aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ar71xx/generic/profiles/openmesh.mk
blob: 88e37ee56c11b5e716ef32daadd8cabd7e37671e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Copyright (C) 2011 OpenWrt.org
#
# This is free software, licensed under the GNU General Public License v2.
# See /LICENSE for more information.
#

define Profile/OM2P
	NAME:=OpenMesh OM2P/OM2P-LC
	PACKAGES:=kmod-ath9k om-watchdog
endef

define Profile/OM2P/Description
	Package set optimized for the OpenMesh OM2P/OM2P-LC.
endef

$(eval $(call Profile,OM2P))
='#n242'>242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/******************************************************************************
 * arch/x86/time.c
 * 
 * Per-CPU time calibration and management.
 * 
 * Copyright (c) 2002-2005, K A Fraser
 * 
 * Portions from Linux are:
 * Copyright (c) 1991, 1992, 1995  Linus Torvalds
 */

#include <xen/config.h>
#include <xen/errno.h>
#include <xen/event.h>
#include <xen/sched.h>
#include <xen/lib.h>
#include <xen/config.h>
#include <xen/init.h>
#include <xen/time.h>
#include <xen/timer.h>
#include <xen/smp.h>
#include <xen/irq.h>
#include <xen/softirq.h>
#include <asm/io.h>
#include <asm/msr.h>
#include <asm/mpspec.h>
#include <asm/processor.h>
#include <asm/fixmap.h>
#include <asm/mc146818rtc.h>
#include <asm/div64.h>
#include <asm/hpet.h>
#include <io_ports.h>

/* opt_hpet_force: If true, force HPET configuration via PCI space. */
/* NB. This is a gross hack. Mainly useful for HPET testing. */
static int opt_hpet_force = 0;
boolean_param("hpet_force", opt_hpet_force);

#define EPOCH MILLISECS(1000)

unsigned long cpu_khz;  /* CPU clock frequency in kHz. */
unsigned long hpet_address;
spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
unsigned long volatile jiffies;
static u32 wc_sec, wc_nsec; /* UTC time at last 'time update'. */
static spinlock_t wc_lock = SPIN_LOCK_UNLOCKED;

struct time_scale {
    int shift;
    u32 mul_frac;
};

struct cpu_time {
    u64 local_tsc_stamp;
    s_time_t stime_local_stamp;
    s_time_t stime_master_stamp;
    struct time_scale tsc_scale;
    struct timer calibration_timer;
} __cacheline_aligned;

static struct cpu_time cpu_time[NR_CPUS];

/*
 * Protected by platform_timer_lock, which must be acquired with interrupts
 * disabled because pit_overflow() is called from PIT ch0 interrupt context.
 */
static s_time_t stime_platform_stamp;
static u64 platform_timer_stamp;
static struct time_scale platform_timer_scale;
static spinlock_t platform_timer_lock = SPIN_LOCK_UNLOCKED;
static u64 (*read_platform_count)(void);

/*
 * Folding 16-bit PIT into 64-bit software counter is a really critical
 * operation! We therefore do it directly in PIT ch0 interrupt handler,
 * based on this flag.
 */
static int using_pit;
static void pit_overflow(void);

/*
 * 32-bit division of integer dividend and integer divisor yielding
 * 32-bit fractional quotient.
 */
static inline u32 div_frac(u32 dividend, u32 divisor)
{
    u32 quotient, remainder;
    ASSERT(dividend < divisor);
    __asm__ ( 
        "divl %4"
        : "=a" (quotient), "=d" (remainder)
        : "0" (0), "1" (dividend), "r" (divisor) );
    return quotient;
}

/*
 * 32-bit multiplication of multiplicand and fractional multiplier
 * yielding 32-bit product (radix point at same position as in multiplicand).
 */
static inline u32 mul_frac(u32 multiplicand, u32 multiplier)
{
    u32 product_int, product_frac;
    __asm__ (
        "mul %3"
        : "=a" (product_frac), "=d" (product_int)
        : "0" (multiplicand), "r" (multiplier) );
    return product_int;
}

/*
 * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
 * yielding a 64-bit result.
 */
static inline u64 scale_delta(u64 delta, struct time_scale *scale)
{
    u64 product;
#ifdef CONFIG_X86_32
    u32 tmp1, tmp2;
#endif

    if ( scale->shift < 0 )
        delta >>= -scale->shift;
    else
        delta <<= scale->shift;

#ifdef CONFIG_X86_32
    __asm__ (
        "mul  %5       ; "
        "mov  %4,%%eax ; "
        "mov  %%edx,%4 ; "
        "mul  %5       ; "
        "xor  %5,%5    ; "
        "add  %4,%%eax ; "
        "adc  %5,%%edx ; "
        : "=A" (product), "=r" (tmp1), "=r" (tmp2)
        : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (scale->mul_frac) );
#else
    __asm__ (
        "mul %%rdx ; shrd $32,%%rdx,%%rax"
        : "=a" (product) : "0" (delta), "d" ((u64)scale->mul_frac) );
#endif

    return product;
}

void timer_interrupt(int irq, void *dev_id, struct cpu_user_regs *regs)
{
    ASSERT(local_irq_is_enabled());

    /* Update jiffies counter. */
    (*(unsigned long *)&jiffies)++;

    /* Rough hack to allow accurate timers to sort-of-work with no APIC. */
    if ( !cpu_has_apic )
        raise_softirq(TIMER_SOFTIRQ);

    if ( using_pit )
        pit_overflow();
}

static struct irqaction irq0 = { timer_interrupt, "timer", NULL};

/* ------ Calibrate the TSC ------- 
 * Return processor ticks per second / CALIBRATE_FRAC.
 */

#define CLOCK_TICK_RATE 1193180 /* system crystal frequency (Hz) */
#define CALIBRATE_FRAC  20      /* calibrate over 50ms */
#define CALIBRATE_LATCH ((CLOCK_TICK_RATE+(CALIBRATE_FRAC/2))/CALIBRATE_FRAC)

static u64 calibrate_boot_tsc(void)
{
    u64 start, end;
    unsigned long count;

    /* Set the Gate high, disable speaker */
    outb((inb(0x61) & ~0x02) | 0x01, 0x61);

    /*
     * Now let's take care of CTC channel 2
     *
     * Set the Gate high, program CTC channel 2 for mode 0, (interrupt on
     * terminal count mode), binary count, load 5 * LATCH count, (LSB and MSB)
     * to begin countdown.
     */
    outb(0xb0, PIT_MODE);           /* binary, mode 0, LSB/MSB, Ch 2 */
    outb(CALIBRATE_LATCH & 0xff, PIT_CH2); /* LSB of count */
    outb(CALIBRATE_LATCH >> 8, PIT_CH2);   /* MSB of count */

    rdtscll(start);
    for ( count = 0; (inb(0x61) & 0x20) == 0; count++ )
        continue;
    rdtscll(end);

    /* Error if the CTC doesn't behave itself. */
    if ( count == 0 )
        return 0;

    return ((end - start) * (u64)CALIBRATE_FRAC);
}

static void set_time_scale(struct time_scale *ts, u64 ticks_per_sec)
{
    u64 tps64 = ticks_per_sec;
    u32 tps32;
    int shift = 0;

    while ( tps64 > (MILLISECS(1000)*2) )
    {
        tps64 >>= 1;
        shift--;
    }

    tps32 = (u32)tps64;
    while ( tps32 < (u32)MILLISECS(1000) )
    {
        tps32 <<= 1;
        shift++;
    }

    ts->mul_frac = div_frac(MILLISECS(1000), tps32);
    ts->shift    = shift;
}

static atomic_t tsc_calibrate_gang = ATOMIC_INIT(0);
static unsigned int tsc_calibrate_status = 0;

void calibrate_tsc_bp(void)
{
    while ( atomic_read(&tsc_calibrate_gang) != (num_booting_cpus() - 1) )
        mb();

    outb(CALIBRATE_LATCH & 0xff, PIT_CH2);
    outb(CALIBRATE_LATCH >> 8, PIT_CH2);

    tsc_calibrate_status = 1;
    wmb();

    while ( (inb(0x61) & 0x20) == 0 )
        continue;

    tsc_calibrate_status = 2;
    wmb();

    while ( atomic_read(&tsc_calibrate_gang) != 0 )
        mb();
}

void calibrate_tsc_ap(void)
{
    u64 t1, t2, ticks_per_sec;

    atomic_inc(&tsc_calibrate_gang);

    while ( tsc_calibrate_status < 1 )
        mb();

    rdtscll(t1);

    while ( tsc_calibrate_status < 2 )
        mb();

    rdtscll(t2);

    ticks_per_sec = (t2 - t1) * (u64)CALIBRATE_FRAC;
    set_time_scale(&cpu_time[smp_processor_id()].tsc_scale, ticks_per_sec);

    atomic_dec(&tsc_calibrate_gang);
}

static char *freq_string(u64 freq)
{
    static char s[20];
    unsigned int x, y;
    y = (unsigned int)do_div(freq, 1000000) / 1000;
    x = (unsigned int)freq;
    sprintf(s, "%u.%03uMHz", x, y);
    return s;
}

/************************************************************
 * PLATFORM TIMER 1: PROGRAMMABLE INTERVAL TIMER (LEGACY PIT)
 */

/* Protected by platform_timer_lock. */
static u64 pit_counter64;
static u16 pit_stamp;

static u16 pit_read_counter(void)
{
    u16 count;
    ASSERT(spin_is_locked(&platform_timer_lock));
    outb(0x80, PIT_MODE);
    count  = inb(PIT_CH2);
    count |= inb(PIT_CH2) << 8;
    return count;
}

static void pit_overflow(void)
{
    u16 counter;

    spin_lock_irq(&platform_timer_lock);
    counter = pit_read_counter();
    pit_counter64 += (u16)(pit_stamp - counter);
    pit_stamp = counter;
    spin_unlock_irq(&platform_timer_lock);
}

static u64 read_pit_count(void)
{
    return pit_counter64 + (u16)(pit_stamp - pit_read_counter());
}

static void init_pit(void)
{
    read_platform_count = read_pit_count;

    pit_overflow();
    platform_timer_stamp = pit_counter64;
    set_time_scale(&platform_timer_scale, CLOCK_TICK_RATE);

    printk("Platform timer is %s PIT\n", freq_string(CLOCK_TICK_RATE));
    using_pit = 1;
}

/************************************************************
 * PLATFORM TIMER 2: HIGH PRECISION EVENT TIMER (HPET)
 */

/* Protected by platform_timer_lock. */
static u64 hpet_counter64, hpet_overflow_period;
static u32 hpet_stamp;
static struct timer hpet_overflow_timer;

static void hpet_overflow(void *unused)
{
    u32 counter;

    spin_lock_irq(&platform_timer_lock);
    counter = hpet_read32(HPET_COUNTER);
    hpet_counter64 += (u32)(counter - hpet_stamp);
    hpet_stamp = counter;
    spin_unlock_irq(&platform_timer_lock);

    set_timer(&hpet_overflow_timer, NOW() + hpet_overflow_period);
}

static u64 read_hpet_count(void)
{
    return hpet_counter64 + (u32)(hpet_read32(HPET_COUNTER) - hpet_stamp);
}

static int init_hpet(void)
{
    u64 hpet_rate;
    u32 hpet_id, hpet_period, cfg;
    int i;

    if ( (hpet_address == 0) && opt_hpet_force )
    {
        outl(0x800038a0, 0xcf8);
        outl(0xff000001, 0xcfc);
        outl(0x800038a0, 0xcf8);
        hpet_address = inl(0xcfc) & 0xfffffffe;
        printk("WARNING: Forcibly enabled HPET at %#lx.\n", hpet_address);
    }

    if ( hpet_address == 0 )
        return 0;

    set_fixmap_nocache(FIX_HPET_BASE, hpet_address);

    hpet_id = hpet_read32(HPET_ID);
    if ( hpet_id == 0 )
    {
        printk("BAD HPET vendor id.\n");
        return 0;
    }

    /* Check for sane period (100ps <= period <= 100ns). */
    hpet_period = hpet_read32(HPET_PERIOD);
    if ( (hpet_period > 100000000) || (hpet_period < 100000) )
    {
        printk("BAD HPET period %u.\n", hpet_period);
        return 0;
    }

    cfg = hpet_read32(HPET_CFG);
    cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
    hpet_write32(cfg, HPET_CFG);

    for ( i = 0; i <= ((hpet_id >> 8) & 31); i++ )
    {
        cfg = hpet_read32(HPET_T0_CFG + i*0x20);
        cfg &= ~HPET_TN_ENABLE;
        hpet_write32(cfg & ~HPET_TN_ENABLE, HPET_T0_CFG);
    }

    cfg = hpet_read32(HPET_CFG);
    cfg |= HPET_CFG_ENABLE;
    hpet_write32(cfg, HPET_CFG);

    read_platform_count = read_hpet_count;

    hpet_rate = 1000000000000000ULL; /* 10^15 */
    (void)do_div(hpet_rate, hpet_period);
    set_time_scale(&platform_timer_scale, hpet_rate);

    /* Trigger overflow avoidance roughly when counter increments 2^31. */
    if ( (hpet_rate >> 31) != 0 )
    {
        hpet_overflow_period = MILLISECS(1000);
        (void)do_div(hpet_overflow_period, (u32)(hpet_rate >> 31) + 1);
    }
    else
    {
        hpet_overflow_period = MILLISECS(1000) << 31;
        (void)do_div(hpet_overflow_period, (u32)hpet_rate);
    }

    init_timer(&hpet_overflow_timer, hpet_overflow, NULL, 0);
    hpet_overflow(NULL);
    platform_timer_stamp = hpet_counter64;

    printk("Platform timer is %s HPET\n", freq_string(hpet_rate));

    return 1;
}

/************************************************************
 * PLATFORM TIMER 3: IBM 'CYCLONE' TIMER
 */

int use_cyclone;

/*
 * Although the counter is read via a 64-bit register, I believe it is actually
 * a 40-bit counter. Since this will wrap, I read only the low 32 bits and
 * periodically fold into a 64-bit software counter, just as for PIT and HPET.
 */
#define CYCLONE_CBAR_ADDR   0xFEB00CD0
#define CYCLONE_PMCC_OFFSET 0x51A0
#define CYCLONE_MPMC_OFFSET 0x51D0
#define CYCLONE_MPCS_OFFSET 0x51A8
#define CYCLONE_TIMER_FREQ  100000000

/* Protected by platform_timer_lock. */
static u64 cyclone_counter64;
static u32 cyclone_stamp;
static struct timer cyclone_overflow_timer;
static volatile u32 *cyclone_timer; /* Cyclone MPMC0 register */

static void cyclone_overflow(void *unused)
{
    u32 counter;

    spin_lock_irq(&platform_timer_lock);
    counter = *cyclone_timer;
    cyclone_counter64 += (u32)(counter - cyclone_stamp);
    cyclone_stamp = counter;
    spin_unlock_irq(&platform_timer_lock);

    set_timer(&cyclone_overflow_timer, NOW() + MILLISECS(20000));
}

static u64 read_cyclone_count(void)
{
    return cyclone_counter64 + (u32)(*cyclone_timer - cyclone_stamp);
}

static volatile u32 *map_cyclone_reg(unsigned long regaddr)
{
    unsigned long pageaddr = regaddr &  PAGE_MASK;
    unsigned long offset   = regaddr & ~PAGE_MASK;
    set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr);
    return (volatile u32 *)(fix_to_virt(FIX_CYCLONE_TIMER) + offset);
}

static int init_cyclone(void)
{
    u32 base;
    
    if ( !use_cyclone )
        return 0;

    /* Find base address. */
    base = *(map_cyclone_reg(CYCLONE_CBAR_ADDR));
    if ( base == 0 )
    {
        printk(KERN_ERR "Cyclone: Could not find valid CBAR value.\n");
        return 0;
    }
 
    /* Enable timer and map the counter register. */
    *(map_cyclone_reg(base + CYCLONE_PMCC_OFFSET)) = 1;
    *(map_cyclone_reg(base + CYCLONE_MPCS_OFFSET)) = 1;
    cyclone_timer = map_cyclone_reg(base + CYCLONE_MPMC_OFFSET);

    read_platform_count = read_cyclone_count;

    init_timer(&cyclone_overflow_timer, cyclone_overflow, NULL, 0);
    cyclone_overflow(NULL);
    platform_timer_stamp = cyclone_counter64;
    set_time_scale(&platform_timer_scale, CYCLONE_TIMER_FREQ);

    printk("Platform timer is %s IBM Cyclone\n",
           freq_string(CYCLONE_TIMER_FREQ));

    return 1;
}

/************************************************************
 * GENERIC PLATFORM TIMER INFRASTRUCTURE
 */

static s_time_t __read_platform_stime(u64 platform_time)
{
    u64 diff = platform_time - platform_timer_stamp;
    ASSERT(spin_is_locked(&platform_timer_lock));
    return (stime_platform_stamp + scale_delta(diff, &platform_timer_scale));
}

static s_time_t read_platform_stime(void)
{
    u64 counter;
    s_time_t stime;

    spin_lock_irq(&platform_timer_lock);
    counter = read_platform_count();
    stime   = __read_platform_stime(counter);
    spin_unlock_irq(&platform_timer_lock);

    return stime;
}

static void platform_time_calibration(void)
{
    u64 counter;
    s_time_t stamp;

    spin_lock_irq(&platform_timer_lock);
    counter = read_platform_count();
    stamp   = __read_platform_stime(counter);
    stime_platform_stamp = stamp;
    platform_timer_stamp = counter;
    spin_unlock_irq(&platform_timer_lock);
}

static void init_platform_timer(void)
{
    if ( !init_cyclone() && !init_hpet() )
        init_pit();
}


/***************************************************************************
 * CMOS Timer functions
 ***************************************************************************/

/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 * machines were long is 32-bit! (However, as time_t is signed, we
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
static inline unsigned long
mktime (unsigned int year, unsigned int mon,
        unsigned int day, unsigned int hour,
        unsigned int min, unsigned int sec)
{
    /* 1..12 -> 11,12,1..10: put Feb last since it has a leap day. */
    if ( 0 >= (int) (mon -= 2) )
    {
        mon += 12;
        year -= 1;
    }

    return ((((unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day)+
              year*365 - 719499
        )*24 + hour /* now have hours */
        )*60 + min  /* now have minutes */
        )*60 + sec; /* finally seconds */
}

static unsigned long __get_cmos_time(void)
{
    unsigned int year, mon, day, hour, min, sec;

    sec  = CMOS_READ(RTC_SECONDS);
    min  = CMOS_READ(RTC_MINUTES);
    hour = CMOS_READ(RTC_HOURS);
    day  = CMOS_READ(RTC_DAY_OF_MONTH);
    mon  = CMOS_READ(RTC_MONTH);
    year = CMOS_READ(RTC_YEAR);
    
    if ( !(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD )
    {
        BCD_TO_BIN(sec);
        BCD_TO_BIN(min);
        BCD_TO_BIN(hour);
        BCD_TO_BIN(day);
        BCD_TO_BIN(mon);
        BCD_TO_BIN(year);
    }

    if ( (year += 1900) < 1970 )
        year += 100;

    return mktime(year, mon, day, hour, min, sec);
}

static unsigned long get_cmos_time(void)
{
    unsigned long res, flags;
    int i;

    spin_lock_irqsave(&rtc_lock, flags);

    /* read RTC exactly on falling edge of update flag */
    for ( i = 0 ; i < 1000000 ; i++ ) /* may take up to 1 second... */
        if ( (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) )
            break;
    for ( i = 0 ; i < 1000000 ; i++ ) /* must try at least 2.228 ms */
        if ( !(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) )
            break;

    res = __get_cmos_time();

    spin_unlock_irqrestore(&rtc_lock, flags);
    return res;
}

/***************************************************************************
 * System Time
 ***************************************************************************/

s_time_t get_s_time(void)
{
    struct cpu_time *t = &cpu_time[smp_processor_id()];
    u64 tsc, delta;
    s_time_t now;

    rdtscll(tsc);
    delta = tsc - t->local_tsc_stamp;
    now = t->stime_local_stamp + scale_delta(delta, &t->tsc_scale);

    return now;
}

static inline void version_update_begin(u32 *version)
{
    /* Explicitly OR with 1 just in case version number gets out of sync. */
    *version = (*version + 1) | 1;
    wmb();
}

static inline void version_update_end(u32 *version)
{
    wmb();
    (*version)++;
}

static inline void __update_vcpu_system_time(struct vcpu *v)
{
    struct cpu_time       *t;
    struct vcpu_time_info *u;

    t = &cpu_time[smp_processor_id()];
    u = &v->domain->shared_info->vcpu_info[v->vcpu_id].time;

    version_update_begin(&u->version);

    u->tsc_timestamp     = t->local_tsc_stamp;
    u->system_time       = t->stime_local_stamp;
    u->tsc_to_system_mul = t->tsc_scale.mul_frac;
    u->tsc_shift         = (s8)t->tsc_scale.shift;

    version_update_end(&u->version);
}

void update_vcpu_system_time(struct vcpu *v)
{
    if ( v->domain->shared_info->vcpu_info[v->vcpu_id].time.tsc_timestamp != 
         cpu_time[smp_processor_id()].local_tsc_stamp )
        __update_vcpu_system_time(v);
}

void update_domain_wallclock_time(struct domain *d)
{
    spin_lock(&wc_lock);
    version_update_begin(&d->shared_info->wc_version);
    d->shared_info->wc_sec  = wc_sec;
    d->shared_info->wc_nsec = wc_nsec;
    version_update_end(&d->shared_info->wc_version);
    spin_unlock(&wc_lock);
}

/* Set clock to <secs,usecs> after 00:00:00 UTC, 1 January, 1970. */
void do_settime(unsigned long secs, unsigned long nsecs, u64 system_time_base)
{
    u64 x;
    u32 y, _wc_sec, _wc_nsec;
    struct domain *d;

    x = (secs * 1000000000ULL) + (u64)nsecs - system_time_base;
    y = do_div(x, 1000000000);

    spin_lock(&wc_lock);
    wc_sec  = _wc_sec  = (u32)x;
    wc_nsec = _wc_nsec = (u32)y;
    spin_unlock(&wc_lock);

    read_lock(&domlist_lock);
    for_each_domain ( d )
        update_domain_wallclock_time(d);
    read_unlock(&domlist_lock);
}

static void local_time_calibration(void *unused)
{
    unsigned int cpu = smp_processor_id();

    /*
     * System timestamps, extrapolated from local and master oscillators,
     * taken during this calibration and the previous calibration.
     */
    s_time_t prev_local_stime, curr_local_stime;
    s_time_t prev_master_stime, curr_master_stime;

    /* TSC timestamps taken during this calibration and prev calibration. */
    u64 prev_tsc, curr_tsc;

    /*
     * System time and TSC ticks elapsed during the previous calibration
     * 'epoch'. These values are down-shifted to fit in 32 bits.
     */
    u64 stime_elapsed64, tsc_elapsed64;
    u32 stime_elapsed32, tsc_elapsed32;

    /* The accumulated error in the local estimate. */
    u64 local_stime_err;

    /* Error correction to slow down a fast local clock. */
    u32 error_factor = 0;

    /* Calculated TSC shift to ensure 32-bit scale multiplier. */
    int tsc_shift = 0;

    /* The overall calibration scale multiplier. */
    u32 calibration_mul_frac;

    prev_tsc          = cpu_time[cpu].local_tsc_stamp;
    prev_local_stime  = cpu_time[cpu].stime_local_stamp;
    prev_master_stime = cpu_time[cpu].stime_master_stamp;

    /* Disable IRQs to get 'instantaneous' current timestamps. */
    local_irq_disable();
    rdtscll(curr_tsc);
    curr_local_stime  = get_s_time();
    curr_master_stime = read_platform_stime();
    local_irq_enable();

#if 0
    printk("PRE%d: tsc=%lld stime=%lld master=%lld\n",
           cpu, prev_tsc, prev_local_stime, prev_master_stime);
    printk("CUR%d: tsc=%lld stime=%lld master=%lld -> %lld\n",
           cpu, curr_tsc, curr_local_stime, curr_master_stime,
           curr_master_stime - curr_local_stime);
#endif

    /* Local time warps forward if it lags behind master time. */
    if ( curr_local_stime < curr_master_stime )
        curr_local_stime = curr_master_stime;

    stime_elapsed64 = curr_master_stime - prev_master_stime;
    tsc_elapsed64   = curr_tsc - prev_tsc;

    /*
     * Weirdness can happen if we lose sync with the platform timer.
     * We could be smarter here: resync platform timer with local timer?
     */
    if ( ((s64)stime_elapsed64 < (EPOCH / 2)) )
        goto out;

    /*
     * Calculate error-correction factor. This only slows down a fast local
     * clock (slow clocks are warped forwards). The scale factor is clamped
     * to >= 0.5.
     */
    if ( curr_local_stime != curr_master_stime )
    {
        local_stime_err = curr_local_stime - curr_master_stime;
        if ( local_stime_err > EPOCH )
            local_stime_err = EPOCH;
        error_factor = div_frac(EPOCH, EPOCH + (u32)local_stime_err);
    }

    /*
     * We require 0 < stime_elapsed < 2^31.
     * This allows us to binary shift a 32-bit tsc_elapsed such that:
     * stime_elapsed < tsc_elapsed <= 2*stime_elapsed
     */
    while ( ((u32)stime_elapsed64 != stime_elapsed64) ||
            ((s32)stime_elapsed64 < 0) )
    {
        stime_elapsed64 >>= 1;
        tsc_elapsed64   >>= 1;
    }

    /* stime_master_diff now fits in a 32-bit word. */
    stime_elapsed32 = (u32)stime_elapsed64;

    /* tsc_elapsed <= 2*stime_elapsed */
    while ( tsc_elapsed64 > (stime_elapsed32 * 2) )
    {
        tsc_elapsed64 >>= 1;
        tsc_shift--;
    }

    /* Local difference must now fit in 32 bits. */
    ASSERT((u32)tsc_elapsed64 == tsc_elapsed64);
    tsc_elapsed32 = (u32)tsc_elapsed64;

    /* tsc_elapsed > stime_elapsed */
    ASSERT(tsc_elapsed32 != 0);
    while ( tsc_elapsed32 <= stime_elapsed32 )
    {
        tsc_elapsed32 <<= 1;
        tsc_shift++;
    }

    calibration_mul_frac = div_frac(stime_elapsed32, tsc_elapsed32);
    if ( error_factor != 0 )
        calibration_mul_frac = mul_frac(calibration_mul_frac, error_factor);

#if 0
    printk("---%d: %08x %08x %d\n", cpu,
           error_factor, calibration_mul_frac, tsc_shift);
#endif

    /* Record new timestamp information. */
    cpu_time[cpu].tsc_scale.mul_frac = calibration_mul_frac;
    cpu_time[cpu].tsc_scale.shift    = tsc_shift;
    cpu_time[cpu].local_tsc_stamp    = curr_tsc;
    cpu_time[cpu].stime_local_stamp  = curr_local_stime;
    cpu_time[cpu].stime_master_stamp = curr_master_stime;

 out:
    set_timer(&cpu_time[cpu].calibration_timer, NOW() + EPOCH);

    if ( cpu == 0 )
        platform_time_calibration();
}

void init_percpu_time(void)
{
    unsigned int cpu = smp_processor_id();
    unsigned long flags;
    s_time_t now;

    local_irq_save(flags);
    rdtscll(cpu_time[cpu].local_tsc_stamp);
    now = (cpu == 0) ? 0 : read_platform_stime();
    local_irq_restore(flags);

    cpu_time[cpu].stime_master_stamp = now;
    cpu_time[cpu].stime_local_stamp  = now;

    init_timer(&cpu_time[cpu].calibration_timer,
                  local_time_calibration, NULL, cpu);
    set_timer(&cpu_time[cpu].calibration_timer, NOW() + EPOCH);
}

/* Late init function (after all CPUs are booted). */
int __init init_xen_time(void)
{
    wc_sec = get_cmos_time();

    local_irq_disable();

    init_percpu_time();

    stime_platform_stamp = 0;
    init_platform_timer();

    local_irq_enable();

    return 0;
}


/* Early init function. */
void __init early_time_init(void)
{
    u64 tmp = calibrate_boot_tsc();

    set_time_scale(&cpu_time[0].tsc_scale, tmp);

    do_div(tmp, 1000);
    cpu_khz = (unsigned long)tmp;
    printk("Detected %lu.%03lu MHz processor.\n", 
           cpu_khz / 1000, cpu_khz % 1000);

    setup_irq(0, &irq0);
}

void send_timer_event(struct vcpu *v)
{
    send_guest_vcpu_virq(v, VIRQ_TIMER);
}

/*
 * Local variables:
 * mode: C
 * c-set-style: "BSD"
 * c-basic-offset: 4
 * tab-width: 4
 * indent-tabs-mode: nil
 * End:
 */