summaryrefslogtreecommitdiffstats
path: root/tinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c
diff options
context:
space:
mode:
Diffstat (limited to 'tinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c')
-rwxr-xr-xtinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c1129
1 files changed, 1129 insertions, 0 deletions
diff --git a/tinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c b/tinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c
new file mode 100755
index 00000000..eeba7204
--- /dev/null
+++ b/tinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c
@@ -0,0 +1,1129 @@
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2019 Nathan Conrad
+ *
+ * Portions:
+ * Copyright (c) 2016 STMicroelectronics
+ * Copyright (c) 2019 Ha Thach (tinyusb.org)
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ * This file is part of the TinyUSB stack.
+ */
+
+/**********************************************
+ * This driver has been tested with the following MCUs:
+ * - F070, F072, L053, F042F6
+ *
+ * It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This
+ * covers:
+ *
+ * F04x, F072, F078, 070x6/B 1024 byte buffer
+ * F102, F103 512 byte buffer; no internal D+ pull-up (maybe many more changes?)
+ * F302xB/C, F303xB/C, F373 512 byte buffer; no internal D+ pull-up
+ * F302x6/8, F302xD/E2, F303xD/E 1024 byte buffer; no internal D+ pull-up
+ * L0x2, L0x3 1024 byte buffer
+ * L1 512 byte buffer
+ * L4x2, L4x3 1024 byte buffer
+ *
+ * To use this driver, you must:
+ * - If you are using a device with crystal-less USB, set up the clock recovery system (CRS)
+ * - Remap pins to be D+/D- on devices that they are shared (for example: F042Fx)
+ * - This is different to the normal "alternate function" GPIO interface, needs to go through SYSCFG->CFGRx register
+ * - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE();
+ * - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins)
+ * - call tusb_init();
+ * - periodically call tusb_task();
+ *
+ * Assumptions of the driver:
+ * - You are not using CAN (it must share the packet buffer)
+ * - APB clock is >= 10 MHz
+ * - On some boards, series resistors are required, but not on others.
+ * - On some boards, D+ pull up resistor (1.5kohm) is required, but not on others.
+ * - You don't have long-running interrupts; some USB packets must be quickly responded to.
+ * - You have the ST CMSIS library linked into the project. HAL is not used.
+ *
+ * Current driver limitations (i.e., a list of features for you to add):
+ * - STALL handled, but not tested.
+ * - Does it work? No clue.
+ * - All EP BTABLE buffers are created based on max packet size of first EP opened with that address.
+ * - No isochronous endpoints
+ * - Endpoint index is the ID of the endpoint
+ * - This means that priority is given to endpoints with lower ID numbers
+ * - Code is mixing up EP IX with EP ID. Everywhere.
+ * - Packet buffer memory is copied in the interrupt.
+ * - This is better for performance, but means interrupts are disabled for longer
+ * - DMA may be the best choice, but it could also be pushed to the USBD task.
+ * - No double-buffering
+ * - No DMA
+ * - Minimal error handling
+ * - Perhaps error interrupts should be reported to the stack, or cause a device reset?
+ * - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine.
+ * - Add a callback for enabling/disabling the D+ PU on devices without an internal PU.
+ * - F3 models use three separate interrupts. I think we could only use the LP interrupt for
+ * everything? However, the interrupts are configurable so the DisableInt and EnableInt
+ * below functions could be adjusting the wrong interrupts (if they had been reconfigured)
+ * - LPM is not used correctly, or at all?
+ *
+ * USB documentation and Reference implementations
+ * - STM32 Reference manuals
+ * - STM32 USB Hardware Guidelines AN4879
+ *
+ * - STM32 HAL (much of this driver is based on this)
+ * - libopencm3/lib/stm32/common/st_usbfs_core.c
+ * - Keil USB Device http://www.keil.com/pack/doc/mw/USB/html/group__usbd.html
+ *
+ * - YouTube OpenTechLab 011; https://www.youtube.com/watch?v=4FOkJLp_PUw
+ *
+ * Advantages over HAL driver:
+ * - Tiny (saves RAM, assumes a single USB peripheral)
+ *
+ * Notes:
+ * - The buffer table is allocated as endpoints are opened. The allocation is only
+ * cleared when the device is reset. This may be bad if the USB device needs
+ * to be reconfigured.
+ */
+
+#include "tusb_option.h"
+
+#if defined(STM32F102x6) || defined(STM32F102xB) || \
+ defined(STM32F103x6) || defined(STM32F103xB) || \
+ defined(STM32F103xE) || defined(STM32F103xG)
+#define STM32F1_FSDEV
+#endif
+
+#if (TUSB_OPT_DEVICE_ENABLED) && ( \
+ (CFG_TUSB_MCU == OPT_MCU_STM32F0 ) || \
+ (CFG_TUSB_MCU == OPT_MCU_STM32F1 && defined(STM32F1_FSDEV)) || \
+ (CFG_TUSB_MCU == OPT_MCU_STM32F3 ) || \
+ (CFG_TUSB_MCU == OPT_MCU_STM32L0 ) || \
+ (CFG_TUSB_MCU == OPT_MCU_STM32L1 ) \
+ )
+
+// In order to reduce the dependance on HAL, we undefine this.
+// Some definitions are copied to our private include file.
+#undef USE_HAL_DRIVER
+
+#include "device/dcd.h"
+#include "portable/st/stm32_fsdev/dcd_stm32_fsdev_pvt_st.h"
+
+
+/*****************************************************
+ * Configuration
+ *****************************************************/
+
+// HW supports max of 8 bidirectional endpoints, but this can be reduced to save RAM
+// (8u here would mean 8 IN and 8 OUT)
+#ifndef MAX_EP_COUNT
+# define MAX_EP_COUNT 8U
+#endif
+
+// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
+// Both of these MUST be a multiple of 2, and are in byte units.
+#ifndef DCD_STM32_BTABLE_BASE
+# define DCD_STM32_BTABLE_BASE 0U
+#endif
+
+#ifndef DCD_STM32_BTABLE_LENGTH
+# define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE)
+#endif
+
+// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
+// We disable SOF for now until needed later on
+#ifndef USE_SOF
+# define USE_SOF 0
+#endif
+
+/***************************************************
+ * Checks, structs, defines, function definitions, etc.
+ */
+
+TU_VERIFY_STATIC((MAX_EP_COUNT) <= STFSDEV_EP_COUNT, "Only 8 endpoints supported on the hardware");
+
+TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_LENGTH))<=(PMA_LENGTH),
+ "BTABLE does not fit in PMA RAM");
+
+TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes");
+
+// One of these for every EP IN & OUT, uses a bit of RAM....
+typedef struct
+{
+ uint8_t * buffer;
+ // tu_fifo_t * ff; // TODO support dcd_edpt_xfer_fifo API
+ uint16_t total_len;
+ uint16_t queued_len;
+ uint16_t pma_ptr;
+ uint8_t max_packet_size;
+ uint8_t pma_alloc_size;
+} xfer_ctl_t;
+
+static xfer_ctl_t xfer_status[MAX_EP_COUNT][2];
+
+static inline xfer_ctl_t* xfer_ctl_ptr(uint32_t epnum, uint32_t dir)
+{
+ return &xfer_status[epnum][dir];
+}
+
+static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
+
+static uint8_t remoteWakeCountdown; // When wake is requested
+
+// into the stack.
+static void dcd_handle_bus_reset(void);
+static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix);
+static void dcd_ep_ctr_handler(void);
+
+// PMA allocation/access
+static uint8_t open_ep_count;
+static uint16_t ep_buf_ptr; ///< Points to first free memory location
+static void dcd_pma_alloc_reset(void);
+static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length);
+static void dcd_pma_free(uint8_t ep_addr);
+static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes);
+static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes);
+
+//static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes);
+//static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes);
+
+// Using a function due to better type checks
+// This seems better than having to do type casts everywhere else
+static inline void reg16_clear_bits(__IO uint16_t *reg, uint16_t mask) {
+ *reg = (uint16_t)(*reg & ~mask);
+}
+
+// Bits in ISTR are cleared upon writing 0
+static inline void clear_istr_bits(uint16_t mask) {
+ USB->ISTR = ~mask;
+}
+
+void dcd_init (uint8_t rhport)
+{
+ /* Clocks should already be enabled */
+ /* Use __HAL_RCC_USB_CLK_ENABLE(); to enable the clocks before calling this function */
+
+ /* The RM mentions to use a special ordering of PDWN and FRES, but this isn't done in HAL.
+ * Here, the RM is followed. */
+
+ for(uint32_t i = 0; i<200; i++) // should be a few us
+ {
+ asm("NOP");
+ }
+ // Perform USB peripheral reset
+ USB->CNTR = USB_CNTR_FRES | USB_CNTR_PDWN;
+ for(uint32_t i = 0; i<200; i++) // should be a few us
+ {
+ asm("NOP");
+ }
+ reg16_clear_bits(&USB->CNTR, USB_CNTR_PDWN);// Remove powerdown
+ // Wait startup time, for F042 and F070, this is <= 1 us.
+ for(uint32_t i = 0; i<200; i++) // should be a few us
+ {
+ asm("NOP");
+ }
+ USB->CNTR = 0; // Enable USB
+
+ USB->BTABLE = DCD_STM32_BTABLE_BASE;
+
+ USB->ISTR = 0; // Clear pending interrupts
+
+ // Reset endpoints to disabled
+ for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
+ {
+ // This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
+ pcd_set_endpoint(USB,i,0u);
+ }
+
+ USB->CNTR |= USB_CNTR_RESETM | (USE_SOF ? USB_CNTR_SOFM : 0) | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
+ dcd_handle_bus_reset();
+
+ // Enable pull-up if supported
+ if ( dcd_connect ) dcd_connect(rhport);
+}
+
+// Define only on MCU with internal pull-up. BSP can define on MCU without internal PU.
+#if defined(USB_BCDR_DPPU)
+
+// Disable internal D+ PU
+void dcd_disconnect(uint8_t rhport)
+{
+ (void) rhport;
+ USB->BCDR &= ~(USB_BCDR_DPPU);
+}
+
+// Enable internal D+ PU
+void dcd_connect(uint8_t rhport)
+{
+ (void) rhport;
+ USB->BCDR |= USB_BCDR_DPPU;
+}
+
+#elif defined(SYSCFG_PMC_USB_PU) // works e.g. on STM32L151
+// Disable internal D+ PU
+void dcd_disconnect(uint8_t rhport)
+{
+ (void) rhport;
+ SYSCFG->PMC &= ~(SYSCFG_PMC_USB_PU);
+}
+
+// Enable internal D+ PU
+void dcd_connect(uint8_t rhport)
+{
+ (void) rhport;
+ SYSCFG->PMC |= SYSCFG_PMC_USB_PU;
+}
+#endif
+
+// Enable device interrupt
+void dcd_int_enable (uint8_t rhport)
+{
+ (void)rhport;
+ // Member here forces write to RAM before allowing ISR to execute
+ __DSB();
+ __ISB();
+#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
+ NVIC_EnableIRQ(USB_IRQn);
+#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
+ NVIC_EnableIRQ(USB_LP_IRQn);
+#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
+ // Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
+ // shared USB/CAN IRQs to separate CAN and USB IRQs.
+ // This dynamically checks if this remap is active to enable the right IRQs.
+ #ifdef SYSCFG_CFGR1_USB_IT_RMP
+ if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
+ {
+ NVIC_EnableIRQ(USB_HP_IRQn);
+ NVIC_EnableIRQ(USB_LP_IRQn);
+ NVIC_EnableIRQ(USBWakeUp_RMP_IRQn);
+ }
+ else
+ #endif
+ {
+ NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn);
+ NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
+ NVIC_EnableIRQ(USBWakeUp_IRQn);
+ }
+#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
+ NVIC_EnableIRQ(USB_HP_CAN1_TX_IRQn);
+ NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
+ NVIC_EnableIRQ(USBWakeUp_IRQn);
+#else
+ #error Unknown arch in USB driver
+#endif
+}
+
+// Disable device interrupt
+void dcd_int_disable(uint8_t rhport)
+{
+ (void)rhport;
+
+#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
+ NVIC_DisableIRQ(USB_IRQn);
+#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
+ NVIC_DisableIRQ(USB_LP_IRQn);
+#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
+ // Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
+ // shared USB/CAN IRQs to separate CAN and USB IRQs.
+ // This dynamically checks if this remap is active to disable the right IRQs.
+ #ifdef SYSCFG_CFGR1_USB_IT_RMP
+ if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
+ {
+ NVIC_DisableIRQ(USB_HP_IRQn);
+ NVIC_DisableIRQ(USB_LP_IRQn);
+ NVIC_DisableIRQ(USBWakeUp_RMP_IRQn);
+ }
+ else
+ #endif
+ {
+ NVIC_DisableIRQ(USB_HP_CAN_TX_IRQn);
+ NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
+ NVIC_DisableIRQ(USBWakeUp_IRQn);
+ }
+#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
+ NVIC_DisableIRQ(USB_HP_CAN1_TX_IRQn);
+ NVIC_DisableIRQ(USB_LP_CAN1_RX0_IRQn);
+ NVIC_DisableIRQ(USBWakeUp_IRQn);
+#else
+ #error Unknown arch in USB driver
+#endif
+
+ // CMSIS has a membar after disabling interrupts
+}
+
+// Receive Set Address request, mcu port must also include status IN response
+void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
+{
+ (void) rhport;
+ (void) dev_addr;
+
+ // Respond with status
+ dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
+
+ // DCD can only set address after status for this request is complete.
+ // do it at dcd_edpt0_status_complete()
+}
+
+void dcd_remote_wakeup(uint8_t rhport)
+{
+ (void) rhport;
+
+ USB->CNTR |= (uint16_t) USB_CNTR_RESUME;
+ remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
+}
+
+static const tusb_desc_endpoint_t ep0OUT_desc =
+{
+ .bLength = sizeof(tusb_desc_endpoint_t),
+ .bDescriptorType = TUSB_DESC_ENDPOINT,
+
+ .bEndpointAddress = 0x00,
+ .bmAttributes = { .xfer = TUSB_XFER_CONTROL },
+ .wMaxPacketSize = { .size = CFG_TUD_ENDPOINT0_SIZE },
+ .bInterval = 0
+};
+
+static const tusb_desc_endpoint_t ep0IN_desc =
+{
+ .bLength = sizeof(tusb_desc_endpoint_t),
+ .bDescriptorType = TUSB_DESC_ENDPOINT,
+
+ .bEndpointAddress = 0x80,
+ .bmAttributes = { .xfer = TUSB_XFER_CONTROL },
+ .wMaxPacketSize = { .size = CFG_TUD_ENDPOINT0_SIZE },
+ .bInterval = 0
+};
+
+static void dcd_handle_bus_reset(void)
+{
+ //__IO uint16_t * const epreg = &(EPREG(0));
+ USB->DADDR = 0u; // disable USB peripheral by clearing the EF flag
+
+ // Clear all EPREG (or maybe this is automatic? I'm not sure)
+ for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
+ {
+ pcd_set_endpoint(USB,i,0u);
+ }
+
+ dcd_pma_alloc_reset();
+ dcd_edpt_open (0, &ep0OUT_desc);
+ dcd_edpt_open (0, &ep0IN_desc);
+
+ USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
+}
+
+// Handle CTR interrupt for the TX/IN direction
+//
+// Upon call, (wIstr & USB_ISTR_DIR) == 0U
+static void dcd_ep_ctr_tx_handler(uint32_t wIstr)
+{
+ uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
+ uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);
+
+ // Verify the CTR_TX bit is set. This was in the ST Micro code,
+ // but I'm not sure it's actually necessary?
+ if((wEPRegVal & USB_EP_CTR_TX) == 0U)
+ {
+ return;
+ }
+
+ /* clear int flag */
+ pcd_clear_tx_ep_ctr(USB, EPindex);
+
+ xfer_ctl_t * xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_IN);
+ if((xfer->total_len != xfer->queued_len)) /* TX not complete */
+ {
+ dcd_transmit_packet(xfer, EPindex);
+ }
+ else /* TX Complete */
+ {
+ dcd_event_xfer_complete(0, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true);
+ }
+}
+
+// Handle CTR interrupt for the RX/OUT direction
+//
+// Upon call, (wIstr & USB_ISTR_DIR) == 0U
+static void dcd_ep_ctr_rx_handler(uint32_t wIstr)
+{
+ uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
+ uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);
+ uint32_t count = pcd_get_ep_rx_cnt(USB,EPindex);
+
+ xfer_ctl_t *xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_OUT);
+
+ // Verify the CTR_RX bit is set. This was in the ST Micro code,
+ // but I'm not sure it's actually necessary?
+ if((wEPRegVal & USB_EP_CTR_RX) == 0U)
+ {
+ return;
+ }
+
+ if((EPindex == 0U) && ((wEPRegVal & USB_EP_SETUP) != 0U)) /* Setup packet */
+ {
+ // The setup_received function uses memcpy, so this must first copy the setup data into
+ // user memory, to allow for the 32-bit access that memcpy performs.
+ uint8_t userMemBuf[8];
+ /* Get SETUP Packet*/
+ if(count == 8) // Setup packet should always be 8 bytes. If not, ignore it, and try again.
+ {
+ // Must reset EP to NAK (in case it had been stalling) (though, maybe too late here)
+ pcd_set_ep_rx_status(USB,0u,USB_EP_RX_NAK);
+ pcd_set_ep_tx_status(USB,0u,USB_EP_TX_NAK);
+ dcd_read_packet_memory(userMemBuf, *pcd_ep_rx_address_ptr(USB,EPindex), 8);
+ dcd_event_setup_received(0, (uint8_t*)userMemBuf, true);
+ }
+ }
+ else
+ {
+ // Clear RX CTR interrupt flag
+ if(EPindex != 0u)
+ {
+ pcd_clear_rx_ep_ctr(USB, EPindex);
+ }
+
+ if (count != 0U)
+ {
+#if 0 // TODO support dcd_edpt_xfer_fifo API
+ if (xfer->ff)
+ {
+ dcd_read_packet_memory_ff(xfer->ff, *pcd_ep_rx_address_ptr(USB,EPindex), count);
+ }
+ else
+#endif
+ {
+ dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]), *pcd_ep_rx_address_ptr(USB,EPindex), count);
+ }
+
+ xfer->queued_len = (uint16_t)(xfer->queued_len + count);
+ }
+
+ if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
+ {
+ /* RX COMPLETE */
+ dcd_event_xfer_complete(0, EPindex, xfer->queued_len, XFER_RESULT_SUCCESS, true);
+ // Though the host could still send, we don't know.
+ // Does the bulk pipe need to be reset to valid to allow for a ZLP?
+ }
+ else
+ {
+ uint32_t remaining = (uint32_t)xfer->total_len - (uint32_t)xfer->queued_len;
+ if(remaining >= xfer->max_packet_size) {
+ pcd_set_ep_rx_cnt(USB, EPindex,xfer->max_packet_size);
+ } else {
+ pcd_set_ep_rx_cnt(USB, EPindex,remaining);
+ }
+ pcd_set_ep_rx_status(USB, EPindex, USB_EP_RX_VALID);
+ }
+ }
+
+ // For EP0, prepare to receive another SETUP packet.
+ // Clear CTR last so that a new packet does not overwrite the packing being read.
+ // (Based on the docs, it seems SETUP will always be accepted after CTR is cleared)
+ if(EPindex == 0u)
+ {
+ // Always be prepared for a status packet...
+ pcd_set_ep_rx_cnt(USB, EPindex, CFG_TUD_ENDPOINT0_SIZE);
+ pcd_clear_rx_ep_ctr(USB, EPindex);
+ }
+}
+
+static void dcd_ep_ctr_handler(void)
+{
+ uint32_t wIstr;
+
+ /* stay in loop while pending interrupts */
+ while (((wIstr = USB->ISTR) & USB_ISTR_CTR) != 0U)
+ {
+
+ if ((wIstr & USB_ISTR_DIR) == 0U) /* TX/IN */
+ {
+ dcd_ep_ctr_tx_handler(wIstr);
+ }
+ else /* RX/OUT*/
+ {
+ dcd_ep_ctr_rx_handler(wIstr);
+ }
+ }
+}
+
+void dcd_int_handler(uint8_t rhport) {
+
+ (void) rhport;
+
+ uint32_t int_status = USB->ISTR;
+ //const uint32_t handled_ints = USB_ISTR_CTR | USB_ISTR_RESET | USB_ISTR_WKUP
+ // | USB_ISTR_SUSP | USB_ISTR_SOF | USB_ISTR_ESOF;
+ // unused IRQs: (USB_ISTR_PMAOVR | USB_ISTR_ERR | USB_ISTR_L1REQ )
+
+ // The ST driver loops here on the CTR bit, but that loop has been moved into the
+ // dcd_ep_ctr_handler(), so less need to loop here. The other interrupts shouldn't
+ // be triggered repeatedly.
+
+ if(int_status & USB_ISTR_RESET) {
+ // USBRST is start of reset.
+ clear_istr_bits(USB_ISTR_RESET);
+ dcd_handle_bus_reset();
+ dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
+ return; // Don't do the rest of the things here; perhaps they've been cleared?
+ }
+
+ if (int_status & USB_ISTR_CTR)
+ {
+ /* servicing of the endpoint correct transfer interrupt */
+ /* clear of the CTR flag into the sub */
+ dcd_ep_ctr_handler();
+ }
+
+ if (int_status & USB_ISTR_WKUP)
+ {
+ reg16_clear_bits(&USB->CNTR, USB_CNTR_LPMODE);
+ reg16_clear_bits(&USB->CNTR, USB_CNTR_FSUSP);
+ clear_istr_bits(USB_ISTR_WKUP);
+ dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
+ }
+
+ if (int_status & USB_ISTR_SUSP)
+ {
+ /* Suspend is asserted for both suspend and unplug events. without Vbus monitoring,
+ * these events cannot be differentiated, so we only trigger suspend. */
+
+ /* Force low-power mode in the macrocell */
+ USB->CNTR |= USB_CNTR_FSUSP;
+ USB->CNTR |= USB_CNTR_LPMODE;
+
+ /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
+ clear_istr_bits(USB_ISTR_SUSP);
+ dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
+ }
+
+#if USE_SOF
+ if(int_status & USB_ISTR_SOF) {
+ clear_istr_bits(USB_ISTR_SOF);
+ dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
+ }
+#endif
+
+ if(int_status & USB_ISTR_ESOF) {
+ if(remoteWakeCountdown == 1u)
+ {
+ USB->CNTR &= (uint16_t)(~USB_CNTR_RESUME);
+ }
+ if(remoteWakeCountdown > 0u)
+ {
+ remoteWakeCountdown--;
+ }
+ clear_istr_bits(USB_ISTR_ESOF);
+ }
+}
+
+//--------------------------------------------------------------------+
+// Endpoint API
+//--------------------------------------------------------------------+
+
+// Invoked when a control transfer's status stage is complete.
+// May help DCD to prepare for next control transfer, this API is optional.
+void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
+{
+ (void) rhport;
+
+ if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
+ request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
+ request->bRequest == TUSB_REQ_SET_ADDRESS )
+ {
+ uint8_t const dev_addr = (uint8_t) request->wValue;
+
+ // Setting new address after the whole request is complete
+ reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
+ USB->DADDR = (uint16_t)(USB->DADDR | dev_addr); // leave the enable bit set
+ }
+}
+
+static void dcd_pma_alloc_reset(void)
+{
+ ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
+ //TU_LOG2("dcd_pma_alloc_reset()\r\n");
+ for(uint32_t i=0; i<MAX_EP_COUNT; i++)
+ {
+ xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
+ xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
+ xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
+ xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
+ }
+}
+
+/***
+ * Allocate a section of PMA
+ *
+ * If the EP number has already been allocated, and the new allocation
+ * is larger than the old allocation, then this will fail with a TU_ASSERT.
+ * (This is done to simplify the code. More complicated algorithms could be used)
+ *
+ * During failure, TU_ASSERT is used. If this happens, rework/reallocate memory manually.
+ */
+static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length)
+{
+ uint8_t const epnum = tu_edpt_number(ep_addr);
+ uint8_t const dir = tu_edpt_dir(ep_addr);
+ xfer_ctl_t* epXferCtl = xfer_ctl_ptr(epnum,dir);
+
+ if(epXferCtl->pma_alloc_size != 0U)
+ {
+ //TU_LOG2("dcd_pma_alloc(%x,%x)=%x (cached)\r\n",ep_addr,length,epXferCtl->pma_ptr);
+ // Previously allocated
+ TU_ASSERT(length <= epXferCtl->pma_alloc_size, 0xFFFF); // Verify no larger than previous alloc
+ return epXferCtl->pma_ptr;
+ }
+
+ uint16_t addr = ep_buf_ptr;
+ ep_buf_ptr = (uint16_t)(ep_buf_ptr + length); // increment buffer pointer
+
+ // Verify no overflow
+ TU_ASSERT(ep_buf_ptr <= PMA_LENGTH, 0xFFFF);
+
+ epXferCtl->pma_ptr = addr;
+ epXferCtl->pma_alloc_size = length;
+ //TU_LOG2("dcd_pma_alloc(%x,%x)=%x\r\n",ep_addr,length,addr);
+
+ return addr;
+}
+
+/***
+ * Free a block of PMA space
+ */
+static void dcd_pma_free(uint8_t ep_addr)
+{
+ uint8_t const epnum = tu_edpt_number(ep_addr);
+ uint8_t const dir = tu_edpt_dir(ep_addr);
+
+ // Presently, this should never be called for EP0 IN/OUT
+ TU_ASSERT(open_ep_count > 2, /**/);
+ TU_ASSERT(xfer_ctl_ptr(epnum,dir)->max_packet_size != 0, /**/);
+ open_ep_count--;
+
+ // If count is 2, only EP0 should be open, so allocations can be mostly reset.
+
+ if(open_ep_count == 2)
+ {
+ ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT + 2*CFG_TUD_ENDPOINT0_SIZE; // 8 bytes per endpoint (two TX and two RX words, each), and EP0
+
+ // Skip EP0
+ for(uint32_t i=1; i<MAX_EP_COUNT; i++)
+ {
+ xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
+ xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
+ xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
+ xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
+ }
+ }
+}
+
+// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
+// so I'm using the #define from HAL here, instead.
+
+bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
+{
+ (void)rhport;
+ uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
+ uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
+ const uint16_t epMaxPktSize = p_endpoint_desc->wMaxPacketSize.size;
+ uint16_t pma_addr;
+ uint32_t wType;
+
+ // Isochronous not supported (yet), and some other driver assumptions.
+ TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
+ TU_ASSERT(epnum < MAX_EP_COUNT);
+
+ // Set type
+ switch(p_endpoint_desc->bmAttributes.xfer) {
+ case TUSB_XFER_CONTROL:
+ wType = USB_EP_CONTROL;
+ break;
+#if (0)
+ case TUSB_XFER_ISOCHRONOUS: // FIXME: Not yet supported
+ wType = USB_EP_ISOCHRONOUS;
+ break;
+#endif
+
+ case TUSB_XFER_BULK:
+ wType = USB_EP_CONTROL;
+ break;
+
+ case TUSB_XFER_INTERRUPT:
+ wType = USB_EP_INTERRUPT;
+ break;
+
+ default:
+ TU_ASSERT(false);
+ }
+
+ pcd_set_eptype(USB, epnum, wType);
+ pcd_set_ep_address(USB, epnum, epnum);
+ // Be normal, for now, instead of only accepting zero-byte packets (on control endpoint)
+ // or being double-buffered (bulk endpoints)
+ pcd_clear_ep_kind(USB,0);
+
+ pma_addr = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, p_endpoint_desc->wMaxPacketSize.size);
+
+ if(dir == TUSB_DIR_IN)
+ {
+ *pcd_ep_tx_address_ptr(USB, epnum) = pma_addr;
+ pcd_set_ep_tx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
+ pcd_clear_tx_dtog(USB, epnum);
+ pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_NAK);
+ }
+ else
+ {
+ *pcd_ep_rx_address_ptr(USB, epnum) = pma_addr;
+ pcd_set_ep_rx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
+ pcd_clear_rx_dtog(USB, epnum);
+ pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK);
+ }
+
+ xfer_ctl_ptr(epnum, dir)->max_packet_size = epMaxPktSize;
+
+ return true;
+}
+
+/**
+ * Close an endpoint.
+ *
+ * This function may be called with interrupts enabled or disabled.
+ *
+ * This also clears transfers in progress, should there be any.
+ */
+void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
+{
+ (void)rhport;
+ uint32_t const epnum = tu_edpt_number(ep_addr);
+ uint32_t const dir = tu_edpt_dir(ep_addr);
+
+ if(dir == TUSB_DIR_IN)
+ {
+ pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_DIS);
+ }
+ else
+ {
+ pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_DIS);
+ }
+
+ dcd_pma_free(ep_addr);
+}
+
+// Currently, single-buffered, and only 64 bytes at a time (max)
+
+static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix)
+{
+ uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len);
+
+ if(len > xfer->max_packet_size) // max packet size for FS transfer
+ {
+ len = xfer->max_packet_size;
+ }
+ uint16_t oldAddr = *pcd_ep_tx_address_ptr(USB,ep_ix);
+
+#if 0 // TODO support dcd_edpt_xfer_fifo API
+ if (xfer->ff)
+ {
+ dcd_write_packet_memory_ff(xfer->ff, oldAddr, len);
+ }
+ else
+#endif
+ {
+ dcd_write_packet_memory(oldAddr, &(xfer->buffer[xfer->queued_len]), len);
+ }
+ xfer->queued_len = (uint16_t)(xfer->queued_len + len);
+
+ pcd_set_ep_tx_cnt(USB,ep_ix,len);
+ pcd_set_ep_tx_status(USB, ep_ix, USB_EP_TX_VALID);
+}
+
+bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
+{
+ (void) rhport;
+
+ uint8_t const epnum = tu_edpt_number(ep_addr);
+ uint8_t const dir = tu_edpt_dir(ep_addr);
+
+ xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);
+
+ xfer->buffer = buffer;
+ // xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API
+ xfer->total_len = total_bytes;
+ xfer->queued_len = 0;
+
+ if ( dir == TUSB_DIR_OUT )
+ {
+ // A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
+ // buffer for the control endpoint.
+ if (epnum == 0 && buffer == NULL)
+ {
+ xfer->buffer = (uint8_t*)_setup_packet;
+ }
+ if(total_bytes > xfer->max_packet_size)
+ {
+ pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
+ } else {
+ pcd_set_ep_rx_cnt(USB,epnum,total_bytes);
+ }
+ pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
+ }
+ else // IN
+ {
+ dcd_transmit_packet(xfer,epnum);
+ }
+ return true;
+}
+
+#if 0 // TODO support dcd_edpt_xfer_fifo API
+bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
+{
+ (void) rhport;
+
+ uint8_t const epnum = tu_edpt_number(ep_addr);
+ uint8_t const dir = tu_edpt_dir(ep_addr);
+
+ xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);
+
+ xfer->buffer = NULL;
+ // xfer->ff = ff; // TODO support dcd_edpt_xfer_fifo API
+ xfer->total_len = total_bytes;
+ xfer->queued_len = 0;
+
+ if ( dir == TUSB_DIR_OUT )
+ {
+ if(total_bytes > xfer->max_packet_size)
+ {
+ pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
+ } else {
+ pcd_set_ep_rx_cnt(USB,epnum,total_bytes);
+ }
+ pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
+ }
+ else // IN
+ {
+ dcd_transmit_packet(xfer,epnum);
+ }
+ return true;
+}
+#endif
+
+void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
+{
+ (void)rhport;
+
+ if (ep_addr & 0x80)
+ { // IN
+ pcd_set_ep_tx_status(USB, ep_addr & 0x7F, USB_EP_TX_STALL);
+ }
+ else
+ { // OUT
+ pcd_set_ep_rx_status(USB, ep_addr, USB_EP_RX_STALL);
+ }
+}
+
+void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
+{
+ (void)rhport;
+
+ if (ep_addr & 0x80)
+ { // IN
+ ep_addr &= 0x7F;
+
+ pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_NAK);
+
+ /* Reset to DATA0 if clearing stall condition. */
+ pcd_clear_tx_dtog(USB,ep_addr);
+ }
+ else
+ { // OUT
+ /* Reset to DATA0 if clearing stall condition. */
+ pcd_clear_rx_dtog(USB,ep_addr);
+
+ pcd_set_ep_rx_status(USB,ep_addr, USB_EP_RX_NAK);
+ }
+}
+
+// Packet buffer access can only be 8- or 16-bit.
+/**
+ * @brief Copy a buffer from user memory area to packet memory area (PMA).
+ * This uses byte-access for user memory (so support non-aligned buffers)
+ * and 16-bit access for packet memory.
+ * @param dst, byte address in PMA; must be 16-bit aligned
+ * @param src pointer to user memory area.
+ * @param wPMABufAddr address into PMA.
+ * @param wNBytes no. of bytes to be copied.
+ * @retval None
+ */
+static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes)
+{
+ uint32_t n = ((uint32_t)wNBytes + 1U) >> 1U;
+ uint32_t i;
+ uint16_t temp1, temp2;
+ const uint8_t * srcVal;
+
+ // The GCC optimizer will combine access to 32-bit sizes if we let it. Force
+ // it volatile so that it won't do that.
+ __IO uint16_t *pdwVal;
+
+ srcVal = src;
+ pdwVal = &pma[PMA_STRIDE*(dst>>1)];
+
+ for (i = n; i != 0; i--)
+ {
+ temp1 = (uint16_t) *srcVal;
+ srcVal++;
+ temp2 = temp1 | ((uint16_t)((uint16_t) ((*srcVal) << 8U))) ;
+ *pdwVal = temp2;
+ pdwVal += PMA_STRIDE;
+ srcVal++;
+ }
+ return true;
+}
+
+#if 0 // TODO support dcd_edpt_xfer_fifo API
+/**
+ * @brief Copy from FIFO to packet memory area (PMA).
+ * Uses byte-access of system memory and 16-bit access of packet memory
+ * @param wNBytes no. of bytes to be copied.
+ * @retval None
+ */
+
+// THIS FUNCTION IS UNTESTED
+
+static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes)
+{
+ // Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
+ // Check for first linear part
+ void * src;
+ uint16_t len = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes); // We want to read from the FIFO - THIS FUNCTION CHANGED!!!
+ TU_VERIFY(len && dcd_write_packet_memory(dst, src, len)); // and write it into the PMA
+ tu_fifo_advance_read_pointer(ff, len);
+
+ // Check for wrapped part
+ if (len < wNBytes)
+ {
+ // Get remaining wrapped length
+ uint16_t len2 = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes - len);
+ TU_VERIFY(len2);
+
+ // Update destination pointer
+ dst += len;
+
+ // Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
+ if (len % 2) // If len is uneven there is a byte left to copy
+ {
+ // Since PMA can accessed only 16 bit-wise we copy the last byte again
+ tu_fifo_backward_read_pointer(ff, 1); // Move one byte back and copy two bytes for the PMA
+ tu_fifo_read_n(ff, (void *) &pma[PMA_STRIDE*(dst>>1)], 2); // Since EP FIFOs must be of item size 1 this is safe to do
+ dst++;
+ len2--;
+ }
+
+ TU_VERIFY(dcd_write_packet_memory(dst, src, len2));
+ tu_fifo_advance_write_pointer(ff, len2);
+ }
+
+ return true;
+}
+#endif
+
+/**
+ * @brief Copy a buffer from packet memory area (PMA) to user memory area.
+ * Uses byte-access of system memory and 16-bit access of packet memory
+ * @param wNBytes no. of bytes to be copied.
+ * @retval None
+ */
+static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes)
+{
+ uint32_t n = (uint32_t)wNBytes >> 1U;
+ uint32_t i;
+ // The GCC optimizer will combine access to 32-bit sizes if we let it. Force
+ // it volatile so that it won't do that.
+ __IO const uint16_t *pdwVal;
+ uint32_t temp;
+
+ pdwVal = &pma[PMA_STRIDE*(src>>1)];
+ uint8_t *dstVal = (uint8_t*)dst;
+
+ for (i = n; i != 0U; i--)
+ {
+ temp = *pdwVal;
+ pdwVal += PMA_STRIDE;
+ *dstVal++ = ((temp >> 0) & 0xFF);
+ *dstVal++ = ((temp >> 8) & 0xFF);
+ }
+
+ if (wNBytes % 2)
+ {
+ temp = *pdwVal;
+ pdwVal += PMA_STRIDE;
+ *dstVal++ = ((temp >> 0) & 0xFF);
+ }
+ return true;
+}
+
+#if 0 // TODO support dcd_edpt_xfer_fifo API
+/**
+ * @brief Copy a buffer from user packet memory area (PMA) to FIFO.
+ * Uses byte-access of system memory and 16-bit access of packet memory
+ * @param wNBytes no. of bytes to be copied.
+ * @retval None
+ */
+
+// THIS FUNCTION IS UNTESTED
+
+static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes)
+{
+ // Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
+ // Check for first linear part
+ void * dst;
+ uint16_t len = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes); // THIS FUNCTION CHANGED!!!!
+ TU_VERIFY(len && dcd_read_packet_memory(dst, src, len));
+ tu_fifo_advance_write_pointer(ff, len);
+
+ // Check for wrapped part
+ if (len < wNBytes)
+ {
+ // Get remaining wrapped length
+ uint16_t len2 = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes - len);
+ TU_VERIFY(len2);
+
+ // Update source pointer
+ src += len;
+
+ // Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
+ if (len % 2) // If len is uneven there is a byte left to copy
+ {
+ uint32_t temp = pma[PMA_STRIDE*(src>>1)];
+ *((uint8_t *)dst++) = ((temp >> 8) & 0xFF);
+ src++;
+ len2--;
+ }
+
+ TU_VERIFY(dcd_read_packet_memory(dst, src, len2));
+ tu_fifo_advance_write_pointer(ff, len2);
+ }
+
+ return true;
+}
+
+#endif
+
+#endif
+