_config(struct rt2x00_dev *rt2x00dev,
++			     struct rt2x00lib_conf *libconf,
++			     const unsigned int flags)
++{
++	/* Always recalculate LNA gain before changing configuration */
++	rt2800pci_config_lna_gain(rt2x00dev, libconf);
++
++	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
++		rt2800pci_config_channel(rt2x00dev, libconf->conf,
++					 &libconf->rf, &libconf->channel);
++	if (flags & IEEE80211_CONF_CHANGE_POWER)
++		rt2800pci_config_txpower(rt2x00dev, libconf->conf->power_level);
++	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
++		rt2800pci_config_retry_limit(rt2x00dev, libconf);
++	if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
++		rt2800pci_config_duration(rt2x00dev, libconf);
++	if (flags & IEEE80211_CONF_CHANGE_PS)
++		rt2800pci_config_ps(rt2x00dev, libconf);
++}
++
++/*
++ * Link tuning
++ */
++static void rt2800pci_link_stats(struct rt2x00_dev *rt2x00dev,
++				 struct link_qual *qual)
++{
++	u32 reg;
++
++	/*
++	 * Update FCS error count from register.
++	 */
++	rt2x00pci_register_read(rt2x00dev, RX_STA_CNT0, &reg);
++	qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
++}
++
++static u8 rt2800pci_get_default_vgc(struct rt2x00_dev *rt2x00dev)
++{
++	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)
++		return 0x2e + rt2x00dev->lna_gain;
++
++	if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
++		return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
++	else
++		return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
++}
++
++static inline void rt2800pci_set_vgc(struct rt2x00_dev *rt2x00dev,
++				     struct link_qual *qual, u8 vgc_level)
++{
++	if (qual->vgc_level != vgc_level) {
++		rt2800pci_bbp_write(rt2x00dev, 66, vgc_level);
++		qual->vgc_level = vgc_level;
++		qual->vgc_level_reg = vgc_level;
++	}
++}
++
++static void rt2800pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
++				  struct link_qual *qual)
++{
++	rt2800pci_set_vgc(rt2x00dev, qual,
++			  rt2800pci_get_default_vgc(rt2x00dev));
++}
++
++static void rt2800pci_link_tuner(struct rt2x00_dev *rt2x00dev,
++				 struct link_qual *qual, const u32 count)
++{
++	if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION)
++		return;
++
++	/*
++	 * When RSSI is better then -80 increase VGC level with 0x10
++	 */
++	rt2800pci_set_vgc(rt2x00dev, qual,
++			  rt2800pci_get_default_vgc(rt2x00dev) +
++			  ((qual->rssi > -80) * 0x10));
++}
++
++/*
++ * Firmware functions
++ */
++static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
++{
++	return FIRMWARE_RT2860;
++}
++
++static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
++				    const u8 *data, const size_t len)
++{
++	u16 fw_crc;
++	u16 crc;
++
++	/*
++	 * Only support 8kb firmware files.
++	 */
++	if (len != 8192)
++		return FW_BAD_LENGTH;
++
++	/*
++	 * The last 2 bytes in the firmware array are the crc checksum itself,
++	 * this means that we should never pass those 2 bytes to the crc
++	 * algorithm.
++	 */
++	fw_crc = (data[len - 2] << 8 | data[len - 1]);
++
++	/*
++	 * Use the crc ccitt algorithm.
++	 * This will return the same value as the legacy driver which
++	 * used bit ordering reversion on the both the firmware bytes
++	 * before input input as well as on the final output.
++	 * Obviously using crc ccitt directly is much more efficient.
++	 */
++	crc = crc_ccitt(~0, data, len - 2);
++
++	/*
++	 * There is a small difference between the crc-itu-t + bitrev and
++	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
++	 * will be swapped, use swab16 to convert the crc to the correct
++	 * value.
++	 */
++	crc = swab16(crc);
++
++	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
++}
++
++static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
++				   const u8 *data, const size_t len)
++{
++	unsigned int i;
++	u32 reg;
++
++	/*
++	 * Wait for stable hardware.
++	 */
++	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
++		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
++		if (reg && reg != ~0)
++			break;
++		msleep(1);
++	}
++
++	if (i == REGISTER_BUSY_COUNT) {
++		ERROR(rt2x00dev, "Unstable hardware.\n");
++		return -EBUSY;
++	}
++
++	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
++	rt2x00pci_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
++
++	/*
++	 * Disable DMA, will be reenabled later when enabling
++	 * the radio.
++	 */
++	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
++	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
++
++	/*
++	 * enable Host program ram write selection
++	 */
++	reg = 0;
++	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
++	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
++
++	/*
++	 * Write firmware to device.
++	 */
++	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
++				      data, len);
++
++	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
++	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
++
++	/*
++	 * Wait for device to stabilize.
++	 */
++	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
++		rt2x00pci_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
++		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
++			break;
++		msleep(1);
++	}
++
++	if (i == REGISTER_BUSY_COUNT) {
++		ERROR(rt2x00dev, "PBF system register not ready.\n");
++		return -EBUSY;
++	}
++
++	/*
++	 * Disable interrupts
++	 */
++	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
++
++	/*
++	 * Initialize BBP R/W access agent
++	 */
++	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
++	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
++
++	return 0;
++}
++
++/*
++ * Initialization functions.
++ */
++static bool rt2800pci_get_entry_state(struct queue_entry *entry)
++{
++	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
++	u32 word;
++
++	if (entry->queue->qid == QID_RX) {
++		rt2x00_desc_read(entry_priv->desc, 1, &word);
++
++		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
++	} else {
++		rt2x00_desc_read(entry_priv->desc, 1, &word);
++
++		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
++	}
++}
++
++static void rt2800pci_clear_entry(struct queue_entry *entry)
++{
++	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
++	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
++	u32 word;
++
++	if (entry->queue->qid == QID_RX) {
++		rt2x00_desc_read(entry_priv->desc, 0, &word);
++		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
++		rt2x00_desc_write(entry_priv->desc, 0, word);
++
++		rt2x00_desc_read(entry_priv->desc, 1, &word);
++		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
++		rt2x00_desc_write(entry_priv->desc, 1, word);
++	} else {
++		rt2x00_desc_read(entry_priv->desc, 1, &word);
++		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
++		rt2x00_desc_write(entry_priv->desc, 1, word);
++	}
++}
++
++static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
++{
++	struct queue_entry_priv_pci *entry_priv;
++	u32 reg;
++
++	/*
++	 * Initialize registers.
++	 */
++	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
++	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
++	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
++	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
++	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
++
++	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
++	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
++	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
++	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
++	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
++
++	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
++	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
++	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
++	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
++	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
++
++	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
++	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
++	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
++	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
++	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
++
++	entry_priv = rt2x00dev->rx->entries[0].priv_data;
++	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
++	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
++	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
++	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
++
++	/*
++	 * Enable global DMA configuration
++	 */
++	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
++	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
++
++	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
++
++	return 0;
++}
++
++static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
++{
++	u32 reg;
++	unsigned int i;
++
++	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
++	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
++
++	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
++	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
++
++	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
++
++	rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
++	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
++	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
++	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
++
++	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
++
++	rt2x00pci_register_read(rt2x00dev, BCN_OFFSET0, &reg);
++	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
++	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
++	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
++	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
++	rt2x00pci_register_write(rt2x00dev, BCN_OFFSET0, reg);
++
++	rt2x00pci_register_read(rt2x00dev, BCN_OFFSET1, &reg);
++	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
++	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
++	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
++	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
++	rt2x00pci_register_write(rt2x00dev, BCN_OFFSET1, reg);
++
++	rt2x00pci_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
++	rt2x00pci_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
++
++	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
++
++	rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 0);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
++	rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
++
++	rt2x00pci_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
++	rt2x00pci_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
++
++	rt2x00pci_register_read(rt2x00dev, TX_LINK_CFG, &reg);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
++	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
++	rt2x00pci_register_write(rt2x00dev, TX_LINK_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
++	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
++	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
++	rt2x00pci_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
++	rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
++	if (rt2x00_rev(&rt2x00dev->chip) >= RT2880E_VERSION &&
++	    rt2x00_rev(&rt2x00dev->chip) < RT3070_VERSION)
++		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
++	else
++		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
++	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
++	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
++	rt2x00pci_register_write(rt2x00dev, MAX_LEN_CFG, reg);
++
++	rt2x00pci_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
++
++	rt2x00pci_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
++	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
++	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
++	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
++	rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
++	rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
++	rt2x00pci_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 8);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1);
++	rt2x00pci_register_write(rt2x00dev, CCK_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 8);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1);
++	rt2x00pci_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
++	rt2x00pci_register_write(rt2x00dev, MM20_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
++	rt2x00pci_register_write(rt2x00dev, MM40_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
++	rt2x00pci_register_write(rt2x00dev, GF20_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
++	rt2x00pci_register_write(rt2x00dev, GF40_PROT_CFG, reg);
++
++	rt2x00pci_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f);
++	rt2x00pci_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
++
++	rt2x00pci_register_read(rt2x00dev, TX_RTS_CFG, &reg);
++	rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
++	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
++			   IEEE80211_MAX_RTS_THRESHOLD);
++	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
++	rt2x00pci_register_write(rt2x00dev, TX_RTS_CFG, reg);
++
++	rt2x00pci_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
++	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
++
++	/*
++	 * ASIC will keep garbage value after boot, clear encryption keys.
++	 */
++	for (i = 0; i < 256; i++) {
++		u32 wcid[2] = { 0xffffffff, 0x00ffffff };
++		rt2x00pci_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
++					      wcid, sizeof(wcid));
++
++		rt2x00pci_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
++		rt2x00pci_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
++	}
++
++	for (i = 0; i < 16; i++)
++		rt2x00pci_register_write(rt2x00dev,
++					 SHARED_KEY_MODE_ENTRY(i), 0);
++
++	/*
++	 * Clear all beacons
++	 * For the Beacon base registers we only need to clear
++	 * the first byte since that byte contains the VALID and OWNER
++	 * bits which (when set to 0) will invalidate the entire beacon.
++	 */
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE4, 0);
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE5, 0);
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE6, 0);
++	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE7, 0);
++
++	rt2x00pci_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
++	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
++	rt2x00pci_register_write(rt2x00dev, HT_FBK_CFG0, reg);
++
++	rt2x00pci_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
++	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
++	rt2x00pci_register_write(rt2x00dev, HT_FBK_CFG1, reg);
++
++	rt2x00pci_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 3);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
++	rt2x00pci_register_write(rt2x00dev, LG_FBK_CFG0, reg);
++
++	rt2x00pci_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
++	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
++	rt2x00pci_register_write(rt2x00dev, LG_FBK_CFG1, reg);
++
++	/*
++	 * We must clear the error counters.
++	 * These registers are cleared on read,
++	 * so we may pass a useless variable to store the value.
++	 */
++	rt2x00pci_register_read(rt2x00dev, RX_STA_CNT0, &reg);
++	rt2x00pci_register_read(rt2x00dev, RX_STA_CNT1, &reg);
++	rt2x00pci_register_read(rt2x00dev, RX_STA_CNT2, &reg);
++	rt2x00pci_register_read(rt2x00dev, TX_STA_CNT0, &reg);
++	rt2x00pci_register_read(rt2x00dev, TX_STA_CNT1, &reg);
++	rt2x00pci_register_read(rt2x00dev, TX_STA_CNT2, &reg);
++
++	return 0;
++}
++
++static int rt2800pci_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
++{
++	unsigned int i;
++	u32 reg;
++
++	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
++		rt2x00pci_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
++		if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
++			return 0;
++
++		udelay(REGISTER_BUSY_DELAY);
++	}
++
++	ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
++	return -EACCES;
++}
++
++static int rt2800pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
++{
++	unsigned int i;
++	u8 value;
++
++	/*
++	 * BBP was enabled after firmware was loaded,
++	 * but we need to reactivate it now.
++	 */
++	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
++	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
++	msleep(1);
++
++	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
++		rt2800pci_bbp_read(rt2x00dev, 0, &value);
++		if ((value != 0xff) && (value != 0x00))
++			return 0;
++		udelay(REGISTER_BUSY_DELAY);
++	}
++
++	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
++	return -EACCES;
++}
++
++static int rt2800pci_init_bbp(struct rt2x00_dev *rt2x00dev)
++{
++	unsigned int i;
++	u16 eeprom;
++	u8 reg_id;
++	u8 value;
++
++	if (unlikely(rt2800pci_wait_bbp_rf_ready(rt2x00dev) ||
++		     rt2800pci_wait_bbp_ready(rt2x00dev)))
++		return -EACCES;
++
++	rt2800pci_bbp_write(rt2x00dev, 65, 0x2c);
++	rt2800pci_bbp_write(rt2x00dev, 66, 0x38);
++	rt2800pci_bbp_write(rt2x00dev, 69, 0x12);
++	rt2800pci_bbp_write(rt2x00dev, 70, 0x0a);
++	rt2800pci_bbp_write(rt2x00dev, 73, 0x10);
++	rt2800pci_bbp_write(rt2x00dev, 81, 0x37);
++	rt2800pci_bbp_write(rt2x00dev, 82, 0x62);
++	rt2800pci_bbp_write(rt2x00dev, 83, 0x6a);
++	rt2800pci_bbp_write(rt2x00dev, 84, 0x99);
++	rt2800pci_bbp_write(rt2x00dev, 86, 0x00);
++	rt2800pci_bbp_write(rt2x00dev, 91, 0x04);
++	rt2800pci_bbp_write(rt2x00dev, 92, 0x00);
++	rt2800pci_bbp_write(rt2x00dev, 103, 0x00);
++	rt2800pci_bbp_write(rt2x00dev, 105, 0x05);
++
++	if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
++		rt2800pci_bbp_write(rt2x00dev, 69, 0x16);
++		rt2800pci_bbp_write(rt2x00dev, 73, 0x12);
++	}
++
++	if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION)
++		rt2800pci_bbp_write(rt2x00dev, 84, 0x19);
++
++	if (rt2x00_rt(&rt2x00dev->chip, RT3052)) {
++		rt2800pci_bbp_write(rt2x00dev, 31, 0x08);
++		rt2800pci_bbp_write(rt2x00dev, 78, 0x0e);
++		rt2800pci_bbp_write(rt2x00dev, 80, 0x08);
++	}
++
++	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
++		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
++
++		if (eeprom != 0xffff && eeprom != 0x0000) {
++			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
++			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
++			rt2800pci_bbp_write(rt2x00dev, reg_id, value);
++		}
++	}
++
++	return 0;
++}
++
++static u8 rt2800pci_init_rx_filter(struct rt2x00_dev *rt2x00dev,
++				   bool bw40, u8 rfcsr24, u8 filter_target)
++{
++	unsigned int i;
++	u8 bbp;
++	u8 rfcsr;
++	u8 passband;
++	u8 stopband;
++	u8 overtuned = 0;
++
++	rt2800pci_rfcsr_write(rt2x00dev, 24, rfcsr24);
++
++	rt2800pci_bbp_read(rt2x00dev, 4, &bbp);
++	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
++	rt2800pci_bbp_write(rt2x00dev, 4, bbp);
++
++	rt2800pci_rfcsr_read(rt2x00dev, 22, &rfcsr);
++	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
++	rt2800pci_rfcsr_write(rt2x00dev, 22, rfcsr);
++
++	/*
++	 * Set power & frequency of passband test tone
++	 */
++	rt2800pci_bbp_write(rt2x00dev, 24, 0);
++
++	for (i = 0; i < 100; i++) {
++		rt2800pci_bbp_write(rt2x00dev, 25, 0x90);
++		msleep(1);
++
++		rt2800pci_bbp_read(rt2x00dev, 55, &passband);
++		if (passband)
++			break;
++	}
++
++	/*
++	 * Set power & frequency of stopband test tone
++	 */
++	rt2800pci_bbp_write(rt2x00dev, 24, 0x06);
++
++	for (i = 0; i < 100; i++) {
++		rt2800pci_bbp_write(rt2x00dev, 25, 0x90);
++		msleep(1);
++
++		rt2800pci_bbp_read(rt2x00dev, 55, &stopband);
++
++		if ((passband - stopband) <= filter_target) {
++			rfcsr24++;
++			overtuned += ((passband - stopband) == filter_target);
++		} else
++			break;
++
++		rt2800pci_rfcsr_write(rt2x00dev, 24, rfcsr24);
++	}
++
++	rfcsr24 -= !!overtuned;
++
++	rt2800pci_rfcsr_write(rt2x00dev, 24, rfcsr24);
++	return rfcsr24;
++}
++
++static int rt2800pci_init_rfcsr(struct rt2x00_dev *rt2x00dev)
++{
++	u8 rfcsr;
++	u8 bbp;
++	
++	if (!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF3022))
++		return 0;
++
++	/*
++	 * Init RF calibration.
++	 */
++	rt2800pci_rfcsr_read(rt2x00dev, 30, &rfcsr);
++	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
++	rt2800pci_rfcsr_write(rt2x00dev, 30, rfcsr);
++	msleep(1);
++	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
++	rt2800pci_rfcsr_write(rt2x00dev, 30, rfcsr);
++
++	rt2800pci_rfcsr_write(rt2x00dev, 0, 0x50);
++	rt2800pci_rfcsr_write(rt2x00dev, 1, 0x01);
++	rt2800pci_rfcsr_write(rt2x00dev, 2, 0xf7);
++	rt2800pci_rfcsr_write(rt2x00dev, 3, 0x75);
++	rt2800pci_rfcsr_write(rt2x00dev, 4, 0x40);
++	rt2800pci_rfcsr_write(rt2x00dev, 5, 0x03);
++	rt2800pci_rfcsr_write(rt2x00dev, 6, 0x02);
++	rt2800pci_rfcsr_write(rt2x00dev, 7, 0x50);
++	rt2800pci_rfcsr_write(rt2x00dev, 8, 0x39);
++	rt2800pci_rfcsr_write(rt2x00dev, 9, 0x0f);
++	rt2800pci_rfcsr_write(rt2x00dev, 10, 0x60);
++	rt2800pci_rfcsr_write(rt2x00dev, 11, 0x21);
++	rt2800pci_rfcsr_write(rt2x00dev, 12, 0x75);
++	rt2800pci_rfcsr_write(rt2x00dev, 13, 0x75);
++	rt2800pci_rfcsr_write(rt2x00dev, 14, 0x90);
++	rt2800pci_rfcsr_write(rt2x00dev, 15, 0x58);
++	rt2800pci_rfcsr_write(rt2x00dev, 16, 0xb3);
++	rt2800pci_rfcsr_write(rt2x00dev, 17, 0x92);
++	rt2800pci_rfcsr_write(rt2x00dev, 18, 0x2c);
++	rt2800pci_rfcsr_write(rt2x00dev, 19, 0x02);
++	rt2800pci_rfcsr_write(rt2x00dev, 20, 0xba);
++	rt2800pci_rfcsr_write(rt2x00dev, 21, 0xdb);
++	rt2800pci_rfcsr_write(rt2x00dev, 22, 0x00);
++	rt2800pci_rfcsr_write(rt2x00dev, 23, 0x31);
++	rt2800pci_rfcsr_write(rt2x00dev, 24, 0x08);
++	rt2800pci_rfcsr_write(rt2x00dev, 25, 0x01);
++	rt2800pci_rfcsr_write(rt2x00dev, 26, 0x25);
++	rt2800pci_rfcsr_write(rt2x00dev, 27, 0x23);
++	rt2800pci_rfcsr_write(rt2x00dev, 28, 0x13);
++	rt2800pci_rfcsr_write(rt2x00dev, 29, 0x83);
++
++	/*
++	 * Set RX Filter calibration for 20MHz and 40MHz
++	 */
++	rt2x00dev->calibration[0] =
++	    rt2800pci_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
++	rt2x00dev->calibration[1] =
++	    rt2800pci_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
++
++	/*
++	 * Set back to initial state
++	 */
++	rt2800pci_bbp_write(rt2x00dev, 24, 0);
++
++	rt2800pci_rfcsr_read(rt2x00dev, 22, &rfcsr);
++	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
++	rt2800pci_rfcsr_write(rt2x00dev, 22, rfcsr);
++
++	/*
++	 * set BBP back to BW20
++	 */
++	rt2800pci_bbp_read(rt2x00dev, 4, &bbp);
++	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
++	rt2800pci_bbp_write(rt2x00dev, 4, bbp);
++
++	return 0;
++}
++
++/*
++ * Device state switch handlers.
++ */
++static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
++				enum dev_state state)
++{
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
++	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
++			   (state == STATE_RADIO_RX_ON) ||
++			   (state == STATE_RADIO_RX_ON_LINK));
++	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
++}
++
++static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
++				 enum dev_state state)
++{
++	int mask = (state == STATE_RADIO_IRQ_ON);
++	u32 reg;
++
++	/*
++	 * When interrupts are being enabled, the interrupt registers
++	 * should clear the register to assure a clean state.
++	 */
++	if (state == STATE_RADIO_IRQ_ON) {
++		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
++		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
++	}
++
++	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
++	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
++	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
++}
++
++static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
++{
++	unsigned int i;
++	u32 reg;
++
++	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
++		rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
++		if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
++		    !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
++			return 0;
++
++		msleep(1);
++	}
++
++	ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
++	return -EACCES;
++}
++
++static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
++{
++	u32 reg;
++	u16 word;
++
++	/*
++	 * Initialize all registers.
++	 */
++	if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
++		     rt2800pci_init_queues(rt2x00dev) ||
++		     rt2800pci_init_registers(rt2x00dev) ||
++		     rt2800pci_wait_wpdma_ready(rt2x00dev) ||
++		     rt2800pci_init_bbp(rt2x00dev) ||
++		     rt2800pci_init_rfcsr(rt2x00dev)))
++		return -EIO;
++
++	/*
++	 * Send signal to firmware during boot time.
++	 */
++	rt2800pci_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
++
++	/*
++	 * Enable RX.
++	 */
++	rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
++	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
++	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
++	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
++
++	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
++	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
++	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
++	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
++	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
++
++	/*
++	 * Initialize LED control
++	 */
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
++	rt2800pci_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
++			      word & 0xff, (word >> 8) & 0xff);
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
++	rt2800pci_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
++			      word & 0xff, (word >> 8) & 0xff);
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
++	rt2800pci_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
++			      word & 0xff, (word >> 8) & 0xff);
++
++	return 0;
++}
++
++static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
++{
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
++	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
++	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
++
++	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
++	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
++	rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
++
++	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
++
++	/* Wait for DMA, ignore error */
++	rt2800pci_wait_wpdma_ready(rt2x00dev);
++}
++
++static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
++			       enum dev_state state)
++{
++	rt2x00pci_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
++
++	if (state == STATE_AWAKE) {
++		rt2800pci_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
++		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
++	} else
++		rt2800pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
++
++	return 0;
++}
++
++static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
++				      enum dev_state state)
++{
++	int retval = 0;
++
++	switch (state) {
++	case STATE_RADIO_ON:
++		/*
++		 * Before the radio can be enabled, the device first has
++		 * to be woken up. After that it needs a bit of time
++		 * to be fully awake and the radio can be enabled.
++		 */
++		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
++		msleep(1);
++		retval = rt2800pci_enable_radio(rt2x00dev);
++		break;
++	case STATE_RADIO_OFF:
++		/*
++		 * After the radio has been disablee, the device should
++		 * be put to sleep for powersaving.
++		 */
++		rt2800pci_disable_radio(rt2x00dev);
++		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
++		break;
++	case STATE_RADIO_RX_ON:
++	case STATE_RADIO_RX_ON_LINK:
++	case STATE_RADIO_RX_OFF:
++	case STATE_RADIO_RX_OFF_LINK:
++		rt2800pci_toggle_rx(rt2x00dev, state);
++		break;
++	case STATE_RADIO_IRQ_ON:
++	case STATE_RADIO_IRQ_OFF:
++		rt2800pci_toggle_irq(rt2x00dev, state);
++		break;
++	case STATE_DEEP_SLEEP:
++	case STATE_SLEEP:
++	case STATE_STANDBY:
++	case STATE_AWAKE:
++		retval = rt2800pci_set_state(rt2x00dev, state);
++		break;
++	default:
++		retval = -ENOTSUPP;
++		break;
++	}
++
++	if (unlikely(retval))
++		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
++		      state, retval);
++
++	return retval;
++}
++
++/*
++ * TX descriptor initialization
++ */
++static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
++				    struct sk_buff *skb,
++				    struct txentry_desc *txdesc)
++{
++	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
++	__le32 *txd = skbdesc->desc;
++	__le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
++	u32 word;
++
++	/*
++	 * Initialize TX Info descriptor
++	 */
++	rt2x00_desc_read(txwi, 0, &word);
++	rt2x00_set_field32(&word, TXWI_W0_FRAG,
++			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
++	rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
++	rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
++	rt2x00_set_field32(&word, TXWI_W0_TS,
++			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
++	rt2x00_set_field32(&word, TXWI_W0_AMPDU,
++			   test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
++	rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
++	rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
++	rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
++	rt2x00_set_field32(&word, TXWI_W0_BW,
++			   test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
++	rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
++			   test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
++	rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
++	rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
++	rt2x00_desc_write(txwi, 0, word);
++
++	rt2x00_desc_read(txwi, 1, &word);
++	rt2x00_set_field32(&word, TXWI_W1_ACK,
++			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
++	rt2x00_set_field32(&word, TXWI_W1_NSEQ,
++			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
++	rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
++	rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
++			   test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
++			       txdesc->key_idx : 0xff);
++	rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
++			   skb->len - txdesc->l2pad);
++	rt2x00_set_field32(&word, TXWI_W1_PACKETID,
++			   skbdesc->entry->queue->qid);
++	rt2x00_desc_write(txwi, 1, word);
++
++	/*
++	 * Always write 0 to IV/EIV fields, hardware will insert the IV
++	 * from the IVEIV register when ENTRY_TXD_ENCRYPT_IV is set to 0.
++	 * When ENTRY_TXD_ENCRYPT_IV is set to 1 it will use the IV data
++	 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
++	 * crypto entry in the registers should be used to encrypt the frame.
++	 */
++	_rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
++	_rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
++
++	/*
++	 * Initialize TX descriptor
++	 */
++	rt2x00_desc_read(txd, 0, &word);
++	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
++	rt2x00_desc_write(txd, 0, word);
++
++	rt2x00_desc_read(txd, 1, &word);
++	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
++	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, 1);
++	rt2x00_set_field32(&word, TXD_W1_BURST,
++			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
++	rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
++			   rt2x00dev->hw->extra_tx_headroom);
++	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0,
++			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
++	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
++	rt2x00_desc_write(txd, 1, word);
++
++	rt2x00_desc_read(txd, 2, &word);
++	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
++			   skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
++	rt2x00_desc_write(txd, 2, word);
++
++	rt2x00_desc_read(txd, 3, &word);
++	rt2x00_set_field32(&word, TXD_W3_WIV,
++			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
++	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
++	rt2x00_desc_write(txd, 3, word);
++}
++
++/*
++ * TX data initialization
++ */
++static void rt2800pci_write_beacon(struct queue_entry *entry)
++{
++	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
++	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
++	unsigned int beacon_base;
++	u32 reg;
++
++	/*
++	 * Disable beaconing while we are reloading the beacon data,
++	 * otherwise we might be sending out invalid data.
++	 */
++	rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
++	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
++	rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
++
++	/*
++	 * Write entire beacon with descriptor to register.
++	 */
++	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
++	rt2x00pci_register_multiwrite(rt2x00dev,
++				      beacon_base,
++				      skbdesc->desc, skbdesc->desc_len);
++	rt2x00pci_register_multiwrite(rt2x00dev,
++				      beacon_base + skbdesc->desc_len,
++				      entry->skb->data, entry->skb->len);
++
++	/*
++	 * Clean up beacon skb.
++	 */
++	dev_kfree_skb_any(entry->skb);
++	entry->skb = NULL;
++}
++
++static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
++				    const enum data_queue_qid queue_idx)
++{
++	struct data_queue *queue;
++	unsigned int idx, qidx = 0;
++	u32 reg;
++
++	if (queue_idx == QID_BEACON) {
++		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
++		if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
++			rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
++			rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
++			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
++			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
++		}
++		return;
++	}
++
++	if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
++		return;
++
++	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
++	idx = queue->index[Q_INDEX];
++
++	if (queue_idx == QID_MGMT)
++		qidx = 5;
++	else
++		qidx = queue_idx;
++
++	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
++}
++
++static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
++				    const enum data_queue_qid qid)
++{
++	u32 reg;
++
++	if (qid == QID_BEACON) {
++		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, 0);
++		return;
++	}
++
++	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
++	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
++	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
++}
++
++/*
++ * RX control handlers
++ */
++static void rt2800pci_fill_rxdone(struct queue_entry *entry,
++				  struct rxdone_entry_desc *rxdesc)
++{
++	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
++	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
++	__le32 *rxd = entry_priv->desc;
++	__le32 *rxwi = (__le32 *)entry->skb->data;
++	u32 rxd3;
++	u32 rxwi0;
++	u32 rxwi1;
++	u32 rxwi2;
++	u32 rxwi3;
++
++	rt2x00_desc_read(rxd, 3, &rxd3);
++	rt2x00_desc_read(rxwi, 0, &rxwi0);
++	rt2x00_desc_read(rxwi, 1, &rxwi1);
++	rt2x00_desc_read(rxwi, 2, &rxwi2);
++	rt2x00_desc_read(rxwi, 3, &rxwi3);
++
++	if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
++		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
++
++	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
++		/*
++		 * Unfortunately we don't know the cipher type used during
++		 * decryption. This prevents us from correct providing
++		 * correct statistics through debugfs.
++		 */
++		rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
++		rxdesc->cipher_status =
++		    rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
++	}
++
++	if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
++		/*
++		 * Hardware has stripped IV/EIV data from 802.11 frame during
++		 * decryption. Unfortunately the descriptor doesn't contain
++		 * any fields with the EIV/IV data either, so they can't
++		 * be restored by rt2x00lib.
++		 */
++		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
++
++		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
++			rxdesc->flags |= RX_FLAG_DECRYPTED;
++		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
++			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
++	}
++
++	if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
++		rxdesc->dev_flags |= RXDONE_MY_BSS;
++
++	if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD))
++		rxdesc->dev_flags |= RXDONE_L2PAD;
++
++	if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
++		rxdesc->flags |= RX_FLAG_SHORT_GI;
++
++	if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
++		rxdesc->flags |= RX_FLAG_40MHZ;
++
++	/*
++	 * Detect RX rate, always use MCS as signal type.
++	 */
++	rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
++	rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
++	rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
++
++	/*
++	 * Mask of 0x8 bit to remove the short preamble flag.
++	 */
++	if (rxdesc->rate_mode == RATE_MODE_CCK)
++		rxdesc->signal &= ~0x8;
++
++	rxdesc->rssi =
++	    (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
++	     rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
++
++	rxdesc->noise =
++	    (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
++	     rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
++
++	rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
++
++	/*
++	 * Set RX IDX in register to inform hardware that we have handled
++	 * this entry and it is available for reuse again.
++	 */
++	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
++
++	/*
++	 * Remove TXWI descriptor from start of buffer.
++	 */
++	skb_pull(entry->skb, RXWI_DESC_SIZE);
++	skb_trim(entry->skb, rxdesc->size);
++}
++
++/*
++ * Interrupt functions.
++ */
++static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
++{
++	struct data_queue *queue;
++	struct queue_entry *entry;
++	struct queue_entry *entry_done;
++	struct queue_entry_priv_pci *entry_priv;
++	struct txdone_entry_desc txdesc;
++	u32 word;
++	u32 reg;
++	u32 old_reg;
++	int type;
++	int index;
++
++	/*
++	 * During each loop we will compare the freshly read
++	 * TX_STA_FIFO register value with the value read from
++	 * the previous loop. If the 2 values are equal then
++	 * we should stop processing because the chance it
++	 * quite big that the device has been unplugged and
++	 * we risk going into an endless loop.
++	 */
++	old_reg = 0;
++
++	while (1) {
++		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &reg);
++		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
++			break;
++
++		if (old_reg == reg)
++			break;
++		old_reg = reg;
++
++		/*
++		 * Skip this entry when it contains an invalid
++		 * queue identication number.
++		 */
++		type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
++		queue = rt2x00queue_get_queue(rt2x00dev, type);
++		if (unlikely(!queue))
++			continue;
++
++		/*
++		 * Skip this entry when it contains an invalid
++		 * index number.
++		 */
++		index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
++		if (unlikely(index >= queue->limit))
++			continue;
++
++		entry = &queue->entries[index];
++		entry_priv = entry->priv_data;
++		rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
++
++		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
++		while (entry != entry_done) {
++			/*
++			 * Catch up.
++			 * Just report any entries we missed as failed.
++			 */
++			WARNING(rt2x00dev,
++				"TX status report missed for entry %d\n",
++				entry_done->entry_idx);
++
++			txdesc.flags = 0;
++			__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
++			txdesc.retry = 0;
++
++			rt2x00lib_txdone(entry_done, &txdesc);
++			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
++		}
++
++		/*
++		 * Obtain the status about this packet.
++		 */
++		txdesc.flags = 0;
++		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
++			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
++		else
++			__set_bit(TXDONE_FAILURE, &txdesc.flags);
++		txdesc.retry = rt2x00_get_field32(word, TXWI_W0_MCS);
++
++		rt2x00lib_txdone(entry, &txdesc);
++	}
++}
++
++static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
++{
++	struct rt2x00_dev *rt2x00dev = dev_instance;
++	u32 reg;
++
++	/* Read status and ACK all interrupts */
++	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
++	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
++
++	if (!reg)
++		return IRQ_NONE;
++
++	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
++		return IRQ_HANDLED;
++
++	/*
++	 * 1 - Rx ring done interrupt.
++	 */
++	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
++		rt2x00pci_rxdone(rt2x00dev);
++
++	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
++		rt2800pci_txdone(rt2x00dev);
++
++	return IRQ_HANDLED;
++}
++
++/*
++ * Device probe functions.
++ */
++static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
++{
++	u16 word;
++	u8 *mac;
++	u8 default_lna_gain;
++
++	/*
++	 * Read EEPROM into buffer
++	 */
++	switch(rt2x00dev->chip.rt) {
++	case RT2880:
++	case RT3052:
++		rt2800pci_read_eeprom_soc(rt2x00dev);
++		break;
++	default:
++		rt2800pci_read_eeprom_pci(rt2x00dev);
++		break;
++	}
++
++	/*
++	 * Start validation of the data that has been read.
++	 */
++	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
++	if (!is_valid_ether_addr(mac)) {
++		DECLARE_MAC_BUF(macbuf);
++
++		random_ether_addr(mac);
++		EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
++	}
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
++	if (word == 0xffff) {
++		rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
++		rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
++		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
++		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
++		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
++	} else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
++		/*
++		 * There is a max of 2 RX streams for RT2860 series
++		 */
++		if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
++			rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
++		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
++	}
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
++	if (word == 0xffff) {
++		rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
++		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
++		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
++		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
++	}
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
++	if ((word & 0x00ff) == 0x00ff) {
++		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
++		rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
++				   LED_MODE_TXRX_ACTIVITY);
++		rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
++		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
++		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
++		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
++		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
++		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
++	}
++
++	/*
++	 * During the LNA validation we are going to use
++	 * lna0 as correct value. Note that EEPROM_LNA
++	 * is never validated.
++	 */
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
++	default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
++	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
++		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
++	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
++		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
++	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
++	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
++		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
++	if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
++	    rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
++		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
++				   default_lna_gain);
++	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
++	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
++		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
++	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
++		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
++	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
++	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
++		rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
++	if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
++	    rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
++		rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
++				   default_lna_gain);
++	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
++
++	return 0;
++}
++
++static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
++{
++	u32 reg;
++	u16 value;
++	u16 eeprom;
++
++	/*
++	 * Read EEPROM word for configuration.
++	 */
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
++
++	/*
++	 * Identify RF chipset.
++	 */
++	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
++	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
++	rt2x00_set_chip_rf(rt2x00dev, value, reg);
++
++	if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF2850) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF2720) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF2750) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF3020) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF2020) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
++	    !rt2x00_rf(&rt2x00dev->chip, RF3022)) {
++		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
++		return -ENODEV;
++	}
++
++	/*
++	 * Identify default antenna configuration.
++	 */
++	rt2x00dev->default_ant.tx =
++	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
++	rt2x00dev->default_ant.rx =
++	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
++
++	/*
++	 * Read frequency offset and RF programming sequence.
++	 */
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
++	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
++
++	/*
++	 * Read external LNA informations.
++	 */
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
++
++	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
++		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
++	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
++		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
++
++	/*
++	 * Detect if this device has an hardware controlled radio.
++	 */
++#ifdef CONFIG_RT2X00_LIB_RFKILL
++	if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
++		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
++#endif /* CONFIG_RT2X00_LIB_RFKILL */
++
++	/*
++	 * Store led settings, for correct led behaviour.
++	 */
++#ifdef CONFIG_RT2X00_LIB_LEDS
++	rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
++	rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
++	rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
++#endif /* CONFIG_RT2X00_LIB_LEDS */
++
++	return 0;
++}
++
++/*
++ * RF value list for rt2860
++ * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
++ */
++static const struct rf_channel rf_vals[] = {
++	{ 1,  0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
++	{ 2,  0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
++	{ 3,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
++	{ 4,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
++	{ 5,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
++	{ 6,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
++	{ 7,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
++	{ 8,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
++	{ 9,  0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
++	{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
++	{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
++	{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
++	{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
++	{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
++
++	/* 802.11 UNI / HyperLan 2 */
++	{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
++	{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
++	{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
++	{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
++	{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
++	{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
++	{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
++	{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
++	{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
++	{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
++	{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
++	{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
++
++	/* 802.11 HyperLan 2 */
++	{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
++	{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
++	{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
++	{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
++	{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
++	{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
++	{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
++	{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
++	{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
++	{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
++	{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
++	{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
++	{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
++	{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
++	{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
++	{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
++
++	/* 802.11 UNII */
++	{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
++	{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
++	{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
++	{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
++	{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
++	{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
++	{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
++
++	/* 802.11 Japan */
++	{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
++	{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
++	{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
++	{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
++	{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
++	{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
++	{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
++};
++
++static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
++{
++	struct hw_mode_spec *spec = &rt2x00dev->spec;
++	struct channel_info *info;
++	char *tx_power1;
++	char *tx_power2;
++	unsigned int i;
++	u16 eeprom;
++
++	/*
++	 * Initialize all hw fields.
++	 */
++	rt2x00dev->hw->flags =
++	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
++	    IEEE80211_HW_SIGNAL_DBM |
++	    IEEE80211_HW_SUPPORTS_PS |
++	    IEEE80211_HW_PS_NULLFUNC_STACK;
++	rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;
++
++	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
++	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
++				rt2x00_eeprom_addr(rt2x00dev,
++						   EEPROM_MAC_ADDR_0));
++
++	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
++
++	/*
++	 * Initialize hw_mode information.
++	 */
++	spec->supported_bands = SUPPORT_BAND_2GHZ;
++	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
++
++	if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
++	    rt2x00_rf(&rt2x00dev->chip, RF2720) ||
++	    rt2x00_rf(&rt2x00dev->chip, RF3021) ||
++	    rt2x00_rf(&rt2x00dev->chip, RF3022)) {
++		spec->num_channels = 14;
++		spec->channels = rf_vals;
++	} else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
++		   rt2x00_rf(&rt2x00dev->chip, RF2750)) {
++		spec->supported_bands |= SUPPORT_BAND_5GHZ;
++		spec->num_channels = ARRAY_SIZE(rf_vals);
++		spec->channels = rf_vals;
++	}
++
++	/*
++	 * Initialize HT information.
++	 */
++	spec->ht.ht_supported = true;
++	spec->ht.cap =
++	    IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
++	    IEEE80211_HT_CAP_GRN_FLD |
++	    IEEE80211_HT_CAP_SGI_20 |
++	    IEEE80211_HT_CAP_SGI_40 |
++	    IEEE80211_HT_CAP_TX_STBC |
++	    IEEE80211_HT_CAP_RX_STBC |
++	    IEEE80211_HT_CAP_PSMP_SUPPORT;
++	spec->ht.ampdu_factor = 3;
++	spec->ht.ampdu_density = 4;
++	spec->ht.mcs.tx_params =
++	    IEEE80211_HT_MCS_TX_DEFINED |
++	    IEEE80211_HT_MCS_TX_RX_DIFF |
++	    ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
++		IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
++
++	switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
++	case 3:
++		spec->ht.mcs.rx_mask[2] = 0xff;
++	case 2:
++		spec->ht.mcs.rx_mask[1] = 0xff;
++	case 1:
++		spec->ht.mcs.rx_mask[0] = 0xff;
++		spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
++		break;
++	}
++
++	/*
++	 * Create channel information array
++	 */
++	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
++	if (!info)
++		return -ENOMEM;
++
++	spec->channels_info = info;
++
++	tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
++	tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
++
++	for (i = 0; i < 14; i++) {
++		info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
++		info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
++	}
++
++	if (spec->num_channels > 14) {
++		tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
++		tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
++
++		for (i = 14; i < spec->num_channels; i++) {
++			info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
++			info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
++		}
++	}
++
++	return 0;
++}
++
++static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
++{
++	int retval;
++
++	/*
++	 * Allocate eeprom data.
++	 */
++	retval = rt2800pci_validate_eeprom(rt2x00dev);
++	if (retval)
++		return retval;
++
++	retval = rt2800pci_init_eeprom(rt2x00dev);
++	if (retval)
++		return retval;
++
++	/*
++	 * Initialize hw specifications.
++	 */
++	retval = rt2800pci_probe_hw_mode(rt2x00dev);
++	if (retval)
++		return retval;
++
++	/*
++	 * This device requires firmware.
++	 */
++	if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
++	    !rt2x00_rt(&rt2x00dev->chip, RT3052))
++		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
++	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
++	if (!modparam_nohwcrypt)
++		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
++
++	/*
++	 * Set the rssi offset.
++	 */
++	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
++
++	return 0;
++}
++
++/*
++ * IEEE80211 stack callback functions.
++ */
++static void rt2800pci_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx,
++				   u32 *iv32, u16 *iv16)
++{
++	struct rt2x00_dev *rt2x00dev = hw->priv;
++	struct mac_iveiv_entry iveiv_entry;
++	u32 offset;
++
++	offset = MAC_IVEIV_ENTRY(hw_key_idx);
++	rt2x00pci_register_multiread(rt2x00dev, offset,
++				      &iveiv_entry, sizeof(iveiv_entry));
++
++	memcpy(&iveiv_entry.iv[0], iv16, sizeof(iv16));
++	memcpy(&iveiv_entry.iv[4], iv32, sizeof(iv32));
++}
++
++static int rt2800pci_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
++{
++	struct rt2x00_dev *rt2x00dev = hw->priv;
++	u32 reg;
++	bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
++
++	rt2x00pci_register_read(rt2x00dev, TX_RTS_CFG, &reg);
++	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
++	rt2x00pci_register_write(rt2x00dev, TX_RTS_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
++	rt2x00pci_register_write(rt2x00dev, CCK_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
++	rt2x00pci_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
++	rt2x00pci_register_write(rt2x00dev, MM20_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
++	rt2x00pci_register_write(rt2x00dev, MM40_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
++	rt2x00pci_register_write(rt2x00dev, GF20_PROT_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
++	rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
++	rt2x00pci_register_write(rt2x00dev, GF40_PROT_CFG, reg);
++
++	return 0;
++}
++
++static int rt2800pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
++			     const struct ieee80211_tx_queue_params *params)
++{
++	struct rt2x00_dev *rt2x00dev = hw->priv;
++	struct data_queue *queue;
++	struct rt2x00_field32 field;
++	int retval;
++	u32 reg;
++	u32 offset;
++
++	/*
++	 * First pass the configuration through rt2x00lib, that will
++	 * update the queue settings and validate the input. After that
++	 * we are free to update the registers based on the value
++	 * in the queue parameter.
++	 */
++	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
++	if (retval)
++		return retval;
++
++	/*
++	 * We only need to perform additional register initialization
++	 * for WMM queues/
++	 */
++	if (queue_idx >= 4)
++		return 0;
++
++	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
++
++	/* Update WMM TXOP register */
++	offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
++	field.bit_offset = (queue_idx & 1) * 16;
++	field.bit_mask = 0xffff << field.bit_offset;
++
++	rt2x00pci_register_read(rt2x00dev, offset, &reg);
++	rt2x00_set_field32(&reg, field, queue->txop);
++	rt2x00pci_register_write(rt2x00dev, offset, reg);
++
++	/* Update WMM registers */
++	field.bit_offset = queue_idx * 4;
++	field.bit_mask = 0xf << field.bit_offset;
++
++	rt2x00pci_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
++	rt2x00_set_field32(&reg, field, queue->aifs);
++	rt2x00pci_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
++	rt2x00_set_field32(&reg, field, queue->cw_min);
++	rt2x00pci_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
++
++	rt2x00pci_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
++	rt2x00_set_field32(&reg, field, queue->cw_max);
++	rt2x00pci_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
++
++	/* Update EDCA registers */
++	offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
++
++	rt2x00pci_register_read(rt2x00dev, offset, &reg);
++	rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
++	rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
++	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
++	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
++	rt2x00pci_register_write(rt2x00dev, offset, reg);
++
++	return 0;
++}
++
++static u64 rt2800pci_get_tsf(struct ieee80211_hw *hw)
++{
++	struct rt2x00_dev *rt2x00dev = hw->priv;
++	u64 tsf;
++	u32 reg;
++
++	rt2x00pci_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
++	tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
++	rt2x00pci_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
++	tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
++
++	return tsf;
++}
++
++static const struct ieee80211_ops rt2800pci_mac80211_ops = {
++	.tx			= rt2x00mac_tx,
++	.start			= rt2x00mac_start,
++	.stop			= rt2x00mac_stop,
++	.add_interface		= rt2x00mac_add_interface,
++	.remove_interface	= rt2x00mac_remove_interface,
++	.config			= rt2x00mac_config,
++	.config_interface	= rt2x00mac_config_interface,
++	.configure_filter	= rt2x00mac_configure_filter,
++	.set_key		= rt2x00mac_set_key,
++	.get_stats		= rt2x00mac_get_stats,
++	.get_tkip_seq		= rt2800pci_get_tkip_seq,
++	.set_rts_threshold	= rt2800pci_set_rts_threshold,
++	.bss_info_changed	= rt2x00mac_bss_info_changed,
++	.conf_tx		= rt2800pci_conf_tx,
++	.get_tx_stats		= rt2x00mac_get_tx_stats,
++	.get_tsf		= rt2800pci_get_tsf,
++};
++
++static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
++	.irq_handler		= rt2800pci_interrupt,
++	.probe_hw		= rt2800pci_probe_hw,
++	.get_firmware_name	= rt2800pci_get_firmware_name,
++	.check_firmware		= rt2800pci_check_firmware,
++	.load_firmware		= rt2800pci_load_firmware,
++	.initialize		= rt2x00pci_initialize,
++	.uninitialize		= rt2x00pci_uninitialize,
++	.get_entry_state	= rt2800pci_get_entry_state,
++	.clear_entry		= rt2800pci_clear_entry,
++	.set_device_state	= rt2800pci_set_device_state,
++	.rfkill_poll		= rt2800pci_rfkill_poll,
++	.link_stats		= rt2800pci_link_stats,
++	.reset_tuner		= rt2800pci_reset_tuner,
++	.link_tuner		= rt2800pci_link_tuner,
++	.write_tx_desc		= rt2800pci_write_tx_desc,
++	.write_tx_data		= rt2x00pci_write_tx_data,
++	.write_beacon		= rt2800pci_write_beacon,
++	.kick_tx_queue		= rt2800pci_kick_tx_queue,
++	.kill_tx_queue		= rt2800pci_kill_tx_queue,
++	.fill_rxdone		= rt2800pci_fill_rxdone,
++	.config_shared_key	= rt2800pci_config_shared_key,
++	.config_pairwise_key	= rt2800pci_config_pairwise_key,
++	.config_filter		= rt2800pci_config_filter,
++	.config_intf		= rt2800pci_config_intf,
++	.config_erp		= rt2800pci_config_erp,
++	.config_ant		= rt2800pci_config_ant,
++	.config			= rt2800pci_config,
++};
++
++static const struct data_queue_desc rt2800pci_queue_rx = {
++	.entry_num		= RX_ENTRIES,
++	.data_size		= AGGREGATION_SIZE,
++	.desc_size		= RXD_DESC_SIZE,
++	.priv_size		= sizeof(struct queue_entry_priv_pci),
++};
++
++static const struct data_queue_desc rt2800pci_queue_tx = {
++	.entry_num		= TX_ENTRIES,
++	.data_size		= AGGREGATION_SIZE,
++	.desc_size		= TXD_DESC_SIZE,
++	.priv_size		= sizeof(struct queue_entry_priv_pci),
++};
++
++static const struct data_queue_desc rt2800pci_queue_bcn = {
++	.entry_num		= 8 * BEACON_ENTRIES,
++	.data_size		= 0, /* No DMA required for beacons */
++	.desc_size		= TXWI_DESC_SIZE,
++	.priv_size		= sizeof(struct queue_entry_priv_pci),
++};
++
++static const struct rt2x00_ops rt2800pci_ops = {
++	.name		= KBUILD_MODNAME,
++	.max_sta_intf	= 1,
++	.max_ap_intf	= 8,
++	.eeprom_size	= EEPROM_SIZE,
++	.rf_size	= RF_SIZE,
++	.tx_queues	= NUM_TX_QUEUES,
++	.rx		= &rt2800pci_queue_rx,
++	.tx		= &rt2800pci_queue_tx,
++	.bcn		= &rt2800pci_queue_bcn,
++	.lib		= &rt2800pci_rt2x00_ops,
++	.hw		= &rt2800pci_mac80211_ops,
++#ifdef CONFIG_RT2X00_LIB_DEBUGFS
++	.debugfs	= &rt2800pci_rt2x00debug,
++#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
++};
++
++/*
++ * RT2800pci module information.
++ */
++static struct pci_device_id rt2800pci_device_table[] = {
++	/* Edimax */
++	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	/* Awt */
++	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
++	{ 0, }
++};
++
++MODULE_AUTHOR(DRV_PROJECT);
++MODULE_VERSION(DRV_VERSION);
++MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
++MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
++#ifdef CONFIG_RT2800PCI_PCI
++MODULE_FIRMWARE(FIRMWARE_RT2860);
++MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
++#endif /* CONFIG_RT2800PCI_PCI */
++MODULE_LICENSE("GPL");
++
++#ifdef CONFIG_RT2800PCI_WISOC
++#if defined(CONFIG_RALINK_RT288X)
++__rt2x00soc_probe(RT2880, &rt2800pci_ops);
++#elif defined(CONFIG_RALINK_RT305X)
++__rt2x00soc_probe(RT3052, &rt2800pci_ops);
++#endif
++
++static struct platform_driver rt2800soc_driver = {
++	.driver		= {
++		.name		= "rt2800_wmac",
++		.owner		= THIS_MODULE,
++		.mod_name	= KBUILD_MODNAME,
++	},
++	.probe		= __rt2x00soc_probe,
++	.remove		= __devexit_p(rt2x00soc_remove),
++	.suspend	= rt2x00soc_suspend,
++	.resume		= rt2x00soc_resume,
++};
++#endif /* CONFIG_RT2800PCI_WISOC */
++
++#ifdef CONFIG_RT2800PCI_PCI
++static struct pci_driver rt2800pci_driver = {
++	.name		= KBUILD_MODNAME,
++	.id_table	= rt2800pci_device_table,
++	.probe		= rt2x00pci_probe,
++	.remove		= __devexit_p(rt2x00pci_remove),
++	.suspend	= rt2x00pci_suspend,
++	.resume		= rt2x00pci_resume,
++};
++#endif /* CONFIG_RT2800PCI_PCI */
++
++static int __init rt2800pci_init(void)
++{
++	int ret = 0;
++
++#ifdef CONFIG_RT2800PCI_WISOC
++	ret = platform_driver_register(&rt2800soc_driver);
++	if (ret)
++		return ret;
++#endif
++#ifdef CONFIG_RT2800PCI_PCI
++	ret = pci_register_driver(&rt2800pci_driver);
++	if (ret) {
++#ifdef CONFIG_RT2800PCI_WISOC
++		platform_driver_unregister(&rt2800soc_driver);
++#endif
++		return ret;
++	}
++#endif
++
++	return ret;
++}
++
++static void __exit rt2800pci_exit(void)
++{
++#ifdef CONFIG_RT2800PCI_PCI
++	pci_unregister_driver(&rt2800pci_driver);
++#endif
++#ifdef CONFIG_RT2800PCI_WISOC
++	platform_driver_unregister(&rt2800soc_driver);
++#endif
++}
++
++module_init(rt2800pci_init);
++module_exit(rt2800pci_exit);
+--- /dev/null
++++ b/drivers/net/wireless/rt2x00/rt2800pci.h
+@@ -0,0 +1,1927 @@
++/*
++	Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
++	<http://rt2x00.serialmonkey.com>
++
++	This program is free software; you can redistribute it and/or modify
++	it under the terms of the GNU General Public License as published by
++	the Free Software Foundation; either version 2 of the License, or
++	(at your option) any later version.
++
++	This program is distributed in the hope that it will be useful,
++	but WITHOUT ANY WARRANTY; without even the implied warranty of
++	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++	GNU General Public License for more details.
++
++	You should have received a copy of the GNU General Public License
++	along with this program; if not, write to the
++	Free Software Foundation, Inc.,
++	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
++ */
++
++/*
++	Module: rt2800pci
++	Abstract: Data structures and registers for the rt2800pci module.
++	Supported chipsets: RT2800E & RT2800ED.
++ */
++
++#ifndef RT2800PCI_H
++#define RT2800PCI_H
++
++/*
++ * RF chip defines.
++ *
++ * RF2820 2.4G 2T3R
++ * RF2850 2.4G/5G 2T3R
++ * RF2720 2.4G 1T2R
++ * RF2750 2.4G/5G 1T2R
++ * RF3020 2.4G 1T1R
++ * RF2020 2.4G B/G
++ * RF3021 2.4G 1T2R
++ * RF3022 2.4G 2T2R
++ */
++#define RF2820				0x0001
++#define RF2850				0x0002
++#define RF2720				0x0003
++#define RF2750				0x0004
++#define RF3020				0x0005
++#define RF2020				0x0006
++#define RF3021				0x0007
++#define RF3022				0x0008
++
++/*
++ * RT2860 version
++ */
++#define RT2860C_VERSION			0x28600100
++#define RT2860D_VERSION			0x28600101
++#define RT2880E_VERSION			0x28720200
++#define RT2883_VERSION			0x28830300
++#define RT3070_VERSION			0x30700200
++
++/*
++ * Signal information.
++ * Defaul offset is required for RSSI <-> dBm conversion.
++ */
++#define DEFAULT_RSSI_OFFSET		120 /* FIXME */
++
++/*
++ * Register layout information.
++ */
++#define CSR_REG_BASE			0x1000
++#define CSR_REG_SIZE			0x0800
++#define EEPROM_BASE			0x0000
++#define EEPROM_SIZE			0x0110
++#define BBP_BASE			0x0000
++#define BBP_SIZE			0x0080
++#define RF_BASE				0x0004
++#define RF_SIZE				0x0010
++
++/*
++ * Number of TX queues.
++ */
++#define NUM_TX_QUEUES			4
++
++/*
++ * PCI registers.
++ */
++
++/*
++ * E2PROM_CSR: EEPROM control register.
++ * RELOAD: Write 1 to reload eeprom content.
++ * TYPE: 0: 93c46, 1:93c66.
++ * LOAD_STATUS: 1:loading, 0:done.
++ */
++#define E2PROM_CSR			0x0004
++#define E2PROM_CSR_DATA_CLOCK		FIELD32(0x00000001)
++#define E2PROM_CSR_CHIP_SELECT		FIELD32(0x00000002)
++#define E2PROM_CSR_DATA_IN		FIELD32(0x00000004)
++#define E2PROM_CSR_DATA_OUT		FIELD32(0x00000008)
++#define E2PROM_CSR_TYPE			FIELD32(0x00000030)
++#define E2PROM_CSR_LOAD_STATUS		FIELD32(0x00000040)
++#define E2PROM_CSR_RELOAD		FIELD32(0x00000080)
++
++/*
++ * HOST-MCU shared memory
++ */
++#define HOST_CMD_CSR			0x0404
++#define HOST_CMD_CSR_HOST_COMMAND	FIELD32(0x000000ff)
++
++/*
++ * INT_SOURCE_CSR: Interrupt source register.
++ * Write one to clear corresponding bit.
++ * TX_FIFO_STATUS: FIFO Statistics is full, sw should read 0x171c
++ */
++#define INT_SOURCE_CSR			0x0200
++#define INT_SOURCE_CSR_RXDELAYINT	FIELD32(0x00000001)
++#define INT_SOURCE_CSR_TXDELAYINT	FIELD32(0x00000002)
++#define INT_SOURCE_CSR_RX_DONE		FIELD32(0x00000004)
++#define INT_SOURCE_CSR_AC0_DMA_DONE	FIELD32(0x00000008)
++#define INT_SOURCE_CSR_AC1_DMA_DONE	FIELD32(0x00000010)
++#define INT_SOURCE_CSR_AC2_DMA_DONE	FIELD32(0x00000020)
++#define INT_SOURCE_CSR_AC3_DMA_DONE	FIELD32(0x00000040)
++#define INT_SOURCE_CSR_HCCA_DMA_DONE	FIELD32(0x00000080)
++#define INT_SOURCE_CSR_MGMT_DMA_DONE	FIELD32(0x00000100)
++#define INT_SOURCE_CSR_MCU_COMMAND	FIELD32(0x00000200)
++#define INT_SOURCE_CSR_RXTX_COHERENT	FIELD32(0x00000400)
++#define INT_SOURCE_CSR_TBTT		FIELD32(0x00000800)
++#define INT_SOURCE_CSR_PRE_TBTT		FIELD32(0x00001000)
++#define INT_SOURCE_CSR_TX_FIFO_STATUS	FIELD32(0x00002000)
++#define INT_SOURCE_CSR_AUTO_WAKEUP	FIELD32(0x00004000)
++#define INT_SOURCE_CSR_GPTIMER		FIELD32(0x00008000)
++#define INT_SOURCE_CSR_RX_COHERENT	FIELD32(0x00010000)
++#define INT_SOURCE_CSR_TX_COHERENT	FIELD32(0x00020000)
++
++/*
++ * INT_MASK_CSR: Interrupt MASK register. 1: the interrupt is mask OFF.
++ */
++#define INT_MASK_CSR			0x0204
++#define INT_MASK_CSR_RXDELAYINT		FIELD32(0x00000001)
++#define INT_MASK_CSR_TXDELAYINT		FIELD32(0x00000002)
++#define INT_MASK_CSR_RX_DONE		FIELD32(0x00000004)
++#define INT_MASK_CSR_AC0_DMA_DONE	FIELD32(0x00000008)
++#define INT_MASK_CSR_AC1_DMA_DONE	FIELD32(0x00000010)
++#define INT_MASK_CSR_AC2_DMA_DONE	FIELD32(0x00000020)
++#define INT_MASK_CSR_AC3_DMA_DONE	FIELD32(0x00000040)
++#define INT_MASK_CSR_HCCA_DMA_DONE	FIELD32(0x00000080)
++#define INT_MASK_CSR_MGMT_DMA_DONE	FIELD32(0x00000100)
++#define INT_MASK_CSR_MCU_COMMAND	FIELD32(0x00000200)
++#define INT_MASK_CSR_RXTX_COHERENT	FIELD32(0x00000400)
++#define INT_MASK_CSR_TBTT		FIELD32(0x00000800)
++#define INT_MASK_CSR_PRE_TBTT		FIELD32(0x00001000)
++#define INT_MASK_CSR_TX_FIFO_STATUS	FIELD32(0x00002000)
++#define INT_MASK_CSR_AUTO_WAKEUP	FIELD32(0x00004000)
++#define INT_MASK_CSR_GPTIMER		FIELD32(0x00008000)
++#define INT_MASK_CSR_RX_COHERENT	FIELD32(0x00010000)
++#define INT_MASK_CSR_TX_COHERENT	FIELD32(0x00020000)
++
++/*
++ * WPDMA_GLO_CFG
++ */
++#define WPDMA_GLO_CFG 			0x0208
++#define WPDMA_GLO_CFG_ENABLE_TX_DMA	FIELD32(0x00000001)
++#define WPDMA_GLO_CFG_TX_DMA_BUSY    	FIELD32(0x00000002)
++#define WPDMA_GLO_CFG_ENABLE_RX_DMA	FIELD32(0x00000004)
++#define WPDMA_GLO_CFG_RX_DMA_BUSY	FIELD32(0x00000008)
++#define WPDMA_GLO_CFG_WP_DMA_BURST_SIZE	FIELD32(0x00000030)
++#define WPDMA_GLO_CFG_TX_WRITEBACK_DONE	FIELD32(0x00000040)
++#define WPDMA_GLO_CFG_BIG_ENDIAN	FIELD32(0x00000080)
++#define WPDMA_GLO_CFG_RX_HDR_SCATTER	FIELD32(0x0000ff00)
++#define WPDMA_GLO_CFG_HDR_SEG_LEN	FIELD32(0xffff0000)
++
++/*
++ * WPDMA_RST_IDX
++ */
++#define WPDMA_RST_IDX 			0x020c
++#define WPDMA_RST_IDX_DTX_IDX0		FIELD32(0x00000001)
++#define WPDMA_RST_IDX_DTX_IDX1		FIELD32(0x00000002)
++#define WPDMA_RST_IDX_DTX_IDX2		FIELD32(0x00000004)
++#define WPDMA_RST_IDX_DTX_IDX3		FIELD32(0x00000008)
++#define WPDMA_RST_IDX_DTX_IDX4		FIELD32(0x00000010)
++#define WPDMA_RST_IDX_DTX_IDX5		FIELD32(0x00000020)
++#define WPDMA_RST_IDX_DRX_IDX0		FIELD32(0x00010000)
++
++/*
++ * DELAY_INT_CFG
++ */
++#define DELAY_INT_CFG			0x0210
++#define DELAY_INT_CFG_RXMAX_PTIME	FIELD32(0x000000ff)
++#define DELAY_INT_CFG_RXMAX_PINT	FIELD32(0x00007f00)
++#define DELAY_INT_CFG_RXDLY_INT_EN	FIELD32(0x00008000)
++#define DELAY_INT_CFG_TXMAX_PTIME	FIELD32(0x00ff0000)
++#define DELAY_INT_CFG_TXMAX_PINT	FIELD32(0x7f000000)
++#define DELAY_INT_CFG_TXDLY_INT_EN	FIELD32(0x80000000)
++
++/*
++ * WMM_AIFSN_CFG: Aifsn for each EDCA AC
++ * AIFSN0: AC_BE
++ * AIFSN1: AC_BK
++ * AIFSN1: AC_VI
++ * AIFSN1: AC_VO
++ */
++#define WMM_AIFSN_CFG			0x0214
++#define WMM_AIFSN_CFG_AIFSN0		FIELD32(0x0000000f)
++#define WMM_AIFSN_CFG_AIFSN1		FIELD32(0x000000f0)
++#define WMM_AIFSN_CFG_AIFSN2		FIELD32(0x00000f00)
++#define WMM_AIFSN_CFG_AIFSN3		FIELD32(0x0000f000)
++
++/*
++ * WMM_CWMIN_CSR: CWmin for each EDCA AC
++ * CWMIN0: AC_BE
++ * CWMIN1: AC_BK
++ * CWMIN1: AC_VI
++ * CWMIN1: AC_VO
++ */
++#define WMM_CWMIN_CFG			0x0218
++#define WMM_CWMIN_CFG_CWMIN0		FIELD32(0x0000000f)
++#define WMM_CWMIN_CFG_CWMIN1		FIELD32(0x000000f0)
++#define WMM_CWMIN_CFG_CWMIN2		FIELD32(0x00000f00)
++#define WMM_CWMIN_CFG_CWMIN3		FIELD32(0x0000f000)
++
++/*
++ * WMM_CWMAX_CSR: CWmax for each EDCA AC
++ * CWMAX0: AC_BE
++ * CWMAX1: AC_BK
++ * CWMAX1: AC_VI
++ * CWMAX1: AC_VO
++ */
++#define WMM_CWMAX_CFG			0x021c
++#define WMM_CWMAX_CFG_CWMAX0		FIELD32(0x0000000f)
++#define WMM_CWMAX_CFG_CWMAX1		FIELD32(0x000000f0)
++#define WMM_CWMAX_CFG_CWMAX2		FIELD32(0x00000f00)
++#define WMM_CWMAX_CFG_CWMAX3		FIELD32(0x0000f000)
++
++/*
++ * AC_TXOP0: AC_BK/AC_BE TXOP register
++ * AC0TXOP: AC_BK in unit of 32us
++ * AC1TXOP: AC_BE in unit of 32us
++ */
++#define WMM_TXOP0_CFG			0x0220
++#define WMM_TXOP0_CFG_AC0TXOP		FIELD32(0x0000ffff)
++#define WMM_TXOP0_CFG_AC1TXOP		FIELD32(0xffff0000)
++
++/*
++ * AC_TXOP1: AC_VO/AC_VI TXOP register
++ * AC2TXOP: AC_VI in unit of 32us
++ * AC3TXOP: AC_VO in unit of 32us
++ */
++#define WMM_TXOP1_CFG			0x0224
++#define WMM_TXOP1_CFG_AC2TXOP		FIELD32(0x0000ffff)
++#define WMM_TXOP1_CFG_AC3TXOP		FIELD32(0xffff0000)
++
++/*
++ * GPIO_CTRL_CFG:
++ */
++#define GPIO_CTRL_CFG			0x0228
++#define GPIO_CTRL_CFG_BIT0		FIELD32(0x00000001)
++#define GPIO_CTRL_CFG_BIT1		FIELD32(0x00000002)
++#define GPIO_CTRL_CFG_BIT2		FIELD32(0x00000004)
++#define GPIO_CTRL_CFG_BIT3		FIELD32(0x00000008)
++#define GPIO_CTRL_CFG_BIT4		FIELD32(0x00000010)
++#define GPIO_CTRL_CFG_BIT5		FIELD32(0x00000020)
++#define GPIO_CTRL_CFG_BIT6		FIELD32(0x00000040)
++#define GPIO_CTRL_CFG_BIT7		FIELD32(0x00000080)
++#define GPIO_CTRL_CFG_BIT8		FIELD32(0x00000100)
++
++/*
++ * MCU_CMD_CFG
++ */
++#define MCU_CMD_CFG			0x022c
++
++/*
++ * AC_BK register offsets
++ */
++#define TX_BASE_PTR0			0x0230
++#define TX_MAX_CNT0			0x0234
++#define TX_CTX_IDX0			0x0238
++#define TX_DTX_IDX0			0x023c
++
++/*
++ * AC_BE register offsets
++ */
++#define TX_BASE_PTR1			0x0240
++#define TX_MAX_CNT1			0x0244
++#define TX_CTX_IDX1			0x0248
++#define TX_DTX_IDX1			0x024c
++
++/*
++ * AC_VI register offsets
++ */
++#define TX_BASE_PTR2			0x0250
++#define TX_MAX_CNT2			0x0254
++#define TX_CTX_IDX2			0x0258
++#define TX_DTX_IDX2			0x025c
++
++/*
++ * AC_VO register offsets
++ */
++#define TX_BASE_PTR3			0x0260
++#define TX_MAX_CNT3			0x0264
++#define TX_CTX_IDX3			0x0268
++#define TX_DTX_IDX3			0x026c
++
++/*
++ * HCCA register offsets
++ */
++#define TX_BASE_PTR4			0x0270
++#define TX_MAX_CNT4			0x0274
++#define TX_CTX_IDX4			0x0278
++#define TX_DTX_IDX4			0x027c
++
++/*
++ * MGMT register offsets
++ */
++#define TX_BASE_PTR5			0x0280
++#define TX_MAX_CNT5			0x0284
++#define TX_CTX_IDX5			0x0288
++#define TX_DTX_IDX5			0x028c
++
++/*
++ * Queue register offset macros
++ */
++#define TX_QUEUE_REG_OFFSET		0x10
++#define TX_BASE_PTR(__x)		TX_BASE_PTR0 + ((__x) * TX_QUEUE_REG_OFFSET)
++#define TX_MAX_CNT(__x)			TX_MAX_CNT0 + ((__x) * TX_QUEUE_REG_OFFSET)
++#define TX_CTX_IDX(__x)			TX_CTX_IDX0 + ((__x) * TX_QUEUE_REG_OFFSET)
++#define TX_DTX_IDX(__x)			TX_DTX_IDX0 + ((__x) * TX_QUEUE_REG_OFFSET)
++
++/*
++ * RX register offsets
++ */
++#define RX_BASE_PTR			0x0290
++#define RX_MAX_CNT			0x0294
++#define RX_CRX_IDX			0x0298
++#define RX_DRX_IDX			0x029c
++
++/*
++ * PBF_SYS_CTRL
++ * HOST_RAM_WRITE: enable Host program ram write selection
++ */
++#define PBF_SYS_CTRL			0x0400
++#define PBF_SYS_CTRL_READY		FIELD32(0x00000080)
++#define PBF_SYS_CTRL_HOST_RAM_WRITE	FIELD32(0x00010000)
++
++/*
++ * PBF registers
++ * Most are for debug. Driver doesn't touch PBF register.
++ */
++#define PBF_CFG				0x0408
++#define PBF_MAX_PCNT			0x040c
++#define PBF_CTRL			0x0410
++#define PBF_INT_STA			0x0414
++#define PBF_INT_ENA			0x0418
++
++/*
++ * BCN_OFFSET0:
++ */
++#define BCN_OFFSET0			0x042c
++#define BCN_OFFSET0_BCN0		FIELD32(0x000000ff)
++#define BCN_OFFSET0_BCN1		FIELD32(0x0000ff00)
++#define BCN_OFFSET0_BCN2		FIELD32(0x00ff0000)
++#define BCN_OFFSET0_BCN3		FIELD32(0xff000000)
++
++/*
++ * BCN_OFFSET1:
++ */
++#define BCN_OFFSET1			0x0430
++#define BCN_OFFSET1_BCN4		FIELD32(0x000000ff)
++#define BCN_OFFSET1_BCN5		FIELD32(0x0000ff00)
++#define BCN_OFFSET1_BCN6		FIELD32(0x00ff0000)
++#define BCN_OFFSET1_BCN7		FIELD32(0xff000000)
++
++/*
++ * PBF registers
++ * Most are for debug. Driver doesn't touch PBF register.
++ */
++#define TXRXQ_PCNT			0x0438
++#define PBF_DBG				0x043c
++
++/*
++ * RF registers
++ */
++#define	RF_CSR_CFG			0x0500
++#define RF_CSR_CFG_DATA			FIELD32(0x000000ff)
++#define RF_CSR_CFG_REGNUM		FIELD32(0x00001f00)
++#define RF_CSR_CFG_WRITE		FIELD32(0x00010000)
++#define RF_CSR_CFG_BUSY			FIELD32(0x00020000)
++
++/*
++ * MAC Control/Status Registers(CSR).
++ * Some values are set in TU, whereas 1 TU == 1024 us.
++ */
++
++/*
++ * MAC_CSR0: ASIC revision number.
++ * ASIC_REV: 0
++ * ASIC_VER: 2860
++ */
++#define MAC_CSR0			0x1000
++#define MAC_CSR0_ASIC_REV		FIELD32(0x0000ffff)
++#define MAC_CSR0_ASIC_VER		FIELD32(0xffff0000)
++
++/*
++ * MAC_SYS_CTRL:
++ */
++#define MAC_SYS_CTRL			0x1004
++#define MAC_SYS_CTRL_RESET_CSR		FIELD32(0x00000001)
++#define MAC_SYS_CTRL_RESET_BBP		FIELD32(0x00000002)
++#define MAC_SYS_CTRL_ENABLE_TX		FIELD32(0x00000004)
++#define MAC_SYS_CTRL_ENABLE_RX		FIELD32(0x00000008)
++#define MAC_SYS_CTRL_CONTINUOUS_TX	FIELD32(0x00000010)
++#define MAC_SYS_CTRL_LOOPBACK		FIELD32(0x00000020)
++#define MAC_SYS_CTRL_WLAN_HALT		FIELD32(0x00000040)
++#define MAC_SYS_CTRL_RX_TIMESTAMP	FIELD32(0x00000080)
++
++/*
++ * MAC_ADDR_DW0: STA MAC register 0
++ */
++#define MAC_ADDR_DW0			0x1008
++#define MAC_ADDR_DW0_BYTE0		FIELD32(0x000000ff)
++#define MAC_ADDR_DW0_BYTE1		FIELD32(0x0000ff00)
++#define MAC_ADDR_DW0_BYTE2		FIELD32(0x00ff0000)
++#define MAC_ADDR_DW0_BYTE3		FIELD32(0xff000000)
++
++/*
++ * MAC_ADDR_DW1: STA MAC register 1
++ * UNICAST_TO_ME_MASK:
++ * Used to mask off bits from byte 5 of the MAC address
++ * to determine the UNICAST_TO_ME bit for RX frames.
++ * The full mask is complemented by BSS_ID_MASK:
++ *    MASK = BSS_ID_MASK & UNICAST_TO_ME_MASK
++ */
++#define MAC_ADDR_DW1			0x100c
++#define MAC_ADDR_DW1_BYTE4		FIELD32(0x000000ff)
++#define MAC_ADDR_DW1_BYTE5		FIELD32(0x0000ff00)
++#define MAC_ADDR_DW1_UNICAST_TO_ME_MASK	FIELD32(0x00ff0000)
++
++/*
++ * MAC_BSSID_DW0: BSSID register 0
++ */
++#define MAC_BSSID_DW0			0x1010
++#define MAC_BSSID_DW0_BYTE0		FIELD32(0x000000ff)
++#define MAC_BSSID_DW0_BYTE1		FIELD32(0x0000ff00)
++#define MAC_BSSID_DW0_BYTE2		FIELD32(0x00ff0000)
++#define MAC_BSSID_DW0_BYTE3		FIELD32(0xff000000)
++
++/*
++ * MAC_BSSID_DW1: BSSID register 1
++ * BSS_ID_MASK:
++ *     0: 1-BSSID mode (BSS index = 0)
++ *     1: 2-BSSID mode (BSS index: Byte5, bit 0)
++ *     2: 4-BSSID mode (BSS index: byte5, bit 0 - 1)
++ *     3: 8-BSSID mode (BSS index: byte5, bit 0 - 2)
++ * This mask is used to mask off bits 0, 1 and 2 of byte 5 of the
++ * BSSID. This will make sure that those bits will be ignored
++ * when determining the MY_BSS of RX frames.
++ */
++#define MAC_BSSID_DW1			0x1014
++#define MAC_BSSID_DW1_BYTE4		FIELD32(0x000000ff)
++#define MAC_BSSID_DW1_BYTE5		FIELD32(0x0000ff00)
++#define MAC_BSSID_DW1_BSS_ID_MASK	FIELD32(0x00030000)
++#define MAC_BSSID_DW1_BSS_BCN_NUM	FIELD32(0x001c0000)
++
++/*
++ * MAX_LEN_CFG: Maximum frame length register.
++ * MAX_MPDU: rt2860b max 16k bytes
++ * MAX_PSDU: Maximum PSDU length
++ *	(power factor) 0:2^13, 1:2^14, 2:2^15, 3:2^16
++ */
++#define MAX_LEN_CFG			0x1018
++#define MAX_LEN_CFG_MAX_MPDU		FIELD32(0x00000fff)
++#define MAX_LEN_CFG_MAX_PSDU		FIELD32(0x00003000)
++#define MAX_LEN_CFG_MIN_PSDU		FIELD32(0x0000c000)
++#define MAX_LEN_CFG_MIN_MPDU		FIELD32(0x000f0000)
++
++/*
++ * BBP_CSR_CFG: BBP serial control register
++ * VALUE: Register value to program into BBP
++ * REG_NUM: Selected BBP register
++ * READ_CONTROL: 0 write BBP, 1 read BBP
++ * BUSY: ASIC is busy executing BBP commands
++ * BBP_PAR_DUR: 0 4 MAC clocks, 1 8 MAC clocks
++ * BBP_RW_MODE: 0 serial, 1 paralell
++ */
++#define BBP_CSR_CFG			0x101c
++#define BBP_CSR_CFG_VALUE		FIELD32(0x000000ff)
++#define BBP_CSR_CFG_REGNUM		FIELD32(0x0000ff00)
++#define BBP_CSR_CFG_READ_CONTROL	FIELD32(0x00010000)
++#define BBP_CSR_CFG_BUSY		FIELD32(0x00020000)
++#define BBP_CSR_CFG_BBP_PAR_DUR		FIELD32(0x00040000)
++#define BBP_CSR_CFG_BBP_RW_MODE		FIELD32(0x00080000)
++
++/*
++ * RF_CSR_CFG0: RF control register
++ * REGID_AND_VALUE: Register value to program into RF
++ * BITWIDTH: Selected RF register
++ * STANDBYMODE: 0 high when standby, 1 low when standby
++ * SEL: 0 RF_LE0 activate, 1 RF_LE1 activate
++ * BUSY: ASIC is busy executing RF commands
++ */
++#define RF_CSR_CFG0			0x1020
++#define RF_CSR_CFG0_REGID_AND_VALUE	FIELD32(0x00ffffff)
++#define RF_CSR_CFG0_BITWIDTH		FIELD32(0x1f000000)
++#define RF_CSR_CFG0_REG_VALUE_BW	FIELD32(0x1fffffff)
++#define RF_CSR_CFG0_STANDBYMODE		FIELD32(0x20000000)
++#define RF_CSR_CFG0_SEL			FIELD32(0x40000000)
++#define RF_CSR_CFG0_BUSY		FIELD32(0x80000000)
++
++/*
++ * RF_CSR_CFG1: RF control register
++ * REGID_AND_VALUE: Register value to program into RF
++ * RFGAP: Gap between BB_CONTROL_RF and RF_LE
++ *        0: 3 system clock cycle (37.5usec)
++ *        1: 5 system clock cycle (62.5usec)
++ */
++#define RF_CSR_CFG1			0x1024
++#define RF_CSR_CFG1_REGID_AND_VALUE	FIELD32(0x00ffffff)
++#define RF_CSR_CFG1_RFGAP		FIELD32(0x1f000000)
++
++/*
++ * RF_CSR_CFG2: RF control register
++ * VALUE: Register value to program into RF
++ * RFGAP: Gap between BB_CONTROL_RF and RF_LE
++ *        0: 3 system clock cycle (37.5usec)
++ *        1: 5 system clock cycle (62.5usec)
++ */
++#define RF_CSR_CFG2			0x1028
++#define RF_CSR_CFG2_VALUE		FIELD32(0x00ffffff)
++
++/*
++ * LED_CFG: LED control
++ * color LED's:
++ *   0: off
++ *   1: blinking upon TX2
++ *   2: periodic slow blinking
++ *   3: always on
++ * LED polarity:
++ *   0: active low
++ *   1: active high
++ */
++#define LED_CFG				0x102c
++#define LED_CFG_ON_PERIOD		FIELD32(0x000000ff)
++#define LED_CFG_OFF_PERIOD		FIELD32(0x0000ff00)
++#define LED_CFG_SLOW_BLINK_PERIOD	FIELD32(0x003f0000)
++#define LED_CFG_R_LED_MODE		FIELD32(0x03000000)
++#define LED_CFG_G_LED_MODE		FIELD32(0x0c000000)
++#define LED_CFG_Y_LED_MODE		FIELD32(0x30000000)
++#define LED_CFG_LED_POLAR		FIELD32(0x40000000)
++
++/*
++ * XIFS_TIME_CFG: MAC timing
++ * CCKM_SIFS_TIME: unit 1us. Applied after CCK RX/TX
++ * OFDM_SIFS_TIME: unit 1us. Applied after OFDM RX/TX
++ * OFDM_XIFS_TIME: unit 1us. Applied after OFDM RX
++ *	when MAC doesn't reference BBP signal BBRXEND
++ * EIFS: unit 1us
++ * BB_RXEND_ENABLE: reference RXEND signal to begin XIFS defer
++ *
++ */
++#define XIFS_TIME_CFG			0x1100
++#define XIFS_TIME_CFG_CCKM_SIFS_TIME	FIELD32(0x000000ff)
++#define XIFS_TIME_CFG_OFDM_SIFS_TIME	FIELD32(0x0000ff00)
++#define XIFS_TIME_CFG_OFDM_XIFS_TIME	FIELD32(0x000f0000)
++#define XIFS_TIME_CFG_EIFS		FIELD32(0x1ff00000)
++#define XIFS_TIME_CFG_BB_RXEND_ENABLE	FIELD32(0x20000000)
++
++/*
++ * BKOFF_SLOT_CFG:
++ */
++#define BKOFF_SLOT_CFG			0x1104
++#define BKOFF_SLOT_CFG_SLOT_TIME	FIELD32(0x000000ff)
++#define BKOFF_SLOT_CFG_CC_DELAY_TIME	FIELD32(0x0000ff00)
++
++/*
++ * NAV_TIME_CFG:
++ */
++#define NAV_TIME_CFG			0x1108
++#define NAV_TIME_CFG_SIFS		FIELD32(0x000000ff)
++#define NAV_TIME_CFG_SLOT_TIME		FIELD32(0x0000ff00)
++#define NAV_TIME_CFG_EIFS		FIELD32(0x01ff0000)
++#define NAV_TIME_ZERO_SIFS		FIELD32(0x02000000)
++
++/*
++ * CH_TIME_CFG: count as channel busy
++ */
++#define CH_TIME_CFG     	        0x110c
++
++/*
++ * PBF_LIFE_TIMER: TX/RX MPDU timestamp timer (free run) Unit: 1us
++ */
++#define PBF_LIFE_TIMER     	        0x1110
++
++/*
++ * BCN_TIME_CFG:
++ * BEACON_INTERVAL: in unit of 1/16 TU
++ * TSF_TICKING: Enable TSF auto counting
++ * TSF_SYNC: Enable TSF sync, 00: disable, 01: infra mode, 10: ad-hoc mode
++ * BEACON_GEN: Enable beacon generator
++ */
++#define BCN_TIME_CFG			0x1114
++#define BCN_TIME_CFG_BEACON_INTERVAL	FIELD32(0x0000ffff)
++#define BCN_TIME_CFG_TSF_TICKING	FIELD32(0x00010000)
++#define BCN_TIME_CFG_TSF_SYNC		FIELD32(0x00060000)
++#define BCN_TIME_CFG_TBTT_ENABLE	FIELD32(0x00080000)
++#define BCN_TIME_CFG_BEACON_GEN		FIELD32(0x00100000)
++#define BCN_TIME_CFG_TX_TIME_COMPENSATE	FIELD32(0xf0000000)
++
++/*
++ * TBTT_SYNC_CFG:
++ */
++#define TBTT_SYNC_CFG			0x1118
++
++/*
++ * TSF_TIMER_DW0: Local lsb TSF timer, read-only
++ */
++#define TSF_TIMER_DW0			0x111c
++#define TSF_TIMER_DW0_LOW_WORD		FIELD32(0xffffffff)
++
++/*
++ * TSF_TIMER_DW1: Local msb TSF timer, read-only
++ */
++#define TSF_TIMER_DW1			0x1120
++#define TSF_TIMER_DW1_HIGH_WORD		FIELD32(0xffffffff)
++
++/*
++ * TBTT_TIMER: TImer remains till next TBTT, read-only
++ */
++#define TBTT_TIMER			0x1124
++
++/*
++ * INT_TIMER_CFG:
++ */
++#define INT_TIMER_CFG			0x1128
++
++/*
++ * INT_TIMER_EN: GP-timer and pre-tbtt Int enable
++ */
++#define INT_TIMER_EN			0x112c
++
++/*
++ * CH_IDLE_STA: channel idle time
++ */
++#define CH_IDLE_STA			0x1130
++
++/*
++ * CH_BUSY_STA: channel busy time
++ */
++#define CH_BUSY_STA			0x1134
++
++/*
++ * MAC_STATUS_CFG:
++ * BBP_RF_BUSY: When set to 0, BBP and RF are stable.
++ *	if 1 or higher one of the 2 registers is busy.
++ */
++#define MAC_STATUS_CFG			0x1200
++#define MAC_STATUS_CFG_BBP_RF_BUSY	FIELD32(0x00000003)
++
++/*
++ * PWR_PIN_CFG:
++ */
++#define PWR_PIN_CFG			0x1204
++
++/*
++ * AUTOWAKEUP_CFG: Manual power control / status register
++ * TBCN_BEFORE_WAKE: ForceWake has high privilege than PutToSleep when both set
++ * AUTOWAKE: 0:sleep, 1:awake
++ */
++#define AUTOWAKEUP_CFG			0x1208
++#define AUTOWAKEUP_CFG_AUTO_LEAD_TIME	FIELD32(0x000000ff)
++#define AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE	FIELD32(0x00007f00)
++#define AUTOWAKEUP_CFG_AUTOWAKE		FIELD32(0x00008000)
++
++/*
++ * EDCA_AC0_CFG:
++ */
++#define EDCA_AC0_CFG			0x1300
++#define EDCA_AC0_CFG_TX_OP		FIELD32(0x000000ff)
++#define EDCA_AC0_CFG_AIFSN		FIELD32(0x00000f00)
++#define EDCA_AC0_CFG_CWMIN		FIELD32(0x0000f000)
++#define EDCA_AC0_CFG_CWMAX		FIELD32(0x000f0000)
++
++/*
++ * EDCA_AC1_CFG:
++ */
++#define EDCA_AC1_CFG			0x1304
++#define EDCA_AC1_CFG_TX_OP		FIELD32(0x000000ff)
++#define EDCA_AC1_CFG_AIFSN		FIELD32(0x00000f00)
++#define EDCA_AC1_CFG_CWMIN		FIELD32(0x0000f000)
++#define EDCA_AC1_CFG_CWMAX		FIELD32(0x000f0000)
++
++/*
++ * EDCA_AC2_CFG:
++ */
++#define EDCA_AC2_CFG			0x1308
++#define EDCA_AC2_CFG_TX_OP		FIELD32(0x000000ff)
++#define EDCA_AC2_CFG_AIFSN		FIELD32(0x00000f00)
++#define EDCA_AC2_CFG_CWMIN		FIELD32(0x0000f000)
++#define EDCA_AC2_CFG_CWMAX		FIELD32(0x000f0000)
++
++/*
++ * EDCA_AC3_CFG:
++ */
++#define EDCA_AC3_CFG			0x130c
++#define EDCA_AC3_CFG_TX_OP		FIELD32(0x000000ff)
++#define EDCA_AC3_CFG_AIFSN		FIELD32(0x00000f00)
++#define EDCA_AC3_CFG_CWMIN		FIELD32(0x0000f000)
++#define EDCA_AC3_CFG_CWMAX		FIELD32(0x000f0000)
++
++/*
++ * EDCA_TID_AC_MAP:
++ */
++#define EDCA_TID_AC_MAP			0x1310
++
++/*
++ * TX_PWR_CFG_0:
++ */
++#define TX_PWR_CFG_0			0x1314
++#define TX_PWR_CFG_0_1MBS		FIELD32(0x0000000f)
++#define TX_PWR_CFG_0_2MBS		FIELD32(0x000000f0)
++#define TX_PWR_CFG_0_55MBS		FIELD32(0x00000f00)
++#define TX_PWR_CFG_0_11MBS		FIELD32(0x0000f000)
++#define TX_PWR_CFG_0_6MBS		FIELD32(0x000f0000)
++#define TX_PWR_CFG_0_9MBS		FIELD32(0x00f00000)
++#define TX_PWR_CFG_0_12MBS		FIELD32(0x0f000000)
++#define TX_PWR_CFG_0_18MBS		FIELD32(0xf0000000)
++
++/*
++ * TX_PWR_CFG_1:
++ */
++#define TX_PWR_CFG_1			0x1318
++#define TX_PWR_CFG_1_24MBS		FIELD32(0x0000000f)
++#define TX_PWR_CFG_1_36MBS		FIELD32(0x000000f0)
++#define TX_PWR_CFG_1_48MBS		FIELD32(0x00000f00)
++#define TX_PWR_CFG_1_54MBS		FIELD32(0x0000f000)
++#define TX_PWR_CFG_1_MCS0		FIELD32(0x000f0000)
++#define TX_PWR_CFG_1_MCS1		FIELD32(0x00f00000)
++#define TX_PWR_CFG_1_MCS2		FIELD32(0x0f000000)
++#define TX_PWR_CFG_1_MCS3		FIELD32(0xf0000000)
++
++/*
++ * TX_PWR_CFG_2:
++ */
++#define TX_PWR_CFG_2			0x131c
++#define TX_PWR_CFG_2_MCS4		FIELD32(0x0000000f)
++#define TX_PWR_CFG_2_MCS5		FIELD32(0x000000f0)
++#define TX_PWR_CFG_2_MCS6		FIELD32(0x00000f00)
++#define TX_PWR_CFG_2_MCS7		FIELD32(0x0000f000)
++#define TX_PWR_CFG_2_MCS8		FIELD32(0x000f0000)
++#define TX_PWR_CFG_2_MCS9		FIELD32(0x00f00000)
++#define TX_PWR_CFG_2_MCS10		FIELD32(0x0f000000)
++#define TX_PWR_CFG_2_MCS11		FIELD32(0xf0000000)
++
++/*
++ * TX_PWR_CFG_3:
++ */
++#define TX_PWR_CFG_3			0x1320
++#define TX_PWR_CFG_3_MCS12		FIELD32(0x0000000f)
++#define TX_PWR_CFG_3_MCS13		FIELD32(0x000000f0)
++#define TX_PWR_CFG_3_MCS14		FIELD32(0x00000f00)
++#define TX_PWR_CFG_3_MCS15		FIELD32(0x0000f000)
++#define TX_PWR_CFG_3_UKNOWN1		FIELD32(0x000f0000)
++#define TX_PWR_CFG_3_UKNOWN2		FIELD32(0x00f00000)
++#define TX_PWR_CFG_3_UKNOWN3		FIELD32(0x0f000000)
++#define TX_PWR_CFG_3_UKNOWN4		FIELD32(0xf0000000)
++
++/*
++ * TX_PWR_CFG_4:
++ */
++#define TX_PWR_CFG_4			0x1324
++#define TX_PWR_CFG_4_UKNOWN5		FIELD32(0x0000000f)
++#define TX_PWR_CFG_4_UKNOWN6		FIELD32(0x000000f0)
++#define TX_PWR_CFG_4_UKNOWN7		FIELD32(0x00000f00)
++#define TX_PWR_CFG_4_UKNOWN8		FIELD32(0x0000f000)
++
++/*
++ * TX_PIN_CFG:
++ */
++#define TX_PIN_CFG			0x1328
++#define TX_PIN_CFG_PA_PE_A0_EN		FIELD32(0x00000001)
++#define TX_PIN_CFG_PA_PE_G0_EN		FIELD32(0x00000002)
++#define TX_PIN_CFG_PA_PE_A1_EN		FIELD32(0x00000004)
++#define TX_PIN_CFG_PA_PE_G1_EN		FIELD32(0x00000008)
++#define TX_PIN_CFG_PA_PE_A0_POL		FIELD32(0x00000010)
++#define TX_PIN_CFG_PA_PE_G0_POL		FIELD32(0x00000020)
++#define TX_PIN_CFG_PA_PE_A1_POL		FIELD32(0x00000040)
++#define TX_PIN_CFG_PA_PE_G1_POL		FIELD32(0x00000080)
++#define TX_PIN_CFG_LNA_PE_A0_EN		FIELD32(0x00000100)
++#define TX_PIN_CFG_LNA_PE_G0_EN		FIELD32(0x00000200)
++#define TX_PIN_CFG_LNA_PE_A1_EN		FIELD32(0x00000400)
++#define TX_PIN_CFG_LNA_PE_G1_EN		FIELD32(0x00000800)
++#define TX_PIN_CFG_LNA_PE_A0_POL	FIELD32(0x00001000)
++#define TX_PIN_CFG_LNA_PE_G0_POL	FIELD32(0x00002000)
++#define TX_PIN_CFG_LNA_PE_A1_POL	FIELD32(0x00004000)
++#define TX_PIN_CFG_LNA_PE_G1_POL	FIELD32(0x00008000)
++#define TX_PIN_CFG_RFTR_EN		FIELD32(0x00010000)
++#define TX_PIN_CFG_RFTR_POL		FIELD32(0x00020000)
++#define TX_PIN_CFG_TRSW_EN		FIELD32(0x00040000)
++#define TX_PIN_CFG_TRSW_POL		FIELD32(0x00080000)
++
++/*
++ * TX_BAND_CFG: 0x1 use upper 20MHz, 0x0 use lower 20MHz
++ */
++#define TX_BAND_CFG			0x132c
++#define TX_BAND_CFG_HT40_PLUS		FIELD32(0x00000001)
++#define TX_BAND_CFG_A			FIELD32(0x00000002)
++#define TX_BAND_CFG_BG			FIELD32(0x00000004)
++
++/*
++ * TX_SW_CFG0:
++ */
++#define TX_SW_CFG0			0x1330
++
++/*
++ * TX_SW_CFG1:
++ */
++#define TX_SW_CFG1			0x1334
++
++/*
++ * TX_SW_CFG2:
++ */
++#define TX_SW_CFG2			0x1338
++
++/*
++ * TXOP_THRES_CFG:
++ */
++#define TXOP_THRES_CFG			0x133c
++
++/*
++ * TXOP_CTRL_CFG:
++ */
++#define TXOP_CTRL_CFG			0x1340
++
++/*
++ * TX_RTS_CFG:
++ * RTS_THRES: unit:byte
++ * RTS_FBK_EN: enable rts rate fallback
++ */
++#define TX_RTS_CFG			0x1344
++#define TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT	FIELD32(0x000000ff)
++#define TX_RTS_CFG_RTS_THRES		FIELD32(0x00ffff00)
++#define TX_RTS_CFG_RTS_FBK_EN		FIELD32(0x01000000)
++
++/*
++ * TX_TIMEOUT_CFG:
++ * MPDU_LIFETIME: expiration time = 2^(9+MPDU LIFE TIME) us
++ * RX_ACK_TIMEOUT: unit:slot. Used for TX procedure
++ * TX_OP_TIMEOUT: TXOP timeout value for TXOP truncation.
++ *                it is recommended that:
++ *                (SLOT_TIME) > (TX_OP_TIMEOUT) > (RX_ACK_TIMEOUT)
++ */
++#define TX_TIMEOUT_CFG			0x1348
++#define TX_TIMEOUT_CFG_MPDU_LIFETIME	FIELD32(0x000000f0)
++#define TX_TIMEOUT_CFG_RX_ACK_TIMEOUT	FIELD32(0x0000ff00)
++#define TX_TIMEOUT_CFG_TX_OP_TIMEOUT	FIELD32(0x00ff0000)
++
++/*
++ * TX_RTY_CFG:
++ * SHORT_RTY_LIMIT: short retry limit
++ * LONG_RTY_LIMIT: long retry limit
++ * LONG_RTY_THRE: Long retry threshoold
++ * NON_AGG_RTY_MODE: Non-Aggregate MPDU retry mode
++ *                   0:expired by retry limit, 1: expired by mpdu life timer
++ * AGG_RTY_MODE: Aggregate MPDU retry mode
++ *               0:expired by retry limit, 1: expired by mpdu life timer
++ * TX_AUTO_FB_ENABLE: Tx retry PHY rate auto fallback enable
++ */
++#define TX_RTY_CFG			0x134c
++#define TX_RTY_CFG_SHORT_RTY_LIMIT	FIELD32(0x000000ff)
++#define TX_RTY_CFG_LONG_RTY_LIMIT	FIELD32(0x0000ff00)
++#define TX_RTY_CFG_LONG_RTY_THRE	FIELD32(0x0fff0000)
++#define TX_RTY_CFG_NON_AGG_RTY_MODE	FIELD32(0x10000000)
++#define TX_RTY_CFG_AGG_RTY_MODE		FIELD32(0x20000000)
++#define TX_RTY_CFG_TX_AUTO_FB_ENABLE	FIELD32(0x40000000)
++
++/*
++ * TX_LINK_CFG:
++ * REMOTE_MFB_LIFETIME: remote MFB life time. unit: 32us
++ * MFB_ENABLE: TX apply remote MFB 1:enable
++ * REMOTE_UMFS_ENABLE: remote unsolicit  MFB enable
++ *                     0: not apply remote remote unsolicit (MFS=7)
++ * TX_MRQ_EN: MCS request TX enable
++ * TX_RDG_EN: RDG TX enable
++ * TX_CF_ACK_EN: Piggyback CF-ACK enable
++ * REMOTE_MFB: remote MCS feedback
++ * REMOTE_MFS: remote MCS feedback sequence number
++ */
++#define TX_LINK_CFG			0x1350
++#define TX_LINK_CFG_REMOTE_MFB_LIFETIME	FIELD32(0x000000ff)
++#define TX_LINK_CFG_MFB_ENABLE		FIELD32(0x00000100)
++#define TX_LINK_CFG_REMOTE_UMFS_ENABLE	FIELD32(0x00000200)
++#define TX_LINK_CFG_TX_MRQ_EN		FIELD32(0x00000400)
++#define TX_LINK_CFG_TX_RDG_EN		FIELD32(0x00000800)
++#define TX_LINK_CFG_TX_CF_ACK_EN	FIELD32(0x00001000)
++#define TX_LINK_CFG_REMOTE_MFB		FIELD32(0x00ff0000)
++#define TX_LINK_CFG_REMOTE_MFS		FIELD32(0xff000000)
++
++/*
++ * HT_FBK_CFG0:
++ */
++#define HT_FBK_CFG0			0x1354
++#define HT_FBK_CFG0_HTMCS0FBK		FIELD32(0x0000000f)
++#define HT_FBK_CFG0_HTMCS1FBK		FIELD32(0x000000f0)
++#define HT_FBK_CFG0_HTMCS2FBK		FIELD32(0x00000f00)
++#define HT_FBK_CFG0_HTMCS3FBK		FIELD32(0x0000f000)
++#define HT_FBK_CFG0_HTMCS4FBK		FIELD32(0x000f0000)
++#define HT_FBK_CFG0_HTMCS5FBK		FIELD32(0x00f00000)
++#define HT_FBK_CFG0_HTMCS6FBK		FIELD32(0x0f000000)
++#define HT_FBK_CFG0_HTMCS7FBK		FIELD32(0xf0000000)
++
++/*
++ * HT_FBK_CFG1:
++ */
++#define HT_FBK_CFG1			0x1358
++#define HT_FBK_CFG1_HTMCS8FBK		FIELD32(0x0000000f)
++#define HT_FBK_CFG1_HTMCS9FBK		FIELD32(0x000000f0)
++#define HT_FBK_CFG1_HTMCS10FBK		FIELD32(0x00000f00)
++#define HT_FBK_CFG1_HTMCS11FBK		FIELD32(0x0000f000)
++#define HT_FBK_CFG1_HTMCS12FBK		FIELD32(0x000f0000)
++#define HT_FBK_CFG1_HTMCS13FBK		FIELD32(0x00f00000)
++#define HT_FBK_CFG1_HTMCS14FBK		FIELD32(0x0f000000)
++#define HT_FBK_CFG1_HTMCS15FBK		FIELD32(0xf0000000)
++
++/*
++ * LG_FBK_CFG0:
++ */
++#define LG_FBK_CFG0			0x135c
++#define LG_FBK_CFG0_OFDMMCS0FBK		FIELD32(0x0000000f)
++#define LG_FBK_CFG0_OFDMMCS1FBK		FIELD32(0x000000f0)
++#define LG_FBK_CFG0_OFDMMCS2FBK		FIELD32(0x00000f00)
++#define LG_FBK_CFG0_OFDMMCS3FBK		FIELD32(0x0000f000)
++#define LG_FBK_CFG0_OFDMMCS4FBK		FIELD32(0x000f0000)
++#define LG_FBK_CFG0_OFDMMCS5FBK		FIELD32(0x00f00000)
++#define LG_FBK_CFG0_OFDMMCS6FBK		FIELD32(0x0f000000)
++#define LG_FBK_CFG0_OFDMMCS7FBK		FIELD32(0xf0000000)
++
++/*
++ * LG_FBK_CFG1:
++ */
++#define LG_FBK_CFG1			0x1360
++#define LG_FBK_CFG0_CCKMCS0FBK		FIELD32(0x0000000f)
++#define LG_FBK_CFG0_CCKMCS1FBK		FIELD32(0x000000f0)
++#define LG_FBK_CFG0_CCKMCS2FBK		FIELD32(0x00000f00)
++#define LG_FBK_CFG0_CCKMCS3FBK		FIELD32(0x0000f000)
++
++/*
++ * CCK_PROT_CFG: CCK Protection
++ * PROTECT_RATE: Protection control frame rate for CCK TX(RTS/CTS/CFEnd)
++ * PROTECT_CTRL: Protection control frame type for CCK TX
++ *               0:none, 1:RTS/CTS, 2:CTS-to-self
++ * PROTECT_NAV: TXOP protection type for CCK TX
++ *              0:none, 1:ShortNAVprotect, 2:LongNAVProtect
++ * TX_OP_ALLOW_CCK: CCK TXOP allowance, 0:disallow
++ * TX_OP_ALLOW_OFDM: CCK TXOP allowance, 0:disallow
++ * TX_OP_ALLOW_MM20: CCK TXOP allowance, 0:disallow
++ * TX_OP_ALLOW_MM40: CCK TXOP allowance, 0:disallow
++ * TX_OP_ALLOW_GF20: CCK TXOP allowance, 0:disallow
++ * TX_OP_ALLOW_GF40: CCK TXOP allowance, 0:disallow
++ * RTS_TH_EN: RTS threshold enable on CCK TX
++ */
++#define CCK_PROT_CFG			0x1364
++#define CCK_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
++#define CCK_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
++#define CCK_PROT_CFG_PROTECT_NAV	FIELD32(0x000c0000)
++#define CCK_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
++#define CCK_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
++#define CCK_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
++#define CCK_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
++#define CCK_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
++#define CCK_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
++#define CCK_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
++
++/*
++ * OFDM_PROT_CFG: OFDM Protection
++ */
++#define OFDM_PROT_CFG			0x1368
++#define OFDM_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
++#define OFDM_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
++#define OFDM_PROT_CFG_PROTECT_NAV	FIELD32(0x000c0000)
++#define OFDM_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
++#define OFDM_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
++#define OFDM_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
++#define OFDM_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
++#define OFDM_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
++#define OFDM_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
++#define OFDM_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
++
++/*
++ * MM20_PROT_CFG: MM20 Protection
++ */
++#define MM20_PROT_CFG			0x136c
++#define MM20_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
++#define MM20_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
++#define MM20_PROT_CFG_PROTECT_NAV	FIELD32(0x000c0000)
++#define MM20_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
++#define MM20_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
++#define MM20_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
++#define MM20_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
++#define MM20_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
++#define MM20_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
++#define MM20_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
++
++/*
++ * MM40_PROT_CFG: MM40 Protection
++ */
++#define MM40_PROT_CFG			0x1370
++#define MM40_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
++#define MM40_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
++#define MM40_PROT_CFG_PROTECT_NAV	FIELD32(0x000c0000)
++#define MM40_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
++#define MM40_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
++#define MM40_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
++#define MM40_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
++#define MM40_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
++#define MM40_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
++#define MM40_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
++
++/*
++ * GF20_PROT_CFG: GF20 Protection
++ */
++#define GF20_PROT_CFG			0x1374
++#define GF20_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
++#define GF20_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
++#define GF20_PROT_CFG_PROTECT_NAV	FIELD32(0x000c0000)
++#define GF20_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
++#define GF20_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
++#define GF20_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
++#define GF20_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
++#define GF20_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
++#define GF20_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
++#define GF20_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
++
++/*
++ * GF40_PROT_CFG: GF40 Protection
++ */
++#define GF40_PROT_CFG			0x1378
++#define GF40_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
++#define GF40_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
++#define GF40_PROT_CFG_PROTECT_NAV	FIELD32(0x000c0000)
++#define GF40_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
++#define GF40_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
++#define GF40_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
++#define GF40_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
++#define GF40_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
++#define GF40_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
++#define GF40_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
++
++/*
++ * EXP_CTS_TIME:
++ */
++#define EXP_CTS_TIME			0x137c
++
++/*
++ * EXP_ACK_TIME:
++ */
++#define EXP_ACK_TIME			0x1380
++
++/*
++ * RX_FILTER_CFG: RX configuration register.
++ */
++#define RX_FILTER_CFG			0x1400
++#define RX_FILTER_CFG_DROP_CRC_ERROR	FIELD32(0x00000001)
++#define RX_FILTER_CFG_DROP_PHY_ERROR	FIELD32(0x00000002)
++#define RX_FILTER_CFG_DROP_NOT_TO_ME	FIELD32(0x00000004)
++#define RX_FILTER_CFG_DROP_NOT_MY_BSSD	FIELD32(0x00000008)
++#define RX_FILTER_CFG_DROP_VER_ERROR	FIELD32(0x00000010)
++#define RX_FILTER_CFG_DROP_MULTICAST	FIELD32(0x00000020)
++#define RX_FILTER_CFG_DROP_BROADCAST	FIELD32(0x00000040)
++#define RX_FILTER_CFG_DROP_DUPLICATE	FIELD32(0x00000080)
++#define RX_FILTER_CFG_DROP_CF_END_ACK	FIELD32(0x00000100)
++#define RX_FILTER_CFG_DROP_CF_END	FIELD32(0x00000200)
++#define RX_FILTER_CFG_DROP_ACK		FIELD32(0x00000400)
++#define RX_FILTER_CFG_DROP_CTS		FIELD32(0x00000800)
++#define RX_FILTER_CFG_DROP_RTS		FIELD32(0x00001000)
++#define RX_FILTER_CFG_DROP_PSPOLL	FIELD32(0x00002000)
++#define RX_FILTER_CFG_DROP_BA		FIELD32(0x00004000)
++#define RX_FILTER_CFG_DROP_BAR		FIELD32(0x00008000)
++#define RX_FILTER_CFG_DROP_CNTL		FIELD32(0x00010000)
++
++/*
++ * AUTO_RSP_CFG:
++ * AUTORESPONDER: 0: disable, 1: enable
++ * BAC_ACK_POLICY: 0:long, 1:short preamble
++ * CTS_40_MMODE: Response CTS 40MHz duplicate mode
++ * CTS_40_MREF: Response CTS 40MHz duplicate mode
++ * AR_PREAMBLE: Auto responder preamble 0:long, 1:short preamble
++ * DUAL_CTS_EN: Power bit value in control frame
++ * ACK_CTS_PSM_BIT:Power bit value in control frame
++ */
++#define AUTO_RSP_CFG			0x1404
++#define AUTO_RSP_CFG_AUTORESPONDER	FIELD32(0x00000001)
++#define AUTO_RSP_CFG_BAC_ACK_POLICY	FIELD32(0x00000002)
++#define AUTO_RSP_CFG_CTS_40_MMODE	FIELD32(0x00000004)
++#define AUTO_RSP_CFG_CTS_40_MREF	FIELD32(0x00000008)
++#define AUTO_RSP_CFG_AR_PREAMBLE	FIELD32(0x00000010)
++#define AUTO_RSP_CFG_DUAL_CTS_EN	FIELD32(0x00000040)
++#define AUTO_RSP_CFG_ACK_CTS_PSM_BIT	FIELD32(0x00000080)
++
++/*
++ * LEGACY_BASIC_RATE:
++ */
++#define LEGACY_BASIC_RATE		0x1408
++
++/*
++ * HT_BASIC_RATE:
++ */
++#define HT_BASIC_RATE			0x140c
++
++/*
++ * HT_CTRL_CFG:
++ */
++#define HT_CTRL_CFG			0x1410
++
++/*
++ * SIFS_COST_CFG:
++ */
++#define SIFS_COST_CFG			0x1414
++
++/*
++ * RX_PARSER_CFG:
++ * Set NAV for all received frames
++ */
++#define RX_PARSER_CFG			0x1418
++
++/*
++ * TX_SEC_CNT0:
++ */
++#define TX_SEC_CNT0			0x1500
++
++/*
++ * RX_SEC_CNT0:
++ */
++#define RX_SEC_CNT0			0x1504
++
++/*
++ * CCMP_FC_MUTE:
++ */
++#define CCMP_FC_MUTE			0x1508
++
++/*
++ * TXOP_HLDR_ADDR0:
++ */
++#define TXOP_HLDR_ADDR0			0x1600
++
++/*
++ * TXOP_HLDR_ADDR1:
++ */
++#define TXOP_HLDR_ADDR1			0x1604
++
++/*
++ * TXOP_HLDR_ET:
++ */
++#define TXOP_HLDR_ET			0x1608
++
++/*
++ * QOS_CFPOLL_RA_DW0:
++ */
++#define QOS_CFPOLL_RA_DW0		0x160c
++
++/*
++ * QOS_CFPOLL_RA_DW1:
++ */
++#define QOS_CFPOLL_RA_DW1		0x1610
++
++/*
++ * QOS_CFPOLL_QC:
++ */
++#define QOS_CFPOLL_QC			0x1614
++
++/*
++ * RX_STA_CNT0: RX PLCP error count & RX CRC error count
++ */
++#define RX_STA_CNT0			0x1700
++#define RX_STA_CNT0_CRC_ERR		FIELD32(0x0000ffff)
++#define RX_STA_CNT0_PHY_ERR		FIELD32(0xffff0000)
++
++/*
++ * RX_STA_CNT1: RX False CCA count & RX LONG frame count
++ */
++#define RX_STA_CNT1			0x1704
++#define RX_STA_CNT1_FALSE_CCA		FIELD32(0x0000ffff)
++#define RX_STA_CNT1_PLCP_ERR		FIELD32(0xffff0000)
++
++/*
++ * RX_STA_CNT2:
++ */
++#define RX_STA_CNT2			0x1708
++#define RX_STA_CNT2_RX_DUPLI_COUNT	FIELD32(0x0000ffff)
++#define RX_STA_CNT2_RX_FIFO_OVERFLOW	FIELD32(0xffff0000)
++
++/*
++ * TX_STA_CNT0: TX Beacon count
++ */
++#define TX_STA_CNT0			0x170c
++#define TX_STA_CNT0_TX_FAIL_COUNT	FIELD32(0x0000ffff)
++#define TX_STA_CNT0_TX_BEACON_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_STA_CNT1: TX tx count
++ */
++#define TX_STA_CNT1			0x1710
++#define TX_STA_CNT1_TX_SUCCESS		FIELD32(0x0000ffff)
++#define TX_STA_CNT1_TX_RETRANSMIT	FIELD32(0xffff0000)
++
++/*
++ * TX_STA_CNT2: TX tx count
++ */
++#define TX_STA_CNT2			0x1714
++#define TX_STA_CNT2_TX_ZERO_LEN_COUNT	FIELD32(0x0000ffff)
++#define TX_STA_CNT2_TX_UNDER_FLOW_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_STA_FIFO: TX Result for specific PID status fifo register
++ */
++#define TX_STA_FIFO			0x1718
++#define TX_STA_FIFO_VALID		FIELD32(0x00000001)
++#define TX_STA_FIFO_PID_TYPE		FIELD32(0x0000001e)
++#define TX_STA_FIFO_TX_SUCCESS		FIELD32(0x00000020)
++#define TX_STA_FIFO_TX_AGGRE		FIELD32(0x00000040)
++#define TX_STA_FIFO_TX_ACK_REQUIRED	FIELD32(0x00000080)
++#define TX_STA_FIFO_WCID		FIELD32(0x0000ff00)
++#define TX_STA_FIFO_SUCCESS_RATE	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT: Debug counter
++ */
++#define TX_AGG_CNT			0x171c
++#define TX_AGG_CNT_NON_AGG_TX_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT_AGG_TX_COUNT		FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT0:
++ */
++#define TX_AGG_CNT0			0x1720
++#define TX_AGG_CNT0_AGG_SIZE_1_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT0_AGG_SIZE_2_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT1:
++ */
++#define TX_AGG_CNT1			0x1724
++#define TX_AGG_CNT1_AGG_SIZE_3_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT1_AGG_SIZE_4_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT2:
++ */
++#define TX_AGG_CNT2			0x1728
++#define TX_AGG_CNT2_AGG_SIZE_5_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT2_AGG_SIZE_6_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT3:
++ */
++#define TX_AGG_CNT3			0x172c
++#define TX_AGG_CNT3_AGG_SIZE_7_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT3_AGG_SIZE_8_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT4:
++ */
++#define TX_AGG_CNT4			0x1730
++#define TX_AGG_CNT4_AGG_SIZE_9_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT4_AGG_SIZE_10_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT5:
++ */
++#define TX_AGG_CNT5			0x1734
++#define TX_AGG_CNT5_AGG_SIZE_11_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT5_AGG_SIZE_12_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT6:
++ */
++#define TX_AGG_CNT6			0x1738
++#define TX_AGG_CNT6_AGG_SIZE_13_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT6_AGG_SIZE_14_COUNT	FIELD32(0xffff0000)
++
++/*
++ * TX_AGG_CNT7:
++ */
++#define TX_AGG_CNT7			0x173c
++#define TX_AGG_CNT7_AGG_SIZE_15_COUNT	FIELD32(0x0000ffff)
++#define TX_AGG_CNT7_AGG_SIZE_16_COUNT	FIELD32(0xffff0000)
++
++/*
++ * MPDU_DENSITY_CNT:
++ * TX_ZERO_DEL: TX zero length delimiter count
++ * RX_ZERO_DEL: RX zero length delimiter count
++ */
++#define MPDU_DENSITY_CNT		0x1740
++#define MPDU_DENSITY_CNT_TX_ZERO_DEL	FIELD32(0x0000ffff)
++#define MPDU_DENSITY_CNT_RX_ZERO_DEL	FIELD32(0xffff0000)
++
++/*
++ * Security key table memory.
++ * MAC_WCID_BASE: 8-bytes (use only 6 bytes) * 256 entry
++ * PAIRWISE_KEY_TABLE_BASE: 32-byte * 256 entry
++ * MAC_IVEIV_TABLE_BASE: 8-byte * 256-entry
++ * MAC_WCID_ATTRIBUTE_BASE: 4-byte * 256-entry
++ * SHARED_KEY_TABLE_BASE: 32-byte * 16-entry
++ * SHARED_KEY_MODE_BASE: 4-byte * 16-entry
++ */
++#define MAC_WCID_BASE			0x1800
++#define PAIRWISE_KEY_TABLE_BASE		0x4000
++#define MAC_IVEIV_TABLE_BASE		0x6000
++#define MAC_WCID_ATTRIBUTE_BASE		0x6800
++#define SHARED_KEY_TABLE_BASE		0x6c00
++#define SHARED_KEY_MODE_BASE		0x7000
++
++#define MAC_WCID_ENTRY(__idx) \
++	( MAC_WCID_BASE + ((__idx) * sizeof(struct mac_wcid_entry)) )
++#define PAIRWISE_KEY_ENTRY(__idx) \
++	( PAIRWISE_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)) )
++#define MAC_IVEIV_ENTRY(__idx) \
++	( MAC_IVEIV_TABLE_BASE + ((__idx) & sizeof(struct mac_iveiv_entry)) )
++#define MAC_WCID_ATTR_ENTRY(__idx) \
++	( MAC_WCID_ATTRIBUTE_BASE + ((__idx) * sizeof(u32)) )
++#define SHARED_KEY_ENTRY(__idx) \
++	( SHARED_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)) )
++#define SHARED_KEY_MODE_ENTRY(__idx) \
++	( SHARED_KEY_MODE_BASE + ((__idx) * sizeof(u32)) )
++
++struct mac_wcid_entry {
++	u8 mac[6];
++	u8 reserved[2];
++} __attribute__ ((packed));
++
++struct hw_key_entry {
++	u8 key[16];
++	u8 tx_mic[8];
++	u8 rx_mic[8];
++} __attribute__ ((packed));
++
++struct mac_iveiv_entry {
++	u8 iv[8];
++} __attribute__ ((packed));
++
++/*
++ * MAC_WCID_ATTRIBUTE:
++ */
++#define MAC_WCID_ATTRIBUTE_KEYTAB	FIELD32(0x00000001)
++#define MAC_WCID_ATTRIBUTE_CIPHER	FIELD32(0x0000000e)
++#define MAC_WCID_ATTRIBUTE_BSS_IDX	FIELD32(0x00000070)
++#define MAC_WCID_ATTRIBUTE_RX_WIUDF	FIELD32(0x00000380)
++
++/*
++ * SHARED_KEY_MODE:
++ */
++#define SHARED_KEY_MODE_BSS0_KEY0	FIELD32(0x00000007)
++#define SHARED_KEY_MODE_BSS0_KEY1	FIELD32(0x00000070)
++#define SHARED_KEY_MODE_BSS0_KEY2	FIELD32(0x00000700)
++#define SHARED_KEY_MODE_BSS0_KEY3	FIELD32(0x00007000)
++#define SHARED_KEY_MODE_BSS1_KEY0	FIELD32(0x00070000)
++#define SHARED_KEY_MODE_BSS1_KEY1	FIELD32(0x00700000)
++#define SHARED_KEY_MODE_BSS1_KEY2	FIELD32(0x07000000)
++#define SHARED_KEY_MODE_BSS1_KEY3	FIELD32(0x70000000)
++
++/*
++ * HOST-MCU communication
++ */
++
++/*
++ * H2M_MAILBOX_CSR: Host-to-MCU Mailbox.
++ */
++#define H2M_MAILBOX_CSR			0x7010
++#define H2M_MAILBOX_CSR_ARG0		FIELD32(0x000000ff)
++#define H2M_MAILBOX_CSR_ARG1		FIELD32(0x0000ff00)
++#define H2M_MAILBOX_CSR_CMD_TOKEN	FIELD32(0x00ff0000)
++#define H2M_MAILBOX_CSR_OWNER		FIELD32(0xff000000)
++
++/*
++ * H2M_MAILBOX_CID:
++ */
++#define H2M_MAILBOX_CID			0x7014
++#define H2M_MAILBOX_CID_CMD0		FIELD32(0x000000ff)
++#define H2M_MAILBOX_CID_CMD1		FIELD32(0x0000ff00)
++#define H2M_MAILBOX_CID_CMD2		FIELD32(0x00ff0000)
++#define H2M_MAILBOX_CID_CMD3		FIELD32(0xff000000)
++
++/*
++ * H2M_MAILBOX_STATUS:
++ */
++#define H2M_MAILBOX_STATUS		0x701c
++
++/*
++ * H2M_INT_SRC:
++ */
++#define H2M_INT_SRC			0x7024
++
++/*
++ * H2M_BBP_AGENT:
++ */
++#define H2M_BBP_AGENT			0x7028
++
++/*
++ * MCU_LEDCS: LED control for MCU Mailbox.
++ */
++#define MCU_LEDCS_LED_MODE		FIELD8(0x1f)
++#define MCU_LEDCS_POLARITY		FIELD8(0x01)
++
++/*
++ * HW_CS_CTS_BASE:
++ * Carrier-sense CTS frame base address.
++ * It's where mac stores carrier-sense frame for carrier-sense function.
++ */
++#define HW_CS_CTS_BASE			0x7700
++
++/*
++ * HW_DFS_CTS_BASE:
++ * FS CTS frame base address. It's where mac stores CTS frame for DFS.
++ */
++#define HW_DFS_CTS_BASE			0x7780
++
++/*
++ * TXRX control registers - base address 0x3000
++ */
++
++/*
++ * TXRX_CSR1:
++ * rt2860b  UNKNOWN reg use R/O Reg Addr 0x77d0 first..
++ */
++#define TXRX_CSR1			0x77d0
++
++/*
++ * HW_DEBUG_SETTING_BASE:
++ * since NULL frame won't be that long (256 byte)
++ * We steal 16 tail bytes to save debugging settings
++ */
++#define HW_DEBUG_SETTING_BASE		0x77f0
++#define HW_DEBUG_SETTING_BASE2		0x7770
++
++/*
++ * HW_BEACON_BASE
++ * In order to support maximum 8 MBSS and its maximum length
++ * is 512 bytes for each beacon
++ * Three section discontinue memory segments will be used.
++ * 1. The original region for BCN 0~3
++ * 2. Extract memory from FCE table for BCN 4~5
++ * 3. Extract memory from Pair-wise key table for BCN 6~7
++ *    It occupied those memory of wcid 238~253 for BCN 6
++ *    and wcid 222~237 for BCN 7
++ *
++ * IMPORTANT NOTE: Not sure why legacy driver does this,
++ * but HW_BEACON_BASE7 is 0x0200 bytes below HW_BEACON_BASE6.
++ */
++#define HW_BEACON_BASE0			0x7800
++#define HW_BEACON_BASE1			0x7a00
++#define HW_BEACON_BASE2			0x7c00
++#define HW_BEACON_BASE3			0x7e00
++#define HW_BEACON_BASE4			0x7200
++#define HW_BEACON_BASE5			0x7400
++#define HW_BEACON_BASE6			0x5dc0
++#define HW_BEACON_BASE7			0x5bc0
++
++#define HW_BEACON_OFFSET(__index) \
++	( ((__index) < 4) ? ( HW_BEACON_BASE0 + (__index * 0x0200) ) : \
++	  (((__index) < 6) ? ( HW_BEACON_BASE4 + ((__index - 4) * 0x0200) ) : \
++	  (HW_BEACON_BASE6 - ((__index - 6) * 0x0200))) )
++
++/*
++ * 8051 firmware image.
++ */
++#define FIRMWARE_RT2860			"rt2860.bin"
++#define FIRMWARE_IMAGE_BASE		0x2000
++
++/*
++ * BBP registers.
++ * The wordsize of the BBP is 8 bits.
++ */
++
++/*
++ * BBP 1: TX Antenna
++ */
++#define BBP1_TX_POWER			FIELD8(0x07)
++#define BBP1_TX_ANTENNA			FIELD8(0x18)
++
++/*
++ * BBP 3: RX Antenna
++ */
++#define BBP3_RX_ANTENNA			FIELD8(0x18)
++#define BBP3_HT40_PLUS			FIELD8(0x20)
++
++/*
++ * BBP 4: Bandwidth
++ */
++#define BBP4_TX_BF			FIELD8(0x01)
++#define BBP4_BANDWIDTH			FIELD8(0x18)
++
++/*
++ * RFCSR registers
++ * The wordsize of the RFCSR is 8 bits.
++ */
++
++/*
++ * RFCSR 6:
++ */
++#define RFCSR6_R			FIELD8(0x03)
++
++/*
++ * RFCSR 7:
++ */
++#define RFCSR7_RF_TUNING		FIELD8(0x01)
++
++/*
++ * RFCSR 12:
++ */
++#define RFCSR12_TX_POWER		FIELD8(0x1f)
++
++/*
++ * RFCSR 22:
++ */
++#define RFCSR22_BASEBAND_LOOPBACK	FIELD8(0x01)
++
++/*
++ * RFCSR 23:
++ */
++#define RFCSR23_FREQ_OFFSET		FIELD8(0x7f)
++
++/*
++ * RFCSR 30:
++ */
++#define RFCSR30_RF_CALIBRATION		FIELD8(0x80)
++
++/*
++ * RF registers
++ */
++
++/*
++ * RF 2
++ */
++#define RF2_ANTENNA_RX2			FIELD32(0x00000040)
++#define RF2_ANTENNA_TX1			FIELD32(0x00004000)
++#define RF2_ANTENNA_RX1			FIELD32(0x00020000)
++
++/*
++ * RF 3
++ */
++#define RF3_TXPOWER_G			FIELD32(0x00003e00)
++#define RF3_TXPOWER_A_7DBM_BOOST	FIELD32(0x00000200)
++#define RF3_TXPOWER_A			FIELD32(0x00003c00)
++
++/*
++ * RF 4
++ */
++#define RF4_TXPOWER_G			FIELD32(0x000007c0)
++#define RF4_TXPOWER_A_7DBM_BOOST	FIELD32(0x00000040)
++#define RF4_TXPOWER_A			FIELD32(0x00000780)
++#define RF4_FREQ_OFFSET			FIELD32(0x001f8000)
++#define RF4_HT40			FIELD32(0x00200000)
++
++/*
++ * EEPROM content.
++ * The wordsize of the EEPROM is 16 bits.
++ */
++
++/*
++ * EEPROM Version
++ */
++#define EEPROM_VERSION			0x0001
++#define EEPROM_VERSION_FAE		FIELD16(0x00ff)
++#define EEPROM_VERSION_VERSION		FIELD16(0xff00)
++
++/*
++ * HW MAC address.
++ */
++#define EEPROM_MAC_ADDR_0		0x0002
++#define EEPROM_MAC_ADDR_BYTE0		FIELD16(0x00ff)
++#define EEPROM_MAC_ADDR_BYTE1		FIELD16(0xff00)
++#define EEPROM_MAC_ADDR_1		0x0003
++#define EEPROM_MAC_ADDR_BYTE2		FIELD16(0x00ff)
++#define EEPROM_MAC_ADDR_BYTE3		FIELD16(0xff00)
++#define EEPROM_MAC_ADDR_2		0x0004
++#define EEPROM_MAC_ADDR_BYTE4		FIELD16(0x00ff)
++#define EEPROM_MAC_ADDR_BYTE5		FIELD16(0xff00)
++
++/*
++ * EEPROM ANTENNA config
++ * RXPATH: 1: 1R, 2: 2R, 3: 3R
++ * TXPATH: 1: 1T, 2: 2T
++ */
++#define	EEPROM_ANTENNA			0x001a
++#define EEPROM_ANTENNA_RXPATH		FIELD16(0x000f)
++#define EEPROM_ANTENNA_TXPATH		FIELD16(0x00f0)
++#define EEPROM_ANTENNA_RF_TYPE		FIELD16(0x0f00)
++
++/*
++ * EEPROM NIC config
++ * CARDBUS_ACCEL: 0 - enable, 1 - disable
++ */
++#define	EEPROM_NIC			0x001b
++#define EEPROM_NIC_HW_RADIO		FIELD16(0x0001)
++#define EEPROM_NIC_DYNAMIC_TX_AGC	FIELD16(0x0002)
++#define EEPROM_NIC_EXTERNAL_LNA_BG	FIELD16(0x0004)
++#define EEPROM_NIC_EXTERNAL_LNA_A	FIELD16(0x0008)
++#define EEPROM_NIC_CARDBUS_ACCEL	FIELD16(0x0010)
++#define EEPROM_NIC_BW40M_SB_BG		FIELD16(0x0020)
++#define EEPROM_NIC_BW40M_SB_A		FIELD16(0x0040)
++#define EEPROM_NIC_WPS_PBC		FIELD16(0x0080)
++#define EEPROM_NIC_BW40M_BG		FIELD16(0x0100)
++#define EEPROM_NIC_BW40M_A		FIELD16(0x0200)
++
++/*
++ * EEPROM frequency
++ */
++#define	EEPROM_FREQ			0x001d
++#define EEPROM_FREQ_OFFSET		FIELD16(0x00ff)
++#define EEPROM_FREQ_LED_MODE		FIELD16(0x7f00)
++#define EEPROM_FREQ_LED_POLARITY	FIELD16(0x1000)
++
++/*
++ * EEPROM LED
++ * POLARITY_RDY_G: Polarity RDY_G setting.
++ * POLARITY_RDY_A: Polarity RDY_A setting.
++ * POLARITY_ACT: Polarity ACT setting.
++ * POLARITY_GPIO_0: Polarity GPIO0 setting.
++ * POLARITY_GPIO_1: Polarity GPIO1 setting.
++ * POLARITY_GPIO_2: Polarity GPIO2 setting.
++ * POLARITY_GPIO_3: Polarity GPIO3 setting.
++ * POLARITY_GPIO_4: Polarity GPIO4 setting.
++ * LED_MODE: Led mode.
++ */
++#define EEPROM_LED1			0x001e
++#define EEPROM_LED2			0x001f
++#define EEPROM_LED3			0x0020
++#define EEPROM_LED_POLARITY_RDY_BG	FIELD16(0x0001)
++#define EEPROM_LED_POLARITY_RDY_A	FIELD16(0x0002)
++#define EEPROM_LED_POLARITY_ACT		FIELD16(0x0004)
++#define EEPROM_LED_POLARITY_GPIO_0	FIELD16(0x0008)
++#define EEPROM_LED_POLARITY_GPIO_1	FIELD16(0x0010)
++#define EEPROM_LED_POLARITY_GPIO_2	FIELD16(0x0020)
++#define EEPROM_LED_POLARITY_GPIO_3	FIELD16(0x0040)
++#define EEPROM_LED_POLARITY_GPIO_4	FIELD16(0x0080)
++#define EEPROM_LED_LED_MODE		FIELD16(0x1f00)
++
++/*
++ * EEPROM LNA
++ */
++#define EEPROM_LNA			0x0022
++#define EEPROM_LNA_BG			FIELD16(0x00ff)
++#define EEPROM_LNA_A0			FIELD16(0xff00)
++
++/*
++ * EEPROM RSSI BG offset
++ */
++#define EEPROM_RSSI_BG			0x0023
++#define EEPROM_RSSI_BG_OFFSET0		FIELD16(0x00ff)
++#define EEPROM_RSSI_BG_OFFSET1		FIELD16(0xff00)
++
++/*
++ * EEPROM RSSI BG2 offset
++ */
++#define EEPROM_RSSI_BG2			0x0024
++#define EEPROM_RSSI_BG2_OFFSET2		FIELD16(0x00ff)
++#define EEPROM_RSSI_BG2_LNA_A1		FIELD16(0xff00)
++
++/*
++ * EEPROM RSSI A offset
++ */
++#define EEPROM_RSSI_A			0x0025
++#define EEPROM_RSSI_A_OFFSET0		FIELD16(0x00ff)
++#define EEPROM_RSSI_A_OFFSET1		FIELD16(0xff00)
++
++/*
++ * EEPROM RSSI A2 offset
++ */
++#define EEPROM_RSSI_A2			0x0026
++#define EEPROM_RSSI_A2_OFFSET2		FIELD16(0x00ff)
++#define EEPROM_RSSI_A2_LNA_A2		FIELD16(0xff00)
++
++/*
++ * EEPROM TXpower delta: 20MHZ AND 40 MHZ use different power.
++ *	This is delta in 40MHZ.
++ * VALUE: Tx Power dalta value (MAX=4)
++ * TYPE: 1: Plus the delta value, 0: minus the delta value
++ * TXPOWER: Enable:
++ */
++#define EEPROM_TXPOWER_DELTA		0x0028
++#define EEPROM_TXPOWER_DELTA_VALUE	FIELD16(0x003f)
++#define EEPROM_TXPOWER_DELTA_TYPE	FIELD16(0x0040)
++#define EEPROM_TXPOWER_DELTA_TXPOWER	FIELD16(0x0080)
++
++/*
++ * EEPROM TXPOWER 802.11BG
++ */
++#define	EEPROM_TXPOWER_BG1		0x0029
++#define	EEPROM_TXPOWER_BG2		0x0030
++#define EEPROM_TXPOWER_BG_SIZE		7
++#define EEPROM_TXPOWER_BG_1		FIELD16(0x00ff)
++#define EEPROM_TXPOWER_BG_2		FIELD16(0xff00)
++
++/*
++ * EEPROM TXPOWER 802.11A
++ */
++#define EEPROM_TXPOWER_A1		0x003c
++#define EEPROM_TXPOWER_A2		0x0053
++#define EEPROM_TXPOWER_A_SIZE		6
++#define EEPROM_TXPOWER_A_1		FIELD16(0x00ff)
++#define EEPROM_TXPOWER_A_2		FIELD16(0xff00)
++
++/*
++ * EEPROM TXpower byrate: 20MHZ power
++ */
++#define EEPROM_TXPOWER_BYRATE		0x006f
++
++/*
++ * EEPROM BBP.
++ */
++#define	EEPROM_BBP_START		0x0078
++#define EEPROM_BBP_SIZE			16
++#define EEPROM_BBP_VALUE		FIELD16(0x00ff)
++#define EEPROM_BBP_REG_ID		FIELD16(0xff00)
++
++/*
++ * MCU mailbox commands.
++ */
++#define MCU_SLEEP			0x30
++#define MCU_WAKEUP			0x31
++#define MCU_RADIO_OFF			0x35
++#define MCU_LED				0x50
++#define MCU_LED_STRENGTH		0x51
++#define MCU_LED_1			0x52
++#define MCU_LED_2			0x53
++#define MCU_LED_3			0x54
++#define MCU_RADAR			0x60
++#define MCU_BOOT_SIGNAL			0x72
++#define MCU_BBP_SIGNAL			0x80
++
++/*
++ * MCU mailbox tokens
++ */
++#define TOKEN_WAKUP			3
++
++/*
++ * DMA descriptor defines.
++ */
++#define TXD_DESC_SIZE			( 4 * sizeof(__le32) )
++#define TXWI_DESC_SIZE			( 4 * sizeof(__le32) )
++#define RXD_DESC_SIZE			( 4 * sizeof(__le32) )
++#define RXWI_DESC_SIZE			( 4 * sizeof(__le32) )
++
++/*
++ * TX descriptor format for TX, PRIO and Beacon Ring.
++ */
++
++/*
++ * Word0
++ */
++#define TXD_W0_SD_PTR0			FIELD32(0xffffffff)
++
++/*
++ * Word1
++ */
++#define TXD_W1_SD_LEN1			FIELD32(0x00003fff)
++#define TXD_W1_LAST_SEC1		FIELD32(0x00004000)
++#define TXD_W1_BURST			FIELD32(0x00008000)
++#define TXD_W1_SD_LEN0			FIELD32(0x3fff0000)
++#define TXD_W1_LAST_SEC0		FIELD32(0x40000000)
++#define TXD_W1_DMA_DONE			FIELD32(0x80000000)
++
++/*
++ * Word2
++ */
++#define TXD_W2_SD_PTR1			FIELD32(0xffffffff)
++
++/*
++ * Word3
++ * WIV: Wireless Info Valid. 1: Driver filled WI,  0: DMA needs to copy WI
++ * QSEL: Select on-chip FIFO ID for 2nd-stage output scheduler.
++ *       0:MGMT, 1:HCCA 2:EDCA
++ */
++#define TXD_W3_WIV			FIELD32(0x01000000)
++#define TXD_W3_QSEL			FIELD32(0x06000000)
++#define TXD_W3_TCO			FIELD32(0x20000000)
++#define TXD_W3_UCO			FIELD32(0x40000000)
++#define TXD_W3_ICO			FIELD32(0x80000000)
++
++/*
++ * TX WI structure
++ */
++
++/*
++ * Word0
++ * FRAG: 1 To inform TKIP engine this is a fragment.
++ * MIMO_PS: The remote peer is in dynamic MIMO-PS mode
++ * TX_OP: 0:HT TXOP rule , 1:PIFS TX ,2:Backoff, 3:sifs
++ * BW: Channel bandwidth 20MHz or 40 MHz
++ * STBC: 1: STBC support MCS =0-7, 2,3 : RESERVED
++ */
++#define TXWI_W0_FRAG			FIELD32(0x00000001)
++#define TXWI_W0_MIMO_PS			FIELD32(0x00000002)
++#define TXWI_W0_CF_ACK			FIELD32(0x00000004)
++#define TXWI_W0_TS			FIELD32(0x00000008)
++#define TXWI_W0_AMPDU			FIELD32(0x00000010)
++#define TXWI_W0_MPDU_DENSITY		FIELD32(0x000000e0)
++#define TXWI_W0_TX_OP			FIELD32(0x00000300)
++#define TXWI_W0_MCS			FIELD32(0x007f0000)
++#define TXWI_W0_BW			FIELD32(0x00800000)
++#define TXWI_W0_SHORT_GI		FIELD32(0x01000000)
++#define TXWI_W0_STBC			FIELD32(0x06000000)
++#define TXWI_W0_IFS			FIELD32(0x08000000)
++#define TXWI_W0_PHYMODE			FIELD32(0xc0000000)
++
++/*
++ * Word1
++ */
++#define TXWI_W1_ACK			FIELD32(0x00000001)
++#define TXWI_W1_NSEQ			FIELD32(0x00000002)
++#define TXWI_W1_BW_WIN_SIZE		FIELD32(0x000000fc)
++#define TXWI_W1_WIRELESS_CLI_ID		FIELD32(0x0000ff00)
++#define TXWI_W1_MPDU_TOTAL_BYTE_COUNT	FIELD32(0x0fff0000)
++#define TXWI_W1_PACKETID		FIELD32(0xf0000000)
++
++/*
++ * Word2
++ */
++#define TXWI_W2_IV			FIELD32(0xffffffff)
++
++/*
++ * Word3
++ */
++#define TXWI_W3_EIV			FIELD32(0xffffffff)
++
++/*
++ * RX descriptor format for RX Ring.
++ */
++
++/*
++ * Word0
++ */
++#define RXD_W0_SDP0			FIELD32(0xffffffff)
++
++/*
++ * Word1
++ */
++#define RXD_W1_SDL1			FIELD32(0x00003fff)
++#define RXD_W1_SDL0			FIELD32(0x3fff0000)
++#define RXD_W1_LS0			FIELD32(0x40000000)
++#define RXD_W1_DMA_DONE			FIELD32(0x80000000)
++
++/*
++ * Word2
++ */
++#define RXD_W2_SDP1			FIELD32(0xffffffff)
++
++/*
++ * Word3
++ * AMSDU: RX with 802.3 header, not 802.11 header.
++ * DECRYPTED: This frame is being decrypted.
++ */
++#define RXD_W3_BA			FIELD32(0x00000001)
++#define RXD_W3_DATA			FIELD32(0x00000002)
++#define RXD_W3_NULLDATA			FIELD32(0x00000004)
++#define RXD_W3_FRAG			FIELD32(0x00000008)
++#define RXD_W3_UNICAST_TO_ME		FIELD32(0x00000010)
++#define RXD_W3_MULTICAST		FIELD32(0x00000020)
++#define RXD_W3_BROADCAST		FIELD32(0x00000040)
++#define RXD_W3_MY_BSS			FIELD32(0x00000080)
++#define RXD_W3_CRC_ERROR		FIELD32(0x00000100)
++#define RXD_W3_CIPHER_ERROR		FIELD32(0x00000600)
++#define RXD_W3_AMSDU			FIELD32(0x00000800)
++#define RXD_W3_HTC			FIELD32(0x00001000)
++#define RXD_W3_RSSI			FIELD32(0x00002000)
++#define RXD_W3_L2PAD			FIELD32(0x00004000)
++#define RXD_W3_AMPDU			FIELD32(0x00008000)
++#define RXD_W3_DECRYPTED		FIELD32(0x00010000)
++#define RXD_W3_PLCP_SIGNAL		FIELD32(0x00020000)
++#define RXD_W3_PLCP_RSSI		FIELD32(0x00040000)
++
++/*
++ * RX WI structure
++ */
++
++/*
++ * Word0
++ */
++#define RXWI_W0_WIRELESS_CLI_ID		FIELD32(0x000000ff)
++#define RXWI_W0_KEY_INDEX		FIELD32(0x00000300)
++#define RXWI_W0_BSSID			FIELD32(0x00001c00)
++#define RXWI_W0_UDF			FIELD32(0x0000e000)
++#define RXWI_W0_MPDU_TOTAL_BYTE_COUNT	FIELD32(0x0fff0000)
++#define RXWI_W0_TID			FIELD32(0xf0000000)
++
++/*
++ * Word1
++ */
++#define RXWI_W1_FRAG			FIELD32(0x0000000f)
++#define RXWI_W1_SEQUENCE		FIELD32(0x0000fff0)
++#define RXWI_W1_MCS			FIELD32(0x007f0000)
++#define RXWI_W1_BW			FIELD32(0x00800000)
++#define RXWI_W1_SHORT_GI		FIELD32(0x01000000)
++#define RXWI_W1_STBC			FIELD32(0x06000000)
++#define RXWI_W1_PHYMODE			FIELD32(0xc0000000)
++
++/*
++ * Word2
++ */
++#define RXWI_W2_RSSI0			FIELD32(0x000000ff)
++#define RXWI_W2_RSSI1			FIELD32(0x0000ff00)
++#define RXWI_W2_RSSI2			FIELD32(0x00ff0000)
++
++/*
++ * Word3
++ */
++#define RXWI_W3_SNR0			FIELD32(0x000000ff)
++#define RXWI_W3_SNR1			FIELD32(0x0000ff00)
++
++/*
++ * Macro's for converting txpower from EEPROM to mac80211 value
++ * and from mac80211 value to register value.
++ */
++#define MIN_G_TXPOWER	0
++#define MIN_A_TXPOWER	-7
++#define MAX_G_TXPOWER	31
++#define MAX_A_TXPOWER	15
++#define DEFAULT_TXPOWER	5
++
++#define TXPOWER_G_FROM_DEV(__txpower) \
++	((__txpower) > MAX_G_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
++
++#define TXPOWER_G_TO_DEV(__txpower) \
++	clamp_t(char, __txpower, MIN_G_TXPOWER, MAX_G_TXPOWER)
++
++#define TXPOWER_A_FROM_DEV(__txpower) \
++	((__txpower) > MAX_A_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
++
++#define TXPOWER_A_TO_DEV(__txpower) \
++	clamp_t(char, __txpower, MIN_A_TXPOWER, MAX_A_TXPOWER)
++
++#endif /* RT2800PCI_H */
+--- a/drivers/net/wireless/rt2x00/rt2x00.h
++++ b/drivers/net/wireless/rt2x00/rt2x00.h
+@@ -147,6 +147,12 @@ struct rt2x00_chip {
+ #define RT2561		0x0302
+ #define RT2661		0x0401
+ #define RT2571		0x1300
++#define RT2860		0x0601	/* 2.4GHz PCI/CB */
++#define RT2860D		0x0681	/* 2.4GHz, 5GHz PCI/CB */
++#define RT2890		0x0701	/* 2.4GHz PCIe */
++#define RT2890D		0x0781	/* 2.4GHz, 5GHz PCIe */
++#define RT2880		0x2880	/* WSOC */
++#define RT3052		0x3052	/* WSOC */
+ #define RT2870		0x1600
+ 
+ 	u16 rf;
-- 
cgit v1.2.3