summaryrefslogtreecommitdiffstats
path: root/tinyusb/src/common/tusb_fifo.c
diff options
context:
space:
mode:
Diffstat (limited to 'tinyusb/src/common/tusb_fifo.c')
-rwxr-xr-xtinyusb/src/common/tusb_fifo.c1000
1 files changed, 1000 insertions, 0 deletions
diff --git a/tinyusb/src/common/tusb_fifo.c b/tinyusb/src/common/tusb_fifo.c
new file mode 100755
index 00000000..11b8fc5f
--- /dev/null
+++ b/tinyusb/src/common/tusb_fifo.c
@@ -0,0 +1,1000 @@
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2019 Ha Thach (tinyusb.org)
+ * Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ * This file is part of the TinyUSB stack.
+ */
+
+#include "osal/osal.h"
+#include "tusb_fifo.h"
+
+// Supress IAR warning
+// Warning[Pa082]: undefined behavior: the order of volatile accesses is undefined in this statement
+#if defined(__ICCARM__)
+#pragma diag_suppress = Pa082
+#endif
+
+// implement mutex lock and unlock
+#if CFG_FIFO_MUTEX
+
+static inline void _ff_lock(tu_fifo_mutex_t mutex)
+{
+ if (mutex) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER);
+}
+
+static inline void _ff_unlock(tu_fifo_mutex_t mutex)
+{
+ if (mutex) osal_mutex_unlock(mutex);
+}
+
+#else
+
+#define _ff_lock(_mutex)
+#define _ff_unlock(_mutex)
+
+#endif
+
+/** \enum tu_fifo_copy_mode_t
+ * \brief Write modes intended to allow special read and write functions to be able to
+ * copy data to and from USB hardware FIFOs as needed for e.g. STM32s and others
+ */
+typedef enum
+{
+ TU_FIFO_COPY_INC, ///< Copy from/to an increasing source/destination address - default mode
+ TU_FIFO_COPY_CST_FULL_WORDS, ///< Copy from/to a constant source/destination address - required for e.g. STM32 to write into USB hardware FIFO
+} tu_fifo_copy_mode_t;
+
+bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable)
+{
+ if (depth > 0x8000) return false; // Maximum depth is 2^15 items
+
+ _ff_lock(f->mutex_wr);
+ _ff_lock(f->mutex_rd);
+
+ f->buffer = (uint8_t*) buffer;
+ f->depth = depth;
+ f->item_size = item_size;
+ f->overwritable = overwritable;
+
+ // Limit index space to 2*depth - this allows for a fast "modulo" calculation
+ // but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable
+ // only if overflow happens once (important for unsupervised DMA applications)
+ f->max_pointer_idx = 2*depth - 1;
+ f->non_used_index_space = UINT16_MAX - f->max_pointer_idx;
+
+ f->rd_idx = f->wr_idx = 0;
+
+ _ff_unlock(f->mutex_wr);
+ _ff_unlock(f->mutex_rd);
+
+ return true;
+}
+
+// Static functions are intended to work on local variables
+static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth)
+{
+ while ( idx >= depth) idx -= depth;
+ return idx;
+}
+
+// Intended to be used to read from hardware USB FIFO in e.g. STM32 where all data is read from a constant address
+// Code adapted from dcd_synopsis.c
+// TODO generalize with configurable 1 byte or 4 byte each read
+static void _ff_push_const_addr(uint8_t * ff_buf, const void * app_buf, uint16_t len)
+{
+ volatile uint32_t * rx_fifo = (volatile uint32_t *) app_buf;
+
+ // Reading full available 32 bit words from const app address
+ uint16_t full_words = len >> 2;
+ while(full_words--)
+ {
+ tu_unaligned_write32(ff_buf, *rx_fifo);
+ ff_buf += 4;
+ }
+
+ // Read the remaining 1-3 bytes from const app address
+ uint8_t const bytes_rem = len & 0x03;
+ if ( bytes_rem )
+ {
+ uint32_t tmp32 = *rx_fifo;
+ memcpy(ff_buf, &tmp32, bytes_rem);
+ }
+}
+
+// Intended to be used to write to hardware USB FIFO in e.g. STM32
+// where all data is written to a constant address in full word copies
+static void _ff_pull_const_addr(void * app_buf, const uint8_t * ff_buf, uint16_t len)
+{
+ volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf;
+
+ // Pushing full available 32 bit words to const app address
+ uint16_t full_words = len >> 2;
+ while(full_words--)
+ {
+ *tx_fifo = tu_unaligned_read32(ff_buf);
+ ff_buf += 4;
+ }
+
+ // Write the remaining 1-3 bytes into const app address
+ uint8_t const bytes_rem = len & 0x03;
+ if ( bytes_rem )
+ {
+ uint32_t tmp32 = 0;
+ memcpy(&tmp32, ff_buf, bytes_rem);
+
+ *tx_fifo = tmp32;
+ }
+}
+
+// send one item to FIFO WITHOUT updating write pointer
+static inline void _ff_push(tu_fifo_t* f, void const * app_buf, uint16_t rel)
+{
+ memcpy(f->buffer + (rel * f->item_size), app_buf, f->item_size);
+}
+
+// send n items to FIFO WITHOUT updating write pointer
+static void _ff_push_n(tu_fifo_t* f, void const * app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode)
+{
+ uint16_t const nLin = f->depth - rel;
+ uint16_t const nWrap = n - nLin;
+
+ uint16_t nLin_bytes = nLin * f->item_size;
+ uint16_t nWrap_bytes = nWrap * f->item_size;
+
+ // current buffer of fifo
+ uint8_t* ff_buf = f->buffer + (rel * f->item_size);
+
+ switch (copy_mode)
+ {
+ case TU_FIFO_COPY_INC:
+ if(n <= nLin)
+ {
+ // Linear only
+ memcpy(ff_buf, app_buf, n*f->item_size);
+ }
+ else
+ {
+ // Wrap around
+
+ // Write data to linear part of buffer
+ memcpy(ff_buf, app_buf, nLin_bytes);
+
+ // Write data wrapped around
+ memcpy(f->buffer, ((uint8_t const*) app_buf) + nLin_bytes, nWrap_bytes);
+ }
+ break;
+
+ case TU_FIFO_COPY_CST_FULL_WORDS:
+ // Intended for hardware buffers from which it can be read word by word only
+ if(n <= nLin)
+ {
+ // Linear only
+ _ff_push_const_addr(ff_buf, app_buf, n*f->item_size);
+ }
+ else
+ {
+ // Wrap around case
+
+ // Write full words to linear part of buffer
+ uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC;
+ _ff_push_const_addr(ff_buf, app_buf, nLin_4n_bytes);
+ ff_buf += nLin_4n_bytes;
+
+ // There could be odd 1-3 bytes before the wrap-around boundary
+ volatile uint32_t * rx_fifo = (volatile uint32_t *) app_buf;
+ uint8_t rem = nLin_bytes & 0x03;
+ if (rem > 0)
+ {
+ uint8_t remrem = tu_min16(nWrap_bytes, 4-rem);
+ nWrap_bytes -= remrem;
+
+ uint32_t tmp32 = *rx_fifo;
+ uint8_t * src_u8 = ((uint8_t *) &tmp32);
+
+ // Write 1-3 bytes before wrapped boundary
+ while(rem--) *ff_buf++ = *src_u8++;
+
+ // Read more bytes to beginning to complete a word
+ ff_buf = f->buffer;
+ while(remrem--) *ff_buf++ = *src_u8++;
+ }
+ else
+ {
+ ff_buf = f->buffer; // wrap around to beginning
+ }
+
+ // Write data wrapped part
+ if (nWrap_bytes > 0) _ff_push_const_addr(ff_buf, app_buf, nWrap_bytes);
+ }
+ break;
+ }
+}
+
+// get one item from FIFO WITHOUT updating read pointer
+static inline void _ff_pull(tu_fifo_t* f, void * app_buf, uint16_t rel)
+{
+ memcpy(app_buf, f->buffer + (rel * f->item_size), f->item_size);
+}
+
+// get n items from FIFO WITHOUT updating read pointer
+static void _ff_pull_n(tu_fifo_t* f, void* app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode)
+{
+ uint16_t const nLin = f->depth - rel;
+ uint16_t const nWrap = n - nLin; // only used if wrapped
+
+ uint16_t nLin_bytes = nLin * f->item_size;
+ uint16_t nWrap_bytes = nWrap * f->item_size;
+
+ // current buffer of fifo
+ uint8_t* ff_buf = f->buffer + (rel * f->item_size);
+
+ switch (copy_mode)
+ {
+ case TU_FIFO_COPY_INC:
+ if ( n <= nLin )
+ {
+ // Linear only
+ memcpy(app_buf, ff_buf, n*f->item_size);
+ }
+ else
+ {
+ // Wrap around
+
+ // Read data from linear part of buffer
+ memcpy(app_buf, ff_buf, nLin_bytes);
+
+ // Read data wrapped part
+ memcpy((uint8_t*) app_buf + nLin_bytes, f->buffer, nWrap_bytes);
+ }
+ break;
+
+ case TU_FIFO_COPY_CST_FULL_WORDS:
+ if ( n <= nLin )
+ {
+ // Linear only
+ _ff_pull_const_addr(app_buf, ff_buf, n*f->item_size);
+ }
+ else
+ {
+ // Wrap around case
+
+ // Read full words from linear part of buffer
+ uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC;
+ _ff_pull_const_addr(app_buf, ff_buf, nLin_4n_bytes);
+ ff_buf += nLin_4n_bytes;
+
+ // There could be odd 1-3 bytes before the wrap-around boundary
+ volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf;
+ uint8_t rem = nLin_bytes & 0x03;
+ if (rem > 0)
+ {
+ uint8_t remrem = tu_min16(nWrap_bytes, 4-rem);
+ nWrap_bytes -= remrem;
+
+ uint32_t tmp32=0;
+ uint8_t * dst_u8 = (uint8_t *)&tmp32;
+
+ // Read 1-3 bytes before wrapped boundary
+ while(rem--) *dst_u8++ = *ff_buf++;
+
+ // Read more bytes from beginning to complete a word
+ ff_buf = f->buffer;
+ while(remrem--) *dst_u8++ = *ff_buf++;
+
+ *tx_fifo = tmp32;
+ }
+ else
+ {
+ ff_buf = f->buffer; // wrap around to beginning
+ }
+
+ // Read data wrapped part
+ if (nWrap_bytes > 0) _ff_pull_const_addr(app_buf, ff_buf, nWrap_bytes);
+ }
+ break;
+
+ default: break;
+ }
+}
+
+// Advance an absolute pointer
+static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
+{
+ // We limit the index space of p such that a correct wrap around happens
+ // Check for a wrap around or if we are in unused index space - This has to be checked first!!
+ // We are exploiting the wrap around to the correct index
+ if ((p > (uint16_t)(p + offset)) || ((uint16_t)(p + offset) > f->max_pointer_idx))
+ {
+ p = (p + offset) + f->non_used_index_space;
+ }
+ else
+ {
+ p += offset;
+ }
+ return p;
+}
+
+// Backward an absolute pointer
+static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
+{
+ // We limit the index space of p such that a correct wrap around happens
+ // Check for a wrap around or if we are in unused index space - This has to be checked first!!
+ // We are exploiting the wrap around to the correct index
+ if ((p < (uint16_t)(p - offset)) || ((uint16_t)(p - offset) > f->max_pointer_idx))
+ {
+ p = (p - offset) - f->non_used_index_space;
+ }
+ else
+ {
+ p -= offset;
+ }
+ return p;
+}
+
+// get relative from absolute pointer
+static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p)
+{
+ return _ff_mod(p, f->depth);
+}
+
+// Works on local copies of w and r - return only the difference and as such can be used to determine an overflow
+static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
+{
+ uint16_t cnt = wAbs-rAbs;
+
+ // In case we have non-power of two depth we need a further modification
+ if (rAbs > wAbs) cnt -= f->non_used_index_space;
+
+ return cnt;
+}
+
+// Works on local copies of w and r
+static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs)
+{
+ return wAbs == rAbs;
+}
+
+// Works on local copies of w and r
+static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
+{
+ return (_tu_fifo_count(f, wAbs, rAbs) == f->depth);
+}
+
+// Works on local copies of w and r
+// BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
+// Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
+// write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
+// write pointer wraps and you pointer states are messed up. This can only happen if you
+// use DMAs, write functions do not allow such an error.
+static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
+{
+ return (_tu_fifo_count(f, wAbs, rAbs) > f->depth);
+}
+
+// Works on local copies of w
+// For more details see _tu_fifo_overflow()!
+static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs)
+{
+ f->rd_idx = backward_pointer(f, wAbs, f->depth);
+}
+
+// Works on local copies of w and r
+// Must be protected by mutexes since in case of an overflow read pointer gets modified
+static bool _tu_fifo_peek(tu_fifo_t* f, void * p_buffer, uint16_t wAbs, uint16_t rAbs)
+{
+ uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
+
+ // Check overflow and correct if required
+ if (cnt > f->depth)
+ {
+ _tu_fifo_correct_read_pointer(f, wAbs);
+ cnt = f->depth;
+ }
+
+ // Skip beginning of buffer
+ if (cnt == 0) return false;
+
+ uint16_t rRel = get_relative_pointer(f, rAbs);
+
+ // Peek data
+ _ff_pull(f, p_buffer, rRel);
+
+ return true;
+}
+
+// Works on local copies of w and r
+// Must be protected by mutexes since in case of an overflow read pointer gets modified
+static uint16_t _tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs, tu_fifo_copy_mode_t copy_mode)
+{
+ uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
+
+ // Check overflow and correct if required
+ if (cnt > f->depth)
+ {
+ _tu_fifo_correct_read_pointer(f, wAbs);
+ rAbs = f->rd_idx;
+ cnt = f->depth;
+ }
+
+ // Skip beginning of buffer
+ if (cnt == 0) return 0;
+
+ // Check if we can read something at and after offset - if too less is available we read what remains
+ if (cnt < n) n = cnt;
+
+ uint16_t rRel = get_relative_pointer(f, rAbs);
+
+ // Peek data
+ _ff_pull_n(f, p_buffer, n, rRel, copy_mode);
+
+ return n;
+}
+
+// Works on local copies of w and r
+static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
+{
+ return f->depth - _tu_fifo_count(f, wAbs, rAbs);
+}
+
+static uint16_t _tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n, tu_fifo_copy_mode_t copy_mode)
+{
+ if ( n == 0 ) return 0;
+
+ _ff_lock(f->mutex_wr);
+
+ uint16_t w = f->wr_idx, r = f->rd_idx;
+ uint8_t const* buf8 = (uint8_t const*) data;
+
+ if (!f->overwritable)
+ {
+ // Not overwritable limit up to full
+ n = tu_min16(n, _tu_fifo_remaining(f, w, r));
+ }
+ else if (n >= f->depth)
+ {
+ // Only copy last part
+ buf8 = buf8 + (n - f->depth) * f->item_size;
+ n = f->depth;
+
+ // We start writing at the read pointer's position since we fill the complete
+ // buffer and we do not want to modify the read pointer within a write function!
+ // This would end up in a race condition with read functions!
+ w = r;
+ }
+
+ uint16_t wRel = get_relative_pointer(f, w);
+
+ // Write data
+ _ff_push_n(f, buf8, n, wRel, copy_mode);
+
+ // Advance pointer
+ f->wr_idx = advance_pointer(f, w, n);
+
+ _ff_unlock(f->mutex_wr);
+
+ return n;
+}
+
+static uint16_t _tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n, tu_fifo_copy_mode_t copy_mode)
+{
+ _ff_lock(f->mutex_rd);
+
+ // Peek the data
+ // f->rd_idx might get modified in case of an overflow so we can not use a local variable
+ n = _tu_fifo_peek_n(f, buffer, n, f->wr_idx, f->rd_idx, copy_mode);
+
+ // Advance read pointer
+ f->rd_idx = advance_pointer(f, f->rd_idx, n);
+
+ _ff_unlock(f->mutex_rd);
+ return n;
+}
+
+/******************************************************************************/
+/*!
+ @brief Get number of items in FIFO.
+
+ As this function only reads the read and write pointers once, this function is
+ reentrant and thus thread and ISR save without any mutexes. In case an
+ overflow occurred, this function return f.depth at maximum. Overflows are
+ checked and corrected for in the read functions!
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+
+ @returns Number of items in FIFO
+ */
+/******************************************************************************/
+uint16_t tu_fifo_count(tu_fifo_t* f)
+{
+ return tu_min16(_tu_fifo_count(f, f->wr_idx, f->rd_idx), f->depth);
+}
+
+/******************************************************************************/
+/*!
+ @brief Check if FIFO is empty.
+
+ As this function only reads the read and write pointers once, this function is
+ reentrant and thus thread and ISR save without any mutexes.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+
+ @returns Number of items in FIFO
+ */
+/******************************************************************************/
+bool tu_fifo_empty(tu_fifo_t* f)
+{
+ return _tu_fifo_empty(f->wr_idx, f->rd_idx);
+}
+
+/******************************************************************************/
+/*!
+ @brief Check if FIFO is full.
+
+ As this function only reads the read and write pointers once, this function is
+ reentrant and thus thread and ISR save without any mutexes.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+
+ @returns Number of items in FIFO
+ */
+/******************************************************************************/
+bool tu_fifo_full(tu_fifo_t* f)
+{
+ return _tu_fifo_full(f, f->wr_idx, f->rd_idx);
+}
+
+/******************************************************************************/
+/*!
+ @brief Get remaining space in FIFO.
+
+ As this function only reads the read and write pointers once, this function is
+ reentrant and thus thread and ISR save without any mutexes.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+
+ @returns Number of items in FIFO
+ */
+/******************************************************************************/
+uint16_t tu_fifo_remaining(tu_fifo_t* f)
+{
+ return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx);
+}
+
+/******************************************************************************/
+/*!
+ @brief Check if overflow happened.
+
+ BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
+ Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
+ write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
+ write pointer wraps and your pointer states are messed up. This can only happen if you
+ use DMAs, write functions do not allow such an error. Avoid such nasty things!
+
+ All reading functions (read, peek) check for overflows and correct read pointer on their own such
+ that latest items are read.
+ If required (e.g. for DMA use) you can also correct the read pointer by
+ tu_fifo_correct_read_pointer().
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+
+ @returns True if overflow happened
+ */
+/******************************************************************************/
+bool tu_fifo_overflowed(tu_fifo_t* f)
+{
+ return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx);
+}
+
+// Only use in case tu_fifo_overflow() returned true!
+void tu_fifo_correct_read_pointer(tu_fifo_t* f)
+{
+ _ff_lock(f->mutex_rd);
+ _tu_fifo_correct_read_pointer(f, f->wr_idx);
+ _ff_unlock(f->mutex_rd);
+}
+
+/******************************************************************************/
+/*!
+ @brief Read one element out of the buffer.
+
+ This function will return the element located at the array index of the
+ read pointer, and then increment the read pointer index.
+ This function checks for an overflow and corrects read pointer if required.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] buffer
+ Pointer to the place holder for data read from the buffer
+
+ @returns TRUE if the queue is not empty
+ */
+/******************************************************************************/
+bool tu_fifo_read(tu_fifo_t* f, void * buffer)
+{
+ _ff_lock(f->mutex_rd);
+
+ // Peek the data
+ // f->rd_idx might get modified in case of an overflow so we can not use a local variable
+ bool ret = _tu_fifo_peek(f, buffer, f->wr_idx, f->rd_idx);
+
+ // Advance pointer
+ f->rd_idx = advance_pointer(f, f->rd_idx, ret);
+
+ _ff_unlock(f->mutex_rd);
+ return ret;
+}
+
+/******************************************************************************/
+/*!
+ @brief This function will read n elements from the array index specified by
+ the read pointer and increment the read index.
+ This function checks for an overflow and corrects read pointer if required.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] buffer
+ The pointer to data location
+ @param[in] n
+ Number of element that buffer can afford
+
+ @returns number of items read from the FIFO
+ */
+/******************************************************************************/
+uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n)
+{
+ return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_INC);
+}
+
+uint16_t tu_fifo_read_n_const_addr_full_words(tu_fifo_t* f, void * buffer, uint16_t n)
+{
+ return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_CST_FULL_WORDS);
+}
+
+/******************************************************************************/
+/*!
+ @brief Read one item without removing it from the FIFO.
+ This function checks for an overflow and corrects read pointer if required.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] offset
+ Position to read from in the FIFO buffer with respect to read pointer
+ @param[in] p_buffer
+ Pointer to the place holder for data read from the buffer
+
+ @returns TRUE if the queue is not empty
+ */
+/******************************************************************************/
+bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer)
+{
+ _ff_lock(f->mutex_rd);
+ bool ret = _tu_fifo_peek(f, p_buffer, f->wr_idx, f->rd_idx);
+ _ff_unlock(f->mutex_rd);
+ return ret;
+}
+
+/******************************************************************************/
+/*!
+ @brief Read n items without removing it from the FIFO
+ This function checks for an overflow and corrects read pointer if required.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] p_buffer
+ Pointer to the place holder for data read from the buffer
+ @param[in] n
+ Number of items to peek
+
+ @returns Number of bytes written to p_buffer
+ */
+/******************************************************************************/
+uint16_t tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n)
+{
+ _ff_lock(f->mutex_rd);
+ bool ret = _tu_fifo_peek_n(f, p_buffer, n, f->wr_idx, f->rd_idx, TU_FIFO_COPY_INC);
+ _ff_unlock(f->mutex_rd);
+ return ret;
+}
+
+/******************************************************************************/
+/*!
+ @brief Write one element into the buffer.
+
+ This function will write one element into the array index specified by
+ the write pointer and increment the write index.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] data
+ The byte to add to the FIFO
+
+ @returns TRUE if the data was written to the FIFO (overwrittable
+ FIFO will always return TRUE)
+ */
+/******************************************************************************/
+bool tu_fifo_write(tu_fifo_t* f, const void * data)
+{
+ _ff_lock(f->mutex_wr);
+
+ uint16_t w = f->wr_idx;
+
+ if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false;
+
+ uint16_t wRel = get_relative_pointer(f, w);
+
+ // Write data
+ _ff_push(f, data, wRel);
+
+ // Advance pointer
+ f->wr_idx = advance_pointer(f, w, 1);
+
+ _ff_unlock(f->mutex_wr);
+
+ return true;
+}
+
+/******************************************************************************/
+/*!
+ @brief This function will write n elements into the array index specified by
+ the write pointer and increment the write index.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] data
+ The pointer to data to add to the FIFO
+ @param[in] count
+ Number of element
+ @return Number of written elements
+ */
+/******************************************************************************/
+uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n)
+{
+ return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_INC);
+}
+
+/******************************************************************************/
+/*!
+ @brief This function will write n elements into the array index specified by
+ the write pointer and increment the write index. The source address will
+ not be incremented which is useful for reading from registers.
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] data
+ The pointer to data to add to the FIFO
+ @param[in] count
+ Number of element
+ @return Number of written elements
+ */
+/******************************************************************************/
+uint16_t tu_fifo_write_n_const_addr_full_words(tu_fifo_t* f, const void * data, uint16_t n)
+{
+ return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_CST_FULL_WORDS);
+}
+
+/******************************************************************************/
+/*!
+ @brief Clear the fifo read and write pointers
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ */
+/******************************************************************************/
+bool tu_fifo_clear(tu_fifo_t *f)
+{
+ _ff_lock(f->mutex_wr);
+ _ff_lock(f->mutex_rd);
+
+ f->rd_idx = f->wr_idx = 0;
+ f->max_pointer_idx = 2*f->depth-1;
+ f->non_used_index_space = UINT16_MAX - f->max_pointer_idx;
+
+ _ff_unlock(f->mutex_wr);
+ _ff_unlock(f->mutex_rd);
+ return true;
+}
+
+/******************************************************************************/
+/*!
+ @brief Change the fifo mode to overwritable or not overwritable
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] overwritable
+ Overwritable mode the fifo is set to
+ */
+/******************************************************************************/
+bool tu_fifo_set_overwritable(tu_fifo_t *f, bool overwritable)
+{
+ _ff_lock(f->mutex_wr);
+ _ff_lock(f->mutex_rd);
+
+ f->overwritable = overwritable;
+
+ _ff_unlock(f->mutex_wr);
+ _ff_unlock(f->mutex_rd);
+
+ return true;
+}
+
+/******************************************************************************/
+/*!
+ @brief Advance write pointer - intended to be used in combination with DMA.
+ It is possible to fill the FIFO by use of a DMA in circular mode. Within
+ DMA ISRs you may update the write pointer to be able to read from the FIFO.
+ As long as the DMA is the only process writing into the FIFO this is safe
+ to use.
+
+ USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] n
+ Number of items the write pointer moves forward
+ */
+/******************************************************************************/
+void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n)
+{
+ f->wr_idx = advance_pointer(f, f->wr_idx, n);
+}
+
+/******************************************************************************/
+/*!
+ @brief Advance read pointer - intended to be used in combination with DMA.
+ It is possible to read from the FIFO by use of a DMA in linear mode. Within
+ DMA ISRs you may update the read pointer to be able to again write into the
+ FIFO. As long as the DMA is the only process reading from the FIFO this is
+ safe to use.
+
+ USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
+
+ @param[in] f
+ Pointer to the FIFO buffer to manipulate
+ @param[in] n
+ Number of items the read pointer moves forward
+ */
+/******************************************************************************/
+void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n)
+{
+ f->rd_idx = advance_pointer(f, f->rd_idx, n);
+}
+
+/******************************************************************************/
+/*!
+ @brief Get read info
+
+ Returns the length and pointer from which bytes can be read in a linear manner.
+ This is of major interest for DMA transmissions. If returned length is zero the
+ corresponding pointer is invalid.
+ The read pointer does NOT get advanced, use tu_fifo_advance_read_pointer() to
+ do so!
+ @param[in] f
+ Pointer to FIFO
+ @param[out] *info
+ Pointer to struct which holds the desired infos
+ */
+/******************************************************************************/
+void tu_fifo_get_read_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info)
+{
+ // Operate on temporary values in case they change in between
+ uint16_t w = f->wr_idx, r = f->rd_idx;
+
+ uint16_t cnt = _tu_fifo_count(f, w, r);
+
+ // Check overflow and correct if required - may happen in case a DMA wrote too fast
+ if (cnt > f->depth)
+ {
+ _ff_lock(f->mutex_rd);
+ _tu_fifo_correct_read_pointer(f, w);
+ _ff_unlock(f->mutex_rd);
+ r = f->rd_idx;
+ cnt = f->depth;
+ }
+
+ // Check if fifo is empty
+ if (cnt == 0)
+ {
+ info->len_lin = 0;
+ info->len_wrap = 0;
+ info->ptr_lin = NULL;
+ info->ptr_wrap = NULL;
+ return;
+ }
+
+ // Get relative pointers
+ w = get_relative_pointer(f, w);
+ r = get_relative_pointer(f, r);
+
+ // Copy pointer to buffer to start reading from
+ info->ptr_lin = &f->buffer[r];
+
+ // Check if there is a wrap around necessary
+ if (w > r) {
+ // Non wrapping case
+ info->len_lin = cnt;
+ info->len_wrap = 0;
+ info->ptr_wrap = NULL;
+ }
+ else
+ {
+ info->len_lin = f->depth - r; // Also the case if FIFO was full
+ info->len_wrap = cnt - info->len_lin;
+ info->ptr_wrap = f->buffer;
+ }
+}
+
+/******************************************************************************/
+/*!
+ @brief Get linear write info
+
+ Returns the length and pointer to which bytes can be written into FIFO in a linear manner.
+ This is of major interest for DMA transmissions not using circular mode. If a returned length is zero the
+ corresponding pointer is invalid. The returned lengths summed up are the currently free space in the FIFO.
+ The write pointer does NOT get advanced, use tu_fifo_advance_write_pointer() to do so!
+ TAKE CARE TO NOT OVERFLOW THE BUFFER MORE THAN TWO TIMES THE FIFO DEPTH - IT CAN NOT RECOVERE OTHERWISE!
+ @param[in] f
+ Pointer to FIFO
+ @param[out] *info
+ Pointer to struct which holds the desired infos
+ */
+/******************************************************************************/
+void tu_fifo_get_write_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info)
+{
+ uint16_t w = f->wr_idx, r = f->rd_idx;
+ uint16_t free = _tu_fifo_remaining(f, w, r);
+
+ if (free == 0)
+ {
+ info->len_lin = 0;
+ info->len_wrap = 0;
+ info->ptr_lin = NULL;
+ info->ptr_wrap = NULL;
+ return;
+ }
+
+ // Get relative pointers
+ w = get_relative_pointer(f, w);
+ r = get_relative_pointer(f, r);
+
+ // Copy pointer to buffer to start writing to
+ info->ptr_lin = &f->buffer[w];
+
+ if (w < r)
+ {
+ // Non wrapping case
+ info->len_lin = r-w;
+ info->len_wrap = 0;
+ info->ptr_wrap = NULL;
+ }
+ else
+ {
+ info->len_lin = f->depth - w;
+ info->len_wrap = free - info->len_lin; // Remaining length - n already was limited to free or FIFO depth
+ info->ptr_wrap = f->buffer; // Always start of buffer
+ }
+}