summaryrefslogtreecommitdiffstats
path: root/tinyusb/src/portable/raspberrypi/rp2040/hcd_rp2040.c
blob: e51dfac2b7cdf4bef188ccbc1ee446ba997b1b2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 * Copyright (c) 2021 Ha Thach (tinyusb.org) for Double Buffered
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * This file is part of the TinyUSB stack.
 */

#include "tusb_option.h"

#if TUSB_OPT_HOST_ENABLED && CFG_TUSB_MCU == OPT_MCU_RP2040

#include "pico.h"
#include "rp2040_usb.h"

//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "osal/osal.h"

#include "host/hcd.h"
#include "host/usbh.h"

#define ROOT_PORT 0

//--------------------------------------------------------------------+
// Low level rp2040 controller functions
//--------------------------------------------------------------------+

#ifndef PICO_USB_HOST_INTERRUPT_ENDPOINTS
#define PICO_USB_HOST_INTERRUPT_ENDPOINTS (USB_MAX_ENDPOINTS - 1)
#endif
static_assert(PICO_USB_HOST_INTERRUPT_ENDPOINTS <= USB_MAX_ENDPOINTS, "");

// Host mode uses one shared endpoint register for non-interrupt endpoint
static struct hw_endpoint ep_pool[1 + PICO_USB_HOST_INTERRUPT_ENDPOINTS];
#define epx (ep_pool[0])

#define usb_hw_set   hw_set_alias(usb_hw)
#define usb_hw_clear hw_clear_alias(usb_hw)

// Flags we set by default in sie_ctrl (we add other bits on top)
enum {
  SIE_CTRL_BASE = USB_SIE_CTRL_SOF_EN_BITS      | USB_SIE_CTRL_KEEP_ALIVE_EN_BITS |
                  USB_SIE_CTRL_PULLDOWN_EN_BITS | USB_SIE_CTRL_EP0_INT_1BUF_BITS
};

static struct hw_endpoint *get_dev_ep(uint8_t dev_addr, uint8_t ep_addr)
{
  uint8_t num = tu_edpt_number(ep_addr);
  if ( num == 0 ) return &epx;

  for ( uint32_t i = 1; i < TU_ARRAY_SIZE(ep_pool); i++ )
  {
    struct hw_endpoint *ep = &ep_pool[i];
    if ( ep->configured && (ep->dev_addr == dev_addr) && (ep->ep_addr == ep_addr) ) return ep;
  }

  return NULL;
}

static inline uint8_t dev_speed(void)
{
    return (usb_hw->sie_status & USB_SIE_STATUS_SPEED_BITS) >> USB_SIE_STATUS_SPEED_LSB;
}

static bool need_pre(uint8_t dev_addr)
{
    // If this device is different to the speed of the root device
    // (i.e. is a low speed device on a full speed hub) then need pre
    return hcd_port_speed_get(0) != tuh_speed_get(dev_addr);
}

static void hw_xfer_complete(struct hw_endpoint *ep, xfer_result_t xfer_result)
{
    // Mark transfer as done before we tell the tinyusb stack
    uint8_t dev_addr = ep->dev_addr;
    uint8_t ep_addr = ep->ep_addr;
    uint xferred_len = ep->xferred_len;
    hw_endpoint_reset_transfer(ep);
    hcd_event_xfer_complete(dev_addr, ep_addr, xferred_len, xfer_result, true);
}

static void _handle_buff_status_bit(uint bit, struct hw_endpoint *ep)
{
    usb_hw_clear->buf_status = bit;
    bool done = hw_endpoint_xfer_continue(ep);
    if (done)
    {
        hw_xfer_complete(ep, XFER_RESULT_SUCCESS);
    }
}

static void hw_handle_buff_status(void)
{
    uint32_t remaining_buffers = usb_hw->buf_status;
    pico_trace("buf_status 0x%08x\n", remaining_buffers);

    // Check EPX first
    uint bit = 0b1;
    if (remaining_buffers & bit)
    {
        remaining_buffers &= ~bit;
        struct hw_endpoint *ep = &epx;

        uint32_t ep_ctrl = *ep->endpoint_control;
        if (ep_ctrl & EP_CTRL_DOUBLE_BUFFERED_BITS)
        {
          TU_LOG(3, "Double Buffered: ");
        }else
        {
          TU_LOG(3, "Single Buffered: ");
        }
        TU_LOG_HEX(3, ep_ctrl);

        _handle_buff_status_bit(bit, ep);
    }

    // Check interrupt endpoints
    for (uint i = 1; i <= USB_HOST_INTERRUPT_ENDPOINTS && remaining_buffers; i++)
    {
        // EPX is bit 0
        // IEP1 is bit 2
        // IEP2 is bit 4
        // IEP3 is bit 6
        // etc
        bit = 1 << (i*2);

        if (remaining_buffers & bit)
        {
            remaining_buffers &= ~bit;
            _handle_buff_status_bit(bit, &ep_pool[i]);
        }
    }

    if (remaining_buffers)
    {
        panic("Unhandled buffer %d\n", remaining_buffers);
    }
}

static void hw_trans_complete(void)
{
  struct hw_endpoint *ep = &epx;
  assert(ep->active);

  if (usb_hw->sie_ctrl & USB_SIE_CTRL_SEND_SETUP_BITS)
  {
    pico_trace("Sent setup packet\n");
    hw_xfer_complete(ep, XFER_RESULT_SUCCESS);
  }
  else
  {
    // Don't care. Will handle this in buff status
    return;
  }
}

static void hcd_rp2040_irq(void)
{
    uint32_t status = usb_hw->ints;
    uint32_t handled = 0;

    if (status & USB_INTS_HOST_CONN_DIS_BITS)
    {
        handled |= USB_INTS_HOST_CONN_DIS_BITS;
        
        if (dev_speed())
        {
            hcd_event_device_attach(ROOT_PORT, true);
        }
        else
        {
            hcd_event_device_remove(ROOT_PORT, true);
        }

        // Clear speed change interrupt
        usb_hw_clear->sie_status = USB_SIE_STATUS_SPEED_BITS;
    }

    if (status & USB_INTS_BUFF_STATUS_BITS)
    {
        handled |= USB_INTS_BUFF_STATUS_BITS;
        TU_LOG(2, "Buffer complete\n");
        // print_bufctrl32(*epx.buffer_control);
        hw_handle_buff_status();
    }

    if (status & USB_INTS_TRANS_COMPLETE_BITS)
    {
        handled |= USB_INTS_TRANS_COMPLETE_BITS;
        usb_hw_clear->sie_status = USB_SIE_STATUS_TRANS_COMPLETE_BITS;
        TU_LOG(2, "Transfer complete\n");
        hw_trans_complete();
    }

    if (status & USB_INTS_STALL_BITS)
    {
        // We have rx'd a stall from the device
        pico_trace("Stall REC\n");
        handled |= USB_INTS_STALL_BITS;
        usb_hw_clear->sie_status = USB_SIE_STATUS_STALL_REC_BITS;
        hw_xfer_complete(&epx, XFER_RESULT_STALLED);
    }

    if (status & USB_INTS_ERROR_RX_TIMEOUT_BITS)
    {
        handled |= USB_INTS_ERROR_RX_TIMEOUT_BITS;
        usb_hw_clear->sie_status = USB_SIE_STATUS_RX_TIMEOUT_BITS;
    }

    if (status & USB_INTS_ERROR_DATA_SEQ_BITS)
    {
        usb_hw_clear->sie_status = USB_SIE_STATUS_DATA_SEQ_ERROR_BITS;
        print_bufctrl32(*epx.buffer_control);
        panic("Data Seq Error \n");
    }

    if (status ^ handled)
    {
        panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled));
    }
}

static struct hw_endpoint *_next_free_interrupt_ep(void)
{
    struct hw_endpoint *ep = NULL;
    for (uint i = 1; i < TU_ARRAY_SIZE(ep_pool); i++)
    {
        ep = &ep_pool[i];
        if (!ep->configured)
        {
            // Will be configured by _hw_endpoint_init / _hw_endpoint_allocate
            ep->interrupt_num = i - 1;
            return ep;
        }
    }
    return ep;
}

static struct hw_endpoint *_hw_endpoint_allocate(uint8_t transfer_type)
{
    struct hw_endpoint *ep = NULL;

    if (transfer_type == TUSB_XFER_INTERRUPT)
    {
        ep = _next_free_interrupt_ep();
        pico_info("Allocate interrupt ep %d\n", ep->interrupt_num);
        assert(ep);
        ep->buffer_control = &usbh_dpram->int_ep_buffer_ctrl[ep->interrupt_num].ctrl;
        ep->endpoint_control = &usbh_dpram->int_ep_ctrl[ep->interrupt_num].ctrl;
        // 0 for epx (double buffered): TODO increase to 1024 for ISO
        // 2x64 for intep0
        // 3x64 for intep1
        // etc
        ep->hw_data_buf = &usbh_dpram->epx_data[64 * (ep->interrupt_num + 2)];
    }
    else
    {
        ep = &epx;
        ep->buffer_control = &usbh_dpram->epx_buf_ctrl;
        ep->endpoint_control = &usbh_dpram->epx_ctrl;
        ep->hw_data_buf = &usbh_dpram->epx_data[0];
    }

    return ep;
}

static void _hw_endpoint_init(struct hw_endpoint *ep, uint8_t dev_addr, uint8_t ep_addr, uint wMaxPacketSize, uint8_t transfer_type, uint8_t bmInterval)
{
    // Already has data buffer, endpoint control, and buffer control allocated at this point
    assert(ep->endpoint_control);
    assert(ep->buffer_control);
    assert(ep->hw_data_buf);

    uint8_t const num = tu_edpt_number(ep_addr);
    tusb_dir_t const dir = tu_edpt_dir(ep_addr);

    ep->ep_addr = ep_addr;
    ep->dev_addr = dev_addr;

    // For host, IN to host == RX, anything else rx == false
    ep->rx = (dir == TUSB_DIR_IN);

    // Response to a setup packet on EP0 starts with pid of 1
    ep->next_pid = (num == 0 ? 1u : 0u);
    ep->wMaxPacketSize = wMaxPacketSize;
    ep->transfer_type = transfer_type;

    pico_trace("hw_endpoint_init dev %d ep %d %s xfer %d\n", ep->dev_addr, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)], ep->transfer_type);
    pico_trace("dev %d ep %d %s setup buffer @ 0x%p\n", ep->dev_addr, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)], ep->hw_data_buf);
    uint dpram_offset = hw_data_offset(ep->hw_data_buf);
    // Bits 0-5 should be 0
    assert(!(dpram_offset & 0b111111));

    // Fill in endpoint control register with buffer offset
    uint32_t ep_reg =  EP_CTRL_ENABLE_BITS
                  | EP_CTRL_INTERRUPT_PER_BUFFER
                  | (ep->transfer_type << EP_CTRL_BUFFER_TYPE_LSB)
                  | dpram_offset;
    ep_reg |= bmInterval ? (bmInterval - 1) << EP_CTRL_HOST_INTERRUPT_INTERVAL_LSB : 0;
    *ep->endpoint_control = ep_reg;
    pico_trace("endpoint control (0x%p) <- 0x%x\n", ep->endpoint_control, ep_reg);
    ep->configured = true;

    if (bmInterval)
    {
        // This is an interrupt endpoint
        // so need to set up interrupt endpoint address control register with:
        // device address
        // endpoint number / direction
        // preamble
        uint32_t reg = dev_addr | (num << USB_ADDR_ENDP1_ENDPOINT_LSB);
        // Assert the interrupt endpoint is IN_TO_HOST
        // TODO Interrupt can also be OUT
        assert(dir == TUSB_DIR_IN);

        if (need_pre(dev_addr))
        {
            reg |= USB_ADDR_ENDP1_INTEP_PREAMBLE_BITS;
        }
        usb_hw->int_ep_addr_ctrl[ep->interrupt_num] = reg;

        // Finally, enable interrupt that endpoint
        usb_hw_set->int_ep_ctrl = 1 << (ep->interrupt_num + 1);

        // If it's an interrupt endpoint we need to set up the buffer control
        // register
    }
}

//--------------------------------------------------------------------+
// HCD API
//--------------------------------------------------------------------+
bool hcd_init(uint8_t rhport)
{
    pico_trace("hcd_init %d\n", rhport);
    assert(rhport == 0);

    // Reset any previous state
    rp2040_usb_init();

    // Force VBUS detect to always present, for now we assume vbus is always provided (without using VBUS En)
    usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;

    irq_set_exclusive_handler(USBCTRL_IRQ, hcd_rp2040_irq);

    // clear epx and interrupt eps
    memset(&ep_pool, 0, sizeof(ep_pool));

    // Enable in host mode with SOF / Keep alive on
    usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS | USB_MAIN_CTRL_HOST_NDEVICE_BITS;
    usb_hw->sie_ctrl = SIE_CTRL_BASE;
    usb_hw->inte = USB_INTE_BUFF_STATUS_BITS      | 
                   USB_INTE_HOST_CONN_DIS_BITS    | 
                   USB_INTE_HOST_RESUME_BITS      | 
                   USB_INTE_STALL_BITS            | 
                   USB_INTE_TRANS_COMPLETE_BITS   |
                   USB_INTE_ERROR_RX_TIMEOUT_BITS |
                   USB_INTE_ERROR_DATA_SEQ_BITS   ;

    return true;
}

void hcd_port_reset(uint8_t rhport)
{
    pico_trace("hcd_port_reset\n");
    assert(rhport == 0);
    // TODO: Nothing to do here yet. Perhaps need to reset some state?
}

bool hcd_port_connect_status(uint8_t rhport)
{
    pico_trace("hcd_port_connect_status\n");
    assert(rhport == 0);
    return usb_hw->sie_status & USB_SIE_STATUS_SPEED_BITS;
}

tusb_speed_t hcd_port_speed_get(uint8_t rhport)
{
    assert(rhport == 0);
    // TODO: Should enumval this register
    switch (dev_speed())
    {
        case 1:
            return TUSB_SPEED_LOW;
        case 2:
            return TUSB_SPEED_FULL;
        default:
            panic("Invalid speed\n");
            return TUSB_SPEED_INVALID;
    }
}

// Close all opened endpoint belong to this device
void hcd_device_close(uint8_t rhport, uint8_t dev_addr)
{
    (void) rhport;
    (void) dev_addr;

    pico_trace("hcd_device_close %d\n", dev_addr);
}

uint32_t hcd_frame_number(uint8_t rhport)
{
    (void) rhport;
    return usb_hw->sof_rd;
}

void hcd_int_enable(uint8_t rhport)
{
    assert(rhport == 0);
    irq_set_enabled(USBCTRL_IRQ, true);
}

void hcd_int_disable(uint8_t rhport)
{
    // todo we should check this is disabling from the correct core; note currently this is never called
    assert(rhport == 0);
    irq_set_enabled(USBCTRL_IRQ, false);
}

//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+

bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
    (void) rhport;

    pico_trace("hcd_edpt_open dev_addr %d, ep_addr %d\n", dev_addr, ep_desc->bEndpointAddress);

    // Allocated differently based on if it's an interrupt endpoint or not
    struct hw_endpoint *ep = _hw_endpoint_allocate(ep_desc->bmAttributes.xfer);

    _hw_endpoint_init(ep,
        dev_addr,
        ep_desc->bEndpointAddress,
        ep_desc->wMaxPacketSize.size,
        ep_desc->bmAttributes.xfer,
        ep_desc->bInterval);

    return true;
}

bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen)
{
    (void) rhport;

    pico_trace("hcd_edpt_xfer dev_addr %d, ep_addr 0x%x, len %d\n", dev_addr, ep_addr, buflen);
    
    uint8_t const ep_num = tu_edpt_number(ep_addr);
    tusb_dir_t const ep_dir = tu_edpt_dir(ep_addr);

    // Get appropriate ep. Either EPX or interrupt endpoint
    struct hw_endpoint *ep = get_dev_ep(dev_addr, ep_addr);
    assert(ep);

    // Control endpoint can change direction 0x00 <-> 0x80
    if ( ep_addr != ep->ep_addr )
    {
      assert(ep_num == 0);

      // Direction has flipped on endpoint control so re init it but with same properties
      _hw_endpoint_init(ep, dev_addr, ep_addr, ep->wMaxPacketSize, ep->transfer_type, 0);
    }

    // If a normal transfer (non-interrupt) then initiate using
    // sie ctrl registers. Otherwise interrupt ep registers should
    // already be configured
    if (ep == &epx) {
        hw_endpoint_xfer_start(ep, buffer, buflen);

        // That has set up buffer control, endpoint control etc
        // for host we have to initiate the transfer
        usb_hw->dev_addr_ctrl = dev_addr | (ep_num << USB_ADDR_ENDP_ENDPOINT_LSB);

        uint32_t flags = USB_SIE_CTRL_START_TRANS_BITS | SIE_CTRL_BASE |
                         (ep_dir ? USB_SIE_CTRL_RECEIVE_DATA_BITS : USB_SIE_CTRL_SEND_DATA_BITS);
        // Set pre if we are a low speed device on full speed hub
        flags |= need_pre(dev_addr) ? USB_SIE_CTRL_PREAMBLE_EN_BITS : 0;

        usb_hw->sie_ctrl = flags;
    }else
    {
      hw_endpoint_xfer_start(ep, buffer, buflen);
    }

    return true;
}

bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
    (void) rhport;

    // Copy data into setup packet buffer
    memcpy((void*)&usbh_dpram->setup_packet[0], setup_packet, 8);

    // Configure EP0 struct with setup info for the trans complete
    struct hw_endpoint *ep = _hw_endpoint_allocate(0);

    // EP0 out
    _hw_endpoint_init(ep, dev_addr, 0x00, ep->wMaxPacketSize, 0, 0);
    assert(ep->configured);

    ep->remaining_len = 8;
    ep->active        = true;

    // Set device address
    usb_hw->dev_addr_ctrl = dev_addr;

    // Set pre if we are a low speed device on full speed hub
    uint32_t const flags = SIE_CTRL_BASE | USB_SIE_CTRL_SEND_SETUP_BITS | USB_SIE_CTRL_START_TRANS_BITS |
                           (need_pre(dev_addr) ? USB_SIE_CTRL_PREAMBLE_EN_BITS : 0);

    usb_hw->sie_ctrl = flags;

    return true;
}


//bool hcd_edpt_busy(uint8_t dev_addr, uint8_t ep_addr)
//{
//    // EPX is shared, so multiple device addresses and endpoint addresses share that
//    // so if any transfer is active on epx, we are busy. Interrupt endpoints have their own
//    // EPX so ep->active will only be busy if there is a pending transfer on that interrupt endpoint
//    // on that device
//    pico_trace("hcd_edpt_busy dev addr %d ep_addr 0x%x\n", dev_addr, ep_addr);
//    struct hw_endpoint *ep = get_dev_ep(dev_addr, ep_addr);
//    assert(ep);
//    bool busy = ep->active;
//    pico_trace("busy == %d\n", busy);
//    return busy;
//}

bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
    (void) dev_addr;
    (void) ep_addr;

    panic("hcd_clear_stall");
    return true;
}

#endif