summaryrefslogtreecommitdiffstats
path: root/movement/lib/astrolib/astrolib.c
blob: f1bacc556c23259dff23900304ff218c78ea1ea4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/*
 * Partial C port of Greg Miller's public domain astro library (gmiller@gregmiller.net) 2019
 * https://github.com/gmiller123456/astrogreg
 * 
 * Ported by Joey Castillo for Sensor Watch
 * https://github.com/joeycastillo/Sensor-Watch/
 *
 * Public Domain
 *
 * THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <math.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include "astrolib.h"
#include "vsop87a_milli.h"

double astro_convert_utc_to_tt(double jd) ;
double astro_get_GMST(double ut1);
astro_cartesian_coordinates_t astro_subtract_cartesian(astro_cartesian_coordinates_t a, astro_cartesian_coordinates_t b);
astro_cartesian_coordinates_t astro_rotate_from_vsop_to_J2000(astro_cartesian_coordinates_t c);
astro_matrix_t astro_get_x_rotation_matrix(double r);
astro_matrix_t astro_get_y_rotation_matrix(double r);
astro_matrix_t astro_get_z_rotation_matrix(double r);
astro_matrix_t astro_transpose_matrix(astro_matrix_t m);
astro_matrix_t astro_dot_product(astro_matrix_t a, astro_matrix_t b);
astro_matrix_t astro_get_precession_matrix(double jd);
astro_cartesian_coordinates_t astro_matrix_multiply(astro_cartesian_coordinates_t v, astro_matrix_t m);
astro_cartesian_coordinates_t astro_convert_geodedic_latlon_to_ITRF_XYZ(double lat, double lon, double height);
astro_cartesian_coordinates_t astro_convert_ITRF_to_GCRS(astro_cartesian_coordinates_t r, double ut1);
astro_cartesian_coordinates_t astro_convert_coordinates_from_meters_to_AU(astro_cartesian_coordinates_t c);
astro_cartesian_coordinates_t astro_get_observer_geocentric_coords(double jd, double lat, double lon);
astro_cartesian_coordinates_t astro_get_body_coordinates(astro_body_t bodyNum, double et);
astro_cartesian_coordinates_t astro_get_body_coordinates_light_time_adjusted(astro_body_t body, astro_cartesian_coordinates_t origin, double t);
astro_equatorial_coordinates_t astro_convert_cartesian_to_polar(astro_cartesian_coordinates_t xyz);

//Special "Math.floor()" function used by convertDateToJulianDate()
static double _astro_special_floor(double d) {
    if(d > 0) {
        return floor(d);
    }
    return floor(d) - 1;
}

double astro_convert_date_to_julian_date(uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t minute, uint8_t second) {
    if (month < 3){
        year = year - 1;
        month = month + 12;
    }

    double b = 0;
    if (!(year < 1582 || (year == 1582 && (month < 10 || (month == 10 && day < 5))))) {
        double a = _astro_special_floor(year / 100.0);
        b = 2 - a + _astro_special_floor(a / 4.0);
    }

    double jd = _astro_special_floor(365.25 * (year + 4716)) + _astro_special_floor(30.6001 * (month + 1)) + day + b - 1524.5;
    jd += hour / 24.0;
    jd += minute / 24.0 / 60.0;
    jd += second / 24.0 / 60.0 / 60.0;

    return jd;
}

//Return all values in radians.
//The positions are adjusted for the parallax of the Earth, and the offset of the observer from the Earth's center
//All input and output angles are in radians!
astro_equatorial_coordinates_t astro_get_ra_dec(double jd, astro_body_t body, double lat, double lon, bool calculate_precession) {
    double jdTT = astro_convert_utc_to_tt(jd);
    double t = astro_convert_jd_to_julian_millenia_since_j2000(jdTT);
    
    // Get current position of Earth and the target body
    astro_cartesian_coordinates_t earth_coords = astro_get_body_coordinates(ASTRO_BODY_EARTH, t);
    astro_cartesian_coordinates_t body_coords = astro_get_body_coordinates_light_time_adjusted(body, earth_coords, t);

    // Convert to Geocentric coordinate
    body_coords = astro_subtract_cartesian(body_coords, earth_coords);

    //Rotate ecliptic coordinates to J2000 coordinates
    body_coords = astro_rotate_from_vsop_to_J2000(body_coords);

    astro_matrix_t precession;
    // TODO: rotate body for precession, nutation and bias
    if(calculate_precession) {
        precession = astro_get_precession_matrix(jdTT);
        body_coords = astro_matrix_multiply(body_coords, precession);
    }

    //Convert to topocentric
    astro_cartesian_coordinates_t observerXYZ = astro_get_observer_geocentric_coords(jdTT, lat, lon);

    if(calculate_precession) {
        //TODO: rotate observerXYZ for precession, nutation and bias
        astro_matrix_t precessionInv = astro_transpose_matrix(precession);
        observerXYZ = astro_matrix_multiply(observerXYZ, precessionInv);
    }

    body_coords = astro_subtract_cartesian(body_coords, observerXYZ);

    //Convert to topocentric RA DEC by converting from cartesian coordinates to polar coordinates
    astro_equatorial_coordinates_t retval = astro_convert_cartesian_to_polar(body_coords);
    
    retval.declination = M_PI/2.0 - retval.declination;  //Dec.  Offset to make 0 the equator, and the poles +/-90 deg
    if(retval.right_ascension < 0) retval.right_ascension += 2*M_PI; //Ensure RA is positive
    
    return retval;
}

//Converts a Julian Date in UTC to Terrestrial Time (TT)
double astro_convert_utc_to_tt(double jd) {
    //Leap seconds are hard coded, should be updated from the IERS website for other times
    
    //TAI = UTC + leap seconds (e.g. 32)
    //TT=TAI + 32.184

    //return jd + (32.0 + 32.184) / 24.0 / 60.0 / 60.0;
    return jd + (37.0 + 32.184) / 24.0 / 60.0 / 60.0;

    /*
    https://data.iana.org/time-zones/tzdb-2018a/leap-seconds.list
    2272060800  10  # 1 Jan 1972
    2287785600  11  # 1 Jul 1972
    2303683200  12  # 1 Jan 1973
    2335219200  13  # 1 Jan 1974
    2366755200  14  # 1 Jan 1975
    2398291200  15  # 1 Jan 1976
    2429913600  16  # 1 Jan 1977
    2461449600  17  # 1 Jan 1978
    2492985600  18  # 1 Jan 1979
    2524521600  19  # 1 Jan 1980
    2571782400  20  # 1 Jul 1981
    2603318400  21  # 1 Jul 1982
    2634854400  22  # 1 Jul 1983
    2698012800  23  # 1 Jul 1985
    2776982400  24  # 1 Jan 1988
    2840140800  25  # 1 Jan 1990
    2871676800  26  # 1 Jan 1991
    2918937600  27  # 1 Jul 1992
    2950473600  28  # 1 Jul 1993
    2982009600  29  # 1 Jul 1994
    3029443200  30  # 1 Jan 1996
    3076704000  31  # 1 Jul 1997
    3124137600  32  # 1 Jan 1999
    3345062400  33  # 1 Jan 2006
    3439756800  34  # 1 Jan 2009
    3550089600  35  # 1 Jul 2012
    3644697600  36  # 1 Jul 2015
    3692217600  37  # 1 Jan 2017
    */
}

double astro_convert_jd_to_julian_millenia_since_j2000(double jd) {
    return (jd - 2451545.0) / 365250.0;
}

astro_cartesian_coordinates_t astro_subtract_cartesian(astro_cartesian_coordinates_t a, astro_cartesian_coordinates_t b) {
    astro_cartesian_coordinates_t retval;

    retval.x = a.x - b.x;
    retval.y = a.y - b.y;
    retval.z = a.z - b.z;

    return retval;
}

// Performs the rotation from ecliptic coordinates to J2000 coordinates for the given vector x
astro_cartesian_coordinates_t astro_rotate_from_vsop_to_J2000(astro_cartesian_coordinates_t c) {
    /* From VSOP87.doc
        X        +1.000000000000  +0.000000440360  -0.000000190919   X
        Y     =  -0.000000479966  +0.917482137087  -0.397776982902   Y
        Z FK5     0.000000000000  +0.397776982902  +0.917482137087   Z VSOP87A
    */
    astro_cartesian_coordinates_t t;
    t.x = c.x + c.y * 0.000000440360 + c.z * -0.000000190919;
    t.y = c.x * -0.000000479966 + c.y * 0.917482137087 + c.z * -0.397776982902;
    t.z = c.y * 0.397776982902 + c.z * 0.917482137087;

    return t;
}

double astro_get_GMST(double ut1) {
    double D = ut1 - 2451545.0;
    double T = D/36525.0;
    double gmst = fmod((280.46061837 + 360.98564736629*D + 0.000387933*T*T - T*T*T/38710000.0), 360.0);

    if(gmst<0) {
        gmst+=360;
    }

    return gmst/15;
}

static astro_matrix_t _astro_get_empty_matrix() {
    astro_matrix_t t;
    for(uint8_t i = 0; i < 3 ; i++) {
        for(uint8_t j = 0 ; j < 3 ; j++) {
            t.elements[i][j] = 0;
        }
    }
    return t;
}

//Gets a rotation matrix about the x axis.  Angle R is in radians
astro_matrix_t astro_get_x_rotation_matrix(double r) {
    astro_matrix_t t = _astro_get_empty_matrix();

    t.elements[0][0]=1;
    t.elements[0][1]=0;
    t.elements[0][2]=0;
    t.elements[1][0]=0;
    t.elements[1][1]=cos(r);
    t.elements[1][2]=sin(r);
    t.elements[2][0]=0;
    t.elements[2][1]=-sin(r);
    t.elements[2][2]=cos(r);

    return t;
}

//Gets a rotation matrix about the y axis.  Angle R is in radians
astro_matrix_t astro_get_y_rotation_matrix(double r) {
    astro_matrix_t t = _astro_get_empty_matrix();

    t.elements[0][0]=cos(r);
    t.elements[0][1]=0;
    t.elements[0][2]=-sin(r);
    t.elements[1][0]=0;
    t.elements[1][1]=1;
    t.elements[1][2]=0;
    t.elements[2][0]=sin(r);
    t.elements[2][1]=0;
    t.elements[2][2]=cos(r);

    return t;
}

//Gets a rotation matrix about the z axis.  Angle R is in radians
astro_matrix_t astro_get_z_rotation_matrix(double r) {
    astro_matrix_t t = _astro_get_empty_matrix();

    t.elements[0][0]=cos(r);
    t.elements[0][1]=sin(r);
    t.elements[0][2]=0;
    t.elements[1][0]=-sin(r);
    t.elements[1][1]=cos(r);
    t.elements[1][2]=0;
    t.elements[2][0]=0;
    t.elements[2][1]=0;
    t.elements[2][2]=1;

    return t;
}

void astro_print_matrix(char * title, astro_matrix_t matrix);
void astro_print_matrix(char * title, astro_matrix_t matrix) {
    printf("%s\n", title);
    for(uint8_t i = 0; i < 3 ; i++) {
        printf("\t");
        for(uint8_t j = 0 ; j < 3 ; j++) {
            printf("%12f", matrix.elements[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

astro_matrix_t astro_dot_product(astro_matrix_t a, astro_matrix_t b) {
    astro_matrix_t retval;

    for(uint8_t i = 0; i < 3 ; i++) {
        for(uint8_t j = 0 ; j < 3 ; j++) {
            double temp = 0;
            for(uint8_t k = 0; k < 3 ; k++) {
                temp += a.elements[i][k] * b.elements[k][j];
            }
            retval.elements[i][j]=temp;
        }
    }

    return retval;
}

astro_matrix_t astro_transpose_matrix(astro_matrix_t m) {
    astro_matrix_t retval;
    for(uint8_t i = 0; i < 3 ; i++) {
        for(uint8_t j = 0 ; j < 3 ; j++) {
            retval.elements[i][j] = m.elements[j][i];
        }
    }
    return retval;
}

astro_matrix_t astro_get_precession_matrix(double jd) {
    //2006 IAU Precession.  Implemented from IERS Technical Note No 36 ch5.
    //https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36_043.pdf?__blob=publicationFile&v=1

    double t = (jd - 2451545.0) / 36525.0;  //5.2
    const double Arcsec2Radians = M_PI/180.0/60.0/60.0; //Converts arc seconds used in equations below to radians

    double e0 = 84381.406 * Arcsec2Radians; //5.6.4
    double omegaA = e0 + ((-0.025754 + (0.0512623 +	(-0.00772503 + (-0.000000467 + 0.0000003337*t) * t) * t) * t) * t) * Arcsec2Radians; //5.39
    double psiA = ((5038.481507 +	(-1.0790069 + (-0.00114045 + (0.000132851 - 0.0000000951*t) * t) * t) * t) * t) * Arcsec2Radians; //5.39
    double chiA = ((10.556403 + (-2.3814292 + (-0.00121197 + (0.000170663 - 0.0000000560*t) * t) * t) * t) * t) * Arcsec2Radians; //5.40
    //Rotation matrix from 5.4.5
    //(R1(−e0) · R3(psiA) · R1(omegaA) · R3(−chiA))
    //Above eq rotates from "of date" to J2000, so we reverse the signs to go from J2000 to "of date"
    astro_matrix_t m1 = astro_get_x_rotation_matrix(e0);
    astro_matrix_t m2 = astro_get_z_rotation_matrix(-psiA);
    astro_matrix_t m3 = astro_get_x_rotation_matrix(-omegaA);
    astro_matrix_t m4 = astro_get_z_rotation_matrix(chiA);

    astro_matrix_t m5 = astro_dot_product(m4, m3);
    astro_matrix_t m6 = astro_dot_product(m5, m2);
    astro_matrix_t precessionMatrix = astro_dot_product(m6, m1);

    return precessionMatrix;
}

astro_cartesian_coordinates_t astro_matrix_multiply(astro_cartesian_coordinates_t v, astro_matrix_t m) {
    astro_cartesian_coordinates_t t;

    t.x = v.x*m.elements[0][0] + v.y*m.elements[0][1] + v.z*m.elements[0][2];
    t.y = v.x*m.elements[1][0] + v.y*m.elements[1][1] + v.z*m.elements[1][2];
    t.z = v.x*m.elements[2][0] + v.y*m.elements[2][1] + v.z*m.elements[2][2];

    return t;
}

//Converts cartesian XYZ coordinates to polar (e.g. J2000 xyz to Right Accention and Declication)
astro_equatorial_coordinates_t astro_convert_cartesian_to_polar(astro_cartesian_coordinates_t xyz) {
    astro_equatorial_coordinates_t t;

    t.distance = sqrt(xyz.x * xyz.x + xyz.y * xyz.y + xyz.z * xyz.z);
    t.declination = acos(xyz.z / t.distance);
    t.right_ascension = atan2(xyz.y, xyz.x);

    if(t.declination < 0) t.declination += 2 * M_PI;

    if(t.right_ascension < 0) t.right_ascension += 2 * M_PI;

    return t;
}

//Convert Geodedic Lat Lon to geocentric XYZ position vector
//All angles are input as radians
astro_cartesian_coordinates_t astro_convert_geodedic_latlon_to_ITRF_XYZ(double lat, double lon, double height) {
    //Algorithm from Explanatory Supplement to the Astronomical Almanac 3rd ed. P294
    const double a = 6378136.6;
    const double f = 1 / 298.25642;

    const double C = sqrt(((cos(lat)*cos(lat)) + (1.0-f)*(1.0-f) * (sin(lat)*sin(lat))));

    const double S = (1-f)*(1-f)*C;
    
    double h = height;

    astro_cartesian_coordinates_t r;
    r.x = (a*C+h) * cos(lat) * cos(lon);
    r.y = (a*C+h) * cos(lat) * sin(lon);
    r.z = (a*S+h) * sin(lat);
    
    return r;
}

//Convert position vector to celestial "of date" system.
//g(t)=R3(-GAST) r
//(Remember to use UT1 for GAST, not ET)
//All angles are input and output as radians
astro_cartesian_coordinates_t astro_convert_ITRF_to_GCRS(astro_cartesian_coordinates_t r, double ut1) {
    //This is a simple rotation matrix implemenation about the Z axis, rotation angle is -GMST

    double GMST = astro_get_GMST(ut1);
    GMST =- GMST * 15.0 * M_PI / 180.0;

    astro_matrix_t m = astro_get_z_rotation_matrix(GMST);
    astro_cartesian_coordinates_t t = astro_matrix_multiply(r, m);

    return t;
}

astro_cartesian_coordinates_t astro_convert_coordinates_from_meters_to_AU(astro_cartesian_coordinates_t c) {
    astro_cartesian_coordinates_t t;
    
    t.x = c.x / 1.49597870691E+11;
    t.y = c.y / 1.49597870691E+11;
    t.z = c.z / 1.49597870691E+11;
    
    return t;
}

astro_cartesian_coordinates_t astro_get_observer_geocentric_coords(double jd, double lat, double lon) {
    astro_cartesian_coordinates_t r = astro_convert_geodedic_latlon_to_ITRF_XYZ(lat, lon,0);
    r = astro_convert_ITRF_to_GCRS(r, jd);
    r = astro_convert_coordinates_from_meters_to_AU(r);
    
    return r;
}

//Returns a body's cartesian coordinates centered on the Sun.
//Requires vsop87a_milli_js, if you wish to use a different version of VSOP87, replace the class name vsop87a_milli below
astro_cartesian_coordinates_t astro_get_body_coordinates(astro_body_t body, double et) {
    astro_cartesian_coordinates_t retval = {0};
    double coords[3];
    switch(body) {
        case ASTRO_BODY_SUN: 
            return retval; //Sun is at the center for vsop87a
        case ASTRO_BODY_MERCURY:
             vsop87a_milli_getMercury(et, coords);
             break;
        case ASTRO_BODY_VENUS:
             vsop87a_milli_getVenus(et, coords);
             break;
        case ASTRO_BODY_EARTH:
             vsop87a_milli_getEarth(et, coords);
             break;
        case ASTRO_BODY_MARS:
             vsop87a_milli_getMars(et, coords);
             break;
        case ASTRO_BODY_JUPITER:
             vsop87a_milli_getJupiter(et, coords);
             break;
        case ASTRO_BODY_SATURN:
             vsop87a_milli_getSaturn(et, coords);
             break;
        case ASTRO_BODY_URANUS:
             vsop87a_milli_getUranus(et, coords);
             break;
        case ASTRO_BODY_NEPTUNE:
             vsop87a_milli_getNeptune(et, coords);
             break;
        case ASTRO_BODY_EMB:
             vsop87a_milli_getEmb(et, coords);
             break;
        case ASTRO_BODY_MOON:
            {
                double earth_coords[3];
                double emb_coords[3];
                vsop87a_milli_getEarth(et, earth_coords);
                vsop87a_milli_getEmb(et, emb_coords);
                vsop87a_milli_getMoon(earth_coords, emb_coords, coords);
            }
             break;
    }

    retval.x = coords[0];
    retval.y = coords[1];
    retval.z = coords[2];

    return retval;
}

astro_cartesian_coordinates_t astro_get_body_coordinates_light_time_adjusted(astro_body_t body, astro_cartesian_coordinates_t origin, double t) {
    //Get current position of body
    astro_cartesian_coordinates_t body_coords = astro_get_body_coordinates(body, t);

    double newT = t;

    for(uint8_t i = 0 ; i < 2 ; i++) {
        //Calculate light time to body
        body_coords = astro_subtract_cartesian(body_coords, origin);
        double distance = sqrt(body_coords.x*body_coords.x + body_coords.y*body_coords.y + body_coords.z*body_coords.z);
        distance *= 1.496e+11; //Convert from AU to meters
        double lightTime = distance / 299792458.0;

        //Convert light time to Julian Millenia, and subtract it from the original value of t
        newT -= lightTime / 24.0 / 60.0 / 60.0 / 365250.0;  
        //Recalculate body position adjusted for light time
        body_coords = astro_get_body_coordinates(body, newT);
    }

    return body_coords;
}

astro_horizontal_coordinates_t astro_ra_dec_to_alt_az(double jd, double lat, double lon, double ra, double dec) {
    double GMST = astro_get_GMST(jd) * M_PI/180.0 * 15.0;
    double h = GMST + lon - ra;

    double sina = sin(dec)*sin(lat) + cos(dec)*cos(h)*cos(lat);
    double a = asin(sina);

    double cosAz = (sin(dec)*cos(lat) - cos(dec)*cos(h)*sin(lat)) / cos(a);
    double Az = acos(cosAz);

    if(sin(h) > 0) Az = 2.0*M_PI - Az;

    astro_horizontal_coordinates_t retval;
    retval.altitude = a;
    retval.azimuth = Az;

    return retval;
}

double astro_degrees_to_radians(double degrees) {
    return degrees * M_PI / 180;
}

double astro_radians_to_degrees(double radians) {
    return radians * 180.0 / M_PI;
}

astro_angle_dms_t astro_radians_to_dms(double radians) {
    astro_angle_dms_t retval;
    int8_t sign = (radians < 0) ? -1 : 1;
    double degrees = fabs(astro_radians_to_degrees(radians));

    retval.degrees = (uint16_t)degrees;
    double temp = 60.0 * (degrees - retval.degrees);
    retval.minutes = (uint8_t)temp;
    retval.seconds = (uint8_t)round(60.0 * (temp - retval.minutes));

    if (retval.seconds > 59) {
        retval.seconds = 0.0;
        retval.minutes++;
    }

    if (retval.minutes > 59) {
        retval.minutes = 0;
        retval.degrees++;
    }

    degrees *= sign;

    return retval;
}

astro_angle_hms_t astro_radians_to_hms(double radians) {
    astro_angle_hms_t retval;
    double degrees = astro_radians_to_degrees(radians);
    double temp = degrees / 15.0;

    retval.hours = (uint8_t)temp;
    temp = 60.0 * (temp - retval.hours);
    retval.minutes = (uint8_t)temp;
    retval.seconds = (uint8_t)round(60.0 * (temp - retval.minutes));

    if (retval.seconds > 59) {
        retval.seconds = 0;
        retval.minutes++;
    }

    if (retval.minutes > 59) {
        retval.minutes = 0;
        retval.hours++;
    }

    return retval;
}