summaryrefslogtreecommitdiffstats
path: root/movement/watch_faces/complication/rpn_calculator_alt_face.c
blob: bfbce9023804f3acec6c90d48495bc091d704a7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 * MIT License
 *
 * Copyright (c) 2022 James Haggerty
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/* RPN Calculator alternate face.
 *
 * Operations appear in the 'day' section; ALARM changes between operations when operation is flashing.
 * LIGHT executes current operation.
 *
 * This is the alternate face because it has a non-traditional number entry system which
 * I call 'guess a number'. In number entry mode, the watch tries to guess which number you
 * want, and you respond with 'smaller' (left - MODE) or larger (right - ALARM). This means
 * that when you _are_ entering a number, MODE will no longer move between faces!
 *
 * Example of entering the number 27
 *  - select the NO operation (probably unnecessary, as this is the default),
 *    and execute it by hitting LIGHT.
 *  - you are now in number entry mode; you know this because nothing is flashing.
 *  - Watch displays 10; you hit ALARM to say you want a larger number.
 *  - Watch displays 100; you hit MODE to say you want a smaller number.
 *  - Continuing: 50 -> MODE -> 30 -> MODE -> 20 -> ALARM -> 27
 *  - Hit LIGHT to add the number to the stack (and now 'NO' is flashing
 *    again, indicating you're back in operation selection mode).
 *
 * One other thing to watch out for is how quickly it will switch into scientific notation
 * due to the limitations of the display when you have large numbers or non-integer values.
 * In this mode, the 'colon' serves at the decimal point, and the numbers in the top right
 * are the exponent.
 *
 * As with the main movement firmware, this has the concept of 'secondary' functions which
 * you can jump to by a long hold of ALARM on NO. These are functions to do with stack
 * manipulation (pop, swap, dupe, clear, size (le)). If you're _not_ on NO, a long
 * hold will take you back to it.
 *
 * See 'functions' below for names of all operations.
 */

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "rpn_calculator_alt_face.h"

static void show_fn(calculator_state_t *state, uint8_t subsecond);

void rpn_calculator_alt_face_setup(movement_settings_t *settings, uint8_t watch_face_index, void ** context_ptr) {
    (void) settings;
    (void) watch_face_index;

    if (*context_ptr == NULL) {
        *context_ptr = malloc(sizeof(calculator_state_t));
        memset(*context_ptr, 0, sizeof(calculator_state_t));
        // Do any one-time tasks in here; the inside of this conditional happens only at boot.
    }
    // Do any pin or peripheral setup here; this will be called whenever the watch wakes from deep sleep.
}

static void show_number(double num) {
    char buf[9] = {0};
    bool negative = num < 0;
    int max_digits = negative ? 5 : 6;

    // Add back in for debugging...
    // printf("%f\n", num);

    if (isnan(num)) {
        watch_clear_colon();
        watch_display_string("  nan   ", 2);
        return;
    }

    if (negative) {
        num = -num;
    }

    // Can we reasonably represent this number without a decimal point?
    if (num == 0 || (num >= 0.5 && fabs(num - (int)num) < 0.0001)) {
        if (floor(log10(num)) + 1 <= max_digits) {
            if (negative) {
                sprintf(buf, "  -%-5d", (int)round(num));
            } else {
                sprintf(buf, "  %-6d", (int)round(num));
            }
            watch_clear_colon();
            watch_display_string(buf, 2);
            return;
        }
    }

    // Is this a floating point number where scientific
    // notation won't get us much? (i.e. between 0.1 and 1)
    if (num < 1 && num >= 0.0999) {
        // Display as boring floating point number... (e.g. 0.25)
        int digits = (int)round(num * 10000);
        sprintf(buf, "   0%04d", digits);
        if (negative) {
            buf[2 ] = '-';
        }
        watch_set_colon();
        watch_display_string(buf, 2);
        return;
    }

    // Fall back to scientific notation

    // Calculate exponent
    int exponent = 0;
    while (num < 1) {
        num *= 10;
        --exponent;
    }

    while (num >= 10) {
        num /= 10;
        ++exponent;
    }

    if (exponent < -9) {
        sprintf(buf, "  small ");
        watch_clear_colon();
        watch_display_string(buf, 2);
        return;
    }

    if (exponent > 39) {
        sprintf(buf, "   big  ");
        watch_clear_colon();
        watch_display_string(buf, 2);
        return;
    }

    sprintf(buf, "%2d%c%05d", exponent, negative ? '-' : ' ', (int)round(num * 10000));
    watch_set_colon();
    watch_display_string(buf, 2);
}

#define C (s->stack[s->stack_size - 1])
#define PUSH(x) (s->stack[++s->stack_size - 1] = x)
#define POP() (s->stack[s->stack_size-- - 1])

void rpn_calculator_alt_face_activate(movement_settings_t *settings, void *context) {
    (void) settings;
    calculator_state_t *s = (calculator_state_t *)context;
    s->min = s->max = NAN;
}

static void change_mode(calculator_state_t *s, enum calculator_mode mode) {
    s->mode = mode;
    s->fn_index = 0;
    show_fn(s, 0);
    // Faster tick in operation mode so we can blink.
    movement_request_tick_frequency(mode == CALC_OPERATION ? 4 : 1);
}

// Binary-ish search to find the right number. direction is +1 if it should be bigger, -1 if it should be smaller.
static void adjust_number(calculator_state_t *s, int direction) {
    if (direction > 0) {
        s->min = C;
    } else {
        s->max = C;
    }

    // If the direction we want to go has no bound (i.e. isnan),
    // then first get the sign right (moving to 0, then +-10), and
    // after than go up by *10.
    if (isnan(direction > 0 ? s->max : s->min)) {
        if (direction * C < 0) {
            C = 0;
        } else if (C == 0) {
            C = direction * 10;
        } else {
            C *= 10;
        }
    } else {
        // We have a higher and lower bound. Split them.
        C = (s->max + s->min) / 2;
        // Subtract 0.1 so we don't apply most significant rounding to things that are _exactly_ 1/10/100 apart.
        double mag = log10(fabs(s->max - s->min)) - 0.1;
        if (mag > 0.0) {
            // i.e. the different is >= 2, which means we want to round aggressively
            // to not show people complicated looking numbers.
            // e.g. this takes a number like 3.2 to 3, or a number like 464 to 500
            // (depending on how fine-grained 'mag' tells us to be).
            float div = pow(10, floor(mag));
            int sign = C < 0 ? -1 : 1;
            C = sign * floor(fabs(C) / div) * div;
        }
    }
}

static void fn_number(calculator_state_t *s) {
    PUSH(10);
    s->min = s->max = NAN;
    change_mode(s, CALC_NUMBER);
}

static void fn_add(calculator_state_t *s) {
    double a = POP();
    double b = POP();
    PUSH(a + b);
}

static void fn_sub(calculator_state_t *s) {
    double a = POP();
    double b = POP();
    PUSH(b - a);
}

static void fn_mul(calculator_state_t *s) {
    double a = POP();
    double b = POP();
    PUSH(a * b);
}

static void fn_div(calculator_state_t *s) {
    double a = POP();
    double b = POP();
    PUSH(b / a);
}

static void fn_pow(calculator_state_t *s) {
    double a = POP();
    double b = POP();
    PUSH(pow(b, a));
}

static void fn_sqrt(calculator_state_t *s) {
    double x = POP();
    PUSH(sqrt(x));
}

static void fn_log(calculator_state_t *s) {
    double x = POP();
    PUSH(log(x));
}

static void fn_log10(calculator_state_t *s) {
    double x = POP();
    PUSH(log10(x));
}

static void fn_e(calculator_state_t *s) {
    PUSH(M_E);
}

static void fn_sin(calculator_state_t *s) {
    double x = POP();
    PUSH(sin(x));
}

static void fn_cos(calculator_state_t *s) {
    double x = POP();
    PUSH(cos(x));
}

static void fn_tan(calculator_state_t *s) {
    double x = POP();
    PUSH(tan(x));
}

static void fn_pi(calculator_state_t *s) {
    PUSH(M_PI);
}

static void fn_pop(calculator_state_t *s) {
    --s->stack_size;
}

static void fn_swap(calculator_state_t *s) {
    double a = POP();
    double b = POP();
    PUSH(a);
    PUSH(b);
}

static void fn_duplicate(calculator_state_t *s) {
    double a = POP();
    PUSH(a);
    PUSH(a);
}

static void fn_clear(calculator_state_t *s) {
    s->stack_size = 0;
}

static void fn_size(calculator_state_t *s) {
    double a = s->stack_size;
    PUSH(a);
}

struct {
    char name[2];
    uint8_t input;
    uint8_t output;
    void (*func)(calculator_state_t *);
} functions[] = {
    {{'n', 'o'}, 0, 1, fn_number},
    {{'*', ' '}, 2, 1, fn_add},  // First position * actually looks like a '+'.
    {{'-', ' '}, 2, 1, fn_sub},
    {{'H', ' '}, 2, 1, fn_mul},  // For actual *, we throw in the middle vertical segment onto the H.
    {{'/', ' '}, 2, 1, fn_div},  // There's also some minor hackery on '/'.
    {{'P', 'o'}, 2, 1, fn_pow},
    {{'S', 'r'}, 1, 1, fn_sqrt},
    {{'L', 'n'}, 1, 1, fn_log},
    {{'L', 'o'}, 1, 1, fn_log10},
    {{'e', ' '}, 0, 1, fn_e},
    {{'P', 'i'}, 0, 1, fn_pi},
    {{'C', 'o'}, 1, 1, fn_cos},
    {{'S', 'i'}, 1, 1, fn_sin},
    {{'T', 'a'}, 1, 1, fn_tan},
    // Stack operations. Accessible via secondary_fn_index (i.e. alarm long press).
    {{'P', 'O'}, 1, 0, fn_pop},  // This ends up displaying the same as 'POW'. But at least it's in a different place.
    {{'S', 'W'}, 2, 2, fn_swap},
    {{'d', 'u'}, 1, 1, fn_duplicate},  // Uppercase 'D' is a bit too 'O' for me.
    {{'C', 'L'}, 1, 0, fn_clear},  // Operation lie - takes _everything_ off the stack, but a check of 1 is sufficient.
    {{'L', 'E'}, 1, 0, fn_size},
};

#define FUNCTIONS_LEN (sizeof(functions) / sizeof(functions[0]))
#define SECONDARY_FN_INDEX (FUNCTIONS_LEN - 4)

// Show the function name (using day display)
static void show_fn(calculator_state_t *s, uint8_t subsecond) {
    if (subsecond % 2) {
        // blink
        watch_display_string("  ", 0);
        return;
    }

    char *name = functions[s->fn_index].name;
    char buf[3] = {name[0], name[1], '\0'};
    watch_display_string(buf, 0);
    // The first position has a bunch of segments, and I have minor
    // disagreements with the character set choices in watch_display_string,
    // so we tweak a little here.
    switch (buf[0]) {
        case 'H':
            // Use the middle segment lines to make our 'H' a '*'-ish thing.
            watch_set_pixel(1, 14);
            break;
        case '/':
            // Add a middle bar to division.
            watch_set_pixel(1, 15);
            break;
        default:
            break;
    }
}

// Show the top of the stack (using everything except day display).
static void show_stack_top(calculator_state_t *s) {
    if (s->stack_size > 0) {
        show_number(C);
    } else {
        watch_display_string("  ------", 2);
        watch_clear_colon();
    }
}

bool rpn_calculator_alt_face_loop(movement_event_t event, movement_settings_t *settings, void *context) {
    calculator_state_t *s = (calculator_state_t *)context;
    (void) settings;

    int proposed_stack_size;

    switch (event.event_type) {
        case EVENT_ACTIVATE:
            change_mode(s, CALC_OPERATION);
            show_stack_top(s);
            break;
        case EVENT_TICK:
            if (s->mode == CALC_OPERATION) {
                show_fn(s, event.subsecond);
            }
            break;
        case EVENT_MODE_BUTTON_UP:
            if (s->mode == CALC_NUMBER) {
                adjust_number(s, -1);
                show_stack_top(s);
            } else {
                movement_move_to_next_face();
                return false;
            }
            break;
        case EVENT_LIGHT_BUTTON_UP:
            proposed_stack_size = s->stack_size - functions[s->fn_index].input;

            if (s->mode == CALC_NUMBER) {
                change_mode(s, CALC_OPERATION);
            } else if (proposed_stack_size < 0 || proposed_stack_size + functions[s->fn_index].output > CALC_MAX_STACK_SIZE) {
                movement_play_signal();
                break;
            } else {
                functions[s->fn_index].func(s);
                show_stack_top(s);
                s->fn_index = 0;
                show_fn(s, 0);
            }

            break;
        case EVENT_ALARM_BUTTON_UP:
            if (s->mode == CALC_NUMBER) {
                adjust_number(s, 1);
                show_stack_top(s);
            } else {
                s->fn_index = (s->fn_index + 1) % FUNCTIONS_LEN;
                show_fn(s, 0);
            }
            break;
        case EVENT_ALARM_LONG_PRESS:
            if (s->mode == CALC_OPERATION) {
                if (s->fn_index == 0) {
                    s->fn_index = SECONDARY_FN_INDEX;
                } else {
                    s->fn_index = 0;
                }
                show_fn(s, 0);
            }
            break;
        case EVENT_TIMEOUT:
            movement_move_to_face(0);
            break;
        case EVENT_LOW_ENERGY_UPDATE:
        default:
            break;
    }

    // return true if the watch can enter standby mode. If you are PWM'ing an LED or buzzing the buzzer here,
    // you should return false since the PWM driver does not operate in standby mode.
    return true;
}

void rpn_calculator_alt_face_resign(movement_settings_t *settings, void *context) {
    (void) settings;
    (void) context;

    // handle any cleanup before your watch face goes off-screen.
}