diff options
author | Joey Castillo <joeycastillo@utexas.edu> | 2022-01-15 19:21:39 -0500 |
---|---|---|
committer | Joey Castillo <joeycastillo@utexas.edu> | 2022-01-15 19:23:49 -0500 |
commit | baf25aaa7a7f8ff673bbe805963b242c0eb52306 (patch) | |
tree | 80124eb866f4b66153244dd9c1763a4f81efbf29 /movement/lib/sunriset/sunriset.c | |
parent | 41eaa9c1c03ee70179d8c37c20b436b11dafb8ef (diff) | |
download | Sensor-Watch-baf25aaa7a7f8ff673bbe805963b242c0eb52306.tar.gz Sensor-Watch-baf25aaa7a7f8ff673bbe805963b242c0eb52306.tar.bz2 Sensor-Watch-baf25aaa7a7f8ff673bbe805963b242c0eb52306.zip |
movement: add sunrise/sunset face
Diffstat (limited to 'movement/lib/sunriset/sunriset.c')
-rw-r--r-- | movement/lib/sunriset/sunriset.c | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/movement/lib/sunriset/sunriset.c b/movement/lib/sunriset/sunriset.c new file mode 100644 index 00000000..9126c3bc --- /dev/null +++ b/movement/lib/sunriset/sunriset.c @@ -0,0 +1,326 @@ +/* + +SUNRISET.C - computes Sun rise/set times, start/end of twilight, and + the length of the day at any date and latitude + +Written as DAYLEN.C, 1989-08-16 + +Modified to SUNRISET.C, 1992-12-01 + +(c) Paul Schlyter, 1989, 1992 + +Released to the public domain by Paul Schlyter, December 1992 + +*/ + +#include <stdio.h> +#include <math.h> +#include "sunriset.h" + + +/* A macro to compute the number of days elapsed since 2000 Jan 0.0 */ +/* (which is equal to 1999 Dec 31, 0h UT) */ + +#define days_since_2000_Jan_0(y,m,d) \ + (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L) + +/* Some conversion factors between radians and degrees */ + +#ifndef PI + #define PI 3.1415926535897932384 +#endif + +#define RADEG ( 180.0 / PI ) +#define DEGRAD ( PI / 180.0 ) + +/* The trigonometric functions in degrees */ + +#define sind(x) sin((x)*DEGRAD) +#define cosd(x) cos((x)*DEGRAD) +#define tand(x) tan((x)*DEGRAD) + +#define atand(x) (RADEG*atan(x)) +#define asind(x) (RADEG*asin(x)) +#define acosd(x) (RADEG*acos(x)) +#define atan2d(y,x) (RADEG*atan2(y,x)) + +/* The "workhorse" function for sun rise/set times */ + +int __sunriset__( int year, int month, int day, double lon, double lat, + double altit, int upper_limb, double *trise, double *tset ) +/***************************************************************************/ +/* Note: year,month,date = calendar date, 1801-2099 only. */ +/* Eastern longitude positive, Western longitude negative */ +/* Northern latitude positive, Southern latitude negative */ +/* The longitude value IS critical in this function! */ +/* altit = the altitude which the Sun should cross */ +/* Set to -35/60 degrees for rise/set, -6 degrees */ +/* for civil, -12 degrees for nautical and -18 */ +/* degrees for astronomical twilight. */ +/* upper_limb: non-zero -> upper limb, zero -> center */ +/* Set to non-zero (e.g. 1) when computing rise/set */ +/* times, and to zero when computing start/end of */ +/* twilight. */ +/* *rise = where to store the rise time */ +/* *set = where to store the set time */ +/* Both times are relative to the specified altitude, */ +/* and thus this function can be used to compute */ +/* various twilight times, as well as rise/set times */ +/* Return value: 0 = sun rises/sets this day, times stored at */ +/* *trise and *tset. */ +/* +1 = sun above the specified "horizon" 24 hours. */ +/* *trise set to time when the sun is at south, */ +/* minus 12 hours while *tset is set to the south */ +/* time plus 12 hours. "Day" length = 24 hours */ +/* -1 = sun is below the specified "horizon" 24 hours */ +/* "Day" length = 0 hours, *trise and *tset are */ +/* both set to the time when the sun is at south. */ +/* */ +/**********************************************************************/ +{ + double d, /* Days since 2000 Jan 0.0 (negative before) */ + sr, /* Solar distance, astronomical units */ + sRA, /* Sun's Right Ascension */ + sdec, /* Sun's declination */ + sradius, /* Sun's apparent radius */ + t, /* Diurnal arc */ + tsouth, /* Time when Sun is at south */ + sidtime; /* Local sidereal time */ + + int rc = 0; /* Return cde from function - usually 0 */ + + /* Compute d of 12h local mean solar time */ + d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0; + + /* Compute the local sidereal time of this moment */ + sidtime = revolution( GMST0(d) + 180.0 + lon ); + + /* Compute Sun's RA, Decl and distance at this moment */ + sun_RA_dec( d, &sRA, &sdec, &sr ); + + /* Compute time when Sun is at south - in hours UT */ + tsouth = 12.0 - rev180(sidtime - sRA)/15.0; + + /* Compute the Sun's apparent radius in degrees */ + sradius = 0.2666 / sr; + + /* Do correction to upper limb, if necessary */ + if ( upper_limb ) + altit -= sradius; + + /* Compute the diurnal arc that the Sun traverses to reach */ + /* the specified altitude altit: */ + { + double cost; + cost = ( sind(altit) - sind(lat) * sind(sdec) ) / + ( cosd(lat) * cosd(sdec) ); + if ( cost >= 1.0 ) + rc = -1, t = 0.0; /* Sun always below altit */ + else if ( cost <= -1.0 ) + rc = +1, t = 12.0; /* Sun always above altit */ + else + t = acosd(cost)/15.0; /* The diurnal arc, hours */ + } + + /* Store rise and set times - in hours UT */ + *trise = tsouth - t; + *tset = tsouth + t; + + return rc; +} /* __sunriset__ */ + + + +/* The "workhorse" function */ + + +double __daylen__( int year, int month, int day, double lon, double lat, + double altit, int upper_limb ) +/**********************************************************************/ +/* Note: year,month,date = calendar date, 1801-2099 only. */ +/* Eastern longitude positive, Western longitude negative */ +/* Northern latitude positive, Southern latitude negative */ +/* The longitude value is not critical. Set it to the correct */ +/* longitude if you're picky, otherwise set to to, say, 0.0 */ +/* The latitude however IS critical - be sure to get it correct */ +/* altit = the altitude which the Sun should cross */ +/* Set to -35/60 degrees for rise/set, -6 degrees */ +/* for civil, -12 degrees for nautical and -18 */ +/* degrees for astronomical twilight. */ +/* upper_limb: non-zero -> upper limb, zero -> center */ +/* Set to non-zero (e.g. 1) when computing day length */ +/* and to zero when computing day+twilight length. */ +/**********************************************************************/ +{ + double d, /* Days since 2000 Jan 0.0 (negative before) */ + obl_ecl, /* Obliquity (inclination) of Earth's axis */ + sr, /* Solar distance, astronomical units */ + slon, /* True solar longitude */ + sin_sdecl, /* Sine of Sun's declination */ + cos_sdecl, /* Cosine of Sun's declination */ + sradius, /* Sun's apparent radius */ + t; /* Diurnal arc */ + + /* Compute d of 12h local mean solar time */ + d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0; + + /* Compute obliquity of ecliptic (inclination of Earth's axis) */ + obl_ecl = 23.4393 - 3.563E-7 * d; + + /* Compute Sun's ecliptic longitude and distance */ + sunpos( d, &slon, &sr ); + + /* Compute sine and cosine of Sun's declination */ + sin_sdecl = sind(obl_ecl) * sind(slon); + cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl ); + + /* Compute the Sun's apparent radius, degrees */ + sradius = 0.2666 / sr; + + /* Do correction to upper limb, if necessary */ + if ( upper_limb ) + altit -= sradius; + + /* Compute the diurnal arc that the Sun traverses to reach */ + /* the specified altitude altit: */ + { + double cost; + cost = ( sind(altit) - sind(lat) * sin_sdecl ) / + ( cosd(lat) * cos_sdecl ); + if ( cost >= 1.0 ) + t = 0.0; /* Sun always below altit */ + else if ( cost <= -1.0 ) + t = 24.0; /* Sun always above altit */ + else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */ + } + return t; +} /* __daylen__ */ + + +/* This function computes the Sun's position at any instant */ + +void sunpos( double d, double *lon, double *r ) +/******************************************************/ +/* Computes the Sun's ecliptic longitude and distance */ +/* at an instant given in d, number of days since */ +/* 2000 Jan 0.0. The Sun's ecliptic latitude is not */ +/* computed, since it's always very near 0. */ +/******************************************************/ +{ + double M, /* Mean anomaly of the Sun */ + w, /* Mean longitude of perihelion */ + /* Note: Sun's mean longitude = M + w */ + e, /* Eccentricity of Earth's orbit */ + E, /* Eccentric anomaly */ + x, y, /* x, y coordinates in orbit */ + v; /* True anomaly */ + + /* Compute mean elements */ + M = revolution( 356.0470 + 0.9856002585 * d ); + w = 282.9404 + 4.70935E-5 * d; + e = 0.016709 - 1.151E-9 * d; + + /* Compute true longitude and radius vector */ + E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) ); + x = cosd(E) - e; + y = sqrt( 1.0 - e*e ) * sind(E); + *r = sqrt( x*x + y*y ); /* Solar distance */ + v = atan2d( y, x ); /* True anomaly */ + *lon = v + w; /* True solar longitude */ + if ( *lon >= 360.0 ) + *lon -= 360.0; /* Make it 0..360 degrees */ +} + +void sun_RA_dec( double d, double *RA, double *dec, double *r ) +/******************************************************/ +/* Computes the Sun's equatorial coordinates RA, Decl */ +/* and also its distance, at an instant given in d, */ +/* the number of days since 2000 Jan 0.0. */ +/******************************************************/ +{ + double lon, obl_ecl, x, y, z; + + /* Compute Sun's ecliptical coordinates */ + sunpos( d, &lon, r ); + + /* Compute ecliptic rectangular coordinates (z=0) */ + x = *r * cosd(lon); + y = *r * sind(lon); + + /* Compute obliquity of ecliptic (inclination of Earth's axis) */ + obl_ecl = 23.4393 - 3.563E-7 * d; + + /* Convert to equatorial rectangular coordinates - x is unchanged */ + z = y * sind(obl_ecl); + y = y * cosd(obl_ecl); + + /* Convert to spherical coordinates */ + *RA = atan2d( y, x ); + *dec = atan2d( z, sqrt(x*x + y*y) ); + +} /* sun_RA_dec */ + + +/******************************************************************/ +/* This function reduces any angle to within the first revolution */ +/* by subtracting or adding even multiples of 360.0 until the */ +/* result is >= 0.0 and < 360.0 */ +/******************************************************************/ + +#define INV360 ( 1.0 / 360.0 ) + +double revolution( double x ) +/*****************************************/ +/* Reduce angle to within 0..360 degrees */ +/*****************************************/ +{ + return( x - 360.0 * floor( x * INV360 ) ); +} /* revolution */ + +double rev180( double x ) +/*********************************************/ +/* Reduce angle to within +180..+180 degrees */ +/*********************************************/ +{ + return( x - 360.0 * floor( x * INV360 + 0.5 ) ); +} /* revolution */ + + +/*******************************************************************/ +/* This function computes GMST0, the Greenwich Mean Sidereal Time */ +/* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */ +/* 0h UT). GMST is then the sidereal time at Greenwich at any */ +/* time of the day. I've generalized GMST0 as well, and define it */ +/* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */ +/* other times than 0h UT as well. While this sounds somewhat */ +/* contradictory, it is very practical: instead of computing */ +/* GMST like: */ +/* */ +/* GMST = (GMST0) + UT * (366.2422/365.2422) */ +/* */ +/* where (GMST0) is the GMST last time UT was 0 hours, one simply */ +/* computes: */ +/* */ +/* GMST = GMST0 + UT */ +/* */ +/* where GMST0 is the GMST "at 0h UT" but at the current moment! */ +/* Defined in this way, GMST0 will increase with about 4 min a */ +/* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */ +/* is equal to the Sun's mean longitude plus/minus 180 degrees! */ +/* (if we neglect aberration, which amounts to 20 seconds of arc */ +/* or 1.33 seconds of time) */ +/* */ +/*******************************************************************/ + +double GMST0( double d ) +{ + double sidtim0; + /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */ + /* L = M + w, as defined in sunpos(). Since I'm too lazy to */ + /* add these numbers, I'll let the C compiler do it for me. */ + /* Any decent C compiler will add the constants at compile */ + /* time, imposing no runtime or code overhead. */ + sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) + + ( 0.9856002585 + 4.70935E-5 ) * d ); + return sidtim0; +} /* GMST0 */
\ No newline at end of file |