summaryrefslogtreecommitdiffstats
path: root/tinyusb/src/portable/st/synopsys/dcd_synopsys.c
blob: 8a998aa3ade85d7725ac3dd4d9dec7776fdcbb2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries
 * Copyright (c) 2019 Ha Thach (tinyusb.org)
 * Copyright (c) 2020 Jan Duempelmann
 * Copyright (c) 2020 Reinhard Panhuber
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * This file is part of the TinyUSB stack.
 */

#include "tusb_option.h"

// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#define USE_SOF     0

#if defined (STM32F105x8) || defined (STM32F105xB) || defined (STM32F105xC) || \
    defined (STM32F107xB) || defined (STM32F107xC)
#define STM32F1_SYNOPSYS
#endif

#if defined (STM32L475xx) || defined (STM32L476xx) ||                          \
    defined (STM32L485xx) || defined (STM32L486xx) || defined (STM32L496xx) || \
    defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || \
    defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
#define STM32L4_SYNOPSYS
#endif

#if TUSB_OPT_DEVICE_ENABLED &&                                          \
    ( (CFG_TUSB_MCU == OPT_MCU_STM32F1 && defined(STM32F1_SYNOPSYS)) || \
       CFG_TUSB_MCU == OPT_MCU_STM32F2                               || \
       CFG_TUSB_MCU == OPT_MCU_STM32F4                               || \
       CFG_TUSB_MCU == OPT_MCU_STM32F7                               || \
       CFG_TUSB_MCU == OPT_MCU_STM32H7                               || \
      (CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)  || \
       CFG_TUSB_MCU == OPT_MCU_GD32VF103 )                           \
    )

// EP_MAX       : Max number of bi-directional endpoints including EP0
// EP_FIFO_SIZE : Size of dedicated USB SRAM
#if CFG_TUSB_MCU == OPT_MCU_STM32F1
#include "stm32f1xx.h"
#define EP_MAX_FS       4
#define EP_FIFO_SIZE_FS 1280

#elif CFG_TUSB_MCU == OPT_MCU_STM32F2
#include "stm32f2xx.h"
#define EP_MAX_FS       USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE

#elif CFG_TUSB_MCU == OPT_MCU_STM32F4
#include "stm32f4xx.h"
#define EP_MAX_FS       USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#define EP_MAX_HS       USB_OTG_HS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_HS USB_OTG_HS_TOTAL_FIFO_SIZE

#elif CFG_TUSB_MCU == OPT_MCU_STM32H7
#include "stm32h7xx.h"
#define EP_MAX_FS       9
#define EP_FIFO_SIZE_FS 4096
#define EP_MAX_HS       9
#define EP_FIFO_SIZE_HS 4096

#elif CFG_TUSB_MCU == OPT_MCU_STM32F7
#include "stm32f7xx.h"
#define EP_MAX_FS       6
#define EP_FIFO_SIZE_FS 1280
#define EP_MAX_HS       9
#define EP_FIFO_SIZE_HS 4096

#elif CFG_TUSB_MCU == OPT_MCU_STM32L4
#include "stm32l4xx.h"
#define EP_MAX_FS       6
#define EP_FIFO_SIZE_FS 1280

#elif CFG_TUSB_MCU == OPT_MCU_GD32VF103
#include "synopsys_common.h"

// These numbers are the same for the whole GD32VF103 family.
#define OTG_FS_IRQn     86
#define EP_MAX_FS       4
#define EP_FIFO_SIZE_FS 1280

// The GD32VF103 is a RISC-V MCU, which implements the ECLIC Core-Local
// Interrupt Controller by Nuclei. It is nearly API compatible to the
// NVIC used by ARM MCUs.
#define ECLIC_INTERRUPT_ENABLE_BASE 0xD2001001UL

#define NVIC_EnableIRQ __eclic_enable_interrupt
#define NVIC_DisableIRQ __eclic_disable_interrupt

static inline void __eclic_enable_interrupt (uint32_t irq) {
  *(volatile uint8_t*)(ECLIC_INTERRUPT_ENABLE_BASE + (irq * 4)) = 1;
}

static inline void __eclic_disable_interrupt (uint32_t irq){
  *(volatile uint8_t*)(ECLIC_INTERRUPT_ENABLE_BASE + (irq * 4)) = 0;
}

#else
#error "Unsupported MCUs"
#endif

#include "device/dcd.h"

//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+

// On STM32 we associate Port0 to OTG_FS, and Port1 to OTG_HS
#if TUD_OPT_RHPORT == 0
#define EP_MAX            EP_MAX_FS
#define EP_FIFO_SIZE      EP_FIFO_SIZE_FS
#define RHPORT_REGS_BASE  USB_OTG_FS_PERIPH_BASE
#define RHPORT_IRQn       OTG_FS_IRQn

#else
#define EP_MAX            EP_MAX_HS
#define EP_FIFO_SIZE      EP_FIFO_SIZE_HS
#define RHPORT_REGS_BASE  USB_OTG_HS_PERIPH_BASE
#define RHPORT_IRQn       OTG_HS_IRQn

#endif

#define GLOBAL_BASE(_port)     ((USB_OTG_GlobalTypeDef*) RHPORT_REGS_BASE)
#define DEVICE_BASE(_port)     (USB_OTG_DeviceTypeDef *) (RHPORT_REGS_BASE + USB_OTG_DEVICE_BASE)
#define OUT_EP_BASE(_port)     (USB_OTG_OUTEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_OUT_ENDPOINT_BASE)
#define IN_EP_BASE(_port)      (USB_OTG_INEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_IN_ENDPOINT_BASE)
#define FIFO_BASE(_port, _x)   ((volatile uint32_t *) (RHPORT_REGS_BASE + USB_OTG_FIFO_BASE + (_x) * USB_OTG_FIFO_SIZE))

enum
{
  DCD_HIGH_SPEED        = 0, // Highspeed mode
  DCD_FULL_SPEED_USE_HS = 1, // Full speed in Highspeed port (probably with internal PHY)
  DCD_FULL_SPEED        = 3, // Full speed with internal PHY
};

static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];

typedef struct {
  uint8_t * buffer;
  tu_fifo_t * ff;
  uint16_t total_len;
  uint16_t max_size;
  uint8_t interval;
} xfer_ctl_t;

typedef volatile uint32_t * usb_fifo_t;

xfer_ctl_t xfer_status[EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]

// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2];                   // Index determines direction as tusb_dir_t type

// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from usb_otg->GRXFSIZ
static uint16_t _allocated_fifo_words_tx;         // TX FIFO size in words (IN EPs)
static bool _out_ep_closed;                       // Flag to check if RX FIFO size needs an update (reduce its size)

// Calculate the RX FIFO size according to recommendations from reference manual
static inline uint16_t calc_rx_ff_size(uint16_t ep_size)
{
  return 15 + 2*(ep_size/4) + 2*EP_MAX;
}

static void update_grxfsiz(uint8_t rhport)
{
  (void) rhport;

  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);

  // Determine largest EP size for RX FIFO
  uint16_t max_epsize = 0;
  for (uint8_t epnum = 0; epnum < EP_MAX; epnum++)
  {
    max_epsize = tu_max16(max_epsize, xfer_status[epnum][TUSB_DIR_OUT].max_size);
  }

  // Update size of RX FIFO
  usb_otg->GRXFSIZ = calc_rx_ff_size(max_epsize);
}

// Setup the control endpoint 0.
static void bus_reset(uint8_t rhport)
{
  (void) rhport;

  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
  USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);

  tu_memclr(xfer_status, sizeof(xfer_status));
  _out_ep_closed = false;

  for(uint8_t n = 0; n < EP_MAX; n++) {
    out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK;
  }

  // clear device address
  dev->DCFG &= ~USB_OTG_DCFG_DAD_Msk;

  // TODO should probably assign value when reset rather than OR
  dev->DAINTMSK |= (1 << USB_OTG_DAINTMSK_OEPM_Pos) | (1 << USB_OTG_DAINTMSK_IEPM_Pos);
  dev->DOEPMSK |= USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM;
  dev->DIEPMSK |= USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM;

  // "USB Data FIFOs" section in reference manual
  // Peripheral FIFO architecture
  //
  // The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start.
  // We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located
  // between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard
  // configuration done below.
  //
  // Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed.
  // All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a
  // configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually
  // opened when the host sends an additional command: setInterface. At this point in time
  // the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size
  // an additional memory
  //
  // --------------- 320 or 1024 ( 1280 or 4096 bytes )
  // | IN FIFO 0   |
  // --------------- (320 or 1024) - 16
  // | IN FIFO 1   |
  // --------------- (320 or 1024) - 16 - x
  // |   . . . .   |
  // --------------- (320 or 1024) - 16 - x - y - ... - z
  // | IN FIFO MAX |
  // ---------------
  // |    FREE     |
  // --------------- GRXFSIZ
  // | OUT FIFO    |
  // | ( Shared )  |
  // --------------- 0
  //
  // According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
  // - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
  //
  // - All EP OUT shared a unique OUT FIFO which uses
  //   - 13 for setup packets + control words (up to 3 setup packets).
  //   - 1 for global NAK (not required/used here).
  //   - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is  "2 x (Largest-EPsize/4) + 1"
  //   - 2 for each used OUT endpoint
  //
  //   Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
  //   - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x  16 + 2 x EP_MAX = 47  + 2 x EP_MAX
  //   - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x EP_MAX = 271 + 2 x EP_MAX
  //
  //   NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
  //   of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX
  //
  //   For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
  //   are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended.  Maybe provide a macro for application to
  //   overwrite this.

  usb_otg->GRXFSIZ = calc_rx_ff_size(TUD_OPT_HIGH_SPEED ? 512 : 64);

  _allocated_fifo_words_tx = 16;

  // Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
  usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | (EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);

  // Fixed control EP0 size to 64 bytes
  in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
  xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 64;

  out_ep[0].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);

  usb_otg->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT;
}

// Set turn-around timeout according to link speed
extern uint32_t SystemCoreClock;
static void set_turnaround(USB_OTG_GlobalTypeDef * usb_otg, tusb_speed_t speed)
{
  usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT;

  if ( speed == TUSB_SPEED_HIGH )
  {
    // Use fixed 0x09 for Highspeed
    usb_otg->GUSBCFG |= (0x09 << USB_OTG_GUSBCFG_TRDT_Pos);
  }
  else
  {
    // Turnaround timeout depends on the MCU clock
    uint32_t turnaround;

    TU_LOG_INT(2, SystemCoreClock);

    if ( SystemCoreClock >= 32000000U )
      turnaround = 0x6U;
    else if ( SystemCoreClock >= 27500000U )
      turnaround = 0x7U;
    else if ( SystemCoreClock >= 24000000U )
      turnaround = 0x8U;
    else if ( SystemCoreClock >= 21800000U )
      turnaround = 0x9U;
    else if ( SystemCoreClock >= 20000000U )
      turnaround = 0xAU;
    else if ( SystemCoreClock >= 18500000U )
      turnaround = 0xBU;
    else if ( SystemCoreClock >= 17200000U )
      turnaround = 0xCU;
    else if ( SystemCoreClock >= 16000000U )
      turnaround = 0xDU;
    else if ( SystemCoreClock >= 15000000U )
      turnaround = 0xEU;
    else
      turnaround = 0xFU;

    // Fullspeed depends on MCU clocks, but we will use 0x06 for 32+ Mhz
    usb_otg->GUSBCFG |= (turnaround << USB_OTG_GUSBCFG_TRDT_Pos);
  }
}

static tusb_speed_t get_speed(uint8_t rhport)
{
  (void) rhport;
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  uint32_t const enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos;
  return (enum_spd == DCD_HIGH_SPEED) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL;
}

static void set_speed(uint8_t rhport, tusb_speed_t speed)
{
  uint32_t bitvalue;

  if ( rhport == 1 )
  {
    bitvalue = ((TUSB_SPEED_HIGH == speed) ? DCD_HIGH_SPEED : DCD_FULL_SPEED_USE_HS);
  }
  else
  {
    bitvalue = DCD_FULL_SPEED;
  }

  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);

  // Clear and set speed bits
  dev->DCFG &= ~(3 << USB_OTG_DCFG_DSPD_Pos);
  dev->DCFG |= (bitvalue << USB_OTG_DCFG_DSPD_Pos);
}

#if defined(USB_HS_PHYC)
static bool USB_HS_PHYCInit(void)
{
  USB_HS_PHYC_GlobalTypeDef *usb_hs_phyc = (USB_HS_PHYC_GlobalTypeDef*) USB_HS_PHYC_CONTROLLER_BASE;

  // Enable LDO
  usb_hs_phyc->USB_HS_PHYC_LDO |= USB_HS_PHYC_LDO_ENABLE;

  // Wait until LDO ready
  while ( 0 == (usb_hs_phyc->USB_HS_PHYC_LDO & USB_HS_PHYC_LDO_STATUS) ) {}

  uint32_t phyc_pll = 0;

  // TODO Try to get HSE_VALUE from registers instead of depending CFLAGS
  switch ( HSE_VALUE )
  {
    case 12000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12MHZ   ; break;
    case 12500000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12_5MHZ ; break;
    case 16000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_16MHZ   ; break;
    case 24000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_24MHZ   ; break;
    case 25000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_25MHZ   ; break;
    case 32000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_Msk     ; break; // Value not defined in header
    default:
      TU_ASSERT(0);
  }
  usb_hs_phyc->USB_HS_PHYC_PLL = phyc_pll;

  // Control the tuning interface of the High Speed PHY
  // Use magic value (USB_HS_PHYC_TUNE_VALUE) from ST driver
  usb_hs_phyc->USB_HS_PHYC_TUNE |= 0x00000F13U;

  // Enable PLL internal PHY
  usb_hs_phyc->USB_HS_PHYC_PLL |= USB_HS_PHYC_PLL_PLLEN;

  // Original ST code has 2 ms delay for PLL stabilization.
  // Primitive test shows that more than 10 USB un/replug cycle showed no error with enumeration

  return true;
}
#endif

static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes)
{
  (void) rhport;

  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
  USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);

  // EP0 is limited to one packet each xfer
  // We use multiple transaction of xfer->max_size length to get a whole transfer done
  if(epnum == 0) {
    xfer_ctl_t * const xfer = XFER_CTL_BASE(epnum, dir);
    total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
    ep0_pending[dir] -= total_bytes;
  }

  // IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
  if(dir == TUSB_DIR_IN) {
    // A full IN transfer (multiple packets, possibly) triggers XFRC.
    in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) |
        ((total_bytes << USB_OTG_DIEPTSIZ_XFRSIZ_Pos) & USB_OTG_DIEPTSIZ_XFRSIZ_Msk);

    in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
    // For ISO endpoint set correct odd/even bit for next frame.
    if ((in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP) == USB_OTG_DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
    {
      // Take odd/even bit from frame counter.
      uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos));
      in_ep[epnum].DIEPCTL |= (odd_frame_now ? USB_OTG_DIEPCTL_SD0PID_SEVNFRM_Msk : USB_OTG_DIEPCTL_SODDFRM_Msk);
    }
    // Enable fifo empty interrupt only if there are something to put in the fifo.
    if(total_bytes != 0) {
      dev->DIEPEMPMSK |= (1 << epnum);
    }
  } else {
    // A full OUT transfer (multiple packets, possibly) triggers XFRC.
    out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ);
    out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) |
        ((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);

    out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
    if ((out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP) == USB_OTG_DOEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
    {
      // Take odd/even bit from frame counter.
      uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos));
      out_ep[epnum].DOEPCTL |= (odd_frame_now ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM_Msk : USB_OTG_DOEPCTL_SODDFRM_Msk);
    }
  }
}

/*------------------------------------------------------------------*/
/* Controller API
 *------------------------------------------------------------------*/
void dcd_init (uint8_t rhport)
{
  // Programming model begins in the last section of the chapter on the USB
  // peripheral in each Reference Manual.

  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);

  // No HNP/SRP (no OTG support), program timeout later.
  if ( rhport == 1 )
  {
    // On selected MCUs HS port1 can be used with external PHY via ULPI interface
#if CFG_TUSB_RHPORT1_MODE & OPT_MODE_HIGH_SPEED
    // deactivate internal PHY
    usb_otg->GCCFG &= ~USB_OTG_GCCFG_PWRDWN;

    // Init The UTMI Interface
    usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL);

    // Select default internal VBUS Indicator and Drive for ULPI
    usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI);
#else
    usb_otg->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL;
#endif

#if defined(USB_HS_PHYC)
    // Highspeed with embedded UTMI PHYC

    // Select UTMI Interface
    usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_ULPI_UTMI_SEL;
    usb_otg->GCCFG |= USB_OTG_GCCFG_PHYHSEN;

    // Enables control of a High Speed USB PHY
    USB_HS_PHYCInit();
#endif
  } else
  {
    // Enable internal PHY
    usb_otg->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL;
  }

  // Reset core after selecting PHY
  // Wait AHB IDLE, reset then wait until it is cleared
  while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0U) {}
  usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_CSRST;
  while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST) {}

  // Restart PHY clock
  *((volatile uint32_t *)(RHPORT_REGS_BASE + USB_OTG_PCGCCTL_BASE)) = 0;

  // Clear all interrupts
  usb_otg->GINTSTS |= usb_otg->GINTSTS;

  // Required as part of core initialization.
  // TODO: How should mode mismatch be handled? It will cause
  // the core to stop working/require reset.
  usb_otg->GINTMSK |= USB_OTG_GINTMSK_OTGINT | USB_OTG_GINTMSK_MMISM;

  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);

  // If USB host misbehaves during status portion of control xfer
  // (non zero-length packet), send STALL back and discard.
  dev->DCFG |=  USB_OTG_DCFG_NZLSOHSK;

  set_speed(rhport, TUD_OPT_HIGH_SPEED ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL);

  // Enable internal USB transceiver, unless using HS core (port 1) with external PHY.
  if (!(rhport == 1 && (CFG_TUSB_RHPORT1_MODE & OPT_MODE_HIGH_SPEED))) usb_otg->GCCFG |= USB_OTG_GCCFG_PWRDWN;

  usb_otg->GINTMSK |= USB_OTG_GINTMSK_USBRST   | USB_OTG_GINTMSK_ENUMDNEM |
      USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM     |
      USB_OTG_GINTMSK_RXFLVLM  | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0);

  // Enable global interrupt
  usb_otg->GAHBCFG |= USB_OTG_GAHBCFG_GINT;

  dcd_connect(rhport);
}

void dcd_int_enable (uint8_t rhport)
{
  (void) rhport;
  NVIC_EnableIRQ(RHPORT_IRQn);
}

void dcd_int_disable (uint8_t rhport)
{
  (void) rhport;
  NVIC_DisableIRQ(RHPORT_IRQn);
}

void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  dev->DCFG = (dev->DCFG & ~USB_OTG_DCFG_DAD_Msk) | (dev_addr << USB_OTG_DCFG_DAD_Pos);

  // Response with status after changing device address
  dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}

void dcd_remote_wakeup(uint8_t rhport)
{
  (void) rhport;

  // TODO must manually clear this bit after 1-15 ms
  // USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  // dev->DCTL |= USB_OTG_DCTL_RWUSIG;
}

void dcd_connect(uint8_t rhport)
{
  (void) rhport;
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  dev->DCTL &= ~USB_OTG_DCTL_SDIS;
}

void dcd_disconnect(uint8_t rhport)
{
  (void) rhport;
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  dev->DCTL |= USB_OTG_DCTL_SDIS;
}


/*------------------------------------------------------------------*/
/* DCD Endpoint port
 *------------------------------------------------------------------*/

bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
  (void) rhport;

  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
  USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);

  uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
  uint8_t const dir   = tu_edpt_dir(desc_edpt->bEndpointAddress);

  TU_ASSERT(epnum < EP_MAX);

  xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
  xfer->max_size = desc_edpt->wMaxPacketSize.size;
  xfer->interval = desc_edpt->bInterval;

  uint16_t const fifo_size = (desc_edpt->wMaxPacketSize.size + 3) / 4; // Round up to next full word

  if(dir == TUSB_DIR_OUT)
  {
    // Calculate required size of RX FIFO
    uint16_t const sz = calc_rx_ff_size(4*fifo_size);

    // If size_rx needs to be extended check if possible and if so enlarge it
    if (usb_otg->GRXFSIZ < sz)
    {
      TU_ASSERT(sz + _allocated_fifo_words_tx <= EP_FIFO_SIZE/4);

      // Enlarge RX FIFO
      usb_otg->GRXFSIZ = sz;
    }

    out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) |
        (desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
        (desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);

    dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_OEPM_Pos + epnum));
  }
  else
  {
    // "USB Data FIFOs" section in reference manual
    // Peripheral FIFO architecture
    //
    // --------------- 320 or 1024 ( 1280 or 4096 bytes )
    // | IN FIFO 0   |
    // --------------- (320 or 1024) - 16
    // | IN FIFO 1   |
    // --------------- (320 or 1024) - 16 - x
    // |   . . . .   |
    // --------------- (320 or 1024) - 16 - x - y - ... - z
    // | IN FIFO MAX |
    // ---------------
    // |    FREE     |
    // --------------- GRXFSIZ
    // | OUT FIFO    |
    // | ( Shared )  |
    // --------------- 0
    //
    // In FIFO is allocated by following rules:
    // - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".

    // Check if free space is available
    TU_ASSERT(_allocated_fifo_words_tx + fifo_size + usb_otg->GRXFSIZ <= EP_FIFO_SIZE/4);

    _allocated_fifo_words_tx += fifo_size;

    TU_LOG(2, "    Allocated %u bytes at offset %u", fifo_size*4, EP_FIFO_SIZE-_allocated_fifo_words_tx*4);

    // DIEPTXF starts at FIFO #1.
    // Both TXFD and TXSA are in unit of 32-bit words.
    usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | (EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);

    in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
        (epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
        (desc_edpt->bmAttributes.xfer << USB_OTG_DIEPCTL_EPTYP_Pos) |
        (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM : 0) |
        (desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos);

    dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_IEPM_Pos + epnum));
  }

  return true;
}

bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
  xfer->buffer      = buffer;
  xfer->ff          = NULL;
  xfer->total_len   = total_bytes;

  // EP0 can only handle one packet
  if(epnum == 0) {
    ep0_pending[dir] = total_bytes;
    // Schedule the first transaction for EP0 transfer
    edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
    return true;
  }

  uint16_t num_packets = (total_bytes / xfer->max_size);
  uint16_t const short_packet_size = total_bytes % xfer->max_size;

  // Zero-size packet is special case.
  if(short_packet_size > 0 || (total_bytes == 0)) {
    num_packets++;
  }

  // Schedule packets to be sent within interrupt
  edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);

  return true;
}

// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
  // USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
  TU_ASSERT(ff->item_size == 1);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
  xfer->buffer      = NULL;
  xfer->ff          = ff;
  xfer->total_len   = total_bytes;

  uint16_t num_packets = (total_bytes / xfer->max_size);
  uint16_t const short_packet_size = total_bytes % xfer->max_size;

  // Zero-size packet is special case.
  if(short_packet_size > 0 || (total_bytes == 0)) num_packets++;

  // Schedule packets to be sent within interrupt
  edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);

  return true;
}

static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
{
  (void) rhport;

  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
  USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  if(dir == TUSB_DIR_IN) {
    // Only disable currently enabled non-control endpoint
    if ( (epnum == 0) || !(in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPENA) ){
      in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK | (stall ? USB_OTG_DIEPCTL_STALL : 0);
    } else {
      // Stop transmitting packets and NAK IN xfers.
      in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK;
      while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_INEPNE) == 0);

      // Disable the endpoint.
      in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPDIS | (stall ? USB_OTG_DIEPCTL_STALL : 0);
      while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_EPDISD_Msk) == 0);
      in_ep[epnum].DIEPINT = USB_OTG_DIEPINT_EPDISD;
    }

    // Flush the FIFO, and wait until we have confirmed it cleared.
    usb_otg->GRSTCTL |= (epnum << USB_OTG_GRSTCTL_TXFNUM_Pos);
    usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_TXFFLSH;
    while((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH_Msk) != 0);
  } else {
    // Only disable currently enabled non-control endpoint
    if ( (epnum == 0) || !(out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPENA) ){
      out_ep[epnum].DOEPCTL |= stall ? USB_OTG_DOEPCTL_STALL : 0;
    } else {
      // Asserting GONAK is required to STALL an OUT endpoint.
      // Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
      // anyway, and it can't be cleared by user code. If this while loop never
      // finishes, we have bigger problems than just the stack.
      dev->DCTL |= USB_OTG_DCTL_SGONAK;
      while((usb_otg->GINTSTS & USB_OTG_GINTSTS_BOUTNAKEFF_Msk) == 0);

      // Ditto here- disable the endpoint.
      out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPDIS | (stall ? USB_OTG_DOEPCTL_STALL : 0);
      while((out_ep[epnum].DOEPINT & USB_OTG_DOEPINT_EPDISD_Msk) == 0);
      out_ep[epnum].DOEPINT = USB_OTG_DOEPINT_EPDISD;

      // Allow other OUT endpoints to keep receiving.
      dev->DCTL |= USB_OTG_DCTL_CGONAK;
    }
  }
}

/**
 * Close an endpoint.
 */
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  dcd_edpt_disable(rhport, ep_addr, false);

  // Update max_size
  xfer_status[epnum][dir].max_size = 0;  // max_size = 0 marks a disabled EP - required for changing FIFO allocation

  if (dir == TUSB_DIR_IN)
  {
    uint16_t const fifo_size = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXFD_Msk) >> USB_OTG_DIEPTXF_INEPTXFD_Pos;
    uint16_t const fifo_start = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXSA_Msk) >> USB_OTG_DIEPTXF_INEPTXSA_Pos;
    // For now only the last opened endpoint can be closed without fuss.
    TU_ASSERT(fifo_start == EP_FIFO_SIZE/4 - _allocated_fifo_words_tx,);
    _allocated_fifo_words_tx -= fifo_size;
  }
  else
  {
    _out_ep_closed = true;     // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty
  }
}

void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
  dcd_edpt_disable(rhport, ep_addr, true);
}

void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
  (void) rhport;

  USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
  USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  if(dir == TUSB_DIR_IN) {
    in_ep[epnum].DIEPCTL &= ~USB_OTG_DIEPCTL_STALL;

    uint8_t eptype = (in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP_Msk) >> USB_OTG_DIEPCTL_EPTYP_Pos;
    // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
    if(eptype == 2 || eptype == 3) {
      in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM;
    }
  } else {
    out_ep[epnum].DOEPCTL &= ~USB_OTG_DOEPCTL_STALL;

    uint8_t eptype = (out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP_Msk) >> USB_OTG_DOEPCTL_EPTYP_Pos;
    // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
    if(eptype == 2 || eptype == 3) {
      out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM;
    }
  }
}

/*------------------------------------------------------------------*/

// Read a single data packet from receive FIFO
static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len)
{
  (void) rhport;

  usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);

  // Reading full available 32 bit words from fifo
  uint16_t full_words = len >> 2;
  for(uint16_t i = 0; i < full_words; i++) {
    uint32_t tmp = *rx_fifo;
    dst[0] = tmp & 0x000000FF;
    dst[1] = (tmp & 0x0000FF00) >> 8;
    dst[2] = (tmp & 0x00FF0000) >> 16;
    dst[3] = (tmp & 0xFF000000) >> 24;
    dst += 4;
  }

  // Read the remaining 1-3 bytes from fifo
  uint8_t bytes_rem = len & 0x03;
  if(bytes_rem != 0) {
    uint32_t tmp = *rx_fifo;
    dst[0] = tmp & 0x000000FF;
    if(bytes_rem > 1) {
      dst[1] = (tmp & 0x0000FF00) >> 8;
    }
    if(bytes_rem > 2) {
      dst[2] = (tmp & 0x00FF0000) >> 16;
    }
  }
}

// Write a single data packet to EPIN FIFO
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t * src, uint16_t len)
{
  (void) rhport;

  usb_fifo_t tx_fifo = FIFO_BASE(rhport, fifo_num);

  // Pushing full available 32 bit words to fifo
  uint16_t full_words = len >> 2;
  for(uint16_t i = 0; i < full_words; i++){
    *tx_fifo = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
    src += 4;
  }

  // Write the remaining 1-3 bytes into fifo
  uint8_t bytes_rem = len & 0x03;
  if(bytes_rem){
    uint32_t tmp_word = 0;
    tmp_word |= src[0];
    if(bytes_rem > 1){
      tmp_word |= src[1] << 8;
    }
    if(bytes_rem > 2){
      tmp_word |= src[2] << 16;
    }
    *tx_fifo = tmp_word;
  }
}

static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_ep) {
  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
  usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);

  // Pop control word off FIFO
  uint32_t ctl_word = usb_otg->GRXSTSP;
  uint8_t pktsts = (ctl_word & USB_OTG_GRXSTSP_PKTSTS_Msk) >> USB_OTG_GRXSTSP_PKTSTS_Pos;
  uint8_t epnum = (ctl_word &  USB_OTG_GRXSTSP_EPNUM_Msk) >>  USB_OTG_GRXSTSP_EPNUM_Pos;
  uint16_t bcnt = (ctl_word & USB_OTG_GRXSTSP_BCNT_Msk) >> USB_OTG_GRXSTSP_BCNT_Pos;

  switch(pktsts) {
    case 0x01: // Global OUT NAK (Interrupt)
      break;

    case 0x02: // Out packet recvd
    {
      xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);

      // Read packet off RxFIFO
      if (xfer->ff)
      {
        // Ring buffer
        tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void *) rx_fifo, bcnt);
      }
      else
      {
        // Linear buffer
        read_fifo_packet(rhport, xfer->buffer, bcnt);

        // Increment pointer to xfer data
        xfer->buffer += bcnt;
      }

      // Truncate transfer length in case of short packet
      if(bcnt < xfer->max_size) {
        xfer->total_len -= (out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DOEPTSIZ_XFRSIZ_Pos;
        if(epnum == 0) {
          xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
          ep0_pending[TUSB_DIR_OUT] = 0;
        }
      }
    }
    break;

    case 0x03: // Out packet done (Interrupt)
      break;

    case 0x04: // Setup packet done (Interrupt)
      out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
      break;

    case 0x06: // Setup packet recvd
      // We can receive up to three setup packets in succession, but
      // only the last one is valid.
      _setup_packet[0] = (* rx_fifo);
      _setup_packet[1] = (* rx_fifo);
      break;

    default: // Invalid
      TU_BREAKPOINT();
      break;
  }
}

static void handle_epout_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTypeDef * out_ep) {
  // DAINT for a given EP clears when DOEPINTx is cleared.
  // OEPINT will be cleared when DAINT's out bits are cleared.
  for(uint8_t n = 0; n < EP_MAX; n++) {
    xfer_ctl_t * xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);

    if(dev->DAINT & (1 << (USB_OTG_DAINT_OEPINT_Pos + n))) {
      // SETUP packet Setup Phase done.
      if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_STUP) {
        out_ep[n].DOEPINT =  USB_OTG_DOEPINT_STUP;
        dcd_event_setup_received(rhport, (uint8_t*) &_setup_packet[0], true);
      }

      // OUT XFER complete
      if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_XFRC) {
        out_ep[n].DOEPINT = USB_OTG_DOEPINT_XFRC;

        // EP0 can only handle one packet
        if((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
          // Schedule another packet to be received.
          edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
        } else {
          dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
        }
      }
    }
  }
}

static void handle_epin_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointTypeDef * in_ep) {
  // DAINT for a given EP clears when DIEPINTx is cleared.
  // IEPINT will be cleared when DAINT's out bits are cleared.
  for ( uint8_t n = 0; n < EP_MAX; n++ )
  {
    xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);

    if ( dev->DAINT & (1 << (USB_OTG_DAINT_IEPINT_Pos + n)) )
    {
      // IN XFER complete (entire xfer).
      if ( in_ep[n].DIEPINT & USB_OTG_DIEPINT_XFRC )
      {
        in_ep[n].DIEPINT = USB_OTG_DIEPINT_XFRC;

        // EP0 can only handle one packet
        if((n == 0) && ep0_pending[TUSB_DIR_IN]) {
          // Schedule another packet to be transmitted.
          edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
        } else {
          dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
        }
      }

      // XFER FIFO empty
      if ( (in_ep[n].DIEPINT & USB_OTG_DIEPINT_TXFE) && (dev->DIEPEMPMSK & (1 << n)) )
      {
        // DIEPINT's TXFE bit is read-only, software cannot clear it.
        // It will only be cleared by hardware when written bytes is more than
        // - 64 bytes or
        // - Half of TX FIFO size (configured by DIEPTXF)

        uint16_t remaining_packets = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_PKTCNT_Msk) >> USB_OTG_DIEPTSIZ_PKTCNT_Pos;

        // Process every single packet (only whole packets can be written to fifo)
        for(uint16_t i = 0; i < remaining_packets; i++)
        {
          uint16_t const remaining_bytes = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos;

          // Packet can not be larger than ep max size
          uint16_t const packet_size = tu_min16(remaining_bytes, xfer->max_size);

          // It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current
          // EP has to be checked if the buffer can take another WHOLE packet
          if(packet_size > ((in_ep[n].DTXFSTS & USB_OTG_DTXFSTS_INEPTFSAV_Msk) << 2)) break;

          // Push packet to Tx-FIFO
          if (xfer->ff)
          {
            usb_fifo_t tx_fifo = FIFO_BASE(rhport, n);
            tu_fifo_read_n_const_addr_full_words(xfer->ff, (void *) tx_fifo, packet_size);
          }
          else
          {
            write_fifo_packet(rhport, n, xfer->buffer, packet_size);

            // Increment pointer to xfer data
            xfer->buffer += packet_size;
          }
        }

        // Turn off TXFE if all bytes are written.
        if (((in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos) == 0)
        {
          dev->DIEPEMPMSK &= ~(1 << n);
        }
      }
    }
  }
}

void dcd_int_handler(uint8_t rhport)
{
  USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
  USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
  USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
  USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);

  uint32_t int_status = usb_otg->GINTSTS;

  if(int_status & USB_OTG_GINTSTS_USBRST)
  {
    // USBRST is start of reset.
    usb_otg->GINTSTS = USB_OTG_GINTSTS_USBRST;
    bus_reset(rhport);
  }

  if(int_status & USB_OTG_GINTSTS_ENUMDNE)
  {
    // ENUMDNE is the end of reset where speed of the link is detected

    usb_otg->GINTSTS = USB_OTG_GINTSTS_ENUMDNE;

    tusb_speed_t const speed = get_speed(rhport);

    set_turnaround(usb_otg, speed);
    dcd_event_bus_reset(rhport, speed, true);
  }

  if(int_status & USB_OTG_GINTSTS_USBSUSP)
  {
    usb_otg->GINTSTS = USB_OTG_GINTSTS_USBSUSP;
    dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
  }

  if(int_status & USB_OTG_GINTSTS_WKUINT)
  {
    usb_otg->GINTSTS = USB_OTG_GINTSTS_WKUINT;
    dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
  }

  if(int_status & USB_OTG_GINTSTS_OTGINT)
  {
    // OTG INT bit is read-only
    uint32_t const otg_int = usb_otg->GOTGINT;

    if (otg_int & USB_OTG_GOTGINT_SEDET)
    {
      dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
    }

    usb_otg->GOTGINT = otg_int;
  }

#if USE_SOF
  if(int_status & USB_OTG_GINTSTS_SOF)
  {
    usb_otg->GINTSTS = USB_OTG_GINTSTS_SOF;
    dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
  }
#endif

  // RxFIFO non-empty interrupt handling.
  if(int_status & USB_OTG_GINTSTS_RXFLVL)
  {
    // RXFLVL bit is read-only

    // Mask out RXFLVL while reading data from FIFO
    usb_otg->GINTMSK &= ~USB_OTG_GINTMSK_RXFLVLM;

    // Loop until all available packets were handled
    do
    {
      handle_rxflvl_ints(rhport, out_ep);
      int_status = usb_otg->GINTSTS;
    } while(int_status & USB_OTG_GINTSTS_RXFLVL);

    // Manage RX FIFO size
    if (_out_ep_closed)
    {
      update_grxfsiz(rhport);

      // Disable flag
      _out_ep_closed = false;
    }

    usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
  }

  // OUT endpoint interrupt handling.
  if(int_status & USB_OTG_GINTSTS_OEPINT)
  {
    // OEPINT is read-only
    handle_epout_ints(rhport, dev, out_ep);
  }

  // IN endpoint interrupt handling.
  if(int_status & USB_OTG_GINTSTS_IEPINT)
  {
    // IEPINT bit read-only
    handle_epin_ints(rhport, dev, in_ep);
  }

  //  // Check for Incomplete isochronous IN transfer
  //  if(int_status & USB_OTG_GINTSTS_IISOIXFR) {
  //    printf("      IISOIXFR!\r\n");
  ////    TU_LOG2("      IISOIXFR!\r\n");
  //  }
}

#endif