aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/armvirt
ModeNameSize
d---------3279logstatsplain
d---------6479logstatsplain
-rw-r--r--Makefile505logstatsplain
-rw-r--r--README1372logstatsplain
d---------base-files / etc30logstatsplain
-rw-r--r--config-4.144577logstatsplain
d---------image36logstatsplain
href='#n153'>153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/******************************************************************************
 * arch/x86/hpet.c
 * 
 * HPET management.
 */

#include <xen/config.h>
#include <xen/errno.h>
#include <xen/time.h>
#include <xen/timer.h>
#include <xen/smp.h>
#include <xen/softirq.h>
#include <xen/irq.h>
#include <asm/fixmap.h>
#include <asm/div64.h>
#include <asm/hpet.h>
#include <asm/msi.h>
#include <mach_apic.h>

#define MAX_DELTA_NS MILLISECS(10*1000)
#define MIN_DELTA_NS MICROSECS(20)

#define MAX_HPET_NUM 32

#define HPET_EVT_USED_BIT    0
#define HPET_EVT_USED       (1 << HPET_EVT_USED_BIT)
#define HPET_EVT_DISABLE_BIT 1
#define HPET_EVT_DISABLE    (1 << HPET_EVT_DISABLE_BIT)

struct hpet_event_channel
{
    unsigned long mult;
    int           shift;
    s_time_t      next_event;
    cpumask_t     cpumask;
    spinlock_t    lock;
    void          (*event_handler)(struct hpet_event_channel *);

    unsigned int idx;   /* physical channel idx */
    int cpu;            /* msi target */
    unsigned int vector;/* msi vector */
    unsigned int flags; /* HPET_EVT_x */
} __cacheline_aligned;
static struct hpet_event_channel legacy_hpet_event;
static struct hpet_event_channel hpet_events[MAX_HPET_NUM];
static unsigned int num_hpets_used; /* msi hpet channels used for broadcast */

DEFINE_PER_CPU(struct hpet_event_channel *, cpu_bc_channel);

static int vector_channel[NR_VECTORS] = {[0 ... NR_VECTORS-1] = -1};

#define vector_to_channel(vector)   vector_channel[vector]

unsigned long hpet_address;

void msi_compose_msg(struct pci_dev *pdev, int vector, struct msi_msg *msg);

/*
 * force_hpet_broadcast: by default legacy hpet broadcast will be stopped
 * if RTC interrupts are enabled. Enable this option if want to always enable
 * legacy hpet broadcast for deep C state
 */
int force_hpet_broadcast;
boolean_param("hpetbroadcast", force_hpet_broadcast);

/*
 * Calculate a multiplication factor for scaled math, which is used to convert
 * nanoseconds based values to clock ticks:
 *
 * clock_ticks = (nanoseconds * factor) >> shift.
 *
 * div_sc is the rearranged equation to calculate a factor from a given clock
 * ticks / nanoseconds ratio:
 *
 * factor = (clock_ticks << shift) / nanoseconds
 */
static inline unsigned long div_sc(unsigned long ticks, unsigned long nsec,
                                   int shift)
{
    uint64_t tmp = ((uint64_t)ticks) << shift;

    do_div(tmp, nsec);
    return (unsigned long) tmp;
}

/*
 * Convert nanoseconds based values to clock ticks:
 *
 * clock_ticks = (nanoseconds * factor) >> shift.
 */
static inline unsigned long ns2ticks(unsigned long nsec, int shift,
                                     unsigned long factor)
{
    uint64_t tmp = ((uint64_t)nsec * factor) >> shift;

    return (unsigned long) tmp;
}

static int hpet_next_event(unsigned long delta, int timer)
{
    uint32_t cnt, cmp;
    unsigned long flags;

    local_irq_save(flags);
    cnt = hpet_read32(HPET_COUNTER);
    cmp = cnt + delta;
    hpet_write32(cmp, HPET_Tn_CMP(timer));
    cmp = hpet_read32(HPET_COUNTER);
    local_irq_restore(flags);

    /* Are we within two ticks of the deadline passing? Then we may miss. */
    return ((cmp + 2 - cnt) > delta) ? -ETIME : 0;
}

static int reprogram_hpet_evt_channel(
    struct hpet_event_channel *ch,
    s_time_t expire, s_time_t now, int force)
{
    int64_t delta;
    int ret;

    if ( (ch->flags & HPET_EVT_DISABLE) || (expire == 0) )
        return 0;

    if ( unlikely(expire < 0) )
    {
        printk(KERN_DEBUG "reprogram: expire <= 0\n");
        return -ETIME;
    }

    delta = expire - now;
    if ( (delta <= 0) && !force )
        return -ETIME;

    ch->next_event = expire;

    if ( expire == STIME_MAX )
    {
        /* We assume it will take a long time for the timer to wrap. */
        hpet_write32(0, HPET_Tn_CMP(ch->idx));
        return 0;
    }

    delta = min_t(int64_t, delta, MAX_DELTA_NS);
    delta = max_t(int64_t, delta, MIN_DELTA_NS);
    delta = ns2ticks(delta, ch->shift, ch->mult);

    ret = hpet_next_event(delta, ch->idx);
    while ( ret && force )
    {
        delta += delta;
        ret = hpet_next_event(delta, ch->idx);
    }

    return ret;
}

static int evt_do_broadcast(cpumask_t mask)
{
    int ret = 0, cpu = smp_processor_id();

    if ( cpu_isset(cpu, mask) )
    {
        cpu_clear(cpu, mask);
        raise_softirq(TIMER_SOFTIRQ);
        ret = 1;
    }

    if ( !cpus_empty(mask) )
    {
       cpumask_raise_softirq(mask, TIMER_SOFTIRQ);
       ret = 1;
    }
    return ret;
}

static void handle_hpet_broadcast(struct hpet_event_channel *ch)
{
    cpumask_t mask;
    s_time_t now, next_event;
    int cpu;

    spin_lock_irq(&ch->lock);

again:
    ch->next_event = STIME_MAX;
    next_event = STIME_MAX;
    mask = (cpumask_t)CPU_MASK_NONE;
    now = NOW();

    /* find all expired events */
    for_each_cpu_mask(cpu, ch->cpumask)
    {
        if ( per_cpu(timer_deadline, cpu) <= now )
            cpu_set(cpu, mask);
        else if ( per_cpu(timer_deadline, cpu) < next_event )
            next_event = per_cpu(timer_deadline, cpu);
    }

    /* wakeup the cpus which have an expired event. */
    evt_do_broadcast(mask);

    if ( next_event != STIME_MAX )
    {
        if ( reprogram_hpet_evt_channel(ch, next_event, now, 0) )
            goto again;
    }
    spin_unlock_irq(&ch->lock);
}

static void hpet_interrupt_handler(int vector, void *data,
        struct cpu_user_regs *regs)
{
    struct hpet_event_channel *ch = (struct hpet_event_channel *)data;
    if ( !ch->event_handler )
    {
        printk(XENLOG_WARNING "Spurious HPET timer interrupt on HPET timer %d\n", ch->idx);
        return;
    }

    ch->event_handler(ch);
}

static void hpet_msi_unmask(unsigned int vector)
{
    unsigned long cfg;
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    cfg = hpet_read32(HPET_Tn_CFG(ch->idx));
    cfg |= HPET_TN_FSB;
    hpet_write32(cfg, HPET_Tn_CFG(ch->idx));
}

static void hpet_msi_mask(unsigned int vector)
{
    unsigned long cfg;
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    cfg = hpet_read32(HPET_Tn_CFG(ch->idx));
    cfg &= ~HPET_TN_FSB;
    hpet_write32(cfg, HPET_Tn_CFG(ch->idx));
}

static void hpet_msi_write(unsigned int vector, struct msi_msg *msg)
{
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    hpet_write32(msg->data, HPET_Tn_ROUTE(ch->idx));
    hpet_write32(msg->address_lo, HPET_Tn_ROUTE(ch->idx) + 4);
}

static void hpet_msi_read(unsigned int vector, struct msi_msg *msg)
{
    int ch_idx = vector_to_channel(vector);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    msg->data = hpet_read32(HPET_Tn_ROUTE(ch->idx));
    msg->address_lo = hpet_read32(HPET_Tn_ROUTE(ch->idx) + 4);
    msg->address_hi = 0;
}

static unsigned int hpet_msi_startup(unsigned int vector)
{
    hpet_msi_unmask(vector);
    return 0;
}

static void hpet_msi_shutdown(unsigned int vector)
{
    hpet_msi_mask(vector);
}

static void hpet_msi_ack(unsigned int vector)
{
    ack_APIC_irq();
}

static void hpet_msi_end(unsigned int vector)
{
}

static void hpet_msi_set_affinity(unsigned int vector, cpumask_t mask)
{
    struct msi_msg msg;
    unsigned int dest;
    cpumask_t tmp;

    cpus_and(tmp, mask, cpu_online_map);
    if ( cpus_empty(tmp) )
        mask = TARGET_CPUS;

    dest = cpu_mask_to_apicid(mask);

    hpet_msi_read(vector, &msg);

    msg.data &= ~MSI_DATA_VECTOR_MASK;
    msg.data |= MSI_DATA_VECTOR(vector);
    msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
    msg.address_lo |= MSI_ADDR_DEST_ID(dest);

    hpet_msi_write(vector, &msg);
    irq_desc[vector].affinity = mask;
}

/*
 * IRQ Chip for MSI HPET Devices,
 */
static struct hw_interrupt_type hpet_msi_type = {
    .typename   = "HPET-MSI",
    .startup    = hpet_msi_startup,
    .shutdown   = hpet_msi_shutdown,
    .enable	    = hpet_msi_unmask,
    .disable    = hpet_msi_mask,
    .ack        = hpet_msi_ack,
    .end        = hpet_msi_end,
    .set_affinity   = hpet_msi_set_affinity,
};

static int hpet_setup_msi_irq(unsigned int vector)
{
    int ret;
    struct msi_msg msg;
    struct hpet_event_channel *ch = &hpet_events[vector_to_channel(vector)];

    irq_desc[vector].handler = &hpet_msi_type;
    ret = request_irq_vector(vector, hpet_interrupt_handler,
                      0, "HPET", ch);
    if ( ret < 0 )
        return ret;

    msi_compose_msg(NULL, vector, &msg);
    hpet_msi_write(vector, &msg);

    return 0;
}

static int hpet_assign_irq(struct hpet_event_channel *ch)
{
    int vector;

    if ( ch->vector )
        return 0;

    if ( (vector = assign_irq_vector(AUTO_ASSIGN_IRQ)) < 0 )
        return vector;

    vector_channel[vector] = ch - &hpet_events[0];

    if ( hpet_setup_msi_irq(vector) )
    {
        free_irq_vector(vector);
        vector_channel[vector] = -1;
        return -EINVAL;
    }

    ch->vector = vector;
    return 0;
}

static int hpet_fsb_cap_lookup(void)
{
    unsigned int id;
    unsigned int num_chs, num_chs_used;
    int i;

    id = hpet_read32(HPET_ID);

    num_chs = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
    num_chs++; /* Value read out starts from 0 */

    num_chs_used = 0;
    for ( i = 0; i < num_chs; i++ )
    {
        struct hpet_event_channel *ch = &hpet_events[num_chs_used];
        unsigned long cfg = hpet_read32(HPET_Tn_CFG(i));

        /* Only consider HPET timer with MSI support */
        if ( !(cfg & HPET_TN_FSB_CAP) )
            continue;

        ch->flags = 0;
        ch->idx = i;

        if ( hpet_assign_irq(ch) )
            continue;

        /* set default irq affinity */
        ch->cpu = num_chs_used;
        per_cpu(cpu_bc_channel, ch->cpu) = ch;
        irq_desc[ch->vector].handler->
            set_affinity(ch->vector, cpumask_of_cpu(ch->cpu));

        num_chs_used++;

        if ( num_chs_used == num_possible_cpus() )
            break;
    }

    printk(XENLOG_INFO
           "HPET: %d timers in total, %d timers will be used for broadcast\n",
           num_chs, num_chs_used);

    return num_chs_used;
}

static int next_channel;
static spinlock_t next_lock = SPIN_LOCK_UNLOCKED;

static struct hpet_event_channel *hpet_get_channel(int cpu)
{
    int i;
    int next;
    struct hpet_event_channel *ch;

    spin_lock(&next_lock);
    next = next_channel = (next_channel + 1) % num_hpets_used;
    spin_unlock(&next_lock);

    /* try unused channel first */
    for ( i = next; i < next + num_hpets_used; i++ )
    {
        ch = &hpet_events[i % num_hpets_used];
        if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        {
            ch->cpu = cpu;
            return ch;
        }
    }

    /* share a in-use channel */
    ch = &hpet_events[next];
    if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        ch->cpu = cpu;

    return ch;
}

static void hpet_attach_channel_share(int cpu, struct hpet_event_channel *ch)
{
    per_cpu(cpu_bc_channel, cpu) = ch;

    /* try to be the channel owner again while holding the lock */
    if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        ch->cpu = cpu;

    if ( ch->cpu != cpu )
        return;

    /* set irq affinity */
    irq_desc[ch->vector].handler->
        set_affinity(ch->vector, cpumask_of_cpu(ch->cpu));
}

static void hpet_detach_channel_share(int cpu)
{
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    per_cpu(cpu_bc_channel, cpu) = NULL;

    if ( cpu != ch->cpu )
        return;

    if ( cpus_empty(ch->cpumask) )
    {
        ch->cpu = -1;
        clear_bit(HPET_EVT_USED_BIT, &ch->flags);
        return;
    }

    ch->cpu = first_cpu(ch->cpumask);
    /* set irq affinity */
    irq_desc[ch->vector].handler->
        set_affinity(ch->vector, cpumask_of_cpu(ch->cpu));
}

static void (*hpet_attach_channel)(int cpu, struct hpet_event_channel *ch);
static void (*hpet_detach_channel)(int cpu);

#include <asm/mc146818rtc.h>
void cpuidle_disable_deep_cstate(void);

void (*pv_rtc_handler)(unsigned int port, uint8_t value);

static void handle_rtc_once(unsigned int port, uint8_t value)
{
    static int index;

    if ( port == 0x70 )
    {
        index = value;
        return;
    }

    if ( index != RTC_REG_B )
        return;
    
    /* RTC Reg B, contain PIE/AIE/UIE */
    if ( value & (RTC_PIE | RTC_AIE | RTC_UIE ) )
    {
        cpuidle_disable_deep_cstate();
        pv_rtc_handler = NULL;
    }
}

void hpet_broadcast_init(void)
{
    u64 hpet_rate;
    u32 hpet_id, cfg;
    int i;

    hpet_rate = hpet_setup();
    if ( hpet_rate == 0 )
        return;

    num_hpets_used = hpet_fsb_cap_lookup();
    if ( num_hpets_used > 0 )
    {
        /* Stop HPET legacy interrupts */
        cfg = hpet_read32(HPET_CFG);
        cfg &= ~HPET_CFG_LEGACY;
        hpet_write32(cfg, HPET_CFG);

        for ( i = 0; i < num_hpets_used; i++ )
        {
            /* set HPET Tn as oneshot */
            cfg = hpet_read32(HPET_Tn_CFG(hpet_events[i].idx));
            cfg &= ~HPET_TN_PERIODIC;
            cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
            hpet_write32(cfg, HPET_Tn_CFG(hpet_events[i].idx));
  
            hpet_events[i].mult = div_sc((unsigned long)hpet_rate,
                                         1000000000ul, 32);
            hpet_events[i].shift = 32;
            hpet_events[i].next_event = STIME_MAX;
            hpet_events[i].event_handler = handle_hpet_broadcast;
            spin_lock_init(&hpet_events[i].lock);
        }

        if ( num_hpets_used < num_possible_cpus() )
        {
            hpet_attach_channel = hpet_attach_channel_share;
            hpet_detach_channel = hpet_detach_channel_share;
        }

        return;
    }

    if ( legacy_hpet_event.flags & HPET_EVT_DISABLE )
        return;

    hpet_id = hpet_read32(HPET_ID);
    if ( !(hpet_id & HPET_ID_LEGSUP) )
        return;

    /* Start HPET legacy interrupts */
    cfg = hpet_read32(HPET_CFG);
    cfg |= HPET_CFG_LEGACY;
    hpet_write32(cfg, HPET_CFG);

    /* set HPET T0 as oneshot */
    cfg = hpet_read32(HPET_T0_CFG);
    cfg &= ~HPET_TN_PERIODIC;
    cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
    hpet_write32(cfg, HPET_T0_CFG);

    /*
     * The period is a femto seconds value. We need to calculate the scaled
     * math multiplication factor for nanosecond to hpet tick conversion.
     */
    legacy_hpet_event.mult = div_sc((unsigned long)hpet_rate, 1000000000ul, 32);
    legacy_hpet_event.shift = 32;
    legacy_hpet_event.next_event = STIME_MAX;
    legacy_hpet_event.event_handler = handle_hpet_broadcast;
    legacy_hpet_event.idx = 0;
    legacy_hpet_event.flags = 0;
    spin_lock_init(&legacy_hpet_event.lock);

    for_each_possible_cpu(i)
        per_cpu(cpu_bc_channel, i) = &legacy_hpet_event;

    if ( !force_hpet_broadcast )
        pv_rtc_handler = handle_rtc_once;
}

void hpet_disable_legacy_broadcast(void)
{
    u32 cfg;

    spin_lock_irq(&legacy_hpet_event.lock);

    legacy_hpet_event.flags |= HPET_EVT_DISABLE;

    /* disable HPET T0 */
    cfg = hpet_read32(HPET_T0_CFG);
    cfg &= ~HPET_TN_ENABLE;
    hpet_write32(cfg, HPET_T0_CFG);

    /* Stop HPET legacy interrupts */
    cfg = hpet_read32(HPET_CFG);
    cfg &= ~HPET_CFG_LEGACY;
    hpet_write32(cfg, HPET_CFG);

    spin_unlock_irq(&legacy_hpet_event.lock);

    smp_send_event_check_mask(&cpu_online_map);
}

void hpet_broadcast_enter(void)
{
    int cpu = smp_processor_id();
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    if ( this_cpu(timer_deadline) == 0 )
        return;

    if ( !ch )
        ch = hpet_get_channel(cpu);
    BUG_ON( !ch );

    ASSERT(!local_irq_is_enabled());
    spin_lock(&ch->lock);

    if ( hpet_attach_channel )
        hpet_attach_channel(cpu, ch);

    disable_APIC_timer();

    cpu_set(cpu, ch->cpumask);

    /* reprogram if current cpu expire time is nearer */
    if ( this_cpu(timer_deadline) < ch->next_event )
        reprogram_hpet_evt_channel(ch, this_cpu(timer_deadline), NOW(), 1);

    spin_unlock(&ch->lock);
}

void hpet_broadcast_exit(void)
{
    int cpu = smp_processor_id();
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    BUG_ON( !ch );

    spin_lock_irq(&ch->lock);

    if ( cpu_test_and_clear(cpu, ch->cpumask) )
    {
        /* Cancel any outstanding LAPIC event and re-enable interrupts. */
        reprogram_timer(0);
        enable_APIC_timer();
        
        /* Reprogram the deadline; trigger timer work now if it has passed. */
        if ( !reprogram_timer(per_cpu(timer_deadline, cpu)) )
            raise_softirq(TIMER_SOFTIRQ);

        if ( cpus_empty(ch->cpumask) && ch->next_event != STIME_MAX )