From 32221046a302245a63d5e00d16cf3008b5b31255 Mon Sep 17 00:00:00 2001 From: Steve Cornelius Date: Tue, 23 Jul 2013 20:47:32 -0700 Subject: [PATCH] MLKU-25-3 crypto: caam - add Secure Memory support MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This is a squash of the following i.MX BSP commits (rel_imx_4.19.35_1.1.0_rc2) 1. ae8175a3f1be ("MLK-9710-10 Add CCM defs for FIFO_STORE instruction") 2. 9512280d066b ("MLK-9769-11 Add SM register defs, and expanded driver-private storage.") 3. a9dc44de8150 ("MLK-9769-10 Add Blob command bitdefs.") 4. 8f6a17b41917 ("ENGR00289885 [iMX6Q] Add Secure Memory and SECVIO support.") 5. c7d4f9db1077 ("MLK-9710-11 Add internal key cover and external blob export/import to prototype SM-API") 6. 568e449edfca ("MLK-9710-12 Adapt sm_test as a black-key handling example") 7. f42f12d9cb19 ("MLK-9710-13 Correct size in BLOB_OVERHEAD definition") 8. 022fc2b33f57 ("MLK-9710-14 Un-pad cache sizes for blob export/import") 9. 8d3e8c3c4dc1 ("MLK-9710-15 Correct size of padded key buffers") 10. 997fb2ff88ec ("MLK-9710-5 Unregister Secure Memory platform device upon shutdown") 11. 5316249198ee ("MLK-10897-1 ARM: imx7d: Add CAAM support for i.mx7d") 12. 07566f42a4ec ("MLK-11103 Missing register in Secure memory configuration v1") 13. 3004636304e1 ("MLK-12302 caam: Secure Memory platform device creation crashes") 14. 0e6ed5a819f7 ("MLK-13779 crypto: caam - initialize kslock spinlock") 15. b1254b6b5f52 ("Add missing NULL checks in CAAM sm") 16. 61f57509bc9a ("MLK-17992: caam: sm: Fix compilation warnings") 17. 41cf3d4c580c ("MLK-15473-1: crypto: caam: Add CAAM driver support for iMX8 soc family") 18. bb8742481209 ("MLK-17253-1: crypto: caam: Fix computation of SM pages addresses") 19. 308796dfae3b ("MLK-17253-2: crypto: caam: Use correct memory function for Secure Memory") 20. ba2cb6b5fb10 ("MLK-17732-2: SM store: Support iMX8QX and iMX8QM") 21. de710d376af6 ("MLK-17674-1: sm_store remove CONFIG_OF") 22. cfcae647434e ("MLK-17674-2: CAAM SM : get base address from device tree") 23. f49ebbd5eefa ("MLK-17992: caam: sm: Fix compilation warnings") 24. 345ead4338b9 ("MLK-17841: crypto: caam: Correct bugs in Secure Memory") 25. c17811f3fffc ("MLK-18082: crypto: caam: sm: Fix encap/decap function to handle errors") 26. 41bcba1d4c9b ("MLK-18082: crypto: caam: sm: Fix descriptor running functions") 27. b7385ab94784 ("MLK-20204: drivers: crypto: caam: sm: Remove deadcode") 28. 1d749430cb63 ("MLK-20204: drivers: crypto: caam: sm: test: Dealloc keyslot properly") 29. 6a5c2d9d358f ("crypto: caam - lower SM test verbosity") 30. 1a6bc92c0c87 ("MLK-21617: crypto: caam - update SM test error handling") Signed-off-by: Dan Douglass Signed-off-by: Victoria Milhoan Signed-off-by: Steve Cornelius Signed-off-by: Octavian Purdila Signed-off-by: Radu Solea Signed-off-by: Franck LENORMAND Signed-off-by: Aymen Sghaier Signed-off-by: Silvano di Ninno that have been reworked: 4. -make SM depend on JR -enable SM, SECVIO only on i.MX SoCs -fix resource leak - add off_node_put() where needed Split commit in three: 1 - SNVS/SECVIO driver 2 - Secure Memory driver 3 - DT changes 11. Clock handling dropped - logic already upstream. 17. Keep only Secure Memory related changes. Changes related to page 0 registers have been added previously. Other changes are dropped. 21. Always use first jr in ctrlpriv->jr[] array to access registers in page 0 (aliased in jr page), irrespective of SCU presence. Signed-off-by: Horia Geantă --- drivers/crypto/caam/Kconfig | 30 + drivers/crypto/caam/Makefile | 2 + drivers/crypto/caam/ctrl.c | 37 ++ drivers/crypto/caam/desc.h | 21 + drivers/crypto/caam/intern.h | 4 + drivers/crypto/caam/regs.h | 158 ++++- drivers/crypto/caam/sm.h | 127 ++++ drivers/crypto/caam/sm_store.c | 1332 ++++++++++++++++++++++++++++++++++++++++ drivers/crypto/caam/sm_test.c | 571 +++++++++++++++++ 9 files changed, 2279 insertions(+), 3 deletions(-) create mode 100644 drivers/crypto/caam/sm.h create mode 100644 drivers/crypto/caam/sm_store.c create mode 100644 drivers/crypto/caam/sm_test.c --- a/drivers/crypto/caam/Kconfig +++ b/drivers/crypto/caam/Kconfig @@ -156,6 +156,36 @@ config CRYPTO_DEV_FSL_CAAM_RNG_TEST caam RNG. This test is several minutes long and executes just before the RNG is registered with the hw_random API. +config CRYPTO_DEV_FSL_CAAM_SM + tristate "CAAM Secure Memory / Keystore API (EXPERIMENTAL)" + help + Enables use of a prototype kernel-level Keystore API with CAAM + Secure Memory for insertion/extraction of bus-protected secrets. + +config CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE + int "Size of each keystore slot in Secure Memory" + depends on CRYPTO_DEV_FSL_CAAM_SM + range 5 9 + default 7 + help + Select size of allocation units to divide Secure Memory pages into + (the size of a "slot" as referenced inside the API code). + Established as powers of two. + Examples: + 5 => 32 bytes + 6 => 64 bytes + 7 => 128 bytes + 8 => 256 bytes + 9 => 512 bytes + +config CRYPTO_DEV_FSL_CAAM_SM_TEST + tristate "CAAM Secure Memory - Keystore Test/Example (EXPERIMENTAL)" + depends on CRYPTO_DEV_FSL_CAAM_SM + help + Example thread to exercise the Keystore API and to verify that + stored and recovered secrets can be used for general purpose + encryption/decryption. + config CRYPTO_DEV_FSL_CAAM_SECVIO tristate "CAAM/SNVS Security Violation Handler (EXPERIMENTAL)" help --- a/drivers/crypto/caam/Makefile +++ b/drivers/crypto/caam/Makefile @@ -21,6 +21,8 @@ caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRY caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API) += caamhash.o caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_API) += caamrng.o caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_PKC_API) += caampkc.o pkc_desc.o +caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SM) += sm_store.o +caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SM_TEST) += sm_test.o caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SECVIO) += secvio.o caam-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API_QI) += qi.o --- a/drivers/crypto/caam/ctrl.c +++ b/drivers/crypto/caam/ctrl.c @@ -17,6 +17,7 @@ #include "jr.h" #include "desc_constr.h" #include "ctrl.h" +#include "sm.h" bool caam_dpaa2; EXPORT_SYMBOL(caam_dpaa2); @@ -573,6 +574,7 @@ static int caam_probe(struct platform_de const struct soc_device_attribute *imx_soc_match; struct device *dev; struct device_node *nprop, *np; + struct resource res_regs; struct caam_ctrl __iomem *ctrl; struct caam_drv_private *ctrlpriv; struct caam_perfmon __iomem *perfmon; @@ -719,9 +721,44 @@ iomap_ctrl: BLOCK_OFFSET * DECO_BLOCK_NUMBER ); + /* Only i.MX SoCs have sm */ + if (!imx_soc_match) + goto mc_fw; + + /* Get CAAM-SM node and of_iomap() and save */ + np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm"); + if (!np) + return -ENODEV; + + /* Get CAAM SM registers base address from device tree */ + ret = of_address_to_resource(np, 0, &res_regs); + if (ret) { + dev_err(dev, "failed to retrieve registers base from device tree\n"); + of_node_put(np); + return -ENODEV; + } + + ctrlpriv->sm_phy = res_regs.start; + ctrlpriv->sm_base = devm_ioremap_resource(dev, &res_regs); + if (IS_ERR(ctrlpriv->sm_base)) { + of_node_put(np); + return PTR_ERR(ctrlpriv->sm_base); + } + + if (!of_machine_is_compatible("fsl,imx8mn") && + !of_machine_is_compatible("fsl,imx8mm") && + !of_machine_is_compatible("fsl,imx8mq") && + !of_machine_is_compatible("fsl,imx8qm") && + !of_machine_is_compatible("fsl,imx8qxp")) + ctrlpriv->sm_size = resource_size(&res_regs); + else + ctrlpriv->sm_size = PG_SIZE_64K; + of_node_put(np); + if (!reg_access) goto set_dma_mask; +mc_fw: /* * Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel, * long pointers in master configuration register. --- a/drivers/crypto/caam/desc.h +++ b/drivers/crypto/caam/desc.h @@ -403,6 +403,10 @@ #define FIFOST_TYPE_PKHA_N (0x08 << FIFOST_TYPE_SHIFT) #define FIFOST_TYPE_PKHA_A (0x0c << FIFOST_TYPE_SHIFT) #define FIFOST_TYPE_PKHA_B (0x0d << FIFOST_TYPE_SHIFT) +#define FIFOST_TYPE_AF_SBOX_CCM_JKEK (0x10 << FIFOST_TYPE_SHIFT) +#define FIFOST_TYPE_AF_SBOX_CCM_TKEK (0x11 << FIFOST_TYPE_SHIFT) +#define FIFOST_TYPE_KEY_CCM_JKEK (0x14 << FIFOST_TYPE_SHIFT) +#define FIFOST_TYPE_KEY_CCM_TKEK (0x15 << FIFOST_TYPE_SHIFT) #define FIFOST_TYPE_AF_SBOX_JKEK (0x20 << FIFOST_TYPE_SHIFT) #define FIFOST_TYPE_AF_SBOX_TKEK (0x21 << FIFOST_TYPE_SHIFT) #define FIFOST_TYPE_PKHA_E_JKEK (0x22 << FIFOST_TYPE_SHIFT) @@ -1136,6 +1140,23 @@ #define OP_PCL_PKPROT_ECC 0x0002 #define OP_PCL_PKPROT_F2M 0x0001 +/* Blob protocol protinfo bits */ +#define OP_PCL_BLOB_TK 0x0200 +#define OP_PCL_BLOB_EKT 0x0100 + +#define OP_PCL_BLOB_K2KR_MEM 0x0000 +#define OP_PCL_BLOB_K2KR_C1KR 0x0010 +#define OP_PCL_BLOB_K2KR_C2KR 0x0030 +#define OP_PCL_BLOB_K2KR_AFHAS 0x0050 +#define OP_PCL_BLOB_K2KR_C2KR_SPLIT 0x0070 + +#define OP_PCL_BLOB_PTXT_SECMEM 0x0008 +#define OP_PCL_BLOB_BLACK 0x0004 + +#define OP_PCL_BLOB_FMT_NORMAL 0x0000 +#define OP_PCL_BLOB_FMT_MSTR 0x0002 +#define OP_PCL_BLOB_FMT_TEST 0x0003 + /* For non-protocol/alg-only op commands */ #define OP_ALG_TYPE_SHIFT 24 #define OP_ALG_TYPE_MASK (0x7 << OP_ALG_TYPE_SHIFT) --- a/drivers/crypto/caam/intern.h +++ b/drivers/crypto/caam/intern.h @@ -66,6 +66,7 @@ struct caam_drv_private_jr { * Driver-private storage for a single CAAM block instance */ struct caam_drv_private { + struct device *smdev; /* Physical-presence section */ struct caam_ctrl __iomem *ctrl; /* controller region */ @@ -73,6 +74,9 @@ struct caam_drv_private { struct caam_assurance __iomem *assure; struct caam_queue_if __iomem *qi; /* QI control region */ struct caam_job_ring __iomem *jr[4]; /* JobR's register space */ + dma_addr_t __iomem *sm_base; /* Secure memory storage base */ + phys_addr_t sm_phy; /* Secure memory storage physical */ + u32 sm_size; struct iommu_domain *domain; --- a/drivers/crypto/caam/regs.h +++ b/drivers/crypto/caam/regs.h @@ -382,6 +382,12 @@ struct version_regs { #define CHA_VER_VID_MD_LP512 0x1ull #define CHA_VER_VID_MD_HP 0x2ull +/* + * caam_perfmon - Performance Monitor/Secure Memory Status/ + * CAAM Global Status/Component Version IDs + * + * Spans f00-fff wherever instantiated + */ struct sec_vid { u16 ip_id; u8 maj_rev; @@ -412,17 +418,22 @@ struct caam_perfmon { #define CTPR_MS_PG_SZ_SHIFT 4 u32 comp_parms_ms; /* CTPR - Compile Parameters Register */ u32 comp_parms_ls; /* CTPR - Compile Parameters Register */ - u64 rsvd1[2]; + /* Secure Memory State Visibility */ + u32 rsvd1; + u32 smstatus; /* Secure memory status */ + u32 rsvd2; + u32 smpartown; /* Secure memory partition owner */ /* CAAM Global Status fc0-fdf */ u64 faultaddr; /* FAR - Fault Address */ u32 faultliodn; /* FALR - Fault Address LIODN */ u32 faultdetail; /* FADR - Fault Addr Detail */ - u32 rsvd2; #define CSTA_PLEND BIT(10) #define CSTA_ALT_PLEND BIT(18) + u32 rsvd3; u32 status; /* CSTA - CAAM Status */ - u64 rsvd3; + u32 smpart; /* Secure Memory Partition Parameters */ + u32 smvid; /* Secure Memory Version ID */ /* Component Instantiation Parameters fe0-fff */ u32 rtic_id; /* RVID - RTIC Version ID */ @@ -441,6 +452,62 @@ struct caam_perfmon { u32 caam_id_ls; /* CAAMVID - CAAM Version ID LS */ }; +#define SMSTATUS_PART_SHIFT 28 +#define SMSTATUS_PART_MASK (0xf << SMSTATUS_PART_SHIFT) +#define SMSTATUS_PAGE_SHIFT 16 +#define SMSTATUS_PAGE_MASK (0x7ff << SMSTATUS_PAGE_SHIFT) +#define SMSTATUS_MID_SHIFT 8 +#define SMSTATUS_MID_MASK (0x3f << SMSTATUS_MID_SHIFT) +#define SMSTATUS_ACCERR_SHIFT 4 +#define SMSTATUS_ACCERR_MASK (0xf << SMSTATUS_ACCERR_SHIFT) +#define SMSTATUS_ACCERR_NONE 0 +#define SMSTATUS_ACCERR_ALLOC 1 /* Page not allocated */ +#define SMSTATUS_ACCESS_ID 2 /* Not granted by ID */ +#define SMSTATUS_ACCESS_WRITE 3 /* Writes not allowed */ +#define SMSTATUS_ACCESS_READ 4 /* Reads not allowed */ +#define SMSTATUS_ACCESS_NONKEY 6 /* Non-key reads not allowed */ +#define SMSTATUS_ACCESS_BLOB 9 /* Blob access not allowed */ +#define SMSTATUS_ACCESS_DESCB 10 /* Descriptor Blob access spans pages */ +#define SMSTATUS_ACCESS_NON_SM 11 /* Outside Secure Memory range */ +#define SMSTATUS_ACCESS_XPAGE 12 /* Access crosses pages */ +#define SMSTATUS_ACCESS_INITPG 13 /* Page still initializing */ +#define SMSTATUS_STATE_SHIFT 0 +#define SMSTATUS_STATE_MASK (0xf << SMSTATUS_STATE_SHIFT) +#define SMSTATUS_STATE_RESET 0 +#define SMSTATUS_STATE_INIT 1 +#define SMSTATUS_STATE_NORMAL 2 +#define SMSTATUS_STATE_FAIL 3 + +/* up to 15 rings, 2 bits shifted by ring number */ +#define SMPARTOWN_RING_SHIFT 2 +#define SMPARTOWN_RING_MASK 3 +#define SMPARTOWN_AVAILABLE 0 +#define SMPARTOWN_NOEXIST 1 +#define SMPARTOWN_UNAVAILABLE 2 +#define SMPARTOWN_OURS 3 + +/* Maximum number of pages possible */ +#define SMPART_MAX_NUMPG_SHIFT 16 +#define SMPART_MAX_NUMPG_MASK (0x3f << SMPART_MAX_NUMPG_SHIFT) + +/* Maximum partition number */ +#define SMPART_MAX_PNUM_SHIFT 12 +#define SMPART_MAX_PNUM_MASK (0xf << SMPART_MAX_PNUM_SHIFT) + +/* Highest possible page number */ +#define SMPART_MAX_PG_SHIFT 0 +#define SMPART_MAX_PG_MASK (0x3f << SMPART_MAX_PG_SHIFT) + +/* Max size of a page */ +#define SMVID_PG_SIZE_SHIFT 16 +#define SMVID_PG_SIZE_MASK (0x7 << SMVID_PG_SIZE_SHIFT) + +/* Major/Minor Version ID */ +#define SMVID_MAJ_VERS_SHIFT 8 +#define SMVID_MAJ_VERS (0xf << SMVID_MAJ_VERS_SHIFT) +#define SMVID_MIN_VERS_SHIFT 0 +#define SMVID_MIN_VERS (0xf << SMVID_MIN_VERS_SHIFT) + /* LIODN programming for DMA configuration */ #define MSTRID_LOCK_LIODN 0x80000000 #define MSTRID_LOCK_MAKETRUSTED 0x00010000 /* only for JR masterid */ @@ -645,6 +712,35 @@ struct caam_ctrl { #define JRSTART_JR2_START 0x00000004 /* Start Job ring 2 */ #define JRSTART_JR3_START 0x00000008 /* Start Job ring 3 */ +/* Secure Memory Configuration - if you have it */ +/* Secure Memory Register Offset from JR Base Reg*/ +#define SM_V1_OFFSET 0x0f4 +#define SM_V2_OFFSET 0xa00 + +/* Minimum SM Version ID requiring v2 SM register mapping */ +#define SMVID_V2 0x20105 + +struct caam_secure_mem_v1 { + u32 sm_cmd; /* SMCJRx - Secure memory command */ + u32 rsvd1; + u32 sm_status; /* SMCSJRx - Secure memory status */ + u32 rsvd2; + + u32 sm_perm; /* SMAPJRx - Secure memory access perms */ + u32 sm_group2; /* SMAP2JRx - Secure memory access group 2 */ + u32 sm_group1; /* SMAP1JRx - Secure memory access group 1 */ +}; + +struct caam_secure_mem_v2 { + u32 sm_perm; /* SMAPJRx - Secure memory access perms */ + u32 sm_group2; /* SMAP2JRx - Secure memory access group 2 */ + u32 sm_group1; /* SMAP1JRx - Secure memory access group 1 */ + u32 rsvd1[118]; + u32 sm_cmd; /* SMCJRx - Secure memory command */ + u32 rsvd2; + u32 sm_status; /* SMCSJRx - Secure memory status */ +}; + /* * caam_job_ring - direct job ring setup * 1-4 possible per instantiation, base + 1000/2000/3000/4000 @@ -815,6 +911,62 @@ struct caam_job_ring { #define JRCR_RESET 0x01 +/* secure memory command */ +#define SMC_PAGE_SHIFT 16 +#define SMC_PAGE_MASK (0xffff << SMC_PAGE_SHIFT) +#define SMC_PART_SHIFT 8 +#define SMC_PART_MASK (0x0f << SMC_PART_SHIFT) +#define SMC_CMD_SHIFT 0 +#define SMC_CMD_MASK (0x0f << SMC_CMD_SHIFT) + +#define SMC_CMD_ALLOC_PAGE 0x01 /* allocate page to this partition */ +#define SMC_CMD_DEALLOC_PAGE 0x02 /* deallocate page from partition */ +#define SMC_CMD_DEALLOC_PART 0x03 /* deallocate partition */ +#define SMC_CMD_PAGE_INQUIRY 0x05 /* find partition associate with page */ + +/* secure memory (command) status */ +#define SMCS_PAGE_SHIFT 16 +#define SMCS_PAGE_MASK (0x0fff << SMCS_PAGE_SHIFT) +#define SMCS_CMDERR_SHIFT 14 +#define SMCS_CMDERR_MASK (3 << SMCS_CMDERR_SHIFT) +#define SMCS_ALCERR_SHIFT 12 +#define SMCS_ALCERR_MASK (3 << SMCS_ALCERR_SHIFT) +#define SMCS_PGOWN_SHIFT 6 +#define SMCS_PGWON_MASK (3 << SMCS_PGOWN_SHIFT) +#define SMCS_PART_SHIFT 0 +#define SMCS_PART_MASK (0xf << SMCS_PART_SHIFT) + +#define SMCS_CMDERR_NONE 0 +#define SMCS_CMDERR_INCOMP 1 /* Command not yet complete */ +#define SMCS_CMDERR_SECFAIL 2 /* Security failure occurred */ +#define SMCS_CMDERR_OVERFLOW 3 /* Command overflow */ + +#define SMCS_ALCERR_NONE 0 +#define SMCS_ALCERR_PSPERR 1 /* Partion marked PSP (dealloc only) */ +#define SMCS_ALCERR_PAGEAVAIL 2 /* Page not available */ +#define SMCS_ALCERR_PARTOWN 3 /* Partition ownership error */ + +#define SMCS_PGOWN_AVAIL 0 /* Page is available */ +#define SMCS_PGOWN_NOEXIST 1 /* Page initializing or nonexistent */ +#define SMCS_PGOWN_NOOWN 2 /* Page owned by another processor */ +#define SMCS_PGOWN_OWNED 3 /* Page belongs to this processor */ + +/* secure memory access permissions */ +#define SMCS_PERM_KEYMOD_SHIFT 16 +#define SMCA_PERM_KEYMOD_MASK (0xff << SMCS_PERM_KEYMOD_SHIFT) +#define SMCA_PERM_CSP_ZERO 0x8000 /* Zero when deallocated or released */ +#define SMCA_PERM_PSP_LOCK 0x4000 /* Part./pages can't be deallocated */ +#define SMCA_PERM_PERM_LOCK 0x2000 /* Lock permissions */ +#define SMCA_PERM_GRP_LOCK 0x1000 /* Lock access groups */ +#define SMCA_PERM_RINGID_SHIFT 10 +#define SMCA_PERM_RINGID_MASK (3 << SMCA_PERM_RINGID_SHIFT) +#define SMCA_PERM_G2_BLOB 0x0080 /* Group 2 blob import/export */ +#define SMCA_PERM_G2_WRITE 0x0020 /* Group 2 write */ +#define SMCA_PERM_G2_READ 0x0010 /* Group 2 read */ +#define SMCA_PERM_G1_BLOB 0x0008 /* Group 1... */ +#define SMCA_PERM_G1_WRITE 0x0002 +#define SMCA_PERM_G1_READ 0x0001 + /* * caam_assurance - Assurance Controller View * base + 0x6000 padded out to 0x1000 --- /dev/null +++ b/drivers/crypto/caam/sm.h @@ -0,0 +1,127 @@ +/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */ +/* + * CAAM Secure Memory/Keywrap API Definitions + * + * Copyright 2008-2015 Freescale Semiconductor, Inc. + * Copyright 2016-2019 NXP + */ + +#ifndef SM_H +#define SM_H + + +/* Storage access permissions */ +#define SM_PERM_READ 0x01 +#define SM_PERM_WRITE 0x02 +#define SM_PERM_BLOB 0x03 + +/* Define treatment of secure memory vs. general memory blobs */ +#define SM_SECMEM 0 +#define SM_GENMEM 1 + +/* Define treatment of red/black keys */ +#define RED_KEY 0 +#define BLACK_KEY 1 + +/* Define key encryption/covering options */ +#define KEY_COVER_ECB 0 /* cover key in AES-ECB */ +#define KEY_COVER_CCM 1 /* cover key with AES-CCM */ + +/* + * Round a key size up to an AES blocksize boundary so to allow for + * padding out to a full block + */ +#define AES_BLOCK_PAD(x) ((x % 16) ? ((x >> 4) + 1) << 4 : x) + +/* Define space required for BKEK + MAC tag storage in any blob */ +#define BLOB_OVERHEAD (32 + 16) + +/* Keystore maintenance functions */ +void sm_init_keystore(struct device *dev); +u32 sm_detect_keystore_units(struct device *dev); +int sm_establish_keystore(struct device *dev, u32 unit); +void sm_release_keystore(struct device *dev, u32 unit); +void caam_sm_shutdown(struct platform_device *pdev); +int caam_sm_example_init(struct platform_device *pdev); + +/* Keystore accessor functions */ +extern int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, + u32 *slot); +extern int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot); +extern int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot, + const u8 *key_data, u32 key_length); +extern int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot, + u32 key_length, u8 *key_data); +extern int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot, + u16 key_length, u8 keyauth); +extern int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot, + u8 keycolor, u8 keyauth, u8 *outbuf, + u16 keylen, u8 *keymod); +extern int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot, + u8 keycolor, u8 keyauth, u8 *inbuf, + u16 keylen, u8 *keymod); + +/* Prior functions from legacy API, deprecated */ +extern int sm_keystore_slot_encapsulate(struct device *dev, u32 unit, + u32 inslot, u32 outslot, u16 secretlen, + u8 *keymod, u16 keymodlen); +extern int sm_keystore_slot_decapsulate(struct device *dev, u32 unit, + u32 inslot, u32 outslot, u16 secretlen, + u8 *keymod, u16 keymodlen); + +/* Data structure to hold per-slot information */ +struct keystore_data_slot_info { + u8 allocated; /* Track slot assignments */ + u32 key_length; /* Size of the key */ +}; + +/* Data structure to hold keystore information */ +struct keystore_data { + void *base_address; /* Virtual base of secure memory pages */ + void *phys_address; /* Physical base of secure memory pages */ + u32 slot_count; /* Number of slots in the keystore */ + struct keystore_data_slot_info *slot; /* Per-slot information */ +}; + +/* store the detected attributes of a secure memory page */ +struct sm_page_descriptor { + u16 phys_pagenum; /* may be discontiguous */ + u16 own_part; /* Owning partition */ + void *pg_base; /* Calculated virtual address */ + void *pg_phys; /* Calculated physical address */ + struct keystore_data *ksdata; +}; + +struct caam_drv_private_sm { + struct device *parentdev; /* this ends up as the controller */ + struct device *smringdev; /* ring that owns this instance */ + struct platform_device *sm_pdev; /* Secure Memory platform device */ + spinlock_t kslock ____cacheline_aligned; + + /* SM Register offset from JR base address */ + u32 sm_reg_offset; + + /* Default parameters for geometry */ + u32 max_pages; /* maximum pages this instance can support */ + u32 top_partition; /* highest partition number in this instance */ + u32 top_page; /* highest page number in this instance */ + u32 page_size; /* page size */ + u32 slot_size; /* selected size of each storage block */ + + /* Partition/Page Allocation Map */ + u32 localpages; /* Number of pages we can access */ + struct sm_page_descriptor *pagedesc; /* Allocated per-page */ + + /* Installed handlers for keystore access */ + int (*data_init)(struct device *dev, u32 unit); + void (*data_cleanup)(struct device *dev, u32 unit); + int (*slot_alloc)(struct device *dev, u32 unit, u32 size, u32 *slot); + int (*slot_dealloc)(struct device *dev, u32 unit, u32 slot); + void *(*slot_get_address)(struct device *dev, u32 unit, u32 handle); + void *(*slot_get_physical)(struct device *dev, u32 unit, u32 handle); + u32 (*slot_get_base)(struct device *dev, u32 unit, u32 handle); + u32 (*slot_get_offset)(struct device *dev, u32 unit, u32 handle); + u32 (*slot_get_slot_size)(struct device *dev, u32 unit, u32 handle); +}; + +#endif /* SM_H */ --- /dev/null +++ b/drivers/crypto/caam/sm_store.c @@ -0,0 +1,1332 @@ +// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) +/* + * CAAM Secure Memory Storage Interface + * + * Copyright 2008-2015 Freescale Semiconductor, Inc. + * Copyright 2016-2019 NXP + * + * Loosely based on the SHW Keystore API for SCC/SCC2 + * Experimental implementation and NOT intended for upstream use. Expect + * this interface to be amended significantly in the future once it becomes + * integrated into live applications. + * + * Known issues: + * + * - Executes one instance of an secure memory "driver". This is tied to the + * fact that job rings can't run as standalone instances in the present + * configuration. + * + * - It does not expose a userspace interface. The value of a userspace + * interface for access to secrets is a point for further architectural + * discussion. + * + * - Partition/permission management is not part of this interface. It + * depends on some level of "knowledge" agreed upon between bootloader, + * provisioning applications, and OS-hosted software (which uses this + * driver). + * + * - No means of identifying the location or purpose of secrets managed by + * this interface exists; "slot location" and format of a given secret + * needs to be agreed upon between bootloader, provisioner, and OS-hosted + * application. + */ + +#include "compat.h" +#include "regs.h" +#include "jr.h" +#include "desc.h" +#include "intern.h" +#include "error.h" +#include "sm.h" +#include + +#define SECMEM_KEYMOD_LEN 8 +#define GENMEM_KEYMOD_LEN 16 + +#ifdef SM_DEBUG_CONT +void sm_show_page(struct device *dev, struct sm_page_descriptor *pgdesc) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + u32 i, *smdata; + + dev_info(dev, "physical page %d content at 0x%08x\n", + pgdesc->phys_pagenum, pgdesc->pg_base); + smdata = pgdesc->pg_base; + for (i = 0; i < (smpriv->page_size / sizeof(u32)); i += 4) + dev_info(dev, "[0x%08x] 0x%08x 0x%08x 0x%08x 0x%08x\n", + (u32)&smdata[i], smdata[i], smdata[i+1], smdata[i+2], + smdata[i+3]); +} +#endif + +#define INITIAL_DESCSZ 16 /* size of tmp buffer for descriptor const. */ + +static __always_inline u32 sm_send_cmd(struct caam_drv_private_sm *smpriv, + struct caam_drv_private_jr *jrpriv, + u32 cmd, u32 *status) +{ + void __iomem *write_address; + void __iomem *read_address; + + if (smpriv->sm_reg_offset == SM_V1_OFFSET) { + struct caam_secure_mem_v1 *sm_regs_v1; + + sm_regs_v1 = (struct caam_secure_mem_v1 *) + ((void *)jrpriv->rregs + SM_V1_OFFSET); + write_address = &sm_regs_v1->sm_cmd; + read_address = &sm_regs_v1->sm_status; + + } else if (smpriv->sm_reg_offset == SM_V2_OFFSET) { + struct caam_secure_mem_v2 *sm_regs_v2; + + sm_regs_v2 = (struct caam_secure_mem_v2 *) + ((void *)jrpriv->rregs + SM_V2_OFFSET); + write_address = &sm_regs_v2->sm_cmd; + read_address = &sm_regs_v2->sm_status; + + } else { + return -EINVAL; + } + + wr_reg32(write_address, cmd); + + udelay(10); + + /* Read until the command has terminated and the status is correct */ + do { + *status = rd_reg32(read_address); + } while (((*status & SMCS_CMDERR_MASK) >> SMCS_CMDERR_SHIFT) + == SMCS_CMDERR_INCOMP); + + return 0; +} + +/* + * Construct a black key conversion job descriptor + * + * This function constructs a job descriptor capable of performing + * a key blackening operation on a plaintext secure memory resident object. + * + * - desc pointer to a pointer to the descriptor generated by this + * function. Caller will be responsible to kfree() this + * descriptor after execution. + * - key physical pointer to the plaintext, which will also hold + * the result. Since encryption occurs in place, caller must + * ensure that the space is large enough to accommodate the + * blackened key + * - keysz size of the plaintext + * - auth if a CCM-covered key is required, use KEY_COVER_CCM, else + * use KEY_COVER_ECB. + * + * KEY to key1 from @key_addr LENGTH 16 BYTES; + * FIFO STORE from key1[ecb] TO @key_addr LENGTH 16 BYTES; + * + * Note that this variant uses the JDKEK only; it does not accommodate the + * trusted key encryption key at this time. + * + */ +static int blacken_key_jobdesc(u32 **desc, void *key, u16 keysz, bool auth) +{ + u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; + u16 dsize, idx; + + memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); + idx = 1; + + /* Load key to class 1 key register */ + tmpdesc[idx++] = CMD_KEY | CLASS_1 | (keysz & KEY_LENGTH_MASK); + tmpdesc[idx++] = (uintptr_t)key; + + /* ...and write back out via FIFO store*/ + tmpdesc[idx] = CMD_FIFO_STORE | CLASS_1 | (keysz & KEY_LENGTH_MASK); + + /* plus account for ECB/CCM option in FIFO_STORE */ + if (auth == KEY_COVER_ECB) + tmpdesc[idx] |= FIFOST_TYPE_KEY_KEK; + else + tmpdesc[idx] |= FIFOST_TYPE_KEY_CCM_JKEK; + + idx++; + tmpdesc[idx++] = (uintptr_t)key; + + /* finish off the job header */ + tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); + dsize = idx * sizeof(u32); + + /* now allocate execution buffer and coat it with executable */ + tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); + if (tdesc == NULL) + return 0; + + memcpy(tdesc, tmpdesc, dsize); + *desc = tdesc; + + return dsize; +} + +/* + * Construct a blob encapsulation job descriptor + * + * This function dynamically constructs a blob encapsulation job descriptor + * from the following arguments: + * + * - desc pointer to a pointer to the descriptor generated by this + * function. Caller will be responsible to kfree() this + * descriptor after execution. + * - keymod Physical pointer to a key modifier, which must reside in a + * contiguous piece of memory. Modifier will be assumed to be + * 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long + * for a blob of type SM_GENMEM (see blobtype argument). + * - secretbuf Physical pointer to a secret, normally a black or red key, + * possibly residing within an accessible secure memory page, + * of the secret to be encapsulated to an output blob. + * - outbuf Physical pointer to the destination buffer to receive the + * encapsulated output. This buffer will need to be 48 bytes + * larger than the input because of the added encapsulation data. + * The generated descriptor will account for the increase in size, + * but the caller must also account for this increase in the + * buffer allocator. + * - secretsz Size of input secret, in bytes. This is limited to 65536 + * less the size of blob overhead, since the length embeds into + * DECO pointer in/out instructions. + * - keycolor Determines if the source data is covered (black key) or + * plaintext (red key). RED_KEY or BLACK_KEY are defined in + * for this purpose. + * - blobtype Determine if encapsulated blob should be a secure memory + * blob (SM_SECMEM), with partition data embedded with key + * material, or a general memory blob (SM_GENMEM). + * - auth If BLACK_KEY source is covered via AES-CCM, specify + * KEY_COVER_CCM, else uses AES-ECB (KEY_COVER_ECB). + * + * Upon completion, desc points to a buffer containing a CAAM job + * descriptor which encapsulates data into an externally-storable blob + * suitable for use across power cycles. + * + * This is an example of a black key encapsulation job into a general memory + * blob. Notice the 16-byte key modifier in the LOAD instruction. Also note + * the output 48 bytes longer than the input: + * + * [00] B0800008 jobhdr: stidx=0 len=8 + * [01] 14400010 ld: ccb2-key len=16 offs=0 + * [02] 08144891 ptr->@0x08144891 + * [03] F800003A seqoutptr: len=58 + * [04] 01000000 out_ptr->@0x01000000 + * [05] F000000A seqinptr: len=10 + * [06] 09745090 in_ptr->@0x09745090 + * [07] 870D0004 operation: encap blob reg=memory, black, format=normal + * + * This is an example of a red key encapsulation job for storing a red key + * into a secure memory blob. Note the 8 byte modifier on the 12 byte offset + * in the LOAD instruction; this accounts for blob permission storage: + * + * [00] B0800008 jobhdr: stidx=0 len=8 + * [01] 14400C08 ld: ccb2-key len=8 offs=12 + * [02] 087D0784 ptr->@0x087d0784 + * [03] F8000050 seqoutptr: len=80 + * [04] 09251BB2 out_ptr->@0x09251bb2 + * [05] F0000020 seqinptr: len=32 + * [06] 40000F31 in_ptr->@0x40000f31 + * [07] 870D0008 operation: encap blob reg=memory, red, sec_mem, + * format=normal + * + * Note: this function only generates 32-bit pointers at present, and should + * be refactored using a scheme that allows both 32 and 64 bit addressing + */ + +static int blob_encap_jobdesc(u32 **desc, dma_addr_t keymod, + void *secretbuf, dma_addr_t outbuf, + u16 secretsz, u8 keycolor, u8 blobtype, u8 auth) +{ + u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; + u16 dsize, idx; + + memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); + idx = 1; + + /* + * Key modifier works differently for secure/general memory blobs + * This accounts for the permission/protection data encapsulated + * within the blob if a secure memory blob is requested + */ + if (blobtype == SM_SECMEM) + tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | + LDST_SRCDST_BYTE_KEY | + ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK) + | (8 & LDST_LEN_MASK); + else /* is general memory blob */ + tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | + LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK); + + tmpdesc[idx++] = (u32)keymod; + + /* + * Encapsulation output must include space for blob key encryption + * key and MAC tag + */ + tmpdesc[idx++] = CMD_SEQ_OUT_PTR | (secretsz + BLOB_OVERHEAD); + tmpdesc[idx++] = (u32)outbuf; + + /* Input data, should be somewhere in secure memory */ + tmpdesc[idx++] = CMD_SEQ_IN_PTR | secretsz; + tmpdesc[idx++] = (uintptr_t)secretbuf; + + /* Set blob encap, then color */ + tmpdesc[idx] = CMD_OPERATION | OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB; + + if (blobtype == SM_SECMEM) + tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM; + + if (auth == KEY_COVER_CCM) + tmpdesc[idx] |= OP_PCL_BLOB_EKT; + + if (keycolor == BLACK_KEY) + tmpdesc[idx] |= OP_PCL_BLOB_BLACK; + + idx++; + tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); + dsize = idx * sizeof(u32); + + tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); + if (tdesc == NULL) + return 0; + + memcpy(tdesc, tmpdesc, dsize); + *desc = tdesc; + return dsize; +} + +/* + * Construct a blob decapsulation job descriptor + * + * This function dynamically constructs a blob decapsulation job descriptor + * from the following arguments: + * + * - desc pointer to a pointer to the descriptor generated by this + * function. Caller will be responsible to kfree() this + * descriptor after execution. + * - keymod Physical pointer to a key modifier, which must reside in a + * contiguous piece of memory. Modifier will be assumed to be + * 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long + * for a blob of type SM_GENMEM (see blobtype argument). + * - blobbuf Physical pointer (into external memory) of the blob to + * be decapsulated. Blob must reside in a contiguous memory + * segment. + * - outbuf Physical pointer of the decapsulated output, possibly into + * a location within a secure memory page. Must be contiguous. + * - secretsz Size of encapsulated secret in bytes (not the size of the + * input blob). + * - keycolor Determines if decapsulated content is encrypted (BLACK_KEY) + * or left as plaintext (RED_KEY). + * - blobtype Determine if encapsulated blob should be a secure memory + * blob (SM_SECMEM), with partition data embedded with key + * material, or a general memory blob (SM_GENMEM). + * - auth If decapsulation path is specified by BLACK_KEY, then if + * AES-CCM is requested for key covering use KEY_COVER_CCM, else + * use AES-ECB (KEY_COVER_ECB). + * + * Upon completion, desc points to a buffer containing a CAAM job descriptor + * that decapsulates a key blob from external memory into a black (encrypted) + * key or red (plaintext) content. + * + * This is an example of a black key decapsulation job from a general memory + * blob. Notice the 16-byte key modifier in the LOAD instruction. + * + * [00] B0800008 jobhdr: stidx=0 len=8 + * [01] 14400010 ld: ccb2-key len=16 offs=0 + * [02] 08A63B7F ptr->@0x08a63b7f + * [03] F8000010 seqoutptr: len=16 + * [04] 01000000 out_ptr->@0x01000000 + * [05] F000003A seqinptr: len=58 + * [06] 01000010 in_ptr->@0x01000010 + * [07] 860D0004 operation: decap blob reg=memory, black, format=normal + * + * This is an example of a red key decapsulation job for restoring a red key + * from a secure memory blob. Note the 8 byte modifier on the 12 byte offset + * in the LOAD instruction: + * + * [00] B0800008 jobhdr: stidx=0 len=8 + * [01] 14400C08 ld: ccb2-key len=8 offs=12 + * [02] 01000000 ptr->@0x01000000 + * [03] F8000020 seqoutptr: len=32 + * [04] 400000E6 out_ptr->@0x400000e6 + * [05] F0000050 seqinptr: len=80 + * [06] 08F0C0EA in_ptr->@0x08f0c0ea + * [07] 860D0008 operation: decap blob reg=memory, red, sec_mem, + * format=normal + * + * Note: this function only generates 32-bit pointers at present, and should + * be refactored using a scheme that allows both 32 and 64 bit addressing + */ + +static int blob_decap_jobdesc(u32 **desc, dma_addr_t keymod, dma_addr_t blobbuf, + u8 *outbuf, u16 secretsz, u8 keycolor, + u8 blobtype, u8 auth) +{ + u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; + u16 dsize, idx; + + memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); + idx = 1; + + /* Load key modifier */ + if (blobtype == SM_SECMEM) + tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | + LDST_SRCDST_BYTE_KEY | + ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK) + | (8 & LDST_LEN_MASK); + else /* is general memory blob */ + tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | + LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK); + + tmpdesc[idx++] = (u32)keymod; + + /* Compensate BKEK + MAC tag over size of encapsulated secret */ + tmpdesc[idx++] = CMD_SEQ_IN_PTR | (secretsz + BLOB_OVERHEAD); + tmpdesc[idx++] = (u32)blobbuf; + tmpdesc[idx++] = CMD_SEQ_OUT_PTR | secretsz; + tmpdesc[idx++] = (uintptr_t)outbuf; + + /* Decapsulate from secure memory partition to black blob */ + tmpdesc[idx] = CMD_OPERATION | OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB; + + if (blobtype == SM_SECMEM) + tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM; + + if (auth == KEY_COVER_CCM) + tmpdesc[idx] |= OP_PCL_BLOB_EKT; + + if (keycolor == BLACK_KEY) + tmpdesc[idx] |= OP_PCL_BLOB_BLACK; + + idx++; + tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); + dsize = idx * sizeof(u32); + + tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); + if (tdesc == NULL) + return 0; + + memcpy(tdesc, tmpdesc, dsize); + *desc = tdesc; + return dsize; +} + +/* + * Pseudo-synchronous ring access functions for carrying out key + * encapsulation and decapsulation + */ + +struct sm_key_job_result { + int error; + struct completion completion; +}; + +void sm_key_job_done(struct device *dev, u32 *desc, u32 err, void *context) +{ + struct sm_key_job_result *res = context; + + if (err) + caam_jr_strstatus(dev, err); + + res->error = err; /* save off the error for postprocessing */ + + complete(&res->completion); /* mark us complete */ +} + +static int sm_key_job(struct device *ksdev, u32 *jobdesc) +{ + struct sm_key_job_result testres = {0}; + struct caam_drv_private_sm *kspriv; + int rtn = 0; + + kspriv = dev_get_drvdata(ksdev); + + init_completion(&testres.completion); + + rtn = caam_jr_enqueue(kspriv->smringdev, jobdesc, sm_key_job_done, + &testres); + if (rtn) + goto exit; + + wait_for_completion_interruptible(&testres.completion); + rtn = testres.error; + +exit: + return rtn; +} + +/* + * Following section establishes the default methods for keystore access + * They are NOT intended for use external to this module + * + * In the present version, these are the only means for the higher-level + * interface to deal with the mechanics of accessing the phyiscal keystore + */ + + +int slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; + u32 i; +#ifdef SM_DEBUG + dev_info(dev, "slot_alloc(): requesting slot for %d bytes\n", size); +#endif + + if (size > smpriv->slot_size) + return -EKEYREJECTED; + + for (i = 0; i < ksdata->slot_count; i++) { + if (ksdata->slot[i].allocated == 0) { + ksdata->slot[i].allocated = 1; + (*slot) = i; +#ifdef SM_DEBUG + dev_info(dev, "slot_alloc(): new slot %d allocated\n", + *slot); +#endif + return 0; + } + } + + return -ENOSPC; +} +EXPORT_SYMBOL(slot_alloc); + +int slot_dealloc(struct device *dev, u32 unit, u32 slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; + u8 __iomem *slotdata; + +#ifdef SM_DEBUG + dev_info(dev, "slot_dealloc(): releasing slot %d\n", slot); +#endif + if (slot >= ksdata->slot_count) + return -EINVAL; + slotdata = ksdata->base_address + slot * smpriv->slot_size; + + if (ksdata->slot[slot].allocated == 1) { + /* Forcibly overwrite the data from the keystore */ + memset_io(ksdata->base_address + slot * smpriv->slot_size, 0, + smpriv->slot_size); + + ksdata->slot[slot].allocated = 0; +#ifdef SM_DEBUG + dev_info(dev, "slot_dealloc(): slot %d released\n", slot); +#endif + return 0; + } + + return -EINVAL; +} +EXPORT_SYMBOL(slot_dealloc); + +void *slot_get_address(struct device *dev, u32 unit, u32 slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; + + if (slot >= ksdata->slot_count) + return NULL; + +#ifdef SM_DEBUG + dev_info(dev, "slot_get_address(): slot %d is 0x%08x\n", slot, + (u32)ksdata->base_address + slot * smpriv->slot_size); +#endif + + return ksdata->base_address + slot * smpriv->slot_size; +} + +void *slot_get_physical(struct device *dev, u32 unit, u32 slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; + + if (slot >= ksdata->slot_count) + return NULL; + +#ifdef SM_DEBUG + dev_info(dev, "%s: slot %d is 0x%08x\n", __func__, slot, + (u32)ksdata->phys_address + slot * smpriv->slot_size); +#endif + + return ksdata->phys_address + slot * smpriv->slot_size; +} + +u32 slot_get_base(struct device *dev, u32 unit, u32 slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; + + /* + * There could potentially be more than one secure partition object + * associated with this keystore. For now, there is just one. + */ + + (void)slot; + +#ifdef SM_DEBUG + dev_info(dev, "slot_get_base(): slot %d = 0x%08x\n", + slot, (u32)ksdata->base_address); +#endif + + return (uintptr_t)(ksdata->base_address); +} + +u32 slot_get_offset(struct device *dev, u32 unit, u32 slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; + + if (slot >= ksdata->slot_count) + return -EINVAL; + +#ifdef SM_DEBUG + dev_info(dev, "slot_get_offset(): slot %d = %d\n", slot, + slot * smpriv->slot_size); +#endif + + return slot * smpriv->slot_size; +} + +u32 slot_get_slot_size(struct device *dev, u32 unit, u32 slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + + +#ifdef SM_DEBUG + dev_info(dev, "slot_get_slot_size(): slot %d = %d\n", slot, + smpriv->slot_size); +#endif + /* All slots are the same size in the default implementation */ + return smpriv->slot_size; +} + + + +int kso_init_data(struct device *dev, u32 unit) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *keystore_data = NULL; + u32 slot_count; + u32 keystore_data_size; + + /* + * Calculate the required size of the keystore data structure, based + * on the number of keys that can fit in the partition. + */ + slot_count = smpriv->page_size / smpriv->slot_size; +#ifdef SM_DEBUG + dev_info(dev, "kso_init_data: %d slots initializing\n", slot_count); +#endif + + keystore_data_size = sizeof(struct keystore_data) + + slot_count * + sizeof(struct keystore_data_slot_info); + + keystore_data = kzalloc(keystore_data_size, GFP_KERNEL); + + if (!keystore_data) + return -ENOMEM; + +#ifdef SM_DEBUG + dev_info(dev, "kso_init_data: keystore data size = %d\n", + keystore_data_size); +#endif + + /* + * Place the slot information structure directly after the keystore data + * structure. + */ + keystore_data->slot = (struct keystore_data_slot_info *) + (keystore_data + 1); + keystore_data->slot_count = slot_count; + + smpriv->pagedesc[unit].ksdata = keystore_data; + smpriv->pagedesc[unit].ksdata->base_address = + smpriv->pagedesc[unit].pg_base; + smpriv->pagedesc[unit].ksdata->phys_address = + smpriv->pagedesc[unit].pg_phys; + + return 0; +} + +void kso_cleanup_data(struct device *dev, u32 unit) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + struct keystore_data *keystore_data = NULL; + + if (smpriv->pagedesc[unit].ksdata != NULL) + keystore_data = smpriv->pagedesc[unit].ksdata; + + /* Release the allocated keystore management data */ + kfree(smpriv->pagedesc[unit].ksdata); + + return; +} + + + +/* + * Keystore management section + */ + +void sm_init_keystore(struct device *dev) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + + smpriv->data_init = kso_init_data; + smpriv->data_cleanup = kso_cleanup_data; + smpriv->slot_alloc = slot_alloc; + smpriv->slot_dealloc = slot_dealloc; + smpriv->slot_get_address = slot_get_address; + smpriv->slot_get_physical = slot_get_physical; + smpriv->slot_get_base = slot_get_base; + smpriv->slot_get_offset = slot_get_offset; + smpriv->slot_get_slot_size = slot_get_slot_size; +#ifdef SM_DEBUG + dev_info(dev, "sm_init_keystore(): handlers installed\n"); +#endif +} +EXPORT_SYMBOL(sm_init_keystore); + +/* Return available pages/units */ +u32 sm_detect_keystore_units(struct device *dev) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + + return smpriv->localpages; +} +EXPORT_SYMBOL(sm_detect_keystore_units); + +/* + * Do any keystore specific initializations + */ +int sm_establish_keystore(struct device *dev, u32 unit) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + +#ifdef SM_DEBUG + dev_info(dev, "sm_establish_keystore(): unit %d initializing\n", unit); +#endif + + if (smpriv->data_init == NULL) + return -EINVAL; + + /* Call the data_init function for any user setup */ + return smpriv->data_init(dev, unit); +} +EXPORT_SYMBOL(sm_establish_keystore); + +void sm_release_keystore(struct device *dev, u32 unit) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + +#ifdef SM_DEBUG + dev_info(dev, "sm_establish_keystore(): unit %d releasing\n", unit); +#endif + if ((smpriv != NULL) && (smpriv->data_cleanup != NULL)) + smpriv->data_cleanup(dev, unit); + + return; +} +EXPORT_SYMBOL(sm_release_keystore); + +/* + * Subsequent interfacce (sm_keystore_*) forms the accessor interfacce to + * the keystore + */ +int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + int retval = -EINVAL; + + spin_lock(&smpriv->kslock); + + if ((smpriv->slot_alloc == NULL) || + (smpriv->pagedesc[unit].ksdata == NULL)) + goto out; + + retval = smpriv->slot_alloc(dev, unit, size, slot); + +out: + spin_unlock(&smpriv->kslock); + return retval; +} +EXPORT_SYMBOL(sm_keystore_slot_alloc); + +int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + int retval = -EINVAL; + + spin_lock(&smpriv->kslock); + + if ((smpriv->slot_alloc == NULL) || + (smpriv->pagedesc[unit].ksdata == NULL)) + goto out; + + retval = smpriv->slot_dealloc(dev, unit, slot); +out: + spin_unlock(&smpriv->kslock); + return retval; +} +EXPORT_SYMBOL(sm_keystore_slot_dealloc); + +int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot, + const u8 *key_data, u32 key_length) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + int retval = -EINVAL; + u32 slot_size; + u8 __iomem *slot_location; + + spin_lock(&smpriv->kslock); + + slot_size = smpriv->slot_get_slot_size(dev, unit, slot); + + if (key_length > slot_size) { + retval = -EFBIG; + goto out; + } + + slot_location = smpriv->slot_get_address(dev, unit, slot); + + memcpy_toio(slot_location, key_data, key_length); + + retval = 0; + +out: + spin_unlock(&smpriv->kslock); + return retval; +} +EXPORT_SYMBOL(sm_keystore_slot_load); + +int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot, + u32 key_length, u8 *key_data) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + int retval = -EINVAL; + u8 __iomem *slot_addr; + u32 slot_size; + + spin_lock(&smpriv->kslock); + + slot_addr = smpriv->slot_get_address(dev, unit, slot); + slot_size = smpriv->slot_get_slot_size(dev, unit, slot); + + if (key_length > slot_size) { + retval = -EKEYREJECTED; + goto out; + } + + memcpy_fromio(key_data, slot_addr, key_length); + retval = 0; + +out: + spin_unlock(&smpriv->kslock); + return retval; +} +EXPORT_SYMBOL(sm_keystore_slot_read); + +/* + * Blacken a clear key in a slot. Operates "in place". + * Limited to class 1 keys at the present time + */ +int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot, + u16 key_length, u8 keyauth) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + int retval = 0; + u8 __iomem *slotaddr; + void *slotphys; + u32 dsize, jstat; + u32 __iomem *coverdesc = NULL; + + /* Get the address of the object in the slot */ + slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot); + slotphys = (u8 *)smpriv->slot_get_physical(dev, unit, slot); + + dsize = blacken_key_jobdesc(&coverdesc, slotphys, key_length, keyauth); + if (!dsize) + return -ENOMEM; + jstat = sm_key_job(dev, coverdesc); + if (jstat) + retval = -EIO; + + kfree(coverdesc); + return retval; +} +EXPORT_SYMBOL(sm_keystore_cover_key); + +/* Export a black/red key to a blob in external memory */ +int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot, u8 keycolor, + u8 keyauth, u8 *outbuf, u16 keylen, u8 *keymod) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + int retval = 0; + u8 __iomem *slotaddr, *lkeymod; + u8 __iomem *slotphys; + dma_addr_t keymod_dma, outbuf_dma; + u32 dsize, jstat; + u32 __iomem *encapdesc = NULL; + struct device *dev_for_dma_op; + + /* Use the ring as device for DMA operations */ + dev_for_dma_op = smpriv->smringdev; + + /* Get the base address(es) of the specified slot */ + slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot); + slotphys = smpriv->slot_get_physical(dev, unit, slot); + + /* Allocate memory for key modifier compatible with DMA */ + lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA); + if (!lkeymod) { + retval = (-ENOMEM); + goto exit; + } + + /* Get DMA address for the key modifier */ + keymod_dma = dma_map_single(dev_for_dma_op, lkeymod, + SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); + if (dma_mapping_error(dev_for_dma_op, keymod_dma)) { + dev_err(dev, "unable to map keymod: %p\n", lkeymod); + retval = (-ENOMEM); + goto free_keymod; + } + + /* Copy the keymod and synchronize the DMA */ + memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN); + dma_sync_single_for_device(dev_for_dma_op, keymod_dma, + SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); + + /* Get DMA address for the destination */ + outbuf_dma = dma_map_single(dev_for_dma_op, outbuf, + keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE); + if (dma_mapping_error(dev_for_dma_op, outbuf_dma)) { + dev_err(dev, "unable to map outbuf: %p\n", outbuf); + retval = (-ENOMEM); + goto unmap_keymod; + } + + /* Build the encapsulation job descriptor */ + dsize = blob_encap_jobdesc(&encapdesc, keymod_dma, slotphys, outbuf_dma, + keylen, keycolor, SM_SECMEM, keyauth); + if (!dsize) { + dev_err(dev, "can't alloc an encapsulation descriptor\n"); + retval = -ENOMEM; + goto unmap_outbuf; + } + + /* Run the job */ + jstat = sm_key_job(dev, encapdesc); + if (jstat) { + retval = (-EIO); + goto free_desc; + } + + /* Synchronize the data received */ + dma_sync_single_for_cpu(dev_for_dma_op, outbuf_dma, + keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE); + +free_desc: + kfree(encapdesc); + +unmap_outbuf: + dma_unmap_single(dev_for_dma_op, outbuf_dma, keylen + BLOB_OVERHEAD, + DMA_FROM_DEVICE); + +unmap_keymod: + dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN, + DMA_TO_DEVICE); + +free_keymod: + kfree(lkeymod); + +exit: + return retval; +} +EXPORT_SYMBOL(sm_keystore_slot_export); + +/* Import a black/red key from a blob residing in external memory */ +int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot, u8 keycolor, + u8 keyauth, u8 *inbuf, u16 keylen, u8 *keymod) +{ + struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); + int retval = 0; + u8 __iomem *slotaddr, *lkeymod; + u8 __iomem *slotphys; + dma_addr_t keymod_dma, inbuf_dma; + u32 dsize, jstat; + u32 __iomem *decapdesc = NULL; + struct device *dev_for_dma_op; + + /* Use the ring as device for DMA operations */ + dev_for_dma_op = smpriv->smringdev; + + /* Get the base address(es) of the specified slot */ + slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot); + slotphys = smpriv->slot_get_physical(dev, unit, slot); + + /* Allocate memory for key modifier compatible with DMA */ + lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA); + if (!lkeymod) { + retval = (-ENOMEM); + goto exit; + } + + /* Get DMA address for the key modifier */ + keymod_dma = dma_map_single(dev_for_dma_op, lkeymod, + SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); + if (dma_mapping_error(dev_for_dma_op, keymod_dma)) { + dev_err(dev, "unable to map keymod: %p\n", lkeymod); + retval = (-ENOMEM); + goto free_keymod; + } + + /* Copy the keymod and synchronize the DMA */ + memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN); + dma_sync_single_for_device(dev_for_dma_op, keymod_dma, + SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); + + /* Get DMA address for the input */ + inbuf_dma = dma_map_single(dev_for_dma_op, inbuf, + keylen + BLOB_OVERHEAD, DMA_TO_DEVICE); + if (dma_mapping_error(dev_for_dma_op, inbuf_dma)) { + dev_err(dev, "unable to map inbuf: %p\n", (void *)inbuf_dma); + retval = (-ENOMEM); + goto unmap_keymod; + } + + /* synchronize the DMA */ + dma_sync_single_for_device(dev_for_dma_op, inbuf_dma, + keylen + BLOB_OVERHEAD, DMA_TO_DEVICE); + + /* Build the encapsulation job descriptor */ + dsize = blob_decap_jobdesc(&decapdesc, keymod_dma, inbuf_dma, slotphys, + keylen, keycolor, SM_SECMEM, keyauth); + if (!dsize) { + dev_err(dev, "can't alloc a decapsulation descriptor\n"); + retval = -ENOMEM; + goto unmap_inbuf; + } + + /* Run the job */ + jstat = sm_key_job(dev, decapdesc); + + /* + * May want to expand upon error meanings a bit. Any CAAM status + * is reported as EIO, but we might want to look for something more + * meaningful for something like an ICV error on restore, otherwise + * the caller is left guessing. + */ + if (jstat) { + retval = (-EIO); + goto free_desc; + } + +free_desc: + kfree(decapdesc); + +unmap_inbuf: + dma_unmap_single(dev_for_dma_op, inbuf_dma, keylen + BLOB_OVERHEAD, + DMA_TO_DEVICE); + +unmap_keymod: + dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN, + DMA_TO_DEVICE); + +free_keymod: + kfree(lkeymod); + +exit: + return retval; +} +EXPORT_SYMBOL(sm_keystore_slot_import); + +/* + * Initialization/shutdown subsystem + * Assumes statically-invoked startup/shutdown from the controller driver + * for the present time, to be reworked when a device tree becomes + * available. This code will not modularize in present form. + * + * Also, simply uses ring 0 for execution at the present + */ + +int caam_sm_startup(struct platform_device *pdev) +{ + struct device *ctrldev, *smdev; + struct caam_drv_private *ctrlpriv; + struct caam_drv_private_sm *smpriv; + struct caam_drv_private_jr *jrpriv; /* need this for reg page */ + struct platform_device *sm_pdev; + struct sm_page_descriptor *lpagedesc; + u32 page, pgstat, lpagect, detectedpage, smvid, smpart; + int ret = 0; + + struct device_node *np; + ctrldev = &pdev->dev; + ctrlpriv = dev_get_drvdata(ctrldev); + + /* + * If ctrlpriv is NULL, it's probably because the caam driver wasn't + * properly initialized (e.g. RNG4 init failed). Thus, bail out here. + */ + if (!ctrlpriv) { + ret = -ENODEV; + goto exit; + } + + /* + * Set up the private block for secure memory + * Only one instance is possible + */ + smpriv = kzalloc(sizeof(struct caam_drv_private_sm), GFP_KERNEL); + if (smpriv == NULL) { + dev_err(ctrldev, "can't alloc private mem for secure memory\n"); + ret = -ENOMEM; + goto exit; + } + smpriv->parentdev = ctrldev; /* copy of parent dev is handy */ + spin_lock_init(&smpriv->kslock); + + /* Create the dev */ + np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm"); + if (np) + of_node_clear_flag(np, OF_POPULATED); + sm_pdev = of_platform_device_create(np, "caam_sm", ctrldev); + + if (sm_pdev == NULL) { + ret = -EINVAL; + goto free_smpriv; + } + + /* Save a pointer to the platform device for Secure Memory */ + smpriv->sm_pdev = sm_pdev; + smdev = &sm_pdev->dev; + dev_set_drvdata(smdev, smpriv); + ctrlpriv->smdev = smdev; + + /* Set the Secure Memory Register Map Version */ + smvid = rd_reg32(&ctrlpriv->jr[0]->perfmon.smvid); + smpart = rd_reg32(&ctrlpriv->jr[0]->perfmon.smpart); + + if (smvid < SMVID_V2) + smpriv->sm_reg_offset = SM_V1_OFFSET; + else + smpriv->sm_reg_offset = SM_V2_OFFSET; + + /* + * Collect configuration limit data for reference + * This batch comes from the partition data/vid registers in perfmon + */ + smpriv->max_pages = ((smpart & SMPART_MAX_NUMPG_MASK) >> + SMPART_MAX_NUMPG_SHIFT) + 1; + smpriv->top_partition = ((smpart & SMPART_MAX_PNUM_MASK) >> + SMPART_MAX_PNUM_SHIFT) + 1; + smpriv->top_page = ((smpart & SMPART_MAX_PG_MASK) >> + SMPART_MAX_PG_SHIFT) + 1; + smpriv->page_size = 1024 << ((smvid & SMVID_PG_SIZE_MASK) >> + SMVID_PG_SIZE_SHIFT); + smpriv->slot_size = 1 << CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE; + +#ifdef SM_DEBUG + dev_info(smdev, "max pages = %d, top partition = %d\n", + smpriv->max_pages, smpriv->top_partition); + dev_info(smdev, "top page = %d, page size = %d (total = %d)\n", + smpriv->top_page, smpriv->page_size, + smpriv->top_page * smpriv->page_size); + dev_info(smdev, "selected slot size = %d\n", smpriv->slot_size); +#endif + + /* + * Now probe for partitions/pages to which we have access. Note that + * these have likely been set up by a bootloader or platform + * provisioning application, so we have to assume that we "inherit" + * a configuration and work within the constraints of what it might be. + * + * Assume use of the zeroth ring in the present iteration (until + * we can divorce the controller and ring drivers, and then assign + * an SM instance to any ring instance). + */ + smpriv->smringdev = caam_jr_alloc(); + if (!smpriv->smringdev) { + dev_err(smdev, "Device for job ring not created\n"); + ret = -ENODEV; + goto unregister_smpdev; + } + + jrpriv = dev_get_drvdata(smpriv->smringdev); + lpagect = 0; + pgstat = 0; + lpagedesc = kzalloc(sizeof(struct sm_page_descriptor) + * smpriv->max_pages, GFP_KERNEL); + if (lpagedesc == NULL) { + ret = -ENOMEM; + goto free_smringdev; + } + + for (page = 0; page < smpriv->max_pages; page++) { + u32 page_ownership; + + if (sm_send_cmd(smpriv, jrpriv, + ((page << SMC_PAGE_SHIFT) & SMC_PAGE_MASK) | + (SMC_CMD_PAGE_INQUIRY & SMC_CMD_MASK), + &pgstat)) { + ret = -EINVAL; + goto free_lpagedesc; + } + + page_ownership = (pgstat & SMCS_PGWON_MASK) >> SMCS_PGOWN_SHIFT; + if ((page_ownership == SMCS_PGOWN_OWNED) + || (page_ownership == SMCS_PGOWN_NOOWN)) { + /* page allocated */ + lpagedesc[page].phys_pagenum = + (pgstat & SMCS_PAGE_MASK) >> SMCS_PAGE_SHIFT; + lpagedesc[page].own_part = + (pgstat & SMCS_PART_SHIFT) >> SMCS_PART_MASK; + lpagedesc[page].pg_base = (u8 *)ctrlpriv->sm_base + + (smpriv->page_size * page); + if (ctrlpriv->scu_en) { +/* FIXME: get different addresses viewed by CPU and CAAM from + * platform property + */ + lpagedesc[page].pg_phys = (u8 *)0x20800000 + + (smpriv->page_size * page); + } else { + lpagedesc[page].pg_phys = + (u8 *) ctrlpriv->sm_phy + + (smpriv->page_size * page); + } + lpagect++; +#ifdef SM_DEBUG + dev_info(smdev, + "physical page %d, owning partition = %d\n", + lpagedesc[page].phys_pagenum, + lpagedesc[page].own_part); +#endif + } + } + + smpriv->pagedesc = kzalloc(sizeof(struct sm_page_descriptor) * lpagect, + GFP_KERNEL); + if (smpriv->pagedesc == NULL) { + ret = -ENOMEM; + goto free_lpagedesc; + } + smpriv->localpages = lpagect; + + detectedpage = 0; + for (page = 0; page < smpriv->max_pages; page++) { + if (lpagedesc[page].pg_base != NULL) { /* e.g. live entry */ + memcpy(&smpriv->pagedesc[detectedpage], + &lpagedesc[page], + sizeof(struct sm_page_descriptor)); +#ifdef SM_DEBUG_CONT + sm_show_page(smdev, &smpriv->pagedesc[detectedpage]); +#endif + detectedpage++; + } + } + + kfree(lpagedesc); + + sm_init_keystore(smdev); + + goto exit; + +free_lpagedesc: + kfree(lpagedesc); +free_smringdev: + caam_jr_free(smpriv->smringdev); +unregister_smpdev: + of_device_unregister(smpriv->sm_pdev); +free_smpriv: + kfree(smpriv); + +exit: + return ret; +} + +void caam_sm_shutdown(struct platform_device *pdev) +{ + struct device *ctrldev, *smdev; + struct caam_drv_private *priv; + struct caam_drv_private_sm *smpriv; + + ctrldev = &pdev->dev; + priv = dev_get_drvdata(ctrldev); + smdev = priv->smdev; + + /* Return if resource not initialized by startup */ + if (smdev == NULL) + return; + + smpriv = dev_get_drvdata(smdev); + + caam_jr_free(smpriv->smringdev); + + /* Remove Secure Memory Platform Device */ + of_device_unregister(smpriv->sm_pdev); + + kfree(smpriv->pagedesc); + kfree(smpriv); +} +EXPORT_SYMBOL(caam_sm_shutdown); + +static void __exit caam_sm_exit(void) +{ + struct device_node *dev_node; + struct platform_device *pdev; + + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); + if (!dev_node) { + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); + if (!dev_node) + return; + } + + pdev = of_find_device_by_node(dev_node); + if (!pdev) + return; + + of_node_put(dev_node); + + caam_sm_shutdown(pdev); + + return; +} + +static int __init caam_sm_init(void) +{ + struct device_node *dev_node; + struct platform_device *pdev; + + /* + * Do of_find_compatible_node() then of_find_device_by_node() + * once a functional device tree is available + */ + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); + if (!dev_node) { + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); + if (!dev_node) + return -ENODEV; + } + + pdev = of_find_device_by_node(dev_node); + if (!pdev) + return -ENODEV; + + of_node_get(dev_node); + + caam_sm_startup(pdev); + + return 0; +} + +module_init(caam_sm_init); +module_exit(caam_sm_exit); + +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_DESCRIPTION("FSL CAAM Secure Memory / Keystore"); +MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD"); --- /dev/null +++ b/drivers/crypto/caam/sm_test.c @@ -0,0 +1,571 @@ +// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) +/* + * Secure Memory / Keystore Exemplification Module + * + * Copyright 2012-2015 Freescale Semiconductor, Inc. + * Copyright 2016-2019 NXP + * + * This module has been overloaded as an example to show: + * - Secure memory subsystem initialization/shutdown + * - Allocation/deallocation of "slots" in a secure memory page + * - Loading and unloading of key material into slots + * - Covering of secure memory objects into "black keys" (ECB only at present) + * - Verification of key covering (by differentiation only) + * - Exportation of keys into secure memory blobs (with display of result) + * - Importation of keys from secure memory blobs (with display of result) + * - Verification of re-imported keys where possible. + * + * The module does not show the use of key objects as working key register + * source material at this time. + * + * This module can use a substantial amount of refactoring, which may occur + * after the API gets some mileage. Furthermore, expect this module to + * eventually disappear once the API is integrated into "real" software. + */ + +#include "compat.h" +#include "regs.h" +#include "intern.h" +#include "desc.h" +#include "error.h" +#include "jr.h" +#include "sm.h" + +/* Fixed known pattern for a key modifier */ +static u8 skeymod[] = { + 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, + 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 +}; + +/* Fixed known pattern for a key */ +static u8 clrkey[] = { + 0x00, 0x01, 0x02, 0x03, 0x04, 0x0f, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, + 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, + 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, + 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, + 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, + 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, + 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, + 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, + 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, + 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, + 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, + 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, + 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, + 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, + 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, + 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, + 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, + 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, + 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, + 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, + 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, + 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, + 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, + 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, + 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, + 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, + 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, + 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, + 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff +}; + +static void key_display(struct device *dev, const char *label, u16 size, + u8 *key) +{ + unsigned i; + + dev_dbg(dev, "%s", label); + for (i = 0; i < size; i += 8) + dev_dbg(dev, + "[%04d] %02x %02x %02x %02x %02x %02x %02x %02x\n", + i, key[i], key[i + 1], key[i + 2], key[i + 3], + key[i + 4], key[i + 5], key[i + 6], key[i + 7]); +} + +int caam_sm_example_init(struct platform_device *pdev) +{ + struct device *ctrldev, *ksdev; + struct caam_drv_private *ctrlpriv; + struct caam_drv_private_sm *kspriv; + u32 unit, units; + int rtnval; + u8 clrkey8[8], clrkey16[16], clrkey24[24], clrkey32[32]; + u8 blkkey8[AES_BLOCK_PAD(8)], blkkey16[AES_BLOCK_PAD(16)]; + u8 blkkey24[AES_BLOCK_PAD(24)], blkkey32[AES_BLOCK_PAD(32)]; + u8 rstkey8[AES_BLOCK_PAD(8)], rstkey16[AES_BLOCK_PAD(16)]; + u8 rstkey24[AES_BLOCK_PAD(24)], rstkey32[AES_BLOCK_PAD(32)]; + u8 __iomem *blob8, *blob16, *blob24, *blob32; + u32 keyslot8, keyslot16, keyslot24, keyslot32 = 0; + + blob8 = blob16 = blob24 = blob32 = NULL; + + /* + * 3.5.x and later revs for MX6 should be able to ditch this + * and detect via dts property + */ + ctrldev = &pdev->dev; + ctrlpriv = dev_get_drvdata(ctrldev); + + /* + * If ctrlpriv is NULL, it's probably because the caam driver wasn't + * properly initialized (e.g. RNG4 init failed). Thus, bail out here. + */ + if (!ctrlpriv) + return -ENODEV; + + ksdev = ctrlpriv->smdev; + kspriv = dev_get_drvdata(ksdev); + if (kspriv == NULL) + return -ENODEV; + + /* What keystores are available ? */ + units = sm_detect_keystore_units(ksdev); + if (!units) + dev_err(ksdev, "blkkey_ex: no keystore units available\n"); + + /* + * MX6 bootloader stores some stuff in unit 0, so let's + * use 1 or above + */ + if (units < 2) { + dev_err(ksdev, "blkkey_ex: insufficient keystore units\n"); + return -ENODEV; + } + unit = 1; + + dev_info(ksdev, "blkkey_ex: %d keystore units available\n", units); + + /* Initialize/Establish Keystore */ + sm_establish_keystore(ksdev, unit); /* Initalize store in #1 */ + + /* + * Now let's set up buffers for blobs in DMA-able memory. All are + * larger than need to be so that blob size can be seen. + */ + blob8 = kzalloc(128, GFP_KERNEL | GFP_DMA); + blob16 = kzalloc(128, GFP_KERNEL | GFP_DMA); + blob24 = kzalloc(128, GFP_KERNEL | GFP_DMA); + blob32 = kzalloc(128, GFP_KERNEL | GFP_DMA); + + if ((blob8 == NULL) || (blob16 == NULL) || (blob24 == NULL) || + (blob32 == NULL)) { + rtnval = -ENOMEM; + dev_err(ksdev, "blkkey_ex: can't get blob buffers\n"); + goto freemem; + } + + /* Initialize clear keys with a known and recognizable pattern */ + memcpy(clrkey8, clrkey, 8); + memcpy(clrkey16, clrkey, 16); + memcpy(clrkey24, clrkey, 24); + memcpy(clrkey32, clrkey, 32); + + memset(blkkey8, 0, AES_BLOCK_PAD(8)); + memset(blkkey16, 0, AES_BLOCK_PAD(16)); + memset(blkkey24, 0, AES_BLOCK_PAD(24)); + memset(blkkey32, 0, AES_BLOCK_PAD(32)); + + memset(rstkey8, 0, AES_BLOCK_PAD(8)); + memset(rstkey16, 0, AES_BLOCK_PAD(16)); + memset(rstkey24, 0, AES_BLOCK_PAD(24)); + memset(rstkey32, 0, AES_BLOCK_PAD(32)); + + /* + * Allocate keyslots. Since we're going to blacken keys in-place, + * we want slots big enough to pad out to the next larger AES blocksize + * so pad them out. + */ + rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(8), + &keyslot8); + if (rtnval) + goto freemem; + + rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(16), + &keyslot16); + if (rtnval) + goto dealloc_slot8; + + rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(24), + &keyslot24); + if (rtnval) + goto dealloc_slot16; + + rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(32), + &keyslot32); + if (rtnval) + goto dealloc_slot24; + + + /* Now load clear key data into the newly allocated slots */ + rtnval = sm_keystore_slot_load(ksdev, unit, keyslot8, clrkey8, 8); + if (rtnval) + goto dealloc; + + rtnval = sm_keystore_slot_load(ksdev, unit, keyslot16, clrkey16, 16); + if (rtnval) + goto dealloc; + + rtnval = sm_keystore_slot_load(ksdev, unit, keyslot24, clrkey24, 24); + if (rtnval) + goto dealloc; + + rtnval = sm_keystore_slot_load(ksdev, unit, keyslot32, clrkey32, 32); + if (rtnval) + goto dealloc; + + /* + * All cleartext keys are loaded into slots (in an unprotected + * partition at this time) + * + * Cover keys in-place + */ + rtnval = sm_keystore_cover_key(ksdev, unit, keyslot8, 8, KEY_COVER_ECB); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't cover 64-bit key\n"); + goto dealloc; + } + + rtnval = sm_keystore_cover_key(ksdev, unit, keyslot16, 16, + KEY_COVER_ECB); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't cover 128-bit key\n"); + goto dealloc; + } + + rtnval = sm_keystore_cover_key(ksdev, unit, keyslot24, 24, + KEY_COVER_ECB); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't cover 192-bit key\n"); + goto dealloc; + } + + rtnval = sm_keystore_cover_key(ksdev, unit, keyslot32, 32, + KEY_COVER_ECB); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't cover 256-bit key\n"); + goto dealloc; + } + + /* + * Keys should be covered and appear sufficiently "random" + * as a result of the covering (blackening) process. Assuming + * non-secure mode, read them back out for examination; they should + * appear as random data, completely differing from the clear + * inputs. So, this will read them back from secure memory and + * compare them. If they match the clear key, then the covering + * operation didn't occur. + */ + + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8), + blkkey8); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't read 64-bit black key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot16, + AES_BLOCK_PAD(16), blkkey16); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't read 128-bit black key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot24, + AES_BLOCK_PAD(24), blkkey24); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't read 192-bit black key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot32, + AES_BLOCK_PAD(32), blkkey32); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't read 256-bit black key\n"); + goto dealloc; + } + + rtnval = -EINVAL; + if (!memcmp(blkkey8, clrkey8, 8)) { + dev_err(ksdev, "blkkey_ex: 64-bit key cover failed\n"); + goto dealloc; + } + + if (!memcmp(blkkey16, clrkey16, 16)) { + dev_err(ksdev, "blkkey_ex: 128-bit key cover failed\n"); + goto dealloc; + } + + if (!memcmp(blkkey24, clrkey24, 24)) { + dev_err(ksdev, "blkkey_ex: 192-bit key cover failed\n"); + goto dealloc; + } + + if (!memcmp(blkkey32, clrkey32, 32)) { + dev_err(ksdev, "blkkey_ex: 256-bit key cover failed\n"); + goto dealloc; + } + + + key_display(ksdev, "64-bit clear key:", 8, clrkey8); + key_display(ksdev, "64-bit black key:", AES_BLOCK_PAD(8), blkkey8); + + key_display(ksdev, "128-bit clear key:", 16, clrkey16); + key_display(ksdev, "128-bit black key:", AES_BLOCK_PAD(16), blkkey16); + + key_display(ksdev, "192-bit clear key:", 24, clrkey24); + key_display(ksdev, "192-bit black key:", AES_BLOCK_PAD(24), blkkey24); + + key_display(ksdev, "256-bit clear key:", 32, clrkey32); + key_display(ksdev, "256-bit black key:", AES_BLOCK_PAD(32), blkkey32); + + /* + * Now encapsulate all keys as SM blobs out to external memory + * Blobs will appear as random-looking blocks of data different + * from the original source key, and 48 bytes longer than the + * original key, to account for the extra data encapsulated within. + */ + key_display(ksdev, "64-bit unwritten blob:", 96, blob8); + key_display(ksdev, "128-bit unwritten blob:", 96, blob16); + key_display(ksdev, "196-bit unwritten blob:", 96, blob24); + key_display(ksdev, "256-bit unwritten blob:", 96, blob32); + + rtnval = sm_keystore_slot_export(ksdev, unit, keyslot8, BLACK_KEY, + KEY_COVER_ECB, blob8, 8, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't encapsulate 64-bit key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_export(ksdev, unit, keyslot16, BLACK_KEY, + KEY_COVER_ECB, blob16, 16, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't encapsulate 128-bit key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_export(ksdev, unit, keyslot24, BLACK_KEY, + KEY_COVER_ECB, blob24, 24, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't encapsulate 192-bit key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_export(ksdev, unit, keyslot32, BLACK_KEY, + KEY_COVER_ECB, blob32, 32, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't encapsulate 256-bit key\n"); + goto dealloc; + } + + key_display(ksdev, "64-bit black key in blob:", 96, blob8); + key_display(ksdev, "128-bit black key in blob:", 96, blob16); + key_display(ksdev, "192-bit black key in blob:", 96, blob24); + key_display(ksdev, "256-bit black key in blob:", 96, blob32); + + /* + * Now re-import black keys from secure-memory blobs stored + * in general memory from the previous operation. Since we are + * working with black keys, and since power has not cycled, the + * restored black keys should match the original blackened keys + * (this would not be true if the blobs were save in some non-volatile + * store, and power was cycled between the save and restore) + */ + rtnval = sm_keystore_slot_import(ksdev, unit, keyslot8, BLACK_KEY, + KEY_COVER_ECB, blob8, 8, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't decapsulate 64-bit blob\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_import(ksdev, unit, keyslot16, BLACK_KEY, + KEY_COVER_ECB, blob16, 16, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't decapsulate 128-bit blob\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_import(ksdev, unit, keyslot24, BLACK_KEY, + KEY_COVER_ECB, blob24, 24, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't decapsulate 196-bit blob\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_import(ksdev, unit, keyslot32, BLACK_KEY, + KEY_COVER_ECB, blob32, 32, skeymod); + if (rtnval) { + dev_err(ksdev, "blkkey_ex: can't decapsulate 256-bit blob\n"); + goto dealloc; + } + + + /* + * Blobs are now restored as black keys. Read those black keys back + * for a comparison with the original black key, they should match + */ + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8), + rstkey8); + if (rtnval) { + dev_err(ksdev, + "blkkey_ex: can't read restored 64-bit black key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot16, + AES_BLOCK_PAD(16), rstkey16); + if (rtnval) { + dev_err(ksdev, + "blkkey_ex: can't read restored 128-bit black key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot24, + AES_BLOCK_PAD(24), rstkey24); + if (rtnval) { + dev_err(ksdev, + "blkkey_ex: can't read restored 196-bit black key\n"); + goto dealloc; + } + + rtnval = sm_keystore_slot_read(ksdev, unit, keyslot32, + AES_BLOCK_PAD(32), rstkey32); + if (rtnval) { + dev_err(ksdev, + "blkkey_ex: can't read restored 256-bit black key\n"); + goto dealloc; + } + + key_display(ksdev, "restored 64-bit black key:", AES_BLOCK_PAD(8), + rstkey8); + key_display(ksdev, "restored 128-bit black key:", AES_BLOCK_PAD(16), + rstkey16); + key_display(ksdev, "restored 192-bit black key:", AES_BLOCK_PAD(24), + rstkey24); + key_display(ksdev, "restored 256-bit black key:", AES_BLOCK_PAD(32), + rstkey32); + + /* + * Compare the restored black keys with the original blackened keys + * As long as we're operating within the same power cycle, a black key + * restored from a blob should match the original black key IF the + * key happens to be of a size that matches a multiple of the AES + * blocksize. Any key that is padded to fill the block size will not + * match, excepting a key that exceeds a block; only the first full + * blocks will match (assuming ECB). + * + * Therefore, compare the 16 and 32 bit keys, they should match. + * The 24 bit key can only match within the first 16 byte block. + */ + + if (memcmp(rstkey16, blkkey16, AES_BLOCK_PAD(16))) { + dev_err(ksdev, "blkkey_ex: 128-bit restored key mismatch\n"); + rtnval = -EINVAL; + } + + /* Only first AES block will match, remainder subject to padding */ + if (memcmp(rstkey24, blkkey24, 16)) { + dev_err(ksdev, "blkkey_ex: 192-bit restored key mismatch\n"); + rtnval = -EINVAL; + } + + if (memcmp(rstkey32, blkkey32, AES_BLOCK_PAD(32))) { + dev_err(ksdev, "blkkey_ex: 256-bit restored key mismatch\n"); + rtnval = -EINVAL; + } + + + /* Remove keys from keystore */ +dealloc: + sm_keystore_slot_dealloc(ksdev, unit, keyslot32); +dealloc_slot24: + sm_keystore_slot_dealloc(ksdev, unit, keyslot24); +dealloc_slot16: + sm_keystore_slot_dealloc(ksdev, unit, keyslot16); +dealloc_slot8: + sm_keystore_slot_dealloc(ksdev, unit, keyslot8); + + /* Free resources */ +freemem: + kfree(blob8); + kfree(blob16); + kfree(blob24); + kfree(blob32); + + /* Disconnect from keystore and leave */ + sm_release_keystore(ksdev, unit); + + return rtnval; +} +EXPORT_SYMBOL(caam_sm_example_init); + +void caam_sm_example_shutdown(void) +{ + /* unused in present version */ + struct device_node *dev_node; + struct platform_device *pdev; + + /* + * Do of_find_compatible_node() then of_find_device_by_node() + * once a functional device tree is available + */ + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); + if (!dev_node) { + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); + if (!dev_node) + return; + } + + pdev = of_find_device_by_node(dev_node); + if (!pdev) + return; + + of_node_get(dev_node); + +} + +static int __init caam_sm_test_init(void) +{ + struct device_node *dev_node; + struct platform_device *pdev; + int ret; + + /* + * Do of_find_compatible_node() then of_find_device_by_node() + * once a functional device tree is available + */ + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); + if (!dev_node) { + dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); + if (!dev_node) + return -ENODEV; + } + + pdev = of_find_device_by_node(dev_node); + if (!pdev) + return -ENODEV; + + of_node_put(dev_node); + + ret = caam_sm_example_init(pdev); + if (ret) + dev_err(&pdev->dev, "SM test failed: %d\n", ret); + else + dev_info(&pdev->dev, "SM test passed\n"); + + return ret; +} + + +/* Module-based initialization needs to wait for dev tree */ +#ifdef CONFIG_OF +module_init(caam_sm_test_init); +module_exit(caam_sm_example_shutdown); + +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_DESCRIPTION("FSL CAAM Black Key Usage Example"); +MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD"); +#endif