#include #include #include #include "watch.h" const uint8_t UTC_OFFSET = 4; // set to your current UTC offset to see correct beats time const uint8_t BEAT_REFRESH_FREQUENCY = 8; typedef enum ApplicationMode { MODE_CLOCK = 0, // Displays month, day and current time. MODE_BEATS, MODE_SET, // (ST) Set time and date NUM_MODES // Last item in the enum, it's the number of cases. } ApplicationMode; typedef struct ApplicationState { // Internal application state ApplicationMode mode; // Current mode bool mode_changed; // Lets us perform one-time setup for a given mode uint16_t mode_ticks; // Timeout for the mode (returns to clock after timeout expires) uint8_t light_ticks; // Timeout for the light bool led_on; // Indicates that the LED is on uint8_t page; // Tracks the current page in log, prefs or settings. uint8_t last_second; // lets us see when the second changed, for subsecond timing uint8_t subsecond; // a value from 0 to (BEAT_REFRESH_FREQUENCY - 1) indicating the fractional second } ApplicationState; void do_clock_mode(void); void do_beats_mode(void); void do_set_time_mode(void); void set_time_mode_handle_primary_button(void); void set_time_mode_handle_secondary_button(void); float clock2beats(uint16_t, uint16_t, uint16_t, int16_t); void cb_light_pressed(void); void cb_mode_pressed(void); void cb_alarm_pressed(void); void cb_tick(void); void cb_fast_tick(void); ApplicationState application_state; char buf[16] = {0}; /** * @brief Zeroes out the application state struct. */ void app_init(void) { memset(&application_state, 0, sizeof(application_state)); } void app_wake_from_backup(void) { // This app does not support BACKUP mode. } void app_setup(void) { watch_enable_external_interrupts(); watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING); watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_RISING); watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true); watch_enable_buzzer(); watch_enable_leds(); watch_enable_display(); watch_rtc_register_tick_callback(cb_tick); } void app_prepare_for_standby(void) { } void app_wake_from_standby(void) { } static void update_tick_frequency(void) { watch_rtc_disable_all_periodic_callbacks(); if (application_state.mode == MODE_BEATS) { watch_rtc_register_periodic_callback(cb_fast_tick, BEAT_REFRESH_FREQUENCY); } else { watch_rtc_register_tick_callback(cb_tick); } } bool app_loop(void) { // play a beep if the mode has changed in response to a user's press of the MODE button if (application_state.mode_changed) { // low note for nonzero case, high note for return to clock watch_buzzer_play_note(application_state.mode ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 100); update_tick_frequency(); application_state.mode_changed = false; } // If the user is not in clock mode and the mode timeout has expired, return them to clock mode if (application_state.mode != MODE_CLOCK && application_state.mode_ticks == 0) { application_state.mode = MODE_CLOCK; application_state.mode_changed = true; update_tick_frequency(); } // If the LED is off and should be on, turn it on if (application_state.light_ticks > 0 && !application_state.led_on) { watch_set_led_green(); application_state.led_on = true; } // if the LED is on and should be off, turn it off if (application_state.led_on && application_state.light_ticks == 0) { // unless the user is holding down the LIGHT button, in which case, give them more time. if (watch_get_pin_level(BTN_LIGHT)) { application_state.light_ticks = 3; } else { watch_set_led_off(); application_state.led_on = false; } } switch (application_state.mode) { case MODE_CLOCK: do_clock_mode(); break; case MODE_BEATS: do_beats_mode(); break; case MODE_SET: do_set_time_mode(); break; case NUM_MODES: // dummy case, just silences a warning break; } application_state.mode_changed = false; return true; } void do_clock_mode(void) { watch_date_time date_time = watch_rtc_get_date_time(); const char months[12][3] = {"JA", "FE", "MR", "AR", "MA", "JN", "JL", "AU", "SE", "OC", "NO", "dE"}; watch_display_string((char *)months[date_time.unit.month - 1], 0); sprintf(buf, "%2d%2d%02d%02d", date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second); watch_display_string(buf, 2); watch_set_colon(); } void do_beats_mode(void) { watch_clear_colon(); watch_date_time date_time = watch_rtc_get_date_time(); float beats = clock2beats(date_time.unit.hour, date_time.unit.minute, date_time.unit.second, UTC_OFFSET); sprintf(buf, "bt %6.0f", beats * 100); watch_display_string(buf, 0); } float clock2beats(uint16_t hours, uint16_t minutes, uint16_t seconds, int16_t utc_offset) { float beats = seconds + ((float)application_state.subsecond / (float)BEAT_REFRESH_FREQUENCY); beats += 60 * minutes; beats += (float)hours * 60 * 60; beats += (utc_offset + 1) * 60 * 60; // offset from utc + 1 since beats in in UTC+1 beats /= 86.4; // convert to beats while(beats > 1000) beats -= 1000; // beats %= 1000 but for a float return beats; } void do_set_time_mode(void) { watch_date_time date_time = watch_rtc_get_date_time(); watch_display_string(" ", 0); switch (application_state.page) { case 0: // hour sprintf(buf, "ST t%2d", date_time.unit.hour); break; case 1: // minute sprintf(buf, "ST t %02d", date_time.unit.minute); break; case 2: // second sprintf(buf, "ST t %02d", date_time.unit.second); break; case 3: // year sprintf(buf, "ST d%2d", date_time.unit.year + 20); break; case 4: // month sprintf(buf, "ST d %02d", date_time.unit.month); break; case 5: // day sprintf(buf, "ST d %02d", date_time.unit.day); break; } watch_display_string(buf, 0); watch_set_pixel(1, 12); // required for T in position 1 } void set_time_mode_handle_primary_button(void) { application_state.page++; if (application_state.page == 6) application_state.page = 0; } void set_time_mode_handle_secondary_button(void) { watch_date_time date_time = watch_rtc_get_date_time(); const uint8_t days_in_month[12] = {31, 28, 31, 30, 31, 30, 30, 31, 30, 31, 30, 31}; switch (application_state.page) { case 0: // hour date_time.unit.hour = (date_time.unit.hour + 1) % 24; break; case 1: // minute date_time.unit.minute = (date_time.unit.minute + 1) % 60; break; case 2: // second date_time.unit.second = 0; break; case 3: // year // only allow 2021-2030. fix this sometime next decade date_time.unit.year = ((date_time.unit.year % 10) + 1); break; case 4: // month date_time.unit.month = ((date_time.unit.month + 1) % 12); break; case 5: // day date_time.unit.day = date_time.unit.day + 1; // can't set to the 29th on a leap year. if it's february 29, set to 11:59 on the 28th. // and it should roll over. if (date_time.unit.day > days_in_month[date_time.unit.month - 1]) { date_time.unit.day = 1; } break; } watch_rtc_set_date_time(date_time); } void cb_mode_pressed(void) { application_state.mode = (application_state.mode + 1) % NUM_MODES; application_state.mode_changed = true; application_state.mode_ticks = 300; application_state.page = 0; } void cb_light_pressed(void) { switch (application_state.mode) { case MODE_SET: set_time_mode_handle_secondary_button(); break; default: application_state.light_ticks = 3; break; } } void cb_alarm_pressed(void) { switch (application_state.mode) { case MODE_SET: set_time_mode_handle_primary_button(); break; default: break; } } void cb_tick(void) { if (application_state.light_ticks > 0) { application_state.light_ticks--; } if (application_state.mode_ticks > 0) { application_state.mode_ticks--; } } void cb_fast_tick(void) { watch_date_time date_time = watch_rtc_get_date_time(); if (date_time.unit.second != application_state.last_second) { application_state.last_second = date_time.unit.second; application_state.subsecond = 0; } else { application_state.subsecond++; } }