summaryrefslogtreecommitdiffstats
path: root/tinyusb/src/common/tusb_fifo.c
diff options
context:
space:
mode:
Diffstat (limited to 'tinyusb/src/common/tusb_fifo.c')
m---------tinyusb0
-rwxr-xr-xtinyusb/src/common/tusb_fifo.c1000
2 files changed, 0 insertions, 1000 deletions
diff --git a/tinyusb b/tinyusb
new file mode 160000
+Subproject f8288be03f28ad7b944e6925f49422dfa39202c
diff --git a/tinyusb/src/common/tusb_fifo.c b/tinyusb/src/common/tusb_fifo.c
deleted file mode 100755
index 11b8fc5f..00000000
--- a/tinyusb/src/common/tusb_fifo.c
+++ /dev/null
@@ -1,1000 +0,0 @@
-/*
- * The MIT License (MIT)
- *
- * Copyright (c) 2019 Ha Thach (tinyusb.org)
- * Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *
- * This file is part of the TinyUSB stack.
- */
-
-#include "osal/osal.h"
-#include "tusb_fifo.h"
-
-// Supress IAR warning
-// Warning[Pa082]: undefined behavior: the order of volatile accesses is undefined in this statement
-#if defined(__ICCARM__)
-#pragma diag_suppress = Pa082
-#endif
-
-// implement mutex lock and unlock
-#if CFG_FIFO_MUTEX
-
-static inline void _ff_lock(tu_fifo_mutex_t mutex)
-{
- if (mutex) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER);
-}
-
-static inline void _ff_unlock(tu_fifo_mutex_t mutex)
-{
- if (mutex) osal_mutex_unlock(mutex);
-}
-
-#else
-
-#define _ff_lock(_mutex)
-#define _ff_unlock(_mutex)
-
-#endif
-
-/** \enum tu_fifo_copy_mode_t
- * \brief Write modes intended to allow special read and write functions to be able to
- * copy data to and from USB hardware FIFOs as needed for e.g. STM32s and others
- */
-typedef enum
-{
- TU_FIFO_COPY_INC, ///< Copy from/to an increasing source/destination address - default mode
- TU_FIFO_COPY_CST_FULL_WORDS, ///< Copy from/to a constant source/destination address - required for e.g. STM32 to write into USB hardware FIFO
-} tu_fifo_copy_mode_t;
-
-bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable)
-{
- if (depth > 0x8000) return false; // Maximum depth is 2^15 items
-
- _ff_lock(f->mutex_wr);
- _ff_lock(f->mutex_rd);
-
- f->buffer = (uint8_t*) buffer;
- f->depth = depth;
- f->item_size = item_size;
- f->overwritable = overwritable;
-
- // Limit index space to 2*depth - this allows for a fast "modulo" calculation
- // but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable
- // only if overflow happens once (important for unsupervised DMA applications)
- f->max_pointer_idx = 2*depth - 1;
- f->non_used_index_space = UINT16_MAX - f->max_pointer_idx;
-
- f->rd_idx = f->wr_idx = 0;
-
- _ff_unlock(f->mutex_wr);
- _ff_unlock(f->mutex_rd);
-
- return true;
-}
-
-// Static functions are intended to work on local variables
-static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth)
-{
- while ( idx >= depth) idx -= depth;
- return idx;
-}
-
-// Intended to be used to read from hardware USB FIFO in e.g. STM32 where all data is read from a constant address
-// Code adapted from dcd_synopsis.c
-// TODO generalize with configurable 1 byte or 4 byte each read
-static void _ff_push_const_addr(uint8_t * ff_buf, const void * app_buf, uint16_t len)
-{
- volatile uint32_t * rx_fifo = (volatile uint32_t *) app_buf;
-
- // Reading full available 32 bit words from const app address
- uint16_t full_words = len >> 2;
- while(full_words--)
- {
- tu_unaligned_write32(ff_buf, *rx_fifo);
- ff_buf += 4;
- }
-
- // Read the remaining 1-3 bytes from const app address
- uint8_t const bytes_rem = len & 0x03;
- if ( bytes_rem )
- {
- uint32_t tmp32 = *rx_fifo;
- memcpy(ff_buf, &tmp32, bytes_rem);
- }
-}
-
-// Intended to be used to write to hardware USB FIFO in e.g. STM32
-// where all data is written to a constant address in full word copies
-static void _ff_pull_const_addr(void * app_buf, const uint8_t * ff_buf, uint16_t len)
-{
- volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf;
-
- // Pushing full available 32 bit words to const app address
- uint16_t full_words = len >> 2;
- while(full_words--)
- {
- *tx_fifo = tu_unaligned_read32(ff_buf);
- ff_buf += 4;
- }
-
- // Write the remaining 1-3 bytes into const app address
- uint8_t const bytes_rem = len & 0x03;
- if ( bytes_rem )
- {
- uint32_t tmp32 = 0;
- memcpy(&tmp32, ff_buf, bytes_rem);
-
- *tx_fifo = tmp32;
- }
-}
-
-// send one item to FIFO WITHOUT updating write pointer
-static inline void _ff_push(tu_fifo_t* f, void const * app_buf, uint16_t rel)
-{
- memcpy(f->buffer + (rel * f->item_size), app_buf, f->item_size);
-}
-
-// send n items to FIFO WITHOUT updating write pointer
-static void _ff_push_n(tu_fifo_t* f, void const * app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode)
-{
- uint16_t const nLin = f->depth - rel;
- uint16_t const nWrap = n - nLin;
-
- uint16_t nLin_bytes = nLin * f->item_size;
- uint16_t nWrap_bytes = nWrap * f->item_size;
-
- // current buffer of fifo
- uint8_t* ff_buf = f->buffer + (rel * f->item_size);
-
- switch (copy_mode)
- {
- case TU_FIFO_COPY_INC:
- if(n <= nLin)
- {
- // Linear only
- memcpy(ff_buf, app_buf, n*f->item_size);
- }
- else
- {
- // Wrap around
-
- // Write data to linear part of buffer
- memcpy(ff_buf, app_buf, nLin_bytes);
-
- // Write data wrapped around
- memcpy(f->buffer, ((uint8_t const*) app_buf) + nLin_bytes, nWrap_bytes);
- }
- break;
-
- case TU_FIFO_COPY_CST_FULL_WORDS:
- // Intended for hardware buffers from which it can be read word by word only
- if(n <= nLin)
- {
- // Linear only
- _ff_push_const_addr(ff_buf, app_buf, n*f->item_size);
- }
- else
- {
- // Wrap around case
-
- // Write full words to linear part of buffer
- uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC;
- _ff_push_const_addr(ff_buf, app_buf, nLin_4n_bytes);
- ff_buf += nLin_4n_bytes;
-
- // There could be odd 1-3 bytes before the wrap-around boundary
- volatile uint32_t * rx_fifo = (volatile uint32_t *) app_buf;
- uint8_t rem = nLin_bytes & 0x03;
- if (rem > 0)
- {
- uint8_t remrem = tu_min16(nWrap_bytes, 4-rem);
- nWrap_bytes -= remrem;
-
- uint32_t tmp32 = *rx_fifo;
- uint8_t * src_u8 = ((uint8_t *) &tmp32);
-
- // Write 1-3 bytes before wrapped boundary
- while(rem--) *ff_buf++ = *src_u8++;
-
- // Read more bytes to beginning to complete a word
- ff_buf = f->buffer;
- while(remrem--) *ff_buf++ = *src_u8++;
- }
- else
- {
- ff_buf = f->buffer; // wrap around to beginning
- }
-
- // Write data wrapped part
- if (nWrap_bytes > 0) _ff_push_const_addr(ff_buf, app_buf, nWrap_bytes);
- }
- break;
- }
-}
-
-// get one item from FIFO WITHOUT updating read pointer
-static inline void _ff_pull(tu_fifo_t* f, void * app_buf, uint16_t rel)
-{
- memcpy(app_buf, f->buffer + (rel * f->item_size), f->item_size);
-}
-
-// get n items from FIFO WITHOUT updating read pointer
-static void _ff_pull_n(tu_fifo_t* f, void* app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode)
-{
- uint16_t const nLin = f->depth - rel;
- uint16_t const nWrap = n - nLin; // only used if wrapped
-
- uint16_t nLin_bytes = nLin * f->item_size;
- uint16_t nWrap_bytes = nWrap * f->item_size;
-
- // current buffer of fifo
- uint8_t* ff_buf = f->buffer + (rel * f->item_size);
-
- switch (copy_mode)
- {
- case TU_FIFO_COPY_INC:
- if ( n <= nLin )
- {
- // Linear only
- memcpy(app_buf, ff_buf, n*f->item_size);
- }
- else
- {
- // Wrap around
-
- // Read data from linear part of buffer
- memcpy(app_buf, ff_buf, nLin_bytes);
-
- // Read data wrapped part
- memcpy((uint8_t*) app_buf + nLin_bytes, f->buffer, nWrap_bytes);
- }
- break;
-
- case TU_FIFO_COPY_CST_FULL_WORDS:
- if ( n <= nLin )
- {
- // Linear only
- _ff_pull_const_addr(app_buf, ff_buf, n*f->item_size);
- }
- else
- {
- // Wrap around case
-
- // Read full words from linear part of buffer
- uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC;
- _ff_pull_const_addr(app_buf, ff_buf, nLin_4n_bytes);
- ff_buf += nLin_4n_bytes;
-
- // There could be odd 1-3 bytes before the wrap-around boundary
- volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf;
- uint8_t rem = nLin_bytes & 0x03;
- if (rem > 0)
- {
- uint8_t remrem = tu_min16(nWrap_bytes, 4-rem);
- nWrap_bytes -= remrem;
-
- uint32_t tmp32=0;
- uint8_t * dst_u8 = (uint8_t *)&tmp32;
-
- // Read 1-3 bytes before wrapped boundary
- while(rem--) *dst_u8++ = *ff_buf++;
-
- // Read more bytes from beginning to complete a word
- ff_buf = f->buffer;
- while(remrem--) *dst_u8++ = *ff_buf++;
-
- *tx_fifo = tmp32;
- }
- else
- {
- ff_buf = f->buffer; // wrap around to beginning
- }
-
- // Read data wrapped part
- if (nWrap_bytes > 0) _ff_pull_const_addr(app_buf, ff_buf, nWrap_bytes);
- }
- break;
-
- default: break;
- }
-}
-
-// Advance an absolute pointer
-static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
-{
- // We limit the index space of p such that a correct wrap around happens
- // Check for a wrap around or if we are in unused index space - This has to be checked first!!
- // We are exploiting the wrap around to the correct index
- if ((p > (uint16_t)(p + offset)) || ((uint16_t)(p + offset) > f->max_pointer_idx))
- {
- p = (p + offset) + f->non_used_index_space;
- }
- else
- {
- p += offset;
- }
- return p;
-}
-
-// Backward an absolute pointer
-static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
-{
- // We limit the index space of p such that a correct wrap around happens
- // Check for a wrap around or if we are in unused index space - This has to be checked first!!
- // We are exploiting the wrap around to the correct index
- if ((p < (uint16_t)(p - offset)) || ((uint16_t)(p - offset) > f->max_pointer_idx))
- {
- p = (p - offset) - f->non_used_index_space;
- }
- else
- {
- p -= offset;
- }
- return p;
-}
-
-// get relative from absolute pointer
-static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p)
-{
- return _ff_mod(p, f->depth);
-}
-
-// Works on local copies of w and r - return only the difference and as such can be used to determine an overflow
-static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
-{
- uint16_t cnt = wAbs-rAbs;
-
- // In case we have non-power of two depth we need a further modification
- if (rAbs > wAbs) cnt -= f->non_used_index_space;
-
- return cnt;
-}
-
-// Works on local copies of w and r
-static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs)
-{
- return wAbs == rAbs;
-}
-
-// Works on local copies of w and r
-static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
-{
- return (_tu_fifo_count(f, wAbs, rAbs) == f->depth);
-}
-
-// Works on local copies of w and r
-// BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
-// Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
-// write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
-// write pointer wraps and you pointer states are messed up. This can only happen if you
-// use DMAs, write functions do not allow such an error.
-static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
-{
- return (_tu_fifo_count(f, wAbs, rAbs) > f->depth);
-}
-
-// Works on local copies of w
-// For more details see _tu_fifo_overflow()!
-static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs)
-{
- f->rd_idx = backward_pointer(f, wAbs, f->depth);
-}
-
-// Works on local copies of w and r
-// Must be protected by mutexes since in case of an overflow read pointer gets modified
-static bool _tu_fifo_peek(tu_fifo_t* f, void * p_buffer, uint16_t wAbs, uint16_t rAbs)
-{
- uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
-
- // Check overflow and correct if required
- if (cnt > f->depth)
- {
- _tu_fifo_correct_read_pointer(f, wAbs);
- cnt = f->depth;
- }
-
- // Skip beginning of buffer
- if (cnt == 0) return false;
-
- uint16_t rRel = get_relative_pointer(f, rAbs);
-
- // Peek data
- _ff_pull(f, p_buffer, rRel);
-
- return true;
-}
-
-// Works on local copies of w and r
-// Must be protected by mutexes since in case of an overflow read pointer gets modified
-static uint16_t _tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs, tu_fifo_copy_mode_t copy_mode)
-{
- uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
-
- // Check overflow and correct if required
- if (cnt > f->depth)
- {
- _tu_fifo_correct_read_pointer(f, wAbs);
- rAbs = f->rd_idx;
- cnt = f->depth;
- }
-
- // Skip beginning of buffer
- if (cnt == 0) return 0;
-
- // Check if we can read something at and after offset - if too less is available we read what remains
- if (cnt < n) n = cnt;
-
- uint16_t rRel = get_relative_pointer(f, rAbs);
-
- // Peek data
- _ff_pull_n(f, p_buffer, n, rRel, copy_mode);
-
- return n;
-}
-
-// Works on local copies of w and r
-static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
-{
- return f->depth - _tu_fifo_count(f, wAbs, rAbs);
-}
-
-static uint16_t _tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n, tu_fifo_copy_mode_t copy_mode)
-{
- if ( n == 0 ) return 0;
-
- _ff_lock(f->mutex_wr);
-
- uint16_t w = f->wr_idx, r = f->rd_idx;
- uint8_t const* buf8 = (uint8_t const*) data;
-
- if (!f->overwritable)
- {
- // Not overwritable limit up to full
- n = tu_min16(n, _tu_fifo_remaining(f, w, r));
- }
- else if (n >= f->depth)
- {
- // Only copy last part
- buf8 = buf8 + (n - f->depth) * f->item_size;
- n = f->depth;
-
- // We start writing at the read pointer's position since we fill the complete
- // buffer and we do not want to modify the read pointer within a write function!
- // This would end up in a race condition with read functions!
- w = r;
- }
-
- uint16_t wRel = get_relative_pointer(f, w);
-
- // Write data
- _ff_push_n(f, buf8, n, wRel, copy_mode);
-
- // Advance pointer
- f->wr_idx = advance_pointer(f, w, n);
-
- _ff_unlock(f->mutex_wr);
-
- return n;
-}
-
-static uint16_t _tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n, tu_fifo_copy_mode_t copy_mode)
-{
- _ff_lock(f->mutex_rd);
-
- // Peek the data
- // f->rd_idx might get modified in case of an overflow so we can not use a local variable
- n = _tu_fifo_peek_n(f, buffer, n, f->wr_idx, f->rd_idx, copy_mode);
-
- // Advance read pointer
- f->rd_idx = advance_pointer(f, f->rd_idx, n);
-
- _ff_unlock(f->mutex_rd);
- return n;
-}
-
-/******************************************************************************/
-/*!
- @brief Get number of items in FIFO.
-
- As this function only reads the read and write pointers once, this function is
- reentrant and thus thread and ISR save without any mutexes. In case an
- overflow occurred, this function return f.depth at maximum. Overflows are
- checked and corrected for in the read functions!
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
-
- @returns Number of items in FIFO
- */
-/******************************************************************************/
-uint16_t tu_fifo_count(tu_fifo_t* f)
-{
- return tu_min16(_tu_fifo_count(f, f->wr_idx, f->rd_idx), f->depth);
-}
-
-/******************************************************************************/
-/*!
- @brief Check if FIFO is empty.
-
- As this function only reads the read and write pointers once, this function is
- reentrant and thus thread and ISR save without any mutexes.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
-
- @returns Number of items in FIFO
- */
-/******************************************************************************/
-bool tu_fifo_empty(tu_fifo_t* f)
-{
- return _tu_fifo_empty(f->wr_idx, f->rd_idx);
-}
-
-/******************************************************************************/
-/*!
- @brief Check if FIFO is full.
-
- As this function only reads the read and write pointers once, this function is
- reentrant and thus thread and ISR save without any mutexes.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
-
- @returns Number of items in FIFO
- */
-/******************************************************************************/
-bool tu_fifo_full(tu_fifo_t* f)
-{
- return _tu_fifo_full(f, f->wr_idx, f->rd_idx);
-}
-
-/******************************************************************************/
-/*!
- @brief Get remaining space in FIFO.
-
- As this function only reads the read and write pointers once, this function is
- reentrant and thus thread and ISR save without any mutexes.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
-
- @returns Number of items in FIFO
- */
-/******************************************************************************/
-uint16_t tu_fifo_remaining(tu_fifo_t* f)
-{
- return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx);
-}
-
-/******************************************************************************/
-/*!
- @brief Check if overflow happened.
-
- BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
- Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
- write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
- write pointer wraps and your pointer states are messed up. This can only happen if you
- use DMAs, write functions do not allow such an error. Avoid such nasty things!
-
- All reading functions (read, peek) check for overflows and correct read pointer on their own such
- that latest items are read.
- If required (e.g. for DMA use) you can also correct the read pointer by
- tu_fifo_correct_read_pointer().
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
-
- @returns True if overflow happened
- */
-/******************************************************************************/
-bool tu_fifo_overflowed(tu_fifo_t* f)
-{
- return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx);
-}
-
-// Only use in case tu_fifo_overflow() returned true!
-void tu_fifo_correct_read_pointer(tu_fifo_t* f)
-{
- _ff_lock(f->mutex_rd);
- _tu_fifo_correct_read_pointer(f, f->wr_idx);
- _ff_unlock(f->mutex_rd);
-}
-
-/******************************************************************************/
-/*!
- @brief Read one element out of the buffer.
-
- This function will return the element located at the array index of the
- read pointer, and then increment the read pointer index.
- This function checks for an overflow and corrects read pointer if required.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] buffer
- Pointer to the place holder for data read from the buffer
-
- @returns TRUE if the queue is not empty
- */
-/******************************************************************************/
-bool tu_fifo_read(tu_fifo_t* f, void * buffer)
-{
- _ff_lock(f->mutex_rd);
-
- // Peek the data
- // f->rd_idx might get modified in case of an overflow so we can not use a local variable
- bool ret = _tu_fifo_peek(f, buffer, f->wr_idx, f->rd_idx);
-
- // Advance pointer
- f->rd_idx = advance_pointer(f, f->rd_idx, ret);
-
- _ff_unlock(f->mutex_rd);
- return ret;
-}
-
-/******************************************************************************/
-/*!
- @brief This function will read n elements from the array index specified by
- the read pointer and increment the read index.
- This function checks for an overflow and corrects read pointer if required.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] buffer
- The pointer to data location
- @param[in] n
- Number of element that buffer can afford
-
- @returns number of items read from the FIFO
- */
-/******************************************************************************/
-uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n)
-{
- return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_INC);
-}
-
-uint16_t tu_fifo_read_n_const_addr_full_words(tu_fifo_t* f, void * buffer, uint16_t n)
-{
- return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_CST_FULL_WORDS);
-}
-
-/******************************************************************************/
-/*!
- @brief Read one item without removing it from the FIFO.
- This function checks for an overflow and corrects read pointer if required.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] offset
- Position to read from in the FIFO buffer with respect to read pointer
- @param[in] p_buffer
- Pointer to the place holder for data read from the buffer
-
- @returns TRUE if the queue is not empty
- */
-/******************************************************************************/
-bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer)
-{
- _ff_lock(f->mutex_rd);
- bool ret = _tu_fifo_peek(f, p_buffer, f->wr_idx, f->rd_idx);
- _ff_unlock(f->mutex_rd);
- return ret;
-}
-
-/******************************************************************************/
-/*!
- @brief Read n items without removing it from the FIFO
- This function checks for an overflow and corrects read pointer if required.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] p_buffer
- Pointer to the place holder for data read from the buffer
- @param[in] n
- Number of items to peek
-
- @returns Number of bytes written to p_buffer
- */
-/******************************************************************************/
-uint16_t tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n)
-{
- _ff_lock(f->mutex_rd);
- bool ret = _tu_fifo_peek_n(f, p_buffer, n, f->wr_idx, f->rd_idx, TU_FIFO_COPY_INC);
- _ff_unlock(f->mutex_rd);
- return ret;
-}
-
-/******************************************************************************/
-/*!
- @brief Write one element into the buffer.
-
- This function will write one element into the array index specified by
- the write pointer and increment the write index.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] data
- The byte to add to the FIFO
-
- @returns TRUE if the data was written to the FIFO (overwrittable
- FIFO will always return TRUE)
- */
-/******************************************************************************/
-bool tu_fifo_write(tu_fifo_t* f, const void * data)
-{
- _ff_lock(f->mutex_wr);
-
- uint16_t w = f->wr_idx;
-
- if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false;
-
- uint16_t wRel = get_relative_pointer(f, w);
-
- // Write data
- _ff_push(f, data, wRel);
-
- // Advance pointer
- f->wr_idx = advance_pointer(f, w, 1);
-
- _ff_unlock(f->mutex_wr);
-
- return true;
-}
-
-/******************************************************************************/
-/*!
- @brief This function will write n elements into the array index specified by
- the write pointer and increment the write index.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] data
- The pointer to data to add to the FIFO
- @param[in] count
- Number of element
- @return Number of written elements
- */
-/******************************************************************************/
-uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n)
-{
- return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_INC);
-}
-
-/******************************************************************************/
-/*!
- @brief This function will write n elements into the array index specified by
- the write pointer and increment the write index. The source address will
- not be incremented which is useful for reading from registers.
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] data
- The pointer to data to add to the FIFO
- @param[in] count
- Number of element
- @return Number of written elements
- */
-/******************************************************************************/
-uint16_t tu_fifo_write_n_const_addr_full_words(tu_fifo_t* f, const void * data, uint16_t n)
-{
- return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_CST_FULL_WORDS);
-}
-
-/******************************************************************************/
-/*!
- @brief Clear the fifo read and write pointers
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- */
-/******************************************************************************/
-bool tu_fifo_clear(tu_fifo_t *f)
-{
- _ff_lock(f->mutex_wr);
- _ff_lock(f->mutex_rd);
-
- f->rd_idx = f->wr_idx = 0;
- f->max_pointer_idx = 2*f->depth-1;
- f->non_used_index_space = UINT16_MAX - f->max_pointer_idx;
-
- _ff_unlock(f->mutex_wr);
- _ff_unlock(f->mutex_rd);
- return true;
-}
-
-/******************************************************************************/
-/*!
- @brief Change the fifo mode to overwritable or not overwritable
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] overwritable
- Overwritable mode the fifo is set to
- */
-/******************************************************************************/
-bool tu_fifo_set_overwritable(tu_fifo_t *f, bool overwritable)
-{
- _ff_lock(f->mutex_wr);
- _ff_lock(f->mutex_rd);
-
- f->overwritable = overwritable;
-
- _ff_unlock(f->mutex_wr);
- _ff_unlock(f->mutex_rd);
-
- return true;
-}
-
-/******************************************************************************/
-/*!
- @brief Advance write pointer - intended to be used in combination with DMA.
- It is possible to fill the FIFO by use of a DMA in circular mode. Within
- DMA ISRs you may update the write pointer to be able to read from the FIFO.
- As long as the DMA is the only process writing into the FIFO this is safe
- to use.
-
- USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] n
- Number of items the write pointer moves forward
- */
-/******************************************************************************/
-void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n)
-{
- f->wr_idx = advance_pointer(f, f->wr_idx, n);
-}
-
-/******************************************************************************/
-/*!
- @brief Advance read pointer - intended to be used in combination with DMA.
- It is possible to read from the FIFO by use of a DMA in linear mode. Within
- DMA ISRs you may update the read pointer to be able to again write into the
- FIFO. As long as the DMA is the only process reading from the FIFO this is
- safe to use.
-
- USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
-
- @param[in] f
- Pointer to the FIFO buffer to manipulate
- @param[in] n
- Number of items the read pointer moves forward
- */
-/******************************************************************************/
-void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n)
-{
- f->rd_idx = advance_pointer(f, f->rd_idx, n);
-}
-
-/******************************************************************************/
-/*!
- @brief Get read info
-
- Returns the length and pointer from which bytes can be read in a linear manner.
- This is of major interest for DMA transmissions. If returned length is zero the
- corresponding pointer is invalid.
- The read pointer does NOT get advanced, use tu_fifo_advance_read_pointer() to
- do so!
- @param[in] f
- Pointer to FIFO
- @param[out] *info
- Pointer to struct which holds the desired infos
- */
-/******************************************************************************/
-void tu_fifo_get_read_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info)
-{
- // Operate on temporary values in case they change in between
- uint16_t w = f->wr_idx, r = f->rd_idx;
-
- uint16_t cnt = _tu_fifo_count(f, w, r);
-
- // Check overflow and correct if required - may happen in case a DMA wrote too fast
- if (cnt > f->depth)
- {
- _ff_lock(f->mutex_rd);
- _tu_fifo_correct_read_pointer(f, w);
- _ff_unlock(f->mutex_rd);
- r = f->rd_idx;
- cnt = f->depth;
- }
-
- // Check if fifo is empty
- if (cnt == 0)
- {
- info->len_lin = 0;
- info->len_wrap = 0;
- info->ptr_lin = NULL;
- info->ptr_wrap = NULL;
- return;
- }
-
- // Get relative pointers
- w = get_relative_pointer(f, w);
- r = get_relative_pointer(f, r);
-
- // Copy pointer to buffer to start reading from
- info->ptr_lin = &f->buffer[r];
-
- // Check if there is a wrap around necessary
- if (w > r) {
- // Non wrapping case
- info->len_lin = cnt;
- info->len_wrap = 0;
- info->ptr_wrap = NULL;
- }
- else
- {
- info->len_lin = f->depth - r; // Also the case if FIFO was full
- info->len_wrap = cnt - info->len_lin;
- info->ptr_wrap = f->buffer;
- }
-}
-
-/******************************************************************************/
-/*!
- @brief Get linear write info
-
- Returns the length and pointer to which bytes can be written into FIFO in a linear manner.
- This is of major interest for DMA transmissions not using circular mode. If a returned length is zero the
- corresponding pointer is invalid. The returned lengths summed up are the currently free space in the FIFO.
- The write pointer does NOT get advanced, use tu_fifo_advance_write_pointer() to do so!
- TAKE CARE TO NOT OVERFLOW THE BUFFER MORE THAN TWO TIMES THE FIFO DEPTH - IT CAN NOT RECOVERE OTHERWISE!
- @param[in] f
- Pointer to FIFO
- @param[out] *info
- Pointer to struct which holds the desired infos
- */
-/******************************************************************************/
-void tu_fifo_get_write_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info)
-{
- uint16_t w = f->wr_idx, r = f->rd_idx;
- uint16_t free = _tu_fifo_remaining(f, w, r);
-
- if (free == 0)
- {
- info->len_lin = 0;
- info->len_wrap = 0;
- info->ptr_lin = NULL;
- info->ptr_wrap = NULL;
- return;
- }
-
- // Get relative pointers
- w = get_relative_pointer(f, w);
- r = get_relative_pointer(f, r);
-
- // Copy pointer to buffer to start writing to
- info->ptr_lin = &f->buffer[w];
-
- if (w < r)
- {
- // Non wrapping case
- info->len_lin = r-w;
- info->len_wrap = 0;
- info->ptr_wrap = NULL;
- }
- else
- {
- info->len_lin = f->depth - w;
- info->len_wrap = free - info->len_lin; // Remaining length - n already was limited to free or FIFO depth
- info->ptr_wrap = f->buffer; // Always start of buffer
- }
-}