summaryrefslogtreecommitdiffstats
path: root/movement/watch_faces/complication/astronomy_face.c
blob: 204a0a3a70509c84ed3503671ac322ab3efebae6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 * MIT License
 *
 * Copyright (c) 2022 Joey Castillo
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "astronomy_face.h"
#include "watch_utility.h"

#if __EMSCRIPTEN__
#include <emscripten.h>
#endif

#define NUM_AVAILABLE_BODIES 9

static const char astronomy_available_celestial_bodies[NUM_AVAILABLE_BODIES] = {
    ASTRO_BODY_SUN,
    ASTRO_BODY_MERCURY,
    ASTRO_BODY_VENUS,
    ASTRO_BODY_MOON,
    ASTRO_BODY_MARS,
    ASTRO_BODY_JUPITER,
    ASTRO_BODY_SATURN,
    ASTRO_BODY_URANUS,
    ASTRO_BODY_NEPTUNE
};

static const char astronomy_celestial_body_names[NUM_AVAILABLE_BODIES][3] = {
    "SO",   // Sol
    "ME",   // Mercury
    "VE",   // Venus
    "LU",   // Moon (Luna)
    "MA",   // Mars
    "JU",   // Jupiter
    "SA",   // Saturn
    "UR",   // Uranus
    "NE"    // Neptune
};

static void _astronomy_face_recalculate(movement_settings_t *settings, astronomy_state_t *state) {
#if __EMSCRIPTEN__
    int16_t browser_lat = EM_ASM_INT({
        return lat;
    });
    int16_t browser_lon = EM_ASM_INT({
        return lon;
    });
    if ((watch_get_backup_data(1) == 0) && (browser_lat || browser_lon)) {
        movement_location_t browser_loc;
        browser_loc.bit.latitude = browser_lat;
        browser_loc.bit.longitude = browser_lon;
        watch_store_backup_data(browser_loc.reg, 1);
        double lat = (double)browser_lat / 100.0;
        double lon = (double)browser_lon / 100.0;
        state->latitude_radians = astro_degrees_to_radians(lat);
        state->longitude_radians = astro_degrees_to_radians(lon);
    }
#endif

    watch_date_time date_time = watch_rtc_get_date_time();
    uint32_t timestamp = watch_utility_date_time_to_unix_time(date_time, movement_timezone_offsets[settings->bit.time_zone] * 60);
    date_time = watch_utility_date_time_from_unix_time(timestamp, 0);
    double jd = astro_convert_date_to_julian_date(date_time.unit.year + WATCH_RTC_REFERENCE_YEAR, date_time.unit.month, date_time.unit.day, date_time.unit.hour, date_time.unit.minute, date_time.unit.second);

    astro_equatorial_coordinates_t radec_precession = astro_get_ra_dec(jd, astronomy_available_celestial_bodies[state->active_body_index], state->latitude_radians, state->longitude_radians, true);
    printf("\nParams to convert: %f %f %f %f %f\n",
            jd,
            astro_radians_to_degrees(state->latitude_radians),
            astro_radians_to_degrees(state->longitude_radians),
            astro_radians_to_degrees(radec_precession.right_ascension),
            astro_radians_to_degrees(radec_precession.declination));

    astro_horizontal_coordinates_t horiz = astro_ra_dec_to_alt_az(jd, state->latitude_radians, state->longitude_radians, radec_precession.right_ascension, radec_precession.declination);
    astro_equatorial_coordinates_t radec = astro_get_ra_dec(jd, astronomy_available_celestial_bodies[state->active_body_index], state->latitude_radians, state->longitude_radians, false);
    state->altitude = astro_radians_to_degrees(horiz.altitude);
    state->azimuth = astro_radians_to_degrees(horiz.azimuth);
    state->right_ascension = astro_radians_to_hms(radec.right_ascension);
    state->declination = astro_radians_to_dms(radec.declination);
    state->distance = radec.distance;

    printf("Calculated coordinates for %s on %f: \n\tRA  = %f / %2dh %2dm %2ds\n\tDec = %f / %3d° %3d' %3d\"\n\tAzi = %f\n\tAlt = %f\n\tDst = %f AU\n",
            astronomy_celestial_body_names[state->active_body_index],
            jd,
            astro_radians_to_degrees(radec.right_ascension),
            state->right_ascension.hours,
            state->right_ascension.minutes,
            state->right_ascension.seconds,
            astro_radians_to_degrees(radec.declination),
            state->declination.degrees,
            state->declination.minutes,
            state->declination.seconds,
            state->altitude,
            state->azimuth,
            state->distance);
}

static void _astronomy_face_update(movement_event_t event, movement_settings_t *settings, astronomy_state_t *state) {
    char buf[16];
    switch (state->mode) {
        case ASTRONOMY_MODE_SELECTING_BODY:
            watch_clear_colon();
            watch_display_string(" Astro", 4);
            if (event.subsecond % 2) {
                watch_display_string((char *)astronomy_celestial_body_names[state->active_body_index], 0);
            } else {
                watch_display_string("  ", 0);
            }
            if (event.subsecond == 0) {
                watch_display_string("  ", 2);
                switch (state->animation_state) {
                    case 0:
                        watch_set_pixel(0, 7);
                        watch_set_pixel(2, 6);
                        break;
                    case 1:
                        watch_set_pixel(1, 7);
                        watch_set_pixel(2, 9);
                        break;
                    case 2:
                        watch_set_pixel(2, 7);
                        watch_set_pixel(0, 9);
                        break;
                }
                state->animation_state = (state->animation_state + 1) % 3;
            }
            break;
        case ASTRONOMY_MODE_CALCULATING:
            watch_clear_display();
             // this takes a moment and locks the UI, flash C for "Calculating"
            watch_start_character_blink('C', 100);
            _astronomy_face_recalculate(settings, state);
            watch_stop_blink();
            state->mode = ASTRONOMY_MODE_DISPLAYING_ALT;
            // fall through
        case ASTRONOMY_MODE_DISPLAYING_ALT:
            sprintf(buf, "%saL%6d", astronomy_celestial_body_names[state->active_body_index], (int16_t)round(state->altitude * 100));
            watch_display_string(buf, 0);
            break;
        case ASTRONOMY_MODE_DISPLAYING_AZI:
            sprintf(buf, "%saZ%6d", astronomy_celestial_body_names[state->active_body_index], (int16_t)round(state->azimuth * 100));
            watch_display_string(buf, 0);
            break;
        case ASTRONOMY_MODE_DISPLAYING_RA:
            watch_set_colon();
            sprintf(buf, "ra H%02d%02d%02d", state->right_ascension.hours, state->right_ascension.minutes, state->right_ascension.seconds);
            watch_display_string(buf, 0);
            break;
        case ASTRONOMY_MODE_DISPLAYING_DEC:
            watch_clear_colon();
            sprintf(buf, "de %3d%2d%2d", state->declination.degrees, state->declination.minutes, state->declination.seconds);
            watch_display_string(buf, 0);
            break;
        case ASTRONOMY_MODE_DISPLAYING_DIST:
            if (state->distance >= 0.00668456) {
                // if >= 1,000,000 kilometers (all planets), we display distance in AU.
                sprintf(buf, "diAU%6d", (uint16_t)round(state->distance * 100));
            } else {
                // otherwise distance in kilometers fits in 6 digits. This mode will only happen for Luna.
                sprintf(buf, "di K%6ld", (uint32_t)round(state->distance * 149597871.0));
            }
            watch_display_string(buf, 0);
            break;
        case ASTRONOMY_MODE_NUM_MODES:
            // this case does not happen, but we need it to silence a warning.
            break;
    }
}

void astronomy_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
    (void) settings;
    (void) watch_face_index;
    if (*context_ptr == NULL) {
        *context_ptr = malloc(sizeof(astronomy_state_t));
        memset(*context_ptr, 0, sizeof(astronomy_state_t));
    }
}

void astronomy_face_activate(movement_settings_t *settings, void *context) {
    (void) settings;
    astronomy_state_t *state = (astronomy_state_t *)context;
    movement_location_t movement_location = (movement_location_t) watch_get_backup_data(1);
    int16_t lat_centi = (int16_t)movement_location.bit.latitude;
    int16_t lon_centi = (int16_t)movement_location.bit.longitude;
    double lat = (double)lat_centi / 100.0;
    double lon = (double)lon_centi / 100.0;
    state->latitude_radians = astro_degrees_to_radians(lat);
    state->longitude_radians = astro_degrees_to_radians(lon);

    movement_request_tick_frequency(4);
}

bool astronomy_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
    astronomy_state_t *state = (astronomy_state_t *)context;

    switch (event.event_type) {
        case EVENT_ACTIVATE:
        case EVENT_TICK:
            _astronomy_face_update(event, settings, state);
            break;
        case EVENT_ALARM_BUTTON_UP:
            switch (state->mode) {
                case ASTRONOMY_MODE_SELECTING_BODY:
                    // advance to next celestial body (move to calculations with a long press)
                    state->active_body_index = (state->active_body_index + 1) % NUM_AVAILABLE_BODIES;
                    break;
                case ASTRONOMY_MODE_CALCULATING:
                    // ignore button press during calculations
                    break;
                case ASTRONOMY_MODE_DISPLAYING_DIST:
                    // at last mode, wrap around
                    state->mode = ASTRONOMY_MODE_DISPLAYING_ALT;
                    break;
                default:
                    // otherwise, advance to next mode
                    state->mode++;
                    break;
            }
            _astronomy_face_update(event, settings, state);
            break;
        case EVENT_ALARM_LONG_PRESS:
            if (state->mode == ASTRONOMY_MODE_SELECTING_BODY) {
                // celestial body selected! this triggers a calculation in the update method.
                state->mode = ASTRONOMY_MODE_CALCULATING;
                movement_request_tick_frequency(1);
                _astronomy_face_update(event, settings, state);
            } else if (state->mode != ASTRONOMY_MODE_CALCULATING) {
                // in all modes except "doing a calculation", return to the selection screen.
                state->mode = ASTRONOMY_MODE_SELECTING_BODY;
                movement_request_tick_frequency(4);
            _astronomy_face_update(event, settings, state);
            }
            break;
        case EVENT_TIMEOUT:
            movement_move_to_face(0);
            break;
        case EVENT_LOW_ENERGY_UPDATE:
            // TODO?
            break;
        default:
            movement_default_loop_handler(event, settings);
            break;
    }

    return true;
}

void astronomy_face_resign(movement_settings_t *settings, void *context) {
    (void) settings;
    astronomy_state_t *state = (astronomy_state_t *)context;
    state->mode = ASTRONOMY_MODE_SELECTING_BODY;
}