summaryrefslogtreecommitdiffstats
path: root/watch-library/hardware/watch/watch_private.c
diff options
context:
space:
mode:
Diffstat (limited to 'watch-library/hardware/watch/watch_private.c')
-rw-r--r--watch-library/hardware/watch/watch_private.c162
1 files changed, 100 insertions, 62 deletions
diff --git a/watch-library/hardware/watch/watch_private.c b/watch-library/hardware/watch/watch_private.c
index cd607b8e..4de97131 100644
--- a/watch-library/hardware/watch/watch_private.c
+++ b/watch-library/hardware/watch/watch_private.c
@@ -23,6 +23,7 @@
*/
#include "watch_private.h"
+#include "watch_private_cdc.h"
#include "watch_utility.h"
#include "tusb.h"
@@ -35,6 +36,12 @@ void _watch_init(void) {
// Use switching regulator for lower power consumption.
SUPC->VREG.bit.SEL = 1;
+
+ // per Microchip datasheet clarification DS80000782,
+ // work around silicon erratum 1.7.2, which causes the microcontroller to lock up on leaving standby:
+ // request that the voltage regulator run in standby, and also that it switch to PL0.
+ SUPC->VREG.bit.RUNSTDBY = 1;
+ SUPC->VREG.bit.STDBYPL0 = 1;
while(!SUPC->STATUS.bit.VREGRDY); // wait for voltage regulator to become ready
// check the battery voltage...
@@ -106,12 +113,21 @@ int getentropy(void *buf, size_t buflen) {
}
}
- hri_trng_clear_CTRLA_ENABLE_bit(TRNG);
+ watch_disable_TRNG();
hri_mclk_clear_APBCMASK_TRNG_bit(MCLK);
return 0;
}
+void watch_disable_TRNG() {
+ // per Microchip datasheet clarification DS80000782,
+ // silicon erratum 1.16.1 indicates that the TRNG may leave internal components powered after being disabled.
+ // the workaround is to disable the TRNG by clearing the control register, twice.
+ hri_trng_write_CTRLA_reg(TRNG, 0);
+ hri_trng_write_CTRLA_reg(TRNG, 0);
+}
+
+
void _watch_enable_tcc(void) {
// clock TCC0 with the main clock (8 MHz) and enable the peripheral clock.
hri_gclk_write_PCHCTRL_reg(GCLK, TCC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
@@ -170,6 +186,87 @@ void _watch_disable_tcc(void) {
// disable the TCC
hri_tcc_clear_CTRLA_ENABLE_bit(TCC0);
hri_mclk_clear_APBCMASK_TCC0_bit(MCLK);
+}
+
+void _watch_enable_tc0(void) {
+ // before we init TinyUSB, we are going to need a periodic callback to handle TinyUSB tasks.
+ // TC2 and TC3 are reserved for devices on the 9-pin connector, so let's use TC0.
+ // clock TC0 with the 8 MHz clock on GCLK0.
+ hri_gclk_write_PCHCTRL_reg(GCLK, TC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
+ // and enable the peripheral clock.
+ hri_mclk_set_APBCMASK_TC0_bit(MCLK);
+ // disable and reset TC0.
+ hri_tc_clear_CTRLA_ENABLE_bit(TC0);
+ hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_ENABLE);
+ hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_SWRST);
+ hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_SWRST);
+ hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_PRESCALER_DIV1024 | // divide the 8 MHz clock by 1024 to count at 7812.5 Hz
+ TC_CTRLA_MODE_COUNT8 | // count in 8-bit mode
+ TC_CTRLA_RUNSTDBY); // run in standby, just in case we figure that out
+ hri_tccount8_write_PER_reg(TC0, 10); // 7812.5 Hz / 10 = 781.125 Hz
+ // set an interrupt on overflow; this will call TC0_Handler below.
+ hri_tc_set_INTEN_OVF_bit(TC0);
+
+ // set priority higher than TC1
+ NVIC_SetPriority(TC0_IRQn, 5);
+ NVIC_ClearPendingIRQ(TC0_IRQn);
+ NVIC_EnableIRQ(TC0_IRQn);
+
+ // Start the timer
+ hri_tc_set_CTRLA_ENABLE_bit(TC0);
+}
+
+void _watch_disable_tc0(void) {
+ NVIC_DisableIRQ(TC0_IRQn);
+ NVIC_ClearPendingIRQ(TC0_IRQn);
+ hri_tc_clear_CTRLA_ENABLE_bit(TC0);
+ hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_ENABLE);
+ hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_SWRST);
+ hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_SWRST);
+}
+
+void _watch_enable_tc1(void) {
+ hri_gclk_write_PCHCTRL_reg(GCLK, TC1_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
+ // and enable the peripheral clock.
+ hri_mclk_set_APBCMASK_TC1_bit(MCLK);
+ // disable and reset TC1.
+ hri_tc_clear_CTRLA_ENABLE_bit(TC1);
+ hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_ENABLE);
+ hri_tc_write_CTRLA_reg(TC1, TC_CTRLA_SWRST);
+ hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_SWRST);
+ hri_tc_write_CTRLA_reg(TC1, TC_CTRLA_PRESCALER_DIV1024 | // divide the 8 MHz clock by 1024 to count at 7812.5 Hz
+ TC_CTRLA_MODE_COUNT8 | // count in 8-bit mode
+ TC_CTRLA_RUNSTDBY); // run in standby, just in case we figure that out
+ hri_tccount8_write_PER_reg(TC1, 20); // 7812.5 Hz / 50 = 156.25 Hz
+ // set an interrupt on overflow; this will call TC1_Handler below.
+ hri_tc_set_INTEN_OVF_bit(TC1);
+
+ // set priority lower than TC0
+ NVIC_SetPriority(TC1_IRQn, 6);
+ NVIC_ClearPendingIRQ(TC1_IRQn);
+ NVIC_EnableIRQ(TC1_IRQn);
+
+ // Start the timer
+ hri_tc_set_CTRLA_ENABLE_bit(TC1);
+}
+
+void _watch_disable_tc1(void) {
+ NVIC_DisableIRQ(TC1_IRQn);
+ NVIC_ClearPendingIRQ(TC1_IRQn);
+ hri_tc_clear_CTRLA_ENABLE_bit(TC1);
+ hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_ENABLE);
+ hri_tc_write_CTRLA_reg(TC1, TC_CTRLA_SWRST);
+ hri_tc_wait_for_sync(TC1, TC_SYNCBUSY_SWRST);
+}
+
+void TC0_Handler(void) {
+ tud_task();
+ TC0->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
+}
+
+void TC1_Handler(void) {
+ cdc_task();
+ TC1->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
}
void _watch_enable_usb(void) {
@@ -216,76 +313,17 @@ void _watch_enable_usb(void) {
gpio_set_pin_function(PIN_PA24, PINMUX_PA24G_USB_DM);
gpio_set_pin_function(PIN_PA25, PINMUX_PA25G_USB_DP);
- // before we init TinyUSB, we are going to need a periodic callback to handle TinyUSB tasks.
- // TC2 and TC3 are reserved for devices on the 9-pin connector, so let's use TC0.
- // clock TC0 with the 8 MHz clock on GCLK0.
- hri_gclk_write_PCHCTRL_reg(GCLK, TC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
- // and enable the peripheral clock.
- hri_mclk_set_APBCMASK_TC0_bit(MCLK);
- // disable and reset TC0.
- hri_tc_clear_CTRLA_ENABLE_bit(TC0);
- hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_ENABLE);
- hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_SWRST);
- hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_SWRST);
- // configure the TC to overflow 1,000 times per second
- hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_PRESCALER_DIV64 | // divide the 8 MHz clock by 64 to count at 125 KHz
- TC_CTRLA_MODE_COUNT8 | // count in 8-bit mode
- TC_CTRLA_RUNSTDBY); // run in standby, just in case we figure that out
- hri_tccount8_write_PER_reg(TC0, 125); // 125000 Hz / 125 = 1,000 Hz
- // set an interrupt on overflow; this will call TC0_Handler below.
- hri_tc_set_INTEN_OVF_bit(TC0);
- NVIC_ClearPendingIRQ(TC0_IRQn);
- NVIC_EnableIRQ (TC0_IRQn);
+ _watch_enable_tc0();
- // now we can init TinyUSB
tusb_init();
- // and start the timer that handles USB device tasks.
- hri_tc_set_CTRLA_ENABLE_bit(TC0);
-}
-// this function ends up getting called by printf to log stuff to the USB console.
-int _write(int file, char *ptr, int len) {
- (void)file;
- if (hri_usbdevice_get_CTRLA_ENABLE_bit(USB)) {
- tud_cdc_n_write(0, (void const*)ptr, len);
- tud_cdc_n_write_flush(0);
- return len;
- }
-
- return 0;
-}
-
-static char buf[256] = {0};
-
-int _read(int file, char *ptr, int len) {
- (void)file;
- int actual_length = strlen(buf);
- if (actual_length) {
- memcpy(ptr, buf, min(len, actual_length));
- return actual_length;
- }
- return 0;
+ _watch_enable_tc1();
}
void USB_Handler(void) {
tud_int_handler(0);
}
-static void cdc_task(void) {
- if (tud_cdc_n_available(0)) {
- tud_cdc_n_read(0, buf, sizeof(buf));
- } else {
- memset(buf, 0, 256);
- }
-}
-
-void TC0_Handler(void) {
- tud_task();
- cdc_task();
- TC0->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
-}
-
-
// USB Descriptors and tinyUSB callbacks follow.
/*