aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/brcm2708/patches-4.19/950-0753-overlays-Add-apds9960-overlay.patch
blob: 0848a23c886de2c0af7c0110ed25c195ac8f44d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
From c1e8593fd7fc6a8e7745a6c82c1c19a8fceee70f Mon Sep 17 00:00:00 2001
From: Michael Kaplan <m.kaplan@evva.com>
Date: Fri, 8 Nov 2019 10:35:57 +0100
Subject: [PATCH] overlays: Add apds9960 overlay

Add an overlay for the AVAGO APDS9960 digital proximity, ambient light, rgb and gesture sensor.
Also update overlay README and Makefile.

Signed-off-by: Michael Kaplan <m.kaplan@evva.com>
---
 arch/arm/boot/dts/overlays/Makefile           |  1 +
 arch/arm/boot/dts/overlays/README             |  8 +++
 .../boot/dts/overlays/apds9960-overlay.dts    | 57 +++++++++++++++++++
 3 files changed, 66 insertions(+)
 create mode 100644 arch/arm/boot/dts/overlays/apds9960-overlay.dts

--- a/arch/arm/boot/dts/overlays/Makefile
+++ b/arch/arm/boot/dts/overlays/Makefile
@@ -15,6 +15,7 @@ dtbo-$(CONFIG_ARCH_BCM2835) += \
 	allo-katana-dac-audio.dtbo \
 	allo-piano-dac-pcm512x-audio.dtbo \
 	allo-piano-dac-plus-pcm512x-audio.dtbo \
+	apds9960.dtbo \
 	applepi-dac.dtbo \
 	at86rf233.dtbo \
 	audioinjector-addons.dtbo \
--- a/arch/arm/boot/dts/overlays/README
+++ b/arch/arm/boot/dts/overlays/README
@@ -441,6 +441,14 @@ Params: 24db_digital_gain       Allow ga
                                 better voice quality. (default Off)
 
 
+Name:   apds9960
+Info:   Configures the AVAGO APDS9960 digital proximity, ambient light, RGB and
+        gesture sensor
+Load:   dtoverlay=apds9960,<param>=<val>
+Params: gpiopin                 GPIO used for INT (default 4)
+        noints                  Disable the interrupt GPIO line.
+
+
 Name:   applepi-dac
 Info:   Configures the Orchard Audio ApplePi-DAC audio card
 Load:   dtoverlay=applepi-dac
--- /dev/null
+++ b/arch/arm/boot/dts/overlays/apds9960-overlay.dts
@@ -0,0 +1,57 @@
+// Definitions for APDS-9960 ambient light and gesture sensor
+
+/dts-v1/;
+/plugin/;
+
+/ {
+	compatible = "brcm,bcm2835";
+
+	fragment@0 {
+		target = <&i2c1>;
+		__overlay__ {
+			status = "okay";
+		};
+	};
+
+	fragment@1 {
+		target = <&gpio>;
+		__overlay__ {
+			apds9960_pins: apds9960_pins@39 {
+				brcm,pins = <4>;
+				brcm,function = <0>;
+			};
+		};
+	};
+
+	fragment@2 {
+		target = <&i2c1>;
+		__overlay__ {
+			#address-cells = <1>;
+			#size-cells = <0>;
+
+			apds9960: apds@39 {
+				compatible = "avago,apds9960";
+				reg = <0x39>;
+				status = "okay";
+			};
+		};
+	};
+
+	fragment@3 {
+		target = <&i2c1>;
+		__overlay__ {
+			apds9960_irq: apds@39 {
+				#interrupt-cells=<2>;
+				interrupt-parent = <&gpio>;
+				interrupts = <4 1>;
+			};
+		};
+	};
+
+	__overrides__ {
+		gpiopin = <&apds9960_pins>,"brcm,pins:0",
+				<&apds9960_irq>,"interrupts:0";
+		noints = <0>,"!1!3";
+	};
+};
+
f='#n438'>438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/******************************************************************************
 * page_alloc.c
 * 
 * Simple buddy heap allocator for Xen.
 * 
 * Copyright (c) 2002-2004 K A Fraser
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <xen/config.h>
#include <xen/init.h>
#include <xen/types.h>
#include <xen/lib.h>
#include <asm/page.h>
#include <xen/spinlock.h>
#include <xen/slab.h>
#include <xen/irq.h>
#include <asm/domain_page.h>

/*
 * Comma-separated list of hexadecimal page numbers containing bad bytes.
 * e.g. 'badpage=0x3f45,0x8a321'.
 */
static char opt_badpage[100] = "";
string_param("badpage", opt_badpage);

#define round_pgdown(_p)  ((_p)&PAGE_MASK)
#define round_pgup(_p)    (((_p)+(PAGE_SIZE-1))&PAGE_MASK)

/*********************
 * ALLOCATION BITMAP
 *  One bit per page of memory. Bit set => page is allocated.
 */

static unsigned long  bitmap_size; /* in bytes */
static unsigned long *alloc_bitmap;
#define PAGES_PER_MAPWORD (sizeof(unsigned long) * 8)

#define allocated_in_map(_pn)                 \
( !! (alloc_bitmap[(_pn)/PAGES_PER_MAPWORD] & \
     (1UL<<((_pn)&(PAGES_PER_MAPWORD-1)))) )

/*
 * Hint regarding bitwise arithmetic in map_{alloc,free}:
 *  -(1<<n)  sets all bits >= n. 
 *  (1<<n)-1 sets all bits <  n.
 * Variable names in map_{alloc,free}:
 *  *_idx == Index into `alloc_bitmap' array.
 *  *_off == Bit offset within an element of the `alloc_bitmap' array.
 */

static void map_alloc(unsigned long first_page, unsigned long nr_pages)
{
    unsigned long start_off, end_off, curr_idx, end_idx;

#ifndef NDEBUG
    unsigned long i;
    /* Check that the block isn't already allocated. */
    for ( i = 0; i < nr_pages; i++ )
        ASSERT(!allocated_in_map(first_page + i));
#endif

    curr_idx  = first_page / PAGES_PER_MAPWORD;
    start_off = first_page & (PAGES_PER_MAPWORD-1);
    end_idx   = (first_page + nr_pages) / PAGES_PER_MAPWORD;
    end_off   = (first_page + nr_pages) & (PAGES_PER_MAPWORD-1);

    if ( curr_idx == end_idx )
    {
        alloc_bitmap[curr_idx] |= ((1UL<<end_off)-1) & -(1UL<<start_off);
    }
    else 
    {
        alloc_bitmap[curr_idx] |= -(1UL<<start_off);
        while ( ++curr_idx < end_idx ) alloc_bitmap[curr_idx] = ~0UL;
        alloc_bitmap[curr_idx] |= (1UL<<end_off)-1;
    }
}


static void map_free(unsigned long first_page, unsigned long nr_pages)
{
    unsigned long start_off, end_off, curr_idx, end_idx;

#ifndef NDEBUG
    unsigned long i;
    /* Check that the block isn't already freed. */
    for ( i = 0; i < nr_pages; i++ )
        ASSERT(allocated_in_map(first_page + i));
#endif

    curr_idx  = first_page / PAGES_PER_MAPWORD;
    start_off = first_page & (PAGES_PER_MAPWORD-1);
    end_idx   = (first_page + nr_pages) / PAGES_PER_MAPWORD;
    end_off   = (first_page + nr_pages) & (PAGES_PER_MAPWORD-1);

    if ( curr_idx == end_idx )
    {
        alloc_bitmap[curr_idx] &= -(1UL<<end_off) | ((1UL<<start_off)-1);
    }
    else 
    {
        alloc_bitmap[curr_idx] &= (1UL<<start_off)-1;
        while ( ++curr_idx != end_idx ) alloc_bitmap[curr_idx] = 0;
        alloc_bitmap[curr_idx] &= -(1UL<<end_off);
    }
}



/*************************
 * BOOT-TIME ALLOCATOR
 */

/* Initialise allocator to handle up to @max_page pages. */
unsigned long init_boot_allocator(unsigned long bitmap_start)
{
    bitmap_start = round_pgup(bitmap_start);

    /* Allocate space for the allocation bitmap. */
    bitmap_size  = max_page / 8;
    bitmap_size  = round_pgup(bitmap_size);
    alloc_bitmap = (unsigned long *)phys_to_virt(bitmap_start);

    /* All allocated by default. */
    memset(alloc_bitmap, ~0, bitmap_size);

    return bitmap_start + bitmap_size;
}

void init_boot_pages(unsigned long ps, unsigned long pe)
{
    unsigned long bad_pfn;
    char *p;

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    map_free(ps >> PAGE_SHIFT, (pe - ps) >> PAGE_SHIFT);

    /* Check new pages against the bad-page list. */
    p = opt_badpage;
    while ( *p != '\0' )
    {
        bad_pfn = simple_strtoul(p, &p, 0);

        if ( *p == ',' )
            p++;
        else if ( *p != '\0' )
            break;

        if ( (bad_pfn < (bitmap_size*8)) && !allocated_in_map(bad_pfn) )
        {
            printk("Marking page %p as bad\n", bad_pfn);
            map_alloc(bad_pfn, 1);
        }
    }
}

unsigned long alloc_boot_pages(unsigned long size, unsigned long align)
{
    unsigned long pg, i;

    size  = round_pgup(size) >> PAGE_SHIFT;
    align = round_pgup(align) >> PAGE_SHIFT;

    for ( pg = 0; (pg + size) < (bitmap_size*8); pg += align )
    {
        for ( i = 0; i < size; i++ )
            if ( allocated_in_map(pg + i) )
                 break;

        if ( i == size )
        {
            map_alloc(pg, size);
            return pg << PAGE_SHIFT;
        }
    }

    return 0;
}



/*************************
 * BINARY BUDDY ALLOCATOR
 */

#define MEMZONE_XEN 0
#define MEMZONE_DOM 1
#define NR_ZONES    2

/* Up to 2^10 pages can be allocated at once. */
#define MAX_ORDER 10
static struct list_head heap[NR_ZONES][MAX_ORDER+1];

static unsigned long avail[NR_ZONES];

static spinlock_t heap_lock = SPIN_LOCK_UNLOCKED;

void end_boot_allocator(void)
{
    unsigned long i, j;
    int curr_free = 0, next_free = 0;

    memset(avail, 0, sizeof(avail));

    for ( i = 0; i < NR_ZONES; i++ )
        for ( j = 0; j <= MAX_ORDER; j++ )
            INIT_LIST_HEAD(&heap[i][j]);

    /* Pages that are free now go to the domain sub-allocator. */
    for ( i = 0; i < max_page; i++ )
    {
        curr_free = next_free;
        next_free = !allocated_in_map(i+1);
        if ( next_free )
            map_alloc(i+1, 1); /* prevent merging in free_heap_pages() */
        if ( curr_free )
            free_heap_pages(MEMZONE_DOM, pfn_to_page(i), 0);
    }
}

/* Hand the specified arbitrary page range to the specified heap zone. */
void init_heap_pages(
    unsigned int zone, struct pfn_info *pg, unsigned long nr_pages)
{
    unsigned long i;

    ASSERT(zone < NR_ZONES);

    for ( i = 0; i < nr_pages; i++ )
        free_heap_pages(zone, pg+i, 0);
}


/* Allocate 2^@order contiguous pages. */
struct pfn_info *alloc_heap_pages(unsigned int zone, unsigned int order)
{
    int i;
    struct pfn_info *pg;

    ASSERT(zone < NR_ZONES);

    if ( unlikely(order > MAX_ORDER) )
        return NULL;

    spin_lock(&heap_lock);

    /* Find smallest order which can satisfy the request. */
    for ( i = order; i <= MAX_ORDER; i++ )
        if ( !list_empty(&heap[zone][i]) )
            goto found;

    /* No suitable memory blocks. Fail the request. */
    spin_unlock(&heap_lock);
    return NULL;

 found: 
    pg = list_entry(heap[zone][i].next, struct pfn_info, list);
    list_del(&pg->list);

    /* We may have to halve the chunk a number of times. */
    while ( i != order )
    {
        PFN_ORDER(pg) = --i;
        list_add_tail(&pg->list, &heap[zone][i]);
        pg += 1 << i;
    }
    
    map_alloc(page_to_pfn(pg), 1 << order);
    avail[zone] -= 1 << order;

    spin_unlock(&heap_lock);

    return pg;
}


/* Free 2^@order set of pages. */
void free_heap_pages(
    unsigned int zone, struct pfn_info *pg, unsigned int order)
{
    unsigned long mask;

    ASSERT(zone < NR_ZONES);
    ASSERT(order <= MAX_ORDER);

    spin_lock(&heap_lock);

    map_free(page_to_pfn(pg), 1 << order);
    avail[zone] += 1 << order;
    
    /* Merge chunks as far as possible. */
    while ( order < MAX_ORDER )
    {
        mask = 1 << order;

        if ( (page_to_pfn(pg) & mask) )
        {
            /* Merge with predecessor block? */
            if ( allocated_in_map(page_to_pfn(pg)-mask) ||
                 (PFN_ORDER(pg-mask) != order) )
                break;
            list_del(&(pg-mask)->list);
            pg -= mask;
        }
        else
        {
            /* Merge with successor block? */
            if ( allocated_in_map(page_to_pfn(pg)+mask) ||
                 (PFN_ORDER(pg+mask) != order) )
                break;
            list_del(&(pg+mask)->list);
        }
        
        order++;
    }

    PFN_ORDER(pg) = order;
    list_add_tail(&pg->list, &heap[zone][order]);

    spin_unlock(&heap_lock);
}


/*
 * Scrub all unallocated pages in all heap zones. This function is more
 * convoluted than appears necessary because we do not want to continuously
 * hold the lock or disable interrupts while scrubbing very large memory areas.
 */
void scrub_heap_pages(void)
{
    void *p;
    unsigned long pfn, flags;

    printk("Scrubbing Free RAM: ");

    for ( pfn = 0; pfn < (bitmap_size * 8); pfn++ )
    {
        /* Every 100MB, print a progress dot and appease the watchdog. */
        if ( (pfn % ((100*1024*1024)/PAGE_SIZE)) == 0 )
        {
            printk(".");
            touch_nmi_watchdog();
        }

        /* Quick lock-free check. */
        if ( allocated_in_map(pfn) )
            continue;
        
        spin_lock_irqsave(&heap_lock, flags);
        
        /* Re-check page status with lock held. */
        if ( !allocated_in_map(pfn) )
        {
            p = map_domain_mem(pfn << PAGE_SHIFT);
            clear_page(p);
            unmap_domain_mem(p);
        }
        
        spin_unlock_irqrestore(&heap_lock, flags);
    }

    printk("done.\n");
}



/*************************
 * XEN-HEAP SUB-ALLOCATOR
 */

void init_xenheap_pages(unsigned long ps, unsigned long pe)
{
    unsigned long flags;

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    memguard_guard_range(__va(ps), pe - ps);

    local_irq_save(flags);
    init_heap_pages(MEMZONE_XEN, phys_to_page(ps), (pe - ps) >> PAGE_SHIFT);
    local_irq_restore(flags);
}


unsigned long alloc_xenheap_pages(unsigned int order)
{
    unsigned long flags;
    struct pfn_info *pg;
    int i;

    local_irq_save(flags);
    pg = alloc_heap_pages(MEMZONE_XEN, order);
    local_irq_restore(flags);

    if ( unlikely(pg == NULL) )
        goto no_memory;

    memguard_unguard_range(page_to_virt(pg), 1 << (order + PAGE_SHIFT));

    for ( i = 0; i < (1 << order); i++ )
    {
        pg[i].count_info        = 0;
        pg[i].u.inuse._domain   = 0;
        pg[i].u.inuse.type_info = 0;
    }

    return (unsigned long)page_to_virt(pg);

 no_memory:
    printk("Cannot handle page request order %d!\n", order);
    return 0;
}


void free_xenheap_pages(unsigned long p, unsigned int order)
{
    unsigned long flags;

    memguard_guard_range((void *)p, 1 << (order + PAGE_SHIFT));    

    local_irq_save(flags);
    free_heap_pages(MEMZONE_XEN, virt_to_page(p), order);
    local_irq_restore(flags);
}



/*************************
 * DOMAIN-HEAP SUB-ALLOCATOR
 */

void init_domheap_pages(unsigned long ps, unsigned long pe)
{
    ASSERT(!in_irq());

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    init_heap_pages(MEMZONE_DOM, phys_to_page(ps), (pe - ps) >> PAGE_SHIFT);
}


struct pfn_info *alloc_domheap_pages(struct domain *d, unsigned int order)
{
    struct pfn_info *pg;
    unsigned long mask, flushed_mask, pfn_stamp, cpu_stamp;
    int i, j;

    ASSERT(!in_irq());

    if ( unlikely((pg = alloc_heap_pages(MEMZONE_DOM, order)) == NULL) )
        return NULL;

    flushed_mask = 0;
    for ( i = 0; i < (1 << order); i++ )
    {
        if ( (mask = (pg[i].u.free.cpu_mask & ~flushed_mask)) != 0 )
        {
            pfn_stamp = pg[i].tlbflush_timestamp;
            for ( j = 0; (mask != 0) && (j < smp_num_cpus); j++ )
            {
                if ( mask & (1UL<<j) )
                {
                    cpu_stamp = tlbflush_time[j];
                    if ( !NEED_FLUSH(cpu_stamp, pfn_stamp) )
                        mask &= ~(1UL<<j);
                }
            }
            
            if ( unlikely(mask != 0) )
            {
                flush_tlb_mask(mask);
                perfc_incrc(need_flush_tlb_flush);
                flushed_mask |= mask;
            }
        }

        pg[i].count_info        = 0;
        pg[i].u.inuse._domain   = 0;
        pg[i].u.inuse.type_info = 0;
    }

    if ( d == NULL )
        return pg;

    spin_lock(&d->page_alloc_lock);

    if ( unlikely(test_bit(DF_DYING, &d->d_flags)) ||
         unlikely((d->tot_pages + (1 << order)) > d->max_pages) )
    {
        DPRINTK("Over-allocation for domain %u: %u > %u\n",
                d->id, d->tot_pages + (1 << order), d->max_pages);
        DPRINTK("...or the domain is dying (%d)\n", 
                !!test_bit(DF_DYING, &d->d_flags));
        spin_unlock(&d->page_alloc_lock);
        free_heap_pages(MEMZONE_DOM, pg, order);
        return NULL;
    }

    if ( unlikely(d->tot_pages == 0) )
        get_knownalive_domain(d);

    d->tot_pages += 1 << order;

    for ( i = 0; i < (1 << order); i++ )
    {
        page_set_owner(&pg[i], d);
        wmb(); /* Domain pointer must be visible before updating refcnt. */
        pg[i].count_info |= PGC_allocated | 1;
        list_add_tail(&pg[i].list, &d->page_list);
    }

    spin_unlock(&d->page_alloc_lock);
    
    return pg;
}


void free_domheap_pages(struct pfn_info *pg, unsigned int order)
{
    int            i, drop_dom_ref;
    struct domain *d = page_get_owner(pg);
    struct exec_domain *ed;
    void          *p;
    int cpu_mask = 0;

    ASSERT(!in_irq());

    if ( unlikely(IS_XEN_HEAP_FRAME(pg)) )
    {
        /* NB. May recursively lock from domain_relinquish_memory(). */
        spin_lock_recursive(&d->page_alloc_lock);

        for ( i = 0; i < (1 << order); i++ )
            list_del(&pg[i].list);

        d->xenheap_pages -= 1 << order;
        drop_dom_ref = (d->xenheap_pages == 0);

        spin_unlock_recursive(&d->page_alloc_lock);
    }
    else if ( likely(d != NULL) )
    {
        /* NB. May recursively lock from domain_relinquish_memory(). */
        spin_lock_recursive(&d->page_alloc_lock);

        for_each_exec_domain(d, ed)
            cpu_mask |= 1 << ed->processor;

        for ( i = 0; i < (1 << order); i++ )
        {
            ASSERT((pg[i].u.inuse.type_info & PGT_count_mask) == 0);
            pg[i].tlbflush_timestamp  = tlbflush_current_time();
            pg[i].u.free.cpu_mask     = cpu_mask;
            list_del(&pg[i].list);

            /*
             * Normally we expect a domain to clear pages before freeing them,
             * if it cares about the secrecy of their contents. However, after
             * a domain has died we assume responsibility for erasure.
             */
            if ( unlikely(test_bit(DF_DYING, &d->d_flags)) )
            {
                p = map_domain_mem(page_to_phys(&pg[i]));
                clear_page(p);
                unmap_domain_mem(p);
            }
        }

        d->tot_pages -= 1 << order;
        drop_dom_ref = (d->tot_pages == 0);

        spin_unlock_recursive(&d->page_alloc_lock);

        free_heap_pages(MEMZONE_DOM, pg, order);
    }
    else
    {
        /* Freeing an anonymous domain-heap page. */
        free_heap_pages(MEMZONE_DOM, pg, order);
        drop_dom_ref = 0;
    }

    if ( drop_dom_ref )
        put_domain(d);
}


unsigned long avail_domheap_pages(void)
{
    return avail[MEMZONE_DOM];
}

/*
 * Local variables:
 * mode: C
 * c-set-style: "BSD"
 * c-basic-offset: 4
 * tab-width: 4
 * indent-tabs-mode: nil
 */