

Extensible Firmware Interface

Specification

Version 1.10

December 1, 2002

Extensible Firmware Interface Specification

ii 12/01/02 Version 1.10

Acknowledgements

The UGA Protocol sections of this specification were developed in close consultation with
Microsoft as part of the Universal Graphics Adapter (UGA) initiative. Microsoft has made
significant contributions to the interface definitions presented here to ensure that they will work
well with video adapters supporting the Microsoft UGA specification. These efforts are gratefully
acknowledged.

The EFI Byte Code Virtual Machine sections (Chapter 19) of this specification were developed in
close consultation with Microsoft, LSI, Hewlett Packard, Compaq, and Phoenix Technologies. The
efforts of all contributors to these sections are gratefully acknowledged.

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted herein, except that a license is hereby granted
to copy and reproduce this specification for internal use only.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document contains information on products in the design phase of development. Do not finalize a design with this
information. Revised information will be published when the product is available. Verify with your local sales office that you
have the latest datasheet or specification before finalizing a design.

Intel, the Intel logo, Pentium, Itanium, and MMX are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

† Other names and brands may be claimed as the property of others.

Intel order number: A79614-002

Copyright � 1998–2002 Intel Corporation. All Rights Reserved.

Version 1.10 12/01/02 iii

History

Revision Revision History Date

1.0 Official release of EFI 1.10 Specification, revision 1.0. 12/01/02

Extensible Firmware Interface Specification

iv 12/01/02 Version 1.10

Version 1.10 12/01/02 v

Contents

1 Introduction
1.1 EFI Driver Model Extensions... 1-2
1.2 Overview... 1-3
1.3 Goals .. 1-6
1.4 Target Audience.. 1-8
1.5 EFI Design Overview .. 1-8
1.6 EFI Driver Model ... 1-9

1.6.1 EFI Driver Model Goals .. 1-10
1.6.2 Legacy Option ROM Issues.. 1-11

1.7 Migration Requirements .. 1-11
1.7.1 Legacy Operating System Support... 1-11
1.7.2 Supporting the EFI Specification on a Legacy Platform 1-11

1.8 Conventions Used in This Document .. 1-12
1.8.1 Data Structure Descriptions.. 1-12
1.8.2 Protocol Descriptions ... 1-12
1.8.3 Procedure Descriptions .. 1-13
1.8.4 Instruction Descriptions .. 1-13
1.8.5 Pseudo-Code Conventions... 1-14
1.8.6 Typographic Conventions... 1-14

2 Overview
2.1 Boot Manager ... 2-2

2.1.1 EFI Images... 2-2
2.1.2 EFI Applications ... 2-3
2.1.3 EFI OS Loaders ... 2-4
2.1.4 EFI Drivers ... 2-4

2.2 Firmware Core .. 2-5
2.2.1 EFI Services... 2-5
2.2.2 Runtime Services ... 2-6

2.3 Calling Conventions .. 2-7
2.3.1 Data Types... 2-7
2.3.2 IA-32 Platforms .. 2-9

2.3.2.1 Handoff State .. 2-10
2.3.3 Itanium®-Based Platforms .. 2-11

2.3.3.1 Handoff State .. 2-12
2.4 Protocols... 2-12
2.5 EFI Driver Model ... 2-15

2.5.1 Legacy Option ROM Issues.. 2-17
2.5.1.1 IA-32 16-Bit Real Mode Binaries.. 2-17
2.5.1.2 Fixed Resources for Working with Option ROMs............................. 2-18
2.5.1.3 Matching Option ROMs to their Devices .. 2-18
2.5.1.4 Ties to PC-AT System Design ... 2-19
2.5.1.5 Ambiguities in Specification and Workarounds
 Born of Experience.. 2-19

Extensible Firmware Interface Specification

vi 12/01/02 Version 1.10

2.5.2 Driver Initialization .. 2-20
2.5.3 Host Bus Controllers .. 2-21
2.5.4 Device Drivers.. 2-23
2.5.5 Bus Drivers... 2-24
2.5.6 Platform Components... 2-26
2.5.7 Hot-Plug Events ... 2-27

2.6 Requirements ... 2-27
2.6.1 Required Elements... 2-28
2.6.2 Platform-Specific Elements .. 2-29
2.6.3 Driver-Specific Elements .. 2-30

3 Boot Manager
3.1 Firmware Boot Manager.. 3-1
3.2 Globally-Defined Variables.. 3-5
3.3 Boot Option Variables Default Behavior .. 3-7
3.4 Boot Mechanisms ... 3-7

3.4.1 Boot via Simple File Protocol.. 3-7
3.4.1.1 Removable Media Boot Behavior .. 3-7

3.4.2 Boot via LOAD_FILE Protocol .. 3-8
3.4.2.1 Network Booting .. 3-8
3.4.2.2 Future Boot Media... 3-8

4 EFI System Table
4.1 EFI Image Entry Point ... 4-1

EFI_IMAGE_ENTRY_POINT ... 4-1
4.2 EFI Table Header.. 4-3

EFI_TABLE_HEADER ... 4-3
4.3 EFI System Table ... 4-4

EFI_SYSTEM_TABLE ... 4-4
4.4 EFI Boot Services Table ... 4-6

EFI_BOOT_SERVICES ... 4-6
4.5 EFI Runtime Services Table.. 4-11

EFI_RUNTIME_SERVICES ... 4-11
4.6 EFI Configuration Table .. 4-13

EFI_CONFIGURATION_TABLE .. 4-13
4.7 EFI Image Entry Point Examples .. 4-14

4.7.1 EFI Image Entry Point Examples.. 4-14
4.7.2 EFI Driver Model Example.. 4-16
4.7.3 EFI Driver Model Example (Unloadable) .. 4-17
4.7.4 EFI Driver Model Example (Multiple Instances) .. 4-18

5 Services — Boot Services
5.1 Event, Timer, and Task Priority Services... 5-2

CreateEvent() .. 5-5
CloseEvent().. 5-9
SignalEvent() ... 5-10
WaitForEvent()... 5-11

 Contents

Version 1.10 12/01/02 vii

CheckEvent()... 5-12
SetTimer().. 5-13
RaiseTPL() .. 5-15
RestoreTPL() ... 5-17

5.2 Memory Allocation Services.. 5-18
AllocatePages() ... 5-21
FreePages()... 5-24
GetMemoryMap()... 5-25
AllocatePool() .. 5-29
FreePool().. 5-30

5.3 Protocol Handler Services... 5-31
5.3.1 Driver Model Boot Services .. 5-33

InstallProtocolInterface() .. 5-36
UninstallProtocolInterface().. 5-38
ReinstallProtocolInterface().. 5-40
RegisterProtocolNotify()... 5-42
LocateHandle() .. 5-43
HandleProtocol().. 5-45
LocateDevicePath() ... 5-47
OpenProtocol() .. 5-49
CloseProtocol() .. 5-56
OpenProtocolInformation()... 5-59
ConnectController() ... 5-61
DisconnectController() ... 5-66
ProtocolsPerHandle()... 5-68
LocateHandleBuffer()... 5-70
LocateProtocol() .. 5-73
InstallMultipleProtocolInterfaces() .. 5-74
UninstallMultipleProtocolInterfaces().. 5-75

5.4 Image Services ... 5-76
LoadImage() .. 5-78
StartImage()... 5-80
UnloadImage() ... 5-81
EFI_IMAGE_ENTRY_POINT... 5-82
Exit() .. 5-83
ExitBootServices() ... 5-85

5.5 Miscellaneous Boot Services .. 5-86
SetWatchdogTimer().. 5-87
Stall() ... 5-88
CopyMem().. 5-89
SetMem()... 5-90
GetNextMonotonicCount() ... 5-91
InstallConfigurationTable()... 5-92
CalculateCrc32().. 5-93

Extensible Firmware Interface Specification

viii 12/01/02 Version 1.10

6 Services — Runtime Services
6.1 Variable Services .. 6-2

GetVariable() ... 6-3
GetNextVariableName()... 6-5
SetVariable().. 6-7

6.2 Time Services ... 6-9
GetTime() .. 6-10
SetTime()... 6-13
GetWakeupTime() ... 6-14
SetWakeupTime().. 6-15

6.3 Virtual Memory Services ... 6-16
SetVirtualAddressMap()... 6-17
ConvertPointer() .. 6-19

6.4 Miscellaneous Runtime Services .. 6-20
ResetSystem()... 6-21
GetNextHighMonotonicCount() .. 6-23

7 Protocols — EFI Loaded Image

EFI_LOADED_IMAGE Protocol ... 7-1
LOADED_IMAGE.Unload() .. 7-3

8 Protocols — Device Path Protocol
8.1 Device Path Overview... 8-1
8.2 EFI_DEVICE_PATH Protocol.. 8-2

EFI_DEVICE_PATH Protocol... 8-2
8.3 Device Path Nodes ... 8-3

8.3.1 Generic Device Path Structures ... 8-3
8.3.2 Hardware Device Path ... 8-5

8.3.2.1 PCI Device Path .. 8-5
8.3.2.2 PCCARD Device Path ... 8-5
8.3.2.3 Memory Mapped Device Path ... 8-6
8.3.2.4 Vendor Device Path... 8-6
8.3.2.5 Controller Device Path... 8-6

8.3.3 ACPI Device Path... 8-7
8.3.4 Messaging Device Path.. 8-9

8.3.4.1 ATAPI Device Path.. 8-9
8.3.4.2 SCSI Device Path.. 8-10
8.3.4.3 Fibre Channel Device Path.. 8-10
8.3.4.4 1394 Device Path .. 8-10
8.3.4.5 USB Device Path... 8-11
8.3.4.6 USB Class Device Path... 8-11
8.3.4.7 I2O Device Path... 8-12
8.3.4.8 MAC Address Device Path .. 8-12
8.3.4.9 IPv4 Device Path... 8-12
8.3.4.10 IPv6 Device Path... 8-13
8.3.4.11 InfiniBand Device Path .. 8-13
8.3.4.12 UART Device Path .. 8-14

 Contents

Version 1.10 12/01/02 ix

8.3.4.13 Vendor-Defined Messaging Device Path 8-14
8.3.4.14 UART Flow Control Messaging Path ... 8-15

8.3.5 Media Device Path ... 8-16
8.3.5.1 Hard Drive ... 8-16
8.3.5.2 CD-ROM Media Device Path... 8-17
8.3.5.3 Vendor-Defined Media Device Path... 8-18
8.3.5.4 File Path Media Device Path ... 8-18
8.3.5.5 Media Protocol Device Path .. 8-18

8.3.6 BIOS Boot Specification Device Path ... 8-19
8.4 Device Path Generation Rules .. 8-20

8.4.1 Housekeeping Rules .. 8-20
8.4.2 Rules with ACPI _HID and _UID .. 8-20
8.4.3 Rules with ACPI _ADR... 8-21
8.4.4 Hardware vs. Messaging Device Path Rules .. 8-22
8.4.5 Media Device Path Rules ... 8-22
8.4.6 Other Rules.. 8-22

9 Protocols — EFI Driver Model
9.1 EFI Driver Binding Protocol ... 9-1

EFI_DRIVER_BINDING_PROTOCOL ... 9-1
EFI_DRIVER_BINDING_PROTOCOL.Supported() 9-4
EFI_DRIVER_BINDING_PROTOCOL.Start() .. 9-10
EFI_DRIVER_BINDING_PROTOCOL.Stop() .. 9-18

9.2 EFI Platform Driver Override Protocol ... 9-23

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL 9-23
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver().............. 9-25
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath() 9-27
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()........ 9-29

9.3 EFI Bus Specific Driver Override Protocol... 9-31

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL 9-31
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver() 9-32

9.4 EFI Driver Configuration Protocol.. 9-33

EFI_DRIVER_CONFIGURATION_PROTOCOL .. 9-33
EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions() 9-35
EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid()................... 9-38
EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults()................. 9-40

9.5 EFI Driver Diagnostics Protocol .. 9-43

EFI_DRIVER_DIAGNOSTICS_PROTOCOL.. 9-43
EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics() 9-44

9.6 EFI Component Name Protocol .. 9-47

EFI_COMPONENT_NAME_PROTOCOL .. 9-47
EFI_COMPONENT_NAME_PROTOCOL.GetDriverName() 9-48
EFI_COMPONENT_NAME_PROTOCOL.GetControllerName() 9-50

Extensible Firmware Interface Specification

x 12/01/02 Version 1.10

10 Protocols — Console Support
10.1 Console I/O Protocol... 10-1

10.1.1 Overview .. 10-1
10.1.2 ConsoleIn Definition ... 10-2

10.2 Simple Input Protocol.. 10-4

SIMPLE_INPUT ... 10-4
SIMPLE_INPUT.Reset() .. 10-5
SIMPLE_INPUT.ReadKeyStroke()... 10-6

10.2.1 ConsoleOut or StandardError... 10-8
10.3 Simple Text Output Protocol ... 10-8

SIMPLE_TEXT_OUTPUT Protocol .. 10-8
SIMPLE_TEXT_OUTPUT.Reset() ... 10-11
SIMPLE_TEXT_OUTPUT.OutputString()... 10-12
SIMPLE_TEXT_OUTPUT.TestString() .. 10-16
SIMPLE_TEXT_OUTPUT.QueryMode() .. 10-17
SIMPLE_TEXT_OUTPUT.SetMode() .. 10-18
SIMPLE_TEXT_OUTPUT.SetAttribute() .. 10-19
SIMPLE_TEXT_OUTPUT.ClearScreen() ... 10-21
SIMPLE_TEXT_OUTPUT.SetCursorPosition() .. 10-22
SIMPLE_TEXT_OUTPUT.EnableCursor() ... 10-23

10.4 Universal Graphics Adapter Protocols... 10-24
10.4.1 UGA ROM.. 10-24
10.4.2 UGA Draw Protocol .. 10-25
10.4.3 Blt Buffer .. 10-25
10.4.4 UGA I/O Protocol.. 10-26
10.4.5 Fallback Mode Driver ... 10-26

10.5 UGA Draw Protocol... 10-27

EFI_UGA_DRAW_PROTOCOL... 10-27
EFI_UGA_DRAW_PROTOCOL.GetMode()... 10-28
EFI_UGA_DRAW_PROTOCOL.SetMode() ... 10-29
EFI_UGA_DRAW_PROTOCOL.Blt() ... 10-31

10.6 Rules for PCI/AGP Devices .. 10-34
10.7 UGA I/O Protocol .. 10-35

EFI_UGA_IO_PROTOCOL.. 10-35
EFI_UGA_IO_PROTOCOL.CreateDevice() ... 10-37
EFI_UGA_IO_PROTOCOL.DeleteDevice() ... 10-38
PUGA_FW_SERVICE_DISPATCH.DispatchService()............................... 10-39

10.8 Implementation Rules for an EFI UGA Driver.. 10-42
10.9 UGA Draw Protocol to UGA I/O Protocol Mapping .. 10-43

10.9.1 UGA System Requirements ... 10-43
10.9.2 System Abstraction Requirements ... 10-44
10.9.3 Firmware to OS Hand-off.. 10-44

10.10 Simple Pointer Protocol... 10-46

EFI_SIMPLE_POINTER_PROTOCOL... 10-46
EFI_SIMPLE_POINTER.Reset().. 10-48
EFI_SIMPLE_POINTER.GetState() ... 10-49

 Contents

Version 1.10 12/01/02 xi

10.11 EFI Simple Pointer Device Paths .. 10-51
10.12 Serial I/O Protocol... 10-55

SERIAL_IO_PROTOCOL... 10-55
SERIAL_IO.Reset() ... 10-58
SERIAL_IO.SetAttributes() .. 10-59
SERIAL_IO.SetControl() .. 10-61
SERIAL_IO.GetControl().. 10-63
SERIAL_IO.Write() .. 10-64
SERIAL_IO.Read() .. 10-65

11 Protocols — Bootable Image Support
11.1 LOAD_FILE Protocol .. 11-1

LOAD_FILE Protocol.. 11-1
LOAD_FILE.LoadFile() .. 11-2

11.2 File System Format... 11-4
11.2.1 System Partition ... 11-4

11.2.1.1 File System Format ... 11-5
11.2.1.2 File Names .. 11-5
11.2.1.3 Directory Structure... 11-5

11.2.2 Partition Discovery ... 11-7
11.2.2.1 EFI Partition Header .. 11-8
11.2.2.2 ISO-9660 and El Torito.. 11-12
11.2.2.3 Legacy Master Boot Record .. 11-13
11.2.2.4 Legacy Master Boot Record and GPT Partitions 11-14

11.2.3 Media Formats ... 11-15
11.2.3.1 Removable Media.. 11-15
11.2.3.2 Diskette ... 11-15
11.2.3.3 Hard Drive ... 11-16
11.2.3.4 CD-ROM and DVD-ROM... 11-16
11.2.3.5 Network ... 11-16

11.3 File System Protocol ... 11-17

Simple File System Protocol .. 11-17
EFI_FILE_IO_INTERFACE.OpenVolume().. 11-19

11.4 EFI_FILE Protocol... 11-20

EFI_FILE Protocol.. 11-20
EFI_FILE.Open() ... 11-22
EFI_FILE.Close() ... 11-24
EFI_FILE.Delete().. 11-25
EFI_FILE.Read().. 11-26
EFI_FILE.Write().. 11-27
EFI_FILE.SetPosition() .. 11-28
EFI_FILE.GetPosition().. 11-29
EFI_FILE.GetInfo() .. 11-30
EFI_FILE.SetInfo()... 11-31
EFI_FILE.Flush() ... 11-32
EFI_FILE_INFO... 11-33
EFI_FILE_SYSTEM_INFO .. 11-35

Extensible Firmware Interface Specification

xii 12/01/02 Version 1.10

EFI_FILE_SYSTEM_VOLUME_LABEL ... 11-36
11.5 DISK_IO Protocol.. 11-37

DISK_IO Protocol... 11-37
EFI_DISK_IO.ReadDisk() .. 11-39
EFI_DISK_IO.WriteDisk() .. 11-40

11.6 BLOCK_IO Protocol.. 11-41

BLOCK_IO Protocol ... 11-41
EFI_BLOCK_IO.Reset()... 11-44
EFI_BLOCK_IO.ReadBlocks() ... 11-45
EFI_BLOCK_IO.WriteBlocks() ... 11-47
EFI_BLOCK_IO.FlushBlocks()... 11-49

11.7 UNICODE_COLLATION Protocol ... 11-50

UNICODE_COLLATION Protocol .. 11-50
UNICODE_COLLATION.StriColl() ... 11-52
UNICODE_COLLATION.MetaiMatch() .. 11-53
UNICODE_COLLATION.StrLwr() .. 11-55
UNICODE_COLLATION.StrUpr() .. 11-56
UNICODE_COLLATION.FatToStr() ... 11-57
UNICODE_COLLATION.StrToFat() ... 11-58

12 Protocols — PCI Bus Support
12.1 PCI Root Bridge I/O Support ... 12-1

12.1.1 PCI Root Bridge I/O Overview.. 12-1
12.1.1.1 Sample PCI Architectures.. 12-4

12.2 PCI Root Bridge I/O Protocol .. 12-8

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL .. 12-8
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()............................. 12-16
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo().................................. 12-18
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write() 12-20
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write() 12-22
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write() 12-24
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem() 12-26
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map().................................... 12-28
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap() 12-30
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()..................... 12-31
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer().......................... 12-33
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush().................................. 12-34
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes() 12-35
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes() 12-37
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()...................... 12-40

12.2.1 PCI Root Bridge Device Paths.. 12-42

 Contents

Version 1.10 12/01/02 xiii

12.3 PCI Driver Model... 12-46
12.3.1 PCI Driver Initialization ... 12-46

12.3.1.1 Driver Configuration Protocol... 12-48
12.3.1.2 Driver Diagnostics Protocol ... 12-48
12.3.1.3 Component Name Protocol ... 12-48

12.3.2 PCI Bus Drivers.. 12-49
12.3.2.1 Driver Binding Protocol for PCI Bus Drivers................................. 12-50
12.3.2.2 PCI Enumeration ... 12-53

12.3.3 PCI Device Drivers ... 12-53
12.3.3.1 Driver Binding Protocol for PCI Device Drivers 12-53

12.4 EFI PCI I/O Protocol ... 12-55

EFI_PCI_IO_PROTOCOL.. 12-56
EFI_PCI_IO_PROTOCOL.PollMem() .. 12-65
EFI_PCI_IO_PROTOCOL.PollIo() ... 12-67
EFI_PCI_IO_PROTOCOL.Mem.Read() EFI_PCI_IO_PROTOCOL.
Mem.Write()... 12-69
EFI_PCI_IO_PROTOCOL.Io.Read() EFI_PCI_IO_PROTOCOL.
Io.Write().. 12-71
EFI_PCI_IO_PROTOCOL.Pci.Read() EFI_PCI_IO_PROTOCOL.
Pci.Write().. 12-73
EFI_PCI_IO_PROTOCOL.CopyMem() .. 12-75
EFI_PCI_IO_PROTOCOL.Map() ... 12-78
EFI_PCI_IO_PROTOCOL.Unmap()... 12-80
EFI_PCI_IO_PROTOCOL.AllocateBuffer() .. 12-81
EFI_PCI_IO_PROTOCOL.FreeBuffer() ... 12-83
EFI_PCI_IO_PROTOCOL.Flush() ... 12-84
EFI_PCI_IO_PROTOCOL.GetLocation() ... 12-85
EFI_PCI_IO_PROTOCOL.Attributes() ... 12-86
EFI_PCI_IO_PROTOCOL.GetBarAttributes() .. 12-89
EFI_PCI_IO_PROTOCOL.SetBarAttributes() .. 12-92

12.4.1 PCI Device Paths ... 12-94
12.4.2 PCI Option ROMs... 12-96

12.4.2.1 PCI Bus Driver Responsibilities ... 12-98
12.4.2.2 PCI Device Driver Responsibilities .. 12-99

12.4.3 Nonvolatile Storage.. 12-101
12.4.4 PCI Hot-Plug Events .. 12-102

13 Protocols — SCSI Bus Support
13.1 SCSI Pass Thru Protocol .. 13-1

EFI_SCSI_PASS_THRU Protocol.. 13-1
EFI_SCSI_PASS_THRU_PROTOCOL.PassThru() 13-5
EFI_SCSI_PASS_THRU_PROTOCOL.GetNextDevice()........................... 13-10
EFI_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() 13-12
EFI_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()............................. 13-14
EFI_SCSI_PASS_THRU_PROTOCOL.ResetChannel() 13-16
EFI_SCSI_PASS_THRU_PROTOCOL.ResetTarget() 13-17

13.2 SCSI Pass Thru Device Paths .. 13-18

Extensible Firmware Interface Specification

xiv 12/01/02 Version 1.10

14 Protocols — USB Support
14.1 USB Host Controller Protocol.. 14-1

14.1.1 USB Host Controller Protocol Overview ... 14-1

EFI_USB_HC_PROTOCOL... 14-2
EFI_USB_HC_PROTOCOL.Reset() .. 14-4
EFI_USB_HC_PROTOCOL.GetState() ... 14-6
EFI_USB_HC_PROTOCOL.SetState().. 14-8
EFI_USB_HC_PROTOCOL.ControlTransfer()... 14-10
EFI_USB_HC_PROTOCOL.BulkTransfer() ... 14-13
EFI_USB_HC_PROTOCOL.AsyncInterruptTransfer() 14-16
EFI_USB_HC_PROTOCOL.SyncInterruptTransfer() 14-19
EFI_USB_HC_PROTOCOL.IsochronousTransfer() 14-21
EFI_USB_HC_PROTOCOL.AsyncIsochronousTransfer() 14-23
EFI_USB_HC_PROTOCOL.GetRootHubPortNumber()............................. 14-25
EFI_USB_HC_PROTOCOL.GetRootHubPortStatus() 14-26
EFI_USB_HC_PROTOCOL.SetRootHubPortFeature().............................. 14-30
EFI_USB_HC_PROTOCOL.ClearRootHubPortFeature() 14-32

14.2 USB Driver Model ... 14-34
14.2.1 Scope... 14-34
14.2.2 USB Driver Model Overview... 14-34
14.2.3 USB Bus Driver .. 14-35

14.2.3.1 USB Bus Driver Entry Point ... 14-35
14.2.3.2 Driver Binding Protocol for USB Bus Drivers 14-35
14.2.3.3 USB Hot-Plug Event .. 14-36
14.2.3.4 USB Bus Enumeration... 14-36

14.2.4 USB Device Driver ... 14-37
14.2.4.1 USB Device Driver Entry Point .. 14-37
14.2.4.2 Driver Binding Protocol for USB Device Drivers........................... 14-37

14.2.5 EFI USB I/O Protocol Overview.. 14-37

EFI_USB_IO Protocol .. 14-38
EFI_USB_IO_PROTOCOL.UsbControlTransfer() 14-40
EFI_USB_IO_PROTOCOL.UsbBulkTransfer()... 14-43
EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()........................... 14-45
EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer() 14-48
EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer() 14-50
EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()..................... 14-52
EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor() 14-54
EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()............................... 14-56
EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor() 14-57
EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()........................... 14-59
EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()................................ 14-61
EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages() 14-62
EFI_USB_IO_PROTOCOL.UsbPortReset()... 14-63

14.2.6 USB Device Paths.. 14-64
14.2.6.1 USB Device Path Node ... 14-64
14.2.6.2 USB Device Path Example .. 14-65

 Contents

Version 1.10 12/01/02 xv

15 Protocols — Network Support
15.1 EFI_SIMPLE_NETWORK Protocol ... 15-1

EFI_SIMPLE_NETWORK Protocol .. 15-1
EFI_SIMPLE_NETWORK.Start() ... 15-6
EFI_SIMPLE_NETWORK.Stop() ... 15-7
EFI_SIMPLE_NETWORK.Initialize().. 15-8
EFI_SIMPLE_NETWORK.Reset() ... 15-9
EFI_SIMPLE_NETWORK.Shutdown()... 15-10
EFI_SIMPLE_NETWORK.ReceiveFilters() .. 15-11
EFI_SIMPLE_NETWORK.StationAddress()... 15-13
EFI_SIMPLE_NETWORK.Statistics() .. 15-14
EFI_SIMPLE_NETWORK.MCastIPtoMAC() .. 15-17
EFI_SIMPLE_NETWORK.NvData()... 15-18
EFI_SIMPLE_NETWORK.GetStatus()... 15-20
EFI_SIMPLE_NETWORK.Transmit()... 15-22
EFI_SIMPLE_NETWORK.Receive().. 15-24

15.2 NETWORK_INTERFACE_IDENTIFIER Protocol .. 15-26

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL.......................... 15-26
15.3 PXE Base Code Protocol .. 15-29

EFI_PXE_BASE_CODE Protocol... 15-29
EFI_PXE_BASE_CODE.Start() ... 15-41
EFI_PXE_BASE_CODE.Stop().. 15-44
EFI_PXE_BASE_CODE.Dhcp()... 15-45
EFI_PXE_BASE_CODE.Discover() ... 15-47
EFI_PXE_BASE_CODE.Mtftp() ... 15-50
EFI_PXE_BASE_CODE.UdpWrite() .. 15-54
EFI_PXE_BASE_CODE.UdpRead() .. 15-56
EFI_PXE_BASE_CODE.SetIpFilter()... 15-59
EFI_PXE_BASE_CODE.Arp() ... 15-60
EFI_PXE_BASE_CODE.SetParameters() ... 15-61
EFI_PXE_BASE_CODE.SetStationIp().. 15-63
EFI_PXE_BASE_CODE.SetPackets() ... 15-64

15.4 PXE Base Code Callback Protocol ... 15-66

EFI_PXE_BASE_CODE_CALLBACK Protocol .. 15-66
EFI_PXE_BASE_CODE_CALLBACK.Callback() 15-67

15.5 Boot Integrity Services Protocol .. 15-69

EFI_BIS_PROTOCOL.. 15-69
EFI_BIS.Initialize() ... 15-72
EFI_BIS.Shutdown() .. 15-76
EFI_BIS.Free()... 15-78
EFI_BIS.GetBootObjectAuthorizationCertificate() 15-79
EFI_BIS.GetBootObjectAuthorizationCheckFlag() 15-80
EFI_BIS.GetBootObjectAuthorizationUpdateToken()................................. 15-81
EFI_BIS.GetSignatureInfo() ... 15-82

Extensible Firmware Interface Specification

xvi 12/01/02 Version 1.10

EFI_BIS.UpdateBootObjectAuthorization() .. 15-87
EFI_BIS.VerifyBootObject() ... 15-95
EFI_BIS.VerifyObjectWithCredential() ... 15-102

16 Protocols — Debugger Support
16.1 Overview... 16-1
16.2 EFI Debug Support Protocol ... 16-2

16.2.1 EFI Debug Support Protocol Overview... 16-2

EFI_DEBUG_SUPPORT_PROTOCOL.. 16-3
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()....... 16-5
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()............. 16-6
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback() 16-10
EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()......... 16-13

16.3 EFI Debugport Protocol... 16-14
16.3.1 EFI Debugport Overview .. 16-14

EFI_DEBUGPORT_PROTOCOL... 16-15
EFI_DEBUGPORT_PROTOCOL.Reset() .. 16-16
EFI_DEBUGPORT_PROTOCOL.Write() ... 16-17
EFI_DEBUGPORT_PROTOCOL.Read() ... 16-18
EFI_DEBUGPORT_PROTOCOL.Poll() ... 16-19

16.3.2 Debugport Device Path .. 16-20
16.3.3 EFI Debugport Variable.. 16-21

16.4 EFI Debug Support Table ... 16-22
16.4.1 Overview .. 16-22
16.4.2 EFI System Table Location .. 16-24
16.4.3 EFI Image Info.. 16-24

17 Protocols — Compression Algorithm Specification
17.1 Algorithm Overview... 17-1
17.2 Data Format.. 17-3

17.2.1 Bit Order... 17-3
17.2.2 Overall Structure .. 17-3
17.2.3 Block Structure... 17-4

17.2.3.1 Block Header... 17-4
17.2.3.2 Block Body .. 17-7

17.3 Compressor Design .. 17-8
17.3.1 Overall Process.. 17-8
17.3.2 String Info Log.. 17-9

17.3.2.1 Data Structures ... 17-10
17.3.2.2 Searching the Tree.. 17-11
17.3.2.3 Adding String Info.. 17-11
17.3.2.4 Deleting String Info.. 17-12

17.3.3 Huffman Code Generation.. 17-13
17.3.3.1 Huffman Tree Generation .. 17-13
17.3.3.2 Code Length Adjustment ... 17-13
17.3.3.3 Code Generation ... 17-14

 Contents

Version 1.10 12/01/02 xvii

17.4 Decompressor Design... 17-15
17.5 Decompress Protocol.. 17-16

EFI_DECOMPRESS_PROTOCOL .. 17-16
EFI_DECOMPRESS_PROTOCOL.GetInfo() ... 17-17
EFI_DECOMPRESS_PROTOCOL.Decompress()..................................... 17-19

18 Protocols — Device I/O Protocol
18.1 Device I/O Overview ... 18-1
18.2 DEVICE_IO Protocol... 18-2

DEVICE_IO Protocol.. 18-2
DEVICE_IO.Mem(), .Io(), and .Pci() ... 18-5
DEVICE_IO.PciDevicePath() ... 18-7
DEVICE_IO.Map() ... 18-8
DEVICE_IO.Unmap()... 18-10
DEVICE_IO.AllocateBuffer() .. 18-11
DEVICE_IO.Flush() ... 18-13
DEVICE_IO.FreeBuffer() ... 18-14

19 EFI Byte Code Virtual Machine
19.1 Overview... 19-1

19.1.1 Processor Architecture Independence.. 19-1
19.1.2 OS Independent ... 19-2
19.1.3 EFI Compliant .. 19-2
19.1.4 Coexistence of Legacy Option ROMs... 19-2
19.1.5 Relocatable Image ... 19-2
19.1.6 Size Restrictions Based on Memory Available.. 19-3

19.2 Memory Ordering .. 19-3
19.3 Virtual Machine Registers ... 19-3
19.4 Natural Indexing.. 19-5

19.4.1 Sign Bit... 19-5
19.4.2 Bits Assigned to Natural Units .. 19-6
19.4.3 Constant... 19-6
19.4.4 Natural Units .. 19-6

19.5 EBC Instruction Operands .. 19-7
19.5.1 Direct Operands ... 19-7
19.5.2 Indirect Operands... 19-7
19.5.3 Indirect with Index Operands.. 19-8
19.5.4 Immediate Operands.. 19-8

19.6 EBC Instruction Syntax ... 19-9
19.7 Instruction Encoding ... 19-9

19.7.1 Instruction Opcode Byte Encoding ... 19-10
19.7.2 Instruction Operands Byte Encoding .. 19-10
19.7.3 Index/Immediate Data Encoding... 19-11

19.8 EBC Instruction Set... 19-11
ADD... 19-12
AND... 19-13
ASHR .. 19-14
BREAK .. 19-15

Extensible Firmware Interface Specification

xviii 12/01/02 Version 1.10

CALL ... 19-17
CMP .. 19-20
CMPI ... 19-22
DIV .. 19-24
DIVU.. 19-25
EXTNDB.. 19-26
EXTNDD.. 19-27
EXTNDW... 19-28
JMP ... 19-29
JMP8 ... 19-31
LOADSP.. 19-32
MOD.. 19-33
MODU ... 19-34
MOV .. 19-35
MOVI ... 19-37
MOVIn ... 19-39
MOVn .. 19-41
MOVREL ... 19-43
MOVsn .. 19-44
MUL... 19-46
MULU .. 19-47
NEG... 19-48
NOT... 19-49
OR... 19-50
POP... 19-51
POPn... 19-52
PUSH .. 19-53
PUSHn .. 19-54
RET ... 19-55
SHL ... 19-56
SHR... 19-57
STORESP ... 19-58
SUB... 19-59
XOR... 19-60

19.9 Runtime and Software Conventions.. 19-61
19.9.1 Calling Outside VM... 19-61
19.9.2 Calling Inside VM ... 19-61
19.9.3 Parameter Passing... 19-61
19.9.4 Return Values .. 19-61
19.9.5 Binary Format... 19-61

19.10 Architectural Requirements... 19-61
19.10.1 EBC Image Requirements.. 19-62
19.10.2 EBC Execution Interfacing Requirements... 19-62
19.10.3 Interfacing Function Parameters Requirements...................................... 19-62
19.10.4 Function Return Requirements... 19-62
19.10.5 Function Return Values Requirements ... 19-62

 Contents

Version 1.10 12/01/02 xix

19.11 EBC Interpreter Protocol ... 19-63

EFI_EBC_PROTOCOL .. 19-63
EFI_EBC_PROTOCOL.CreateThunk() .. 19-65
EFI_EBC_PROTOCOL.UnloadImage() ... 19-66
EFI_EBC_PROTOCOL.RegisterICacheFlush().. 19-67
EFI_EBC_PROTOCOL.GetVersion()... 19-69

19.12 EBC Tools... 19-70
19.12.1 EBC C Compiler ... 19-70
19.12.2 C Coding Convention ... 19-70
19.12.3 EBC Interface Assembly Instructions.. 19-70
19.12.4 Stack Maintenance and Argument Passing .. 19-70
19.12.5 Native to EBC Arguments Calling Convention .. 19-71
19.12.6 EBC to Native Arguments Calling Convention .. 19-71
19.12.7 EBC to EBC Arguments Calling Convention... 19-71
19.12.8 Function Returns.. 19-71
19.12.9 Function Return Values.. 19-71
19.12.10 Thunking .. 19-72

19.12.10.1 Thunking EBC to Native Code .. 19-72
19.12.10.2 Thunking Native Code to EBC .. 19-73
19.12.10.3 Thunking EBC to EBC .. 19-73

19.12.11 EBC Linker ... 19-74
19.12.12 Image Loader ... 19-74
19.12.13 Debug Support ... 19-74

19.13 VM Exception Handling... 19-75
19.13.1 Divide By 0 Exception .. 19-75
19.13.2 Debug Break Exception.. 19-75
19.13.3 Invalid Opcode Exception... 19-75
19.13.4 Stack Fault Exception... 19-75
19.13.5 Alignment Exception... 19-75
19.13.6 Instruction Encoding Exception .. 19-75
19.13.7 Bad Break Exception.. 19-76
19.13.8 Undefined Exception .. 19-76

19.14 Option ROM Formats.. 19-76
19.14.1 EFI Drivers for PCI Add-in Cards.. 19-76
19.14.2 Non-PCI Bus Support... 19-76

Appendix A GUID and Time Formats ...A-1

Appendix B Console
B.1 SIMPLE_INPUT..B-1
B.2 SIMPLE_TEXT_OUTPUT ...B-2

Appendix C Device Path Examples
C.1 Example Computer System...C-1
C.2 Legacy Floppy ..C-2
C.3 IDE Disk..C-3
C.4 Secondary Root PCI Bus with PCI to PCI Bridge ..C-5
C.5 ACPI Terms ..C-6
C.6 EFI Device Path as a Name Space...C-7

Extensible Firmware Interface Specification

xx 12/01/02 Version 1.10

Appendix D Status Codes...D-1

Appendix E 32/64-Bit UNDI Specification
E.1 Introduction ...E-1

E.1.1 Definitions ..E-1
E.1.2 Referenced Specifications..E-3
E.1.3 OS Network Stacks ..E-5

E.2 Overview...E-7
E.2.1 32/64-bit UNDI Interface...E-7
E.2.2 UNDI Command Format...E-13

E.3 UNDI C Definitions..E-15
E.3.1 Portability Macros...E-15
E.3.2 Miscellaneous Macros..E-18
E.3.3 Portability Types...E-18
E.3.4 Simple Types ...E-20
E.3.5 Compound Types...E-33

E.4 UNDI Commands..E-38
E.4.1 Command Linking and Queuing ...E-39
E.4.2 Get State..E-41
E.4.3 Start ...E-43
E.4.4 Stop ...E-48
E.4.5 Get Init Info...E-49
E.4.6 Get Config Info ...E-53
E.4.7 Initialize ..E-56
E.4.8 Reset..E-60
E.4.9 Shutdown ...E-62
E.4.10 Interrupt Enables..E-64
E.4.11 Receive Filters ...E-66
E.4.12 Station Address..E-69
E.4.13 Statistics...E-71
E.4.14 MCast IP To MAC ..E-74
E.4.15 NvData ...E-76
E.4.16 Get Status ..E-80
E.4.17 Fill Header..E-83
E.4.18 Transmit ...E-86
E.4.19 Receive ..E-90

E.5 UNDI as an EFI Runtime Driver ..E-93

Appendix F Using the Simple Pointer Protocol ... F-1

Appendix G Using the EFI SCSI Pass Thru Protocol ..G-1

Appendix H Compression Source Code..H-1

Appendix I Decompression Source Code .. I-1

Appendix J EFI Byte Code Virtual Machine Opcode SummaryJ-1

Appendix K Alphabetic Function Lists...K-1

 Contents

Version 1.10 12/01/02 xxi

References
Related Information.. References-1
Prerequisite Specifications ... References-5

ACPI Specification.. References-5
WfM Specification... References-5
Additional Considerations for Itanium-Based Platforms References-6

Glossary ... Glossary-1

Index..Index-1

Figures
1-1. EFI Conceptual Overview .. 9

2-1. Booting Sequence.. 1
2-2. Stack after AddressOfEntryPoint Called, IA-32 ..10
2-3. Stack after AddressOfEntryPoint Called, Itanium-based Systems..................12
2-4. Construction of a Protocol...13
2-5. Desktop System..16
2-6. Server System ..16
2-7. Image Handle ...20
2-8. Driver Image Handle ...21
2-9. Host Bus Controllers ...22
2-10. PCI Root Bridge Device Handle ..22
2-11. Connecting Device Drivers..23
2-12. Connecting Bus Drivers ..25
2-13. Child Device Handle with a Bus Specific Override ..26

5-1. Device Handle to Protocol Handler Mapping...32
5-2. Handle Database ..34

10-1. Software BLT Buffer..25
10-2. Fallback Mode Driver ..26

11-1. Nesting of Legacy MBR Partition Records ... 7
11-2. GUID Partition Table (GPT) Scheme ... 9

12-1. Host Bus Controllers .. 2
12-2. Device Handle for a PCI Root Bridge Controller... 3
12-3. Desktop System with One PCI Root Bridge ... 4
12-4. Server System with Four PCI Root Bridges.. 5
12-5. Server System with Two PCI Segments... 6
12-6. Server System with Two PCI Host Buses... 7
12-7. Image Handle ...46
12-8. PCI Driver Image Handle ..47
12-9. PCI Host Bus Controller ..49
12-10. Device Handle for a PCI Host Bus Controller ..49
12-11. Physical PCI Bus Structure ...50

Extensible Firmware Interface Specification

xxii 12/01/02 Version 1.10

12-12. Connecting a PCI Bus Driver ..51
12-13. Child Handle Created by a PCI Bus Driver..51
12-14. Connecting a PCI Device Driver..54
12-15. Recommended PCI Driver Image Layout ..99

14-1. Software Triggered State Transitions of a USB Host Controller 8
14-2. USB Bus Controller Handle...34

16-1. Debug Support Table Indirection and Pointer Usage ..23

17-1. Bit Sequence of Compressed Data .. 3
17-2. Compressed Data Structure... 4
17-3. Block Structure .. 4
17-4. Block Body... 7
17-5. String Info Log Search Tree ..10
17-6. Node Split ...12

C-1. Example Computer System.. 1
C-2. Partial ACPI Name Space for Example System ... 2
C-3. EFI Device Path Displayed As a Name Space ... 7

E-1. Network Stacks with Three Classes of Drivers... 5
E-2. !PXE Structures for H/W and S/W UNDI .. 7
E-3. Issuing UNDI Commands..12
E-4. UNDI Command Descriptor Block (CDB) ..13
E-5. Storage Types ..18
E-6. UNDI States, Transitions & Valid Commands ...38
E-7. Linked CDBs...39
E-8. Queued CDBs...40

Tables
1-1. Organization of the EFI Specification ... 3

2-1. EFI Runtime Services .. 6
2-2. Common EFI Data Types... 7
2-3. Modifiers for Common EFI Data Types .. 8
2-4. EFI Protocols ..14
2-5. Required EFI Implementation Elements..28

3-1 Global Variables... 5
3-2 EFI Image Types.. 8

5-1. Event, Timer, and Task Priority Functions.. 2
5-2. TPL Usage... 3
5-3. TPL Restrictions... 4
5-4. Memory Allocation Functions ..18
5-5. Memory Type Usage before ExitBootServices()...19

 Contents

Version 1.10 12/01/02 xxiii

5-6. Memory Type Usage after ExitBootServices()..20
5-7. Protocol Interface Functions ...31
5-8. Image Type Differences Summary..76
5-9. Image Functions ...77
5-10. Miscellaneous Boot Services Functions ..86

6-1. Variable Services Functions... 2
6-2. Time Services Functions.. 9
6-3. Virtual Memory Functions ...16
6-4. Miscellaneous Runtime Services ..20

8-1. Generic Device Path Node Structure ... 3
8-2. Device Path End Structure... 4
8-3. PCI Device Path... 5
8-4. PCCARD Device Path.. 5
8-5. Memory Mapped Device Path .. 6
8-6. Vendor-Defined Device Path.. 6
8-7. Controller Device Path ... 6
8-8. ACPI Device Path .. 8
8-9. Expanded ACPI Device Path ... 8
8-10. ATAPI Device Path .. 9
8-11. SCSI Device Path ...10
8-12. Fibre Channel Device Path ...10
8-13. 1394 Device Path..10
8-14. USB Device Path ..11
8-15. USB Class Device Path ..11
8-16. I2O Device Path...12
8-17. MAC Address Device Path..12
8-18. IPv4 Device Path ..12
8-19. IPv6 Device Path ..13
8-20. InfiniBand Device Path..13
8-21. UART Device Path..14
8-22. Vendor-Defined Messaging Device Path...14
8-23. UART Flow Control Messaging Device Path ...15
8-24. Hard Drive Media Device Path ..16
8-25. CD-ROM Media Device Path ..17
8-26. Vendor-Defined Media Device Path ..18
8-27. File Path Media Device Path...18
8-28. Media Protocol Media Device Path ...18
8-29. BIOS Boot Specification Device Path..19
8-30. ACPI _CRS to EFI Device Path Mapping..20
8-31. ACPI _ADR to EFI Device Path Mapping..21

9-1. EFI Driver Configuration Default Type...41

10-1. Supported Unicode Control Characters.. 2
10-2. EFI Scan Codes for SIMPLE_INPUT_INTERFACE .. 3

Extensible Firmware Interface Specification

xxiv 12/01/02 Version 1.10

10-3. EFI Cursor Location/Advance Rules ...14
10-4. Blt Operation Table ...33
10-5. PS/2 Mouse Device Path ..51
10-6. Serial Mouse Device Path...52
10-7. USB Mouse Device Path...54

11-1. GUID Partition Table Header ... 9
11-2. GUID Partition Entry ...11
11-3. Defined GUID Partition Entry - Partition Type GUIDs..12
11-4. Defined GUID Partition Entry - Attributes ..12
11-5. Legacy Master Boot Record..13
11-6. Legacy Master Boot Record Partition Record ...14
11-7. PMBR Entry to Precede a GUID Partition Table Header15

12-1. PCI Configuration Address..25
12-2. ACPI 2.0 QWORD Address Space Descriptor ..41
12-3. ACPI 2.0 End Tag...41
12-4. PCI Root Bridge Device Path for a Desktop System ...42
12-5. PCI Root Bridge Device Path for Bridge #0 in a Server System............................43
12-6. PCI Root Bridge Device Path for Bridge #1 in a Server System............................43
12-7. PCI Root Bridge Device Path for Bridge #2 in a Server System............................44
12-8. PCI Root Bridge Device Path for Bridge #3 in a Server System............................44
12-9. PCI Root Bridge Device Path Using Expanded ACPI Device Path........................45
12-10. ACPI 2.0 QWORD Address Space Descriptor ..90
12-11. ACPI 2.0 End Tag...90
12-12. PCI Device 7, Function 0 on PCI Root Bridge 0 ..94
12-13. PCI Device 7, Function 0 behind PCI to PCI bridge ..95
12-14. Standard PCI Expansion ROM Header ...97
12-15. PCIR Data Structure ...97
12-16. PCI Expansion ROM Code Types...97
12-17. EFI PCI Expansion ROM Header..98
12-18. Recommended PCI Device Driver Layout ...100

13-1. Single Channel PCI SCSI Controller ...18
13-2. Single Channel PCI SCSI Controller behind a PCI Bridge.....................................19
13-3. Channel #3 of a PCI SCSI Controller behind a PCI Bridge....................................20

14-1. USB Hub Port Status Bitmap ..27
14-2. Hub Port Change Status Bitmap ...28
14-3. USB Port Feature..31
14-4. USB Device Path Examples..65
14-5. Another USB Device Path Example ..66

15-1. PXE Tag Definitions for EFI ..39
15-2. Destination IP Filter Operation ..57
15-3. Destination UDP Port Filter Operation...57
15-4. Source IP Filter Operation...58
15-5. Source UDP Port Filter Operation ...58

 Contents

Version 1.10 12/01/02 xxv

16-1. Debugport Messaging Device Path ..20

17-1. Block Header Fields... 5

18-1. PCI Address... 6

19-1. General Purpose VM Registers.. 3
19-2. Dedicated VM Registers .. 4
19-3. VM Flags Register ... 4
19-4. Index Encoding .. 5
19-5. Index Size in Index Encoding... 6
19-6. Opcode Byte Encoding ...10
19-7. Operand Byte Encoding..10
19-8. ADD Instruction Encoding ...12
19-9. AND Instruction Encoding ...13
19-10. ASHR Instruction Encoding...14
19-11. VM Version format ..15
19-12. BREAK Instruction Encoding...16
19-13. CALL Instruction Encoding..18
19-14. CMP Instruction Encoding...21
19-15. CMPI Instruction Encoding..23
19-16. DIV Instruction Encoding...24
19-17. DIVU Instruction Encoding ..25
19-19. EXTNDD Instruction Encoding ..27
19-20. EXTNDW Instruction Encoding ...28
19-21. JMP Instruction Encoding ...30
19-22. JMP8 Instruction Encoding ...31
19-23. LOADSP Instruction Encoding ..32
19-24. MOD Instruction Encoding ..33
19-25. MODU Instruction Encoding..34
19-26. MOV Instruction Encoding ..36
19-27. MOVI Instruction Encoding ...37
19-28. MOVIn Instruction Encoding..39
19-29. MOVn Instruction Encoding ..41
19-30. MOVREL Instruction Encoding..43
19-31. MOVsn Instruction Encoding...44
19-32. MUL Instruction Encoding ...46
19-33. MULU Instruction Encoding ..47
19-34. NEG Instruction Encoding...48
19-35. NOT Instruction Encoding ...49
19-36. OR Instruction Encoding...50
19-37. POP Instruction Encoding ..51
19-38. POPn Instruction Encoding ..52
19-39. PUSH Instruction Encoding ..53
19-40. PUSHn Instruction Encoding ..54
19-41. RET Instruction Encoding...55
19-42. SHL Instruction Encoding...56

Extensible Firmware Interface Specification

xxvi 12/01/02 Version 1.10

19-43. SHR Instruction Encoding ..57
19-44. STORESP Instruction Encoding...58
19-45. SUB Instruction Encoding...59
19-46. XOR Instruction Encoding ..60

A-1. EFI GUID Format ... 1

B-1. EFI Scan Codes for SIMPLE_INPUT ... 1
B-2. Control Sequences That Can Be Used to Implement SIMPLE_TEXT_OUTPUT 2

C-1. Legacy Floppy Device Path.. 3
C-2. IDE Disk Device Path... 4
C-3. Secondary Root PCI Bus with PCI to PCI Bridge Device Path 5

D-1. EFI_STATUS Codes Ranges... 1
D-2. EFI_STATUS Success Codes (High Bit Clear) .. 1
D-3. EFI_STATUS Error Codes (High Bit Set) ... 1
D-4. EFI_STATUS Warning Codes (High Bit Clear)... 2

E-1. Definitions... 1
E-2. Referenced Specifications .. 3
E-3. Driver Types: Pros and Cons... 6
E-4. !PXE Structure Field Definitions.. 8
E-5. UNDI CDB Field Definitions ...13

J-1. EBC Virtual Machine Opcode Summary... 1

K-1. Functions Listed in Alphabetic Order .. 1
K-2. Functions Listed Alphabetically within a Service or Protocol19

Version 1.10 12/01/02 1-1

1
Introduction

This Extensible Firmware Interface (hereafter known as EFI) Specification describes an interface
between the operating system (OS) and the platform firmware. The interface is in the form of
data tables that contain platform-related information, and boot and runtime service calls that are
available to the OS loader and the OS. Together, these provide a standard environment for
booting an OS.

The EFI specification is designed as a pure interface specification. As such, the specification
defines the set of interfaces and structures that platform firmware must implement. Similarly, the
specification defines the set of interfaces and structures that the OS may use in booting. How either
the firmware developer chooses to implement the required elements or the OS developer chooses to
make use of those interfaces and structures is an implementation decision left for the developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate
only information necessary to support the OS boot process. This is accomplished through a formal
and complete abstract specification of the software-visible interface presented to the OS by the
platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on Intel® architecture-based
platforms will be able to boot on a variety of system designs without further platform or OS
customization. The definition will also allow for platform innovation to introduce new features and
functionality that enhance platform capability without requiring new code to be written in the OS
boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code
over time. New device types and associated code can provide equivalent functionality through the
same defined abstract interface, again without impact on the OS boot support code.

The EFI specification is primarily intended for the next generation of 32-bit Intel architecture
(IA-32) and Itanium®-based computers. Thus, the specification is applicable to a full range of
hardware platforms from mobile systems to servers. The specification provides a core set of
services along with a selection of protocol interfaces. The selection of protocol interfaces can
evolve over time to be optimized for various platform market segments. At the same time the
specification allows maximum extensibility and customization abilities for OEMs to allow
differentiation. In this, the purpose of EFI is to define an evolutionary path from the traditional
“PC-AT”-style boot world into a legacy-API free environment.

Extensible Firmware Interface Specification

1-2 12/01/02 Version 1.10

1.1 EFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. The EFI 1.02 Specification
describes these protocol interfaces in detail. However, it does not describe how these protocol
interfaces are produced by the system firmware. The EFI 1.10 Specification includes extensions to
the EFI 1.02 Specification that describe the EFI Driver Model along with additional protocol
interfaces that provide access to a richer set of boot devices. One purpose of the EFI Driver Model
is to provide a replacement for “PC-AT”-style option ROMs. It is important to point out that
drivers written to the EFI Driver Model are designed to access boot devices in the preboot
environment. They are not designed to replace the high performance OS specific drivers. The
EFI 1.10 Specification is designed to be backward compatible with the EFI 1.02 Specification.
This means that any EFI applications or drivers written to the EFI 1.02 Specification will continue
to function on system firmware that complies with the EFI 1.10 Specification.

The EFI Driver Model is designed to support the execution of modular pieces of code, also known
as drivers that run in the preboot environment. These drivers may manage or control hardware
buses and devices on the platform or they may provide some software derived platform specific
service.

The EFI Driver Model is designed to extend the EFI Specification in a way that supports device
drivers and bus drivers. These extensions are provided in the form of new protocols, new boot
services, and updated EFI boot services that are backward compatible with their original versions.
The EFI Driver Model also contains information required by EFI driver writers to design and
implement any combination of bus drivers and device drivers that a platform may need to boot an
EFI compliant OS.

The EFI Driver Model is designed to be generic and can be adapted to any type of bus or device.
The EFI 1.10 Specification describes how to write PCI bus drivers, PCI device drivers, USB bus
drivers, USB device drivers, and SCSI drivers. Additions details are provided that allow EFI
drivers to be stored in PCI option ROMs while maintaining compatibility with legacy option
ROM images.

One of the design goals in the EFI 1.10 Specification is to keep the driver images as small as
possible. However, if a driver is required to support multiple processor architectures, a driver
object file would have to be shipped for each supported processor architecture. To address this
space issue, the EFI 1.10 Specification also defines the EFI Byte Code Virtual Machine. An EFI
driver can be compiled into a single EFI Byte Code Virtual Machine object file. EFI 1.10
complaint firmware must contain an EFI Byte Code interpreter. This allows a single EFI Byte
Code object file to be shipped that supports multiple processor architectures. Another space saving
technique is the use of compression. The EFI 1.10 Specification defines compression and
decompression algorithms that may be used to reduce the size of EFI drivers, and thus reduce the
overhead when EFI drivers are stored in ROM devices.

The information contained in the EFI 1.10 Specification can be used by OSVs, IHVs, OEMs, and
firmware vendors to design and implement EFI firmware, EFI drivers that produce standard
protocol interfaces, and EFI operating system loaders that can be used to boot EFI compliant
operating systems.

Introduction

Version 1.10 12/01/02 1-3

1.2 Overview

This EFI 1.10 Specification is organized as listed in Table 1-1.

Table 1-1. Organization of the EFI Specification

Chapter/Appendix Description

1. Introduction Introduces the EFI Specification and topics related to using the
specification.

2. Overview Describes the major components of EFI, including the boot
manager, firmware core, calling conventions, protocols, and
requirements.

3. Boot Manager Describes the boot manager, which is used to load EFI drivers
and EFI applications.

4. EFI System Table Describes the EFI System Table that is passed to every EFI
driver and EFI application.

5. Services — Boot Services Contains the definitions of the fundamental services that are
present in an EFI-compliant system before an OS is booted.

6. Services — Runtime Services Contains definitions for the fundamental services that are
present in an EFI-compliant system before and after an OS is
booted.

7. Protocols — EFI Loaded Image Defines the EFI Loaded Image Protocol that describes an EFI
Image that has been loaded into memory.

8. Protocols — Device Path Protocol Defines the device path protocol and provides the information
needed to construct and manage device paths in the EFI
environment.

9. Protocols — EFI Driver Model Describes a generic driver model for EFI. This includes the set
of services and protocols that apply to every bus and device
type. These protocols include the Driver Binding Protocol, the
Platform Driver Override Protocol, the Bus Specific Driver
Override Protocol, the Driver Diagnostics Protocol, the Driver
Configuration Protocol, and the Component Name Protocol.

10. Protocols — Console Support Defines the Console I/O protocols, which handle input and output
of text-based information intended for the system user while
executing in the EFI boot services environment. These protocols
include the Simple Input Protocol, the Simple Text Output
Protocol, the Universal Graphics Adapter (UGA) Protocol, the
Simple Pointer Protocol, and the Serial I/O Protocol.

continued

Extensible Firmware Interface Specification

1-4 12/01/02 Version 1.10

Table 1-1. Organization of the EFI Specification (continued)

Chapter/Appendix Description

11. Protocols — Bootable Image
Support

Defines the protocols that provide access to bootable images
while executing in the EFI boot services environment. It also
describes the supported disk layouts including MBR, El Torito,
and the Guided Partition Table (GPT). These protocols include
the Load File Protocol, the Simple File System Protocol, the Disk
I/O Protocol, the Block I/O Protocol, and the Unicode Collation
Protocol.

12. Protocols — PCI Bus Support Defines PCI Bus Drivers, PCI Device Drivers, and PCI Option
ROM layouts. The protocols described include the PCI Root
Bridge I/O Protocol and the PCI I/O Protocol.

13. Protocols — SCSI Bus Support Defines the SCSI Pass Thru Protocol that is used to abstract
access to a SCSI channel that is produced by a SCSI host
controller.

14. Protocols — USB Support Defines USB Bus Drivers and USB Device Drivers. The
protocols described include the USB Host Controller Protocol
and the USB I/O Protocol.

15. Protocols — Network Support Defines the protocols that provide access to network devices
while executing in the EFI boot services environment. These
protocols include the Simple Network Protocol, the PXE Base
Code Protocol, and the Boot Integrity services (BIS) Protocol.

16. Protocols — Debugger Support An optional set of protocols that provide the services required to
implement a source level debugger for the EFI environment.
The EFI DebugPort Protocol provides services to communicate
with a remote debug host. The Debug Support Protocol provides
services to hook processor exceptions, save the processor
context, and restore the processor context. These protocols can
be used in the implementation of a debug agent on the target
system that interacts with the remote debug host.

17. Protocols — Compression
Algorithm Specification

Describes in detail the EFI compression/decompression
algorithm, as well as the EFI Decompress Protocol. The EFI
Decompress Protocol provides a standard decompression
interface for use at boot time. The EFI Decompress Protocol is
used by a PCI Bus Driver to decompress EFI drivers stored in
PCI Option ROMs.

18. Protocols — Device I/O Protocol Defines the Device I/O protocol, which is used by code running
in the EFI boot services environment to access memory and I/O.

continued

Introduction

Version 1.10 12/01/02 1-5

Table 1-1. Organization of the EFI Specification (continued)

Chapter/Appendix Description

19. EFI Byte Code Virtual Machine Defines the EFI Byte Code virtual processor and its instruction
set. It also defines how EBC object files are loaded into
memory, and the mechanism for transitioning from native code to
EBC code and back to native code. The information in this
document is sufficient to implement an EFI Byte Code
interpreter, an EFI Byte Code compiler, and an EFI Byte Code
linker.

A. GUID and Time Formats Explains format of EFI GUIDs (Guaranteed Unique Identifiers).

B. Console Describes the requirements for a basic text-based console
required by EFI-conformant systems to provide communication
capabilities.

C. Device Path Examples Examples of use of the data structures that defines various
hardware devices to the EFI boot services.

D. Status Codes Lists success, error, and warning codes returned by EFI
interfaces.

E. 32/64-Bit UNDI Specification This appendix defines the 32/64-bit H/W and S/W Universal
Network Driver Interfaces (UNDIs).

F. Using the Simple Pointer Protocol This appendix provides the suggested usage of the Simple
Pointer Protocol.

G. Using the EFI SCSI Pass Thru
Protocol

This appendix provides an example on how the SCSI Pass Thru
Protocol can be used.

H. Compression Source Code The C source code to an implementation of the EFI Compression
Algorithm.

I. Decompression Source Code The C source code to an implementation of the EFI
Decompression Algorithm.

J. EFI Byte Code Virtual Machine
Opcode Summary

A summary of the opcodes in the instruction set of the EFI Byte
Code Virtual Machine.

K. Alphabetic Function List Lists all EFI interface functions alphabetically.

References Lists all necessary and/or useful specifications, web sites, and
other documentation that is referenced in this EFI Specification.

Glossary Briefly describes terms defined or referenced by this
specification.

Index Provides an index to the key terms and concepts in the
specification.

Extensible Firmware Interface Specification

1-6 12/01/02 Version 1.10

1.3 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the industry.
Each new platform capability or hardware innovation requires firmware developers to craft
increasingly complex solutions, and often requires OS developers to make changes to their boot
code before customers can benefit from the innovation. This can be a time-consuming process
requiring a significant investment of resources.

The primary goal of the EFI specification is to define an alternative boot environment that can
alleviate some of these considerations. In this goal, the specification is similar to other existing
boot specifications. The main properties of this specification and similar solutions can be
summarized by these attributes:

• Coherent, scalable platform environment. The specification defines a complete solution
for the firmware to completely describe platform features and surface platform capabilities
to the OS during the boot process. The definitions are rich enough to cover the full range
of contemporary Intel architecture-based system designs.

• Abstraction of the OS from the firmware. The specification defines interfaces to platform
capabilities. Through the use of abstract interfaces, the specification allows the OS loader
to be constructed with far less knowledge of the platform and firmware that underlie those
interfaces. The interfaces represent a well-defined and stable boundary between the
underlying platform and firmware implementation and the OS loader. Such a boundary
allows the underlying firmware and the OS loader to change provided both limit their
interactions to the defined interfaces.

• Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces
require the OS loader to have specific knowledge of the workings of certain hardware
devices. This specification provides OS loader developers with something different—
abstract interfaces that make it possible to build code that works on a range of underlying
hardware devices without having explicit knowledge of the specifics for each device in
the range.

• Abstraction of Option ROMs from the firmware. This specification defines interfaces to
platform capabilities including standard bus types such as PCI, USB, and SCSI. The list
of supported bus types may grow over time, so a mechanism to extend to future bus types
is included. These defined interfaces and the ability to extend to future bus types are
components of the EFI Driver Model. One purpose of the EFI Driver Model is to solve a
wide range of issues that are present in existing “PC-AT” option ROMs. Like OS loaders,
drivers use the abstract interfaces so device drivers and bus drivers can be constructed
with far less knowledge of the platform and firmware that underlie those interfaces.

• Architecturally shareable system partition. Initiatives to expand platform capabilities and
add new devices often require software support. In many cases, when these platform
innovations are activated before the OS takes control of the platform, they must be
supported by code that is specific to the platform rather than to the customer’s choice of
OS. The traditional approach to this problem has been to embed code in the platform
during manufacturing (for example, in flash memory devices). Demand for such
persistent storage is increasing at a rapid rate. This specification defines persistent store
on large mass storage media types for use by platform support code extensions to
supplement the traditional approach. The definition of how this works is made clear in the

Introduction

Version 1.10 12/01/02 1-7

specification to ensure that firmware developers, OEMs, operating system vendors, and
perhaps even third parties can share the space safely while adding to platform capability.

Defining a boot environment that delivers these attributes could be accomplished in many ways.
Indeed several alternatives, perhaps viable from an academic point of view, already existed at the
time this specification was written. These alternatives, however, typically presented high barriers
to entry given the current infrastructure capabilities surrounding Intel architecture platforms. This
specification is intended to deliver the attributes listed above while also recognizing the unique
needs of an industry that has considerable investment in compatibility and a large installed base of
systems that cannot be abandoned summarily. These needs drive the requirements for the
additional attributes embodied in this specification:

• Evolutionary, not revolutionary. The interfaces and structures in the specification are
designed to reduce the burden of an initial implementation as much as possible. While
care has been taken to ensure that appropriate abstractions are maintained in the interfaces
themselves, the design also ensures that reuse of BIOS code to implement the interfaces is
possible with a minimum of additional coding effort. In other words, on IA-32 platforms
the specification can be implemented initially as a thin interface layer over an underlying
implementation based on existing code. At the same time, introduction of the abstract
interfaces provides for migration away from legacy code in the future. Once the
abstraction is established as the means for the firmware and OS loader to interact during
boot, developers are free to replace legacy code underneath the abstract interfaces at
leisure. A similar migration for hardware legacy is also possible. Since the abstractions
hide the specifics of devices, it is possible to remove underlying hardware, and replace it
with new hardware that provides improved functionality, reduced cost, or both. Clearly
this requires that new platform firmware be written to support the device and present it to
the OS loader via the abstract interfaces. However, without the interface abstraction,
removal of the legacy device might not be possible at all.

• Compatibility by design. The design of the system partition structures also preserves all
the structures that are currently used in the “PC-AT” boot environment. Thus it is a
simple matter to construct a single system that is capable of booting a legacy OS or an
EFI-aware OS from the same disk.

• Simplifies addition of OS-neutral platform value-add. The specification defines an open
extensible interface that lends itself to the creation of platform “drivers.” These may be
analogous to OS drivers, providing support for new device types during the boot process,
or they may be used to implement enhanced platform capabilities like fault tolerance or
security. Furthermore this ability to extend platform capability is designed into the
specification from the outset. This is intended to help developers avoid many of the
frustrations inherent in trying to squeeze new code into the traditional BIOS environment.
As a result of the inclusion of interfaces to add new protocols, OEMs or firmware
developers have an infrastructure to add capability to the platform in a modular way. Such
drivers may potentially be implemented using high level coding languages because of the
calling conventions and environment defined in the specification. This in turn may help to
reduce the difficulty and cost of innovation. The option of a system partition provides an
alternative to nonvolatile memory storage for such extensions.

• Built on existing investment. Where possible, the specification avoids redefining
interfaces and structures in areas where existing industry specifications provide adequate
coverage. For example, the ACPI specification provides the OS with all the information

Extensible Firmware Interface Specification

1-8 12/01/02 Version 1.10

necessary to discover and configure platform resources. Again, this philosophical choice
for the design of the specification is intended to keep barriers to its adoption as low as
possible.

1.4 Target Audience

This document is intended for the following readers:

• IHVs and OEMs who will be implementing EFI drivers.
• OEMs who will be creating Intel architecture-based platforms intended to boot shrink-

wrap operating systems.
• BIOS developers, either those who create general-purpose BIOS and other firmware

products or those who modify these products for use in Intel architecture-based products.
• Operating system developers who will be adapting their shrink-wrap operating system

products to run on Intel architecture-based platforms.

1.5 EFI Design Overview

The design of EFI is based on the following fundamental elements:

• Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing
specifications that are commonly implemented on Intel architecture platforms must be
implemented on platforms wishing to comply with the EFI specification. (See the
References appendix for additional information.)

• System partition. The System partition defines a partition and file system that are
designed to allow safe sharing between multiple vendors, and for different purposes. The
ability to include a separate sharable system partition presents an opportunity to increase
platform value-add without significantly growing the need for nonvolatile platform
memory.

• Boot services. Boot services provide interfaces for devices and system functionality that
can be used during boot time. Device access is abstracted through “handles” and
“protocols.” This facilitates reuse of investment in existing BIOS code by keeping
underlying implementation requirements out of the specification without burdening the
consumer accessing the device.

• Runtime services. A minimal set of runtime services is presented to ensure appropriate
abstraction of base platform hardware resources that may be needed by the OS during its
normal operations.

Introduction

Version 1.10 12/01/02 1-9

Figure 1-1 shows the principal components of EFI and their relationship to platform hardware and
OS software.

OM13141

ACPI
SMBIOS

(OTHER)

INTERFACES
FROM

OTHER
REQUIRED

SPECS PLATFORM HARDWARE

EFI BOOT SERVICES EFI RUNTIME
SERVICES

EFI OS LOADER

OPERATING SYSTEM

EFI SYSTEM PARTITION
EFI OS

LOADER

Figure 1-1. EFI Conceptual Overview

This diagram illustrates the interactions of the various components of an EFI specification-
compliant system that are used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the EFI System Partition. The
specification provides for a variety of mass storage device types including disk, CD-ROM and
DVD as well as remote boot via a network. Through the extensible protocol interfaces, it is
possible to envision other boot media types being added, although these may require OS loader
modifications if they require use of protocols other than those defined in this document

Once started, the OS loader continues to boot the complete operating system. To do so, it may use
the EFI boot services and interfaces defined by this or other required specifications to survey,
comprehend and initialize the various platform components and the OS software that manages
them. EFI runtime services are also available to the OS loader during the boot phase.

1.6 EFI Driver Model

This section describes the goals of a driver model for EFI firmware. The goal is for this driver
model to provide a mechanism for implementing bus drivers and device drivers for all types of
buses and devices. At the time of writing, the bus types that must be covered include PCI, USB,
SCSI, InfiniBand†, and so on.

As hardware architectures continue to evolve, the number and types of buses present in platforms
are increasing. This trend is especially true in high-end servers. However, a more diverse set of

Extensible Firmware Interface Specification

1-10 12/01/02 Version 1.10

bus types is being designed into desktop and mobile systems and even some embedded systems.
This increasing complexity means that a simple method for describing and managing all the buses
and devices in a platform is required in the preboot environment. The EFI Driver Model provides
this simple method in the form of protocols services and boot services.

1.6.1 EFI Driver Model Goals
The EFI Driver Model has the following goals:

• Compatible – The EFI Driver Model must maintain compatibility with the EFI 1.02
Specification. This means that the EFI Driver Model must take advantage of the
extensibility mechanisms in the EFI 1.02 Specification to add the required functionality

• Simple – Drivers written to the EFI Driver Model must be simple to implement and
simple to maintain. The EFI Driver Model must allow a driver writer to concentrate on
the specific device for which the driver is being developed. A driver should not be
concerned with platform policy or platform management issues. These considerations
should be left to the system firmware.

• Scalable – The EFI Driver Modelmust be able to adapt to all types of platforms. These
platforms would include embedded systems; mobile and desktop systems, as well as
workstations; and servers.

• Flexible – The EFI Driver Model must support the ability to enumerate all the devices, or
to enumerate only those devices required to boot the required OS. The minimum device
enumeration provides support for more rapid boot capability, and the full device
enumeration provides the ability to perform OS installations, system maintenance, or
system diagnostics on any boot device present in the system.

• Extensible – The EFI Driver Model must be able to extend to future bus types as they are
defined.

• Portable – Drivers written to the EFI Driver Model must portable between platforms and
between processor architectures. Initially this is limited to platforms with IA-32 family
and Itanium® processors, but no processor-specific assumptions are made.

• Interoperable – Drivers must coexist with other drivers and system firmware and must do
so without generating resource conflicts.

• Describe Complex Bus Hierarchies – The EFI Driver Model must be able to describe a
variety of bus topologies from very simple single bus platforms to very complex platforms
containing many buses of various types.

• Small Driver Footprint – The size of executables produced by the EFI Driver Model must
be minimized to reduce the overall platform cost. While flexibility and extensibility are
goals, the additional overhead required to support these must be kept to a minimum to
prevent the size of firmware components from becoming unmanageable.

• Address Legacy Option ROM Issues – The EFI Driver Model must directly address and
solve the constraints and limitations of legacy option ROMs. Specifically it must be
possible to build add-in cards that support both EFI drivers and legacy option ROMs
where such cards can execute in both legacy BIOS systems and EFI conforming platforms
without modifications to the code carried on the card. The solution must provide an
evolutionary path to migrate from legacy option ROMs driver to EFI drivers.

Introduction

Version 1.10 12/01/02 1-11

1.6.2 Legacy Option ROM Issues
This idea of supporting a driver model came from feedback on the EFI Specification that provided a
clear, market-driven requirement for an alternative to the legacy option ROM (sometimes also
referred to as an expansion ROM). The perception is that the advent of the EFI Specification
represents a chance to escape the limitations implicit to the construction and operation of legacy
option ROM images by replacing them with an alternative mechanism that works within the
framework of the EFI Specification.

1.7 Migration Requirements

Migration requirements cover the transition period from initial implementation of this specification
to a future time when all platforms and operating systems implement to this specification. During
this period, two major compatibility considerations are important:

1. The ability to continue booting legacy operating systems;
and

2. The ability to implement EFI on existing platforms by reusing as much existing firmware code
to keep development resource and time requirements to a minimum.

1.7.1 Legacy Operating System Support
The EFI specification represents the preferred means for a shrink-wrap OS and firmware to
communicate during the Intel architecture platform boot process. However, choosing to make a
platform that complies with this specification in no way precludes a platform from also supporting
existing legacy OS binaries that have no knowledge of the EFI specification.

The EFI specification does not restrict a platform designer who chooses to support both the EFI
specification and a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is
to be implemented it should be developed in accordance with existing industry practice that is
defined outside the scope of this specification. The choice of legacy operating systems that are
supported on any given platform is left to the manufacturer of that platform.

1.7.2 Supporting the EFI Specification on a Legacy Platform
The EFI specification has been carefully designed to allow for existing systems to be extended to
support it with a minimum of development effort. In particular, the abstract structures and services
defined in the EFI specification can all be supported on legacy platforms.

For example, to accomplish such support on an existing IA-32 platform that uses traditional BIOS
to support operating system boot, an additional layer of firmware code would need to be provided.
This extra code would be required to translate existing interfaces for services and devices into
support for the abstractions defined in this specification.

Extensible Firmware Interface Specification

1-12 12/01/02 Version 1.10

1.8 Conventions Used in This Document

This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions
Intel architecture processors of the IA-32 family are “little endian” machines. This distinction
means that the low-order byte of a multibyte data item in memory is at the lowest address, while the
high-order byte is at the highest address. Intel Itanium processors may be configured for both
“little endian” and “big endian” operation. All implementations designed to conform to this
specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

1.8.2 Protocol Descriptions
A protocol description generally has the following format:

Protocol: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.
GUID: The 128-bit unique identifier for the protocol interface.
Revision Number: The revision of the protocol interface.
Protocol Interface Structure:

A “C-style” data structure definition containing the
procedures and data fields produced by this protocol
interface.

Parameters: A brief description of each field in the protocol interface
structure.

Related Definitions: The type declarations and constants that are used in the
protocol interface structure or any of its procedures.

Description: A description of the functionality provided by the
protocol interface including any limitations and caveats
of which the caller should be aware.

Introduction

Version 1.10 12/01/02 1-13

1.8.3 Procedure Descriptions
A procedure description generally has the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.
Prototype: A “C-style” procedure header defining the calling

sequence.
Parameters: The parameters defined in the template are described in

further detail.
Related Definitions: The type declarations and constants that are only used by

this procedure.
Description: A description of the functionality provided by the

interface including any limitations and caveats the caller
of which should be aware.

Status Codes Returned: A description of the codes returned by the interface.
Any status codes listed in this table are required to be
implemented by the procedure. Additional error codes
may be returned, but they will not be tested by standard
compliance tests, and any software that uses the
procedure cannot depend on any of the extended error
codes that an implementation may provide.

1.8.4 Instruction Descriptions
An instruction description for EBC instructions generally has the following format:

InstructionName The formal name of the EBC Instruction.

SYNTAX: A brief description of the EBC Instruction.
DESCRIPTION: A description of the functionality provided by the EBC

Instruction accompanied by a table that details the
instruction encoding.

OPERATION: Details the operations performed on operands.
BEHAVIORS AND RESTRICTIONS: An item by item description of the behavior

of each operand involved in the instruction
and any restrictions that apply to the
operands or the instruction.

Extensible Firmware Interface Specification

1-14 12/01/02 Version 1.10

1.8.5 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the EFI Specification.

1.8.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Plain text (blue) In the electronic version of this specification, any plain text
underlined and in blue indicates an active link to the cross-reference.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate
paragraphs, though words or segments can also be embedded in a
normal text paragraph.

BOLD Monospace In the electronic version of this specification, words in a BOLD
Monospace typeface that is underlined and in a dark red color
indicate an active hyperlink to the definition for that function or type
definition. Click on the word to follow the hyperlink.

NOTE

Due to management and file size considerations, only the first occurrence of the reference on each
page is an active link. Subsequent references on the same page will not be actively linked to the
definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the first
instance of the name (in the underlined BOLD Monospace typeface) on the page and click on the
word to jump to the function or type definition.

Italic Monospace In code or in text, words in Italic Monospace indicate
placeholder names for variable information that must be supplied
(i.e., arguments).

Version 1.10 12/01/02 2-1

2
Overview

EFI allows the extension of platform firmware by loading EFI driver and EFI application images.
When EFI drivers and EFI applications are loaded they have access to all EFI defined runtime and
boot services. See Figure 2-1.

OM13144

Standard
firmware
platform
initilization

Drivers and
applications
loaded
iteratively

Boot from
ordered list
of EFIOS
loaders

Operation
handed off
to OS loader

API specified Value add implementation

Boot Manager EFI binaries

Platform
Init

EFI Image
Load

EFI
OS Loader

Load

Boot
Services

Terminate

EFI
Driver

EFI
Application

EFI
Bootcode OS Loader

EFI APIRetry
Failure

Figure 2-1. Booting Sequence

EFI allows the consolidation of boot menus from the OS loader and platform firmware into a single
platform firmware menu. These platform firmware menus will allow the selection of any EFI OS
loader from any partition on any boot medium that is supported by EFI boot services. An EFI OS
loader can support multiple options that can appear on the user interface. It is also possible to
include legacy boot options, such as booting from the A: or C: drive in the platform firmware
boot menus.

EFI supports booting from media that contain an EFI OS loader or an EFI-defined System Partition.
An EFI-defined System Partition is required by EFI to boot from a block device. EFI does not
require any change to the first sector of a partition, so it is possible to build media that will boot on
both legacy Intel architecture and EFI platforms.

Extensible Firmware Interface Specification

2-2 12/01/02 Version 1.10

2.1 Boot Manager

EFI contains a boot manager that allows the loading of EFI applications (including OS 1st stage
loader) or EFI drivers from any file on an EFI defined file system or through the use of an EFI
defined image loading service. EFI defines NVRAM variables that are used to point to the file to
be loaded. These variables also contain application specific data that are passed directly to the EFI
application. The variables also contain a human readable Unicode string that can be displayed to
the user in a menu.

The variables defined by EFI allow the system firmware to contain a boot menu that can point to all
the operating systems, and even multiple versions of the same operating systems. The design goal
of EFI was to have one set of boot menus that could live in platform firmware. EFI only specifies
the NVRAM variables used in selecting boot options. EFI leaves the implementation of the menu
system as value added implementation space.

EFI greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first floppy,
hard drive, CD-ROM, or network card attached to the system. Booting from a common hard drive
can cause lots of interoperability problems between operating systems, and different versions of
operating systems from the same vendor.

2.1.1 EFI Images
EFI Images are a class of files defined by EFI that contain executable code. The most
distinguishing feature of EFI Images is that the first set of bytes in the EFI Image file contains an
image header that defines the encoding of the executable image.

EFI uses a subset of the PE32+ image format with a modified header signature. The modification
to signature value in the PE32+ image is done to distinguish EFI images from normal PE32
executables. The “+” addition to PE32 provides the 64-bit relocation fix-up extensions to standard
PE32 format.

For images with the EFI image signature, the Subsystem values in the PE image header are
defined below. The major differences between image types are the memory type that the firmware
will load the image into, and the action taken when the image’s entry point exits or returns. An
application image is always unloaded when control is returned from the image’s entry point. A
driver image is only unloaded if control is passed back with an EFI error code.

// PE32+ Subsystem type for EFI images
#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

Overview

Version 1.10 12/01/02 2-3

The Machine value that is found in the PE image file header is used to indicate the machine code
type of the image. The machine code types defined for images with the EFI image signature are
defined below. A given platform must implement the image type native to that platform and the
image type for EFI Byte Code (EBC). Support for other machine code types are optional to the
platform.

// PE32+ Machine type for EFI images
#define EFI_IMAGE_MACHINE_IA32 0x014c
#define EFI_IMAGE_MACHINE_IA64 0x0200
#define EFI_IMAGE_MACHINE_EBC 0x0EBC

An EFI image is loaded into memory through the LoadImage() Boot Service. This service loads
an image with a PE32+ format into memory. This PE32+ loader is required to load all the sections
of the PE32+ image into memory. Once the image is loaded into memory, and the appropriate
“fix-ups” have been performed, control is transferred to a loaded image at the
AddressOfEntryPoint reference according to the normal indirect calling conventions of
IA-32 or Itanium-based applications. All other linkage to and from an EFI image is done
programmatically.

2.1.2 EFI Applications
EFI Applications are loaded by the EFI Boot Manager or by other EFI applications. To load an
application the firmware allocates enough memory to hold the image, copies the sections within the
application to the allocated memory and applies the relocation fix-ups needed. Once done, the
allocated memory is set to be the proper type for code and data for the image. Control is then
transferred to the application’s entry point. When the application returns from its entry point, or
when it calls the Boot Service Exit(), the application is unloaded from memory and control is
returned to the EFI component that loaded the application.

When the EFI Boot Manager loads an application, the image handle may be used to locate the “load
options” for the application. The load options are stored in nonvolatile storage and are associated
with the application being loaded and executed by the EFI Boot Manager.

Extensible Firmware Interface Specification

2-4 12/01/02 Version 1.10

2.1.3 EFI OS Loaders
An EFI OS loader is a special type of EFI application that normally takes over control of the system
from the EFI firmware. When loaded, the OS loader behaves like any other EFI application in that
it must only use memory it has allocated from the firmware and can only use EFI services and
protocols to access the devices that the firmware exposes. If the OS Loader includes any boot
service style driver functions, it must use the proper EFI interfaces to obtain access to the bus
specific-resources. That is, I/O and memory-mapped device registers must be accessed through the
proper bus specific I/O calls like those that an EFI driver would perform.

If the OS loader experiences a problem and cannot load its operating system correctly, it can release
all allocated resources and return control back to the firmware via the Boot Service Exit() call.
The Exit() call allows both an error code and ExitData to be returned. The ExitData
contains both a Unicode string and OS loader-specific data to be returned.

If the OS loader successfully loads its operating system, it can take control of the system by using
the Boot Service ExitBootServices(). After successfully calling ExitBootServices(),
all boot services in the system are terminated, including memory management, and the OS loader is
responsible for the continued operation of the system.

2.1.4 EFI Drivers
EFI Drivers are loaded by the EFI Boot Manager, the EFI firmware, or by other EFI applications.
To load an EFI Driver the firmware allocates enough memory to hold the image, copies the sections
within the driver to the allocated memory and applies the relocation fix-ups needed. Once done, the
allocated memory is set to be the proper type for code and data for the image. Control is then
transferred to the driver’s entry point. When the driver returns from its entry point, or when it calls
the Boot Service Exit(), the driver is optionally unloaded from memory and control is returned
to the EFI component that loaded the driver. A driver is not unloaded from memory if it returns a
status code of EFI_SUCCESS. If the driver’s return code is an error status code, then the driver is
unloaded from memory.

There are two types of EFI Drivers. These are Boot Service Drivers and Runtime Drivers. The
only difference between these two driver types is that Runtime Drivers are available after an OS
Loader has taken control of the platform with the Boot Service ExitBootServices(). Boot
Service Drivers are terminated when ExitBootServices() is called, and all the memory
resources consumed by the Boot Service Drivers are released for use in the operating system
environment.

Overview

Version 1.10 12/01/02 2-5

2.2 Firmware Core

This section provides an overview of the services defined by EFI. These include boot services and
runtime services.

2.2.1 EFI Services
The purpose of the EFI interfaces is to define a common boot environment abstraction for use by
loaded EFI images, which include EFI drivers, EFI applications, and EFI OS loaders. The calls are
defined with a full 64-bit interface, so that there is headroom for future growth. The goal of this set
of abstracted platform calls is to allow the platform and OS to evolve and innovate independently of
one another. Also, a standard set of primitive runtime services may be used by operating systems.

Platform interfaces defined in this chapter allow the use of standard Plug and Play Option ROMs as
the underlying implementation methodology for the boot services. The PC industry has a huge
investment in Intel Architecture Option ROM technology, and the obsolescence of this installed
base of technology is not practical in the first generation of EFI-compliant systems. The interfaces
have been designed in such as way as to map back into legacy interfaces. These interfaces have in
no way been burdened with any restrictions inherent to legacy Option ROMs.

The EFI platform interfaces are intended to provide an abstraction between the platform and the OS
that is to boot on the platform. The EFI specification also provides abstraction between diagnostics
or utility programs and the platform; however, it does not attempt to implement a full diagnostic OS
environment. It is envisioned that a small diagnostic OS-like environment can be easily built on
top of an EFI system. Such a diagnostic environment is not described by this specification.

Interfaces added by this specification are divided into the following categories and are detailed later
in this document:

• Runtime services
• Boot services interfaces, with the following subcategories:

 Global boot service interfaces
 Device handle-based boot service interfaces
 Device protocols
 Protocol services

Extensible Firmware Interface Specification

2-6 12/01/02 Version 1.10

2.2.2 Runtime Services
This section describes EFI runtime service functions. The primary purpose of the EFI runtime
services is to abstract minor parts of the hardware implementation of the platform from the OS.
EFI runtime service functions are available during the boot process and also at runtime provided the
OS switches into flat physical addressing mode to make the runtime call. However, if the OS
loader or OS uses the Runtime Service SetVirtualAddressMap() service, the OS will only
be able to call EFI runtime services in a virtual addressing mode. All runtime interfaces are
nonblocking interfaces and can be called with interrupts disabled if desired.

In all cases memory used by the EFI runtime services must be reserved and not used by the OS.
EFI runtime services memory is always available to an EFI function and will never be directly
manipulated by the OS or its components. EFI is responsible for defining the hardware resources
used by runtime services, so the OS can synchronize with those resources when runtime service
calls are made, or guarantee that the OS never uses those resources.

Table 2-1 lists the Runtime Services functions.

Table 2-1. EFI Runtime Services

Name Description

GetTime() Returns the current time, time context, and time keeping
capabilities.

SetTime() Sets the current time and time context.

GetWakeupTime() Returns the current wakeup alarm settings.

SetWakeupTime() Sets the current wakeup alarm settings.

GetVariable() Returns the value of a named variable.

GetNextVariableName() Enumerates variable names.

SetVariable() Sets, and if needed creates, a variable.

SetVirtualAddressMap() Switches all runtime functions from physical to virtual addressing.

ConvertPointer() Used to convert a pointer from physical to virtual addressing.

GetNextHighMonotonicCount() Subsumes the platform's monotonic counter functionality.

ResetSystem() Resets all processors and devices and reboots the system.

Overview

Version 1.10 12/01/02 2-7

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the EFI specification are called through pointers in
common, architecturally defined, calling conventions found in C compilers. Pointers to the various
global EFI functions are found in the EFI_RUNTIME_SERVICES and EFI_BOOT_SERVICES
tables that are located via the EFI system table. Pointers to other functions defined in this
specification are located dynamically through device handles. In all cases, all pointers to EFI
functions are cast with the word EFIAPI. This allows the compiler for each architecture to supply
the proper compiler keywords to achieve the needed calling conventions. When passing pointer
arguments to Boot Services, Runtime Services, and Protocol Interfaces, the caller has the following
responsibilities:

1. It is the caller’s responsibility to pass pointer parameters that reference physical memory
locations. If a pointer is passed that does not point to a physical memory location(i.e. a
memory mapped I/O region), the results are unpredictable and the system may halt.

2. It is the caller’s responsibility to pass pointer parameters with correct alignment. If an
unaligned pointer is passed to a function, the results are unpredictable and the system may halt.

3. It is the caller’s responsibility to not pass in a NULL parameter to a function unless it is
explicitly allowed. If a NULL pointer is passed to a function, the results are unpredictable and
the system may hang.

Calling conventions for IA-32 or Itanium-based applications are described in more detail below.
Any function or protocol may return any valid return code.

2.3.1 Data Types
Table 2-2 lists the common data types that are used in the interface definitions, and Table 2-3 lists
their modifiers. Unless otherwise specified all data types are naturally aligned. Structures are
aligned on boundaries equal to the largest internal datum of the structure and internal data are
implicitly padded to achieve natural alignment.

Table 2-2. Common EFI Data Types

Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other
values are undefined.

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium processor
instructions)

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium processor
instructions)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

continued

Extensible Firmware Interface Specification

2-8 12/01/02 Version 1.10

Table 2-2. Common EFI Data Types (continued)

Mnemonic Description

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.

UINT64 8-byte unsigned value.

CHAR8 1-byte Character.

CHAR16 2-byte Character. Unless otherwise specified all strings are stored in the
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards.

VOID Undeclared type.

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64-bit boundary.

EFI_STATUS Status code. Type INTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure. Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN.

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Control address.

EFI_IPv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.

EFI_IPv6_ADDRESS 16-byte buffer. An IPv6 internet protocol address.

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol
address.

<Enumerated Type> Element of a standard ANSI C enum type declaration. Type INTN.

Table 2-3. Modifiers for Common EFI Data Types

Mnemonic Description

IN Datum is passed to the function.

OUT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be

passed if the value is not supplied.

EFIAPI Defines the calling convention for EFI interfaces.

Overview

Version 1.10 12/01/02 2-9

2.3.2 IA-32 Platforms
All functions are called with the C language calling convention. The general-purpose registers that
are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are
nonvolatile and are preserved by the target function. In addition, unless otherwise specified by the
function definition, all other registers are preserved. For example, this would include the entire
floating point and Intel® MMX™ technology state.

During boot services time the processor is in the following execution mode:

• Uniprocessor
• Protected mode
• Paging mode not enabled
• Selectors are set to be flat and are otherwise not used
• Interrupts are enabled–though no interrupt services are supported other than the EFI boot

services timer functions (All loaded device drivers are serviced synchronously by “polling.”)
• Direction flag in EFLAGs is clear
• Other general purpose flag registers are undefined
• 128 KB, or more, of available stack space

For an operating system to use any EFI runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data
• Call the runtime service functions, with the following conditions:

 Called from the boot processor
 In protected mode
 Paging not enabled
 All selectors set to be flat with virtual = physical address. If the OS Loader or OS used

SetVirtualAddressMap() to relocate the runtime services in a virtual address
space, then this condition does not have to be met.

 Direction flag in EFLAGs clear
 4 KB, or more, of available stack space
 Interrupts disabled

• Synchronize processor access to the legacy CMOS registers (if there are multiple processors).
Only one processor can access the registers at any given time.

• ACPI Tables loaded at boot time must be contained in memory of type
EfiACPIReclaimMemory.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KB boundary and must be a multiple of 4 KB in size.

• Any EFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned
on a 4 KB boundary and must be a multiple of 4 KB in size.

Extensible Firmware Interface Specification

2-10 12/01/02 Version 1.10

• An ACPI Memory Op-region must inherit cacheability attributes from the EFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be noncacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS or
EfiFirmareReserved. The cacheability attributes for ACPI tables loaded at runtime (via
ACPI LoadTable) should be defined in the EFI memory map. If no information about the table
location exists in the EFI memory map, the table is assumed to be noncached.

2.3.2.1 Handoff State
When an IA-32 EFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit
mode. All descriptors are set to their 4 GB limits so that all of memory is accessible from all
segments. The address of the IDT is not defined and thus it cannot be manipulated directly during
boot services.

Figure 2-2 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has been
called on IA-32 systems. All EFI image entry points take two parameters. These are the image
handle of the EFI image, and a pointer to the EFI System Table.

OM13145

 Stack Location

EFI_SYSTEM_TABLE *

EFI_HANDLE

<return address>

ESP + 8

ESP + 4

ESP

Figure 2-2. Stack after AddressOfEntryPoint Called, IA-32

Overview

Version 1.10 12/01/02 2-11

2.3.3 Itanium®-Based Platforms
EFI executes as an extension to the SAL execution environment with the same rules as laid out by
the SAL specification.

During boot services time the processor is in the following execution mode:

• Uniprocessor
• Physical mode
• 128 KB, or more, of available stack space
• 16 KB, or more, of available backing store space
• May only use the lower 32 floating point registers

The EFI Image may invoke both SAL and EFI procedures. Once in virtual mode, the EFI OS must
switch back to physical mode to call any boot services. If SetVirtualAddressMap() has
been used, then runtime service calls are made in virtual mode.

• ACPI Tables loaded at boot time must be contained in memory of type
EfiACPIReclaimMemory.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on an 8 KB boundary and must be a multiple of 8 KB in size.

• Any EFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned
on a 8 KB boundary and must be a multiple of 8 KB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the EFI memory map. If
the system memory map does not contain cacheability attributes the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be noncacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS or
EfiFirmareReserved. The cacheability attributes for ACPI tables loaded at runtime (via
ACPI LoadTable) should be defined in the EFI memory map. If no information about the table
location exists in the EFI memory map, the table is assumed to be noncached.

Refer to the IA-64 System Abstraction Layer Specification (see the References appendix) for details.

EFI procedures are invoked using the P64 C calling conventions defined for Itanium-based
applications. Refer to the document 64 Bit Runtime Architecture and Software Conventions
for IA-64 (see the References appendix) for more information.

Extensible Firmware Interface Specification

2-12 12/01/02 Version 1.10

2.3.3.1 Handoff State
EFI uses the standard P64 C calling conventions that are defined for Itanium-based operating
systems. Figure 2-3 shows the stack after ImageEntryPoint has been called on Itanium-based
systems. The arguments are also stored in registers: out0 contains EFI_HANDLE and out1
contains the address of the EFI_SYSTEM_TABLE. The gp for the EFI Image will have been
loaded from the plabel pointed to by the AddressOfEntryPoint in the image’s PE32+
header. All EFI image entry points take two parameters. These are the image handle of the EFI
image, and a pointer to the EFI System Table.

OM13146

EFI_SYSTEM_TABLE *

EFI_HANDLE

SP + 8

SP

out1

out0

Stack Location Register

Figure 2-3. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see the References appendix) defines the state of the system registers at
boot handoff. The SAL specification also defines which system registers can only be used after
EFI boot services have been properly terminated.

2.4 Protocols

The protocols that a device handle supports are discovered through the HandleProtocol()
Boot Service or the OpenProtocol() Boot Service. Each protocol has a specification that
includes the following:

• The protocol’s globally unique ID (GUID)
• The Protocol Interface structure
• The Protocol Services

To determine if the handle supports any given protocol, the protocol’s GUID is passed to
HandleProtocol() or OpenProtocol(). If the device supports the requested protocol, a
pointer to the defined Protocol Interface structure is returned. The Protocol Interface structure links
the caller to the protocol-specific services to use for this device.

Overview

Version 1.10 12/01/02 2-13

Figure 2-4 shows the construction of a protocol. The EFI driver contains functions specific to one
or more protocol implementations, and registers them with the Boot Service
InstallProtocolInterface(). The firmware returns the Protocol Interface for the
protocol that is then used to invoke the protocol specific services. The EFI driver keeps private,
device-specific context with protocol interfaces.

OM13147

Protocol Interface
Function Pointer
Function Pointer

Device specific
context

...

GUID 1

GUID 2

Protocol
specific
functions

Protocol
specific
functions

EFI Driver

Invoking one of
the protocol
services

HandleProtocol (GUID, ...)

Handle

Device, or
next Driver

Figure 2-4. Construction of a Protocol

The following C code fragment illustrates the use of protocols:

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;
Status = HandleProtocol (

EffectsDevice.EFIHandle,
&IllustrationProtocolGuid,
&EffectsDevice.IllustrationProtocol
);

// Use the EffectsDevice illustration protocol’s “MakeEffects”
// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (
EffectsDevice.IllustrationProtocol,
TheFlashyAndNoisyEffect
);

Extensible Firmware Interface Specification

2-14 12/01/02 Version 1.10

Table 2-4 lists the EFI protocols defined by this specification.

Table 2-4. EFI Protocols

Protocol Description

LOADED_IMAGE Provides information on the image.

DEVICE_PATH Provides the location of the device.

DRIVER_BINDING Provides services to determine if an EFI driver supports a given
controller, and services to start and stop a given controller.

PLATFORM_DRIVER_OVERRIDE Provide a platform specific override mechanism for the selection
of the best driver for a given controller.

BUS_SPECIFIC_DRIVER_OVERRIDE Provides a bus specific override mechanism for the selection of
the best driver for a given controller.

DRIVER_CONFIGURATION Provides user configuration options for EFI drivers and the
controllers that the EFI drivers are managing.

DRIVER_DIAGNOSTICS Provides diagnostics services for the controllers that EFI drivers
are managing.

COMPONENT_NAME Provides human readable names for EFI Drivers and the
controllers that the EFI drivers are managing.

SIMPLE_INPUT Protocol interfaces for devices that support simple console style
text input.

SIMPLE_TEXT_OUTPUT Protocol interfaces for devices that support console style text
displaying.

UGA_DRAW Protocol interfaces for devices that support graphical output.

SIMPLE_POINTER Protocol interfaces for devices such as mice and trackballs.

SERIAL_IO Protocol interfaces for devices that support serial character
transfer.

LOAD_FILE Protocol interface for reading a file from an arbitrary device.

SIMPLE_FILE_SYSTEM Protocol interfaces for opening disk volume containing an EFI file
system.

FILE_HANDLE Provides access to supported file systems.

DISK_IO A protocol interface that layers onto any BLOCK_IO interface.

BLOCK_IO Protocol interfaces for devices that support block I/O style
accesses.

UNICODE_COLLATION Protocol interfaces for Unicode string comparison operations.

PCI_ROOT_BRIDGE_IO Protocol interfaces to abstract memory, I/O, PCI configuration,
and DMA accesses to a PCI root bridge controller.

PCI_IO Protocol interfaces to abstract memory, I/O, PCI configuration,
and DMA accesses to a PCI controller on a PCI bus.

continued

Overview

Version 1.10 12/01/02 2-15

Table 2-4. EFI Protocols (continued)

Protocol Description

SCSI_PASS_THRU Protocol interfaces for a SCSI channel that allow SCSI Request
Packets to be sent to SCSI devices.

USB_HC Protocol interfaces to abstract access to a USB Host Controller.

USB_IO Protocol interfaces to abstract access to a USB controller.

SIMPLE_NETWORK Provides interface for devices that support packet based
transfers.

PXE_BC Protocol interfaces for devices that support network booting.

BIS Protocol interfaces to validate boot images before they are
loaded and invoked.

DEBUG_SUPPORT Protocol interfaces to save and restore processor context and
hook processor exceptions.

DEBUG_PORT Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.

DECOMPRESS Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

DEVICE_IO Protocol interfaces for performing device I/O.

EBC Protocols interfaces required to support an EFI Byte Code
interpreter.

2.5 EFI Driver Model

The EFI Driver Model is intended to simplify the design and implementation of device drivers, and
produce small executable image sizes. As a result, some complexity has been moved into bus
drivers and in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image handle on
which the driver was loaded. It then waits for the system firmware to connect the driver to a
controller. When that occurs, the device driver is responsible for producing a protocol on the
controller’s device handle that abstracts the I/O operations that the controller supports. A bus
driver performs these exact same tasks. In addition, a bus driver is also responsible for discovering
any child controllers on the bus, and creating a device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more
processors connected to one or more core chipsets. The core chipsets are responsible for producing
one or more I/O buses. The EFI Driver Model does not attempt to describe the processors or the
core chipsets. Instead, the EFI Driver Model describes the set of I/O buses produced by the core
chipsets, and any children of these I/O buses. These children can either be devices or additional
I/O buses. This can be viewed as a tree of buses and devices with the core chipsets at the root
of that tree.

Extensible Firmware Interface Specification

2-16 12/01/02 Version 1.10

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This could
include keyboards, displays, disks, network, etc. The nonleaf nodes are the buses that move data
between devices and buses, or between different bus types. Figure 2-5 shows a sample desktop
system with four buses and six devices.

OM13142

CPU

North
Bridge

USB

IDE

VGA

PCI-ISA
Bridge

PCI Bus

ISA Bus

1.44 MB
Floppy

Hard
Drive

CD-ROM

Keyboard

MouseIDE Bus

USB Bus

Bus Controller

Device Controller

Other

Figure 2-5. Desktop System

Figure 2-6 is an example of a more complex server system. The idea is to make the EFI Driver
Model simple and extensible so more complex systems like the one below can be described and
managed in the preboot environment. This system contains six buses and eight devices.

OM13143

CPU

North
Bridge

PCI-IBA
Bridge

USB

VGA

PCI-ISA
Bridge

PCI Bus

ISA Bus

1.44 MB
Floppy

KBD

MOUSE

USB Bus

IBA Bus

CPU

IBA-PCI
Bridge SCSI

PCI Bus

Hard
Drive

Hard
Drive

Hard
Drive

Hard
Drive

Figure 2-6. Server System

Overview

Version 1.10 12/01/02 2-17

The combination of firmware services, bus drivers, and device drivers in any given platform is
likely to be produced by a wide variety of vendors including OEMs, IBVs, and IHVs. These
different components from different vendors are required to work together to produce a protocol for
an I/O device than can be used to boot an EFI compliant operating system. As a result, the EFI
Driver Model is described in great detail in order to increase the interoperability of these
components.

This remainder of this section is a brief overview of the EFI Driver Model. It describes the legacy
option ROM issues that the EFI Driver Model is designed to address, the entry point of a driver,
host bus controllers, properties of device drivers, properties of bus drivers, and how the EFI Driver
Model can accommodate hot-plug events.

2.5.1 Legacy Option ROM Issues
Legacy option ROMs have a number of constraints and limitations that restrict innovation on the
part of platform designers and adapter vendors. At the time of writing, both ISA and PCI adapters
use legacy option ROMs. For the purposes of this discussion, only PCI option ROMs will be
considered; legacy ISA option ROMs are not supported as part of the EFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For each
issue, the design considerations that went into the design of the EFI Driver Model are also listed.
Thus, the design of the EFI Driver Model directly addresses the requirements for a solution to
overcome the limitations implicit to PC-AT-style legacy option ROMs.

2.5.1.1 IA-32 16-Bit Real Mode Binaries
Legacy option ROMs typically contain 16-bit real mode code for an IA-32 processor. This means
that the legacy option ROM on a PCI card cannot be used in platforms that do not support the
execution of IA-32 real mode binaries. Also, 16-bit real mode only allows the driver to access
directly the lower 1 MB of system memory. It is possible for the driver to switch the processor into
modes other than real mode in order to access resources above 1 MB, but this requires a lot of
additional code, and causes interoperability issues with other option ROMs and the system BIOS.
Also, option ROMs that switch the processor into to alternate execution modes are not compatible
with Itanium Processors.

EFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.
• Drivers need to be written in C so they are portable between processor architectures.
• Drivers may be compiled into a virtual machine executable, allowing a single binary driver to

work on machines using different processor architectures.

Extensible Firmware Interface Specification

2-18 12/01/02 Version 1.10

2.5.1.2 Fixed Resources for Working with Option ROMs
Since legacy option ROMs can only directly address the lower 1 MB of system memory, this means
that the code from the legacy option ROM must exist below 1 MB. In a PC-AT platform, memory
from 0x00000-0x9FFFF is system memory. Memory from 0xA0000-0xBFFFF is VGA memory,
and memory from 0xF0000-0xFFFFF is reserved for the system BIOS. Also, since system BIOS
has become more complex over the years, many platforms also use 0xE0000-0xEFFFF for system
BIOS. This leaves 128 KB of memory from 0xC0000-0xDFFFF for legacy option ROMs. This
limits how many legacy option ROMs can be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are to
allocate memory from Extended BIOS Data Area (EBDA), allocate memory through a Post
Memory Manager (PMM), or search for free memory based on a heuristic. Of these, only EBDA is
standard, and the others are not used consistently between adapters, or between BIOS vendors,
which adds complexity and the potential for conflicts.

EFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.
• Drivers need to be relocatable, so they can be loaded anywhere in memory (PE/COFF Images)
• Drivers should allocate memory through the EFI boot services. These are well-specified

interfaces, and can be guaranteed to function as expected across a wide variety of platform
implementations.

2.5.1.3 Matching Option ROMs to their Devices
It is not clear which controller may be managed by a particular legacy option ROM. Some legacy
option ROMs search the entire system for controllers to manage. This can be a lengthy process
depending on the size and complexity of the platform. Also, due to limitation in BIOS design, all
the legacy option ROMs must be executed, and they must scan for all the peripheral devices before
an operating system can be booted. This can also be a lengthy process, especially if SCSI buses
must be scanned for SCSI devices. This means that legacy option ROMs are making policy
decision about how the platform is being initialized, and which controllers are managed by which
legacy option ROMs. This makes it very difficult for a system designer to predict how legacy
option ROMs will interact with each other. This can also cause issues with on-board controllers,
because a legacy option ROM may incorrectly choose to manage the on-board controller.

EFI Driver Model design considerations:

• Driver to controller matching must be deterministic
• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration

Protocol
• It must be possible to start only the drivers and controllers required to boot an operating system.

Overview

Version 1.10 12/01/02 2-19

2.5.1.4 Ties to PC-AT System Design
Legacy option ROMs assume a PC-AT-like system architecture. Many of them include code that
directly touches hardware registers. This can make them incompatible on legacy-free and headless
platforms. Legacy option ROMs may also contain setup programs that assume a PC-AT-like
system architecture to interact with a keyboard or video display. This makes the setup application
incompatible on legacy-free and headless platforms.

EFI Driver Model design considerations:

• Drivers should use well-defined protocols to interact with system hardware, system input
devices, and system output devices.

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience
Many legacy option ROMs and BIOS code contain workarounds because of incompatibilities
between legacy option ROMs and system BIOS. These incompatibilities exist in part because there
are no clear specifications on how to write a legacy option ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs. It is not
always clear which device will be the boot device for the OS.

EFI Driver Model design considerations:

• EFI Drivers and EFI firmware is written to follow the EFI Specification. Since both
components have a clearly defined specification, compliance tests can be developed to prove
that drivers and system firmware are compliant. This should eliminate the need to build
workarounds into either drivers or system firmware (other than those that might be required to
address specific hardware issues).

• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol and other OEM value-add components to manage the boot device selection process.

Extensible Firmware Interface Specification

2-20 12/01/02 Version 1.10

2.5.2 Driver Initialization
The file for a driver image must be loaded from some type of media. This could include ROM,
FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a driver image
has been found, it can be loaded into system memory with the boot service LoadImage().
LoadImage() loads a PE/COFF formatted image into system memory. A handle is created for
the driver, and a Loaded Image Protocol instance is placed on that handle. A handle that contains a
Loaded Image Protocol instance is called an Image Handle. At this point, the driver has not been
started. It is just sitting in memory waiting to be started. Figure 2-7 shows the state of an image
handle for a driver after LoadImage() has been called.

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

OM13148

Figure 2-7. Image Handle

After a driver has been loaded with the boot service LoadImage(), it must be started with the
boot service StartImage(). This is true of all types of EFI Applications and EFI Drivers that
can be loaded and started on an EFI-compliant system. The entry point for a driver that follows the
EFI Driver Model must follow some strict rules. First, it is not allowed to touch any hardware.
Instead, the driver is only allowed to install protocol instances onto its own Image Handle. A
driver that follows the EFI Driver Model is required to install an instance of the Driver Binding
Protocol onto its own Image Handle. It may optionally install the Driver Configuration Protocol,
the Driver Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver wishes
to be unloadable it may optionally update the Loaded Image Protocol to provide its own
Unload() function. Finally, if a driver needs to perform any special operations when the boot
service ExitBootServices() is called, it may optionally create an event with a notification
function that is triggered when the boot service ExitBootServices() is called. An Image
Handle that contains a Driver Binding Protocol instance is known as a Driver Image Handle.
Figure 2-8 shows a possible configuration for the Image Handle from Figure 2-7 after the boot
service StartImage() has been called.

Overview

Version 1.10 12/01/02 2-21

OM13149

Image Handle

Optional

Optional

Optional

EFI_LOADED_IMAGE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_CONFIGURATION_PROTOCOL

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

EFI_COMPONENT_NAME_PROTOCOL

Figure 2-8. Driver Image Handle

2.5.3 Host Bus Controllers
Drivers are not allowed to touch any hardware in the driver’s entry point. As a result, drivers will
be loaded and started, but they will all be waiting to be told to manage one or more controllers in
the system. A platform component, like the EFI Boot Manager, is responsible for managing the
connection of drivers to controllers. However, before even the first connection can be made, there
has to be some initial collection of controllers for the drivers to manage. This initial collection of
controllers is known as the Host Bus Controllers. The I/O abstractions that the Host Bus
Controllers provide are produced by firmware components that are outside the scope of the EFI
Driver Model. The device handles for the Host Bus Controllers and the I/O abstraction for each
one must be produced by the core firmware on the platform, or an EFI Driver that may not follow
the EFI Driver Model. See the PCI Root Bridge I/O Protocol Specification for an example of an
I/O abstraction for PCI buses.

Extensible Firmware Interface Specification

2-22 12/01/02 Version 1.10

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 2-9 shows a platform with n processors (CPUs), and a set
of core chipset components that produce m host bridges.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1

Figure 2-9. Host Bus Controllers

Each host bridge is represented in EFI as a device handle that contains a Device Path Protocol
instance, and a protocol instance that abstracts the I/O operations that the host bus can perform.
For example, a PCI Host Bus Controller supports one or more PCI Root Bridges that are abstracted
by the PCI Root Bridge I/O Protocol. Figure 2-10 shows an example device handle for a PCI
Root Bridge.

OM15221

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Figure 2-10. PCI Root Bridge Device Handle

Overview

Version 1.10 12/01/02 2-23

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each of the
PCI devices in the system. PCI Device Drivers should then be connected to these child handles,
and produce I/O abstractions that may be used to boot an EFI compliant OS. The following section
describes the different types of drivers that can be implemented within the EFI Driver Model. The
EFI Driver Model is very flexible, so all the possible types of drivers will not be discussed here.
Instead, the major types will be covered that can be used as a starting point for designing and
implementing additional driver types.

2.5.4 Device Drivers
A device driver is not allowed to create any new device handles. Instead, it installs additional
protocol interfaces on an existing device handle. The most common type of device driver will
attach an I/O abstraction to a device handle that was created by a bus driver. This I/O abstraction
may be used to boot an EFI compliant OS. Some example I/O abstractions would include Simple
Text Output, Simple Input, Block I/O, and Simple Network Protocol. Figure 2-11 shows a device
handle before and after a device driver is connected to it. In this example, the device handle is a
child of the XYZ Bus, so it contains an XYZ I/O Protocol for the I/O services that the XYZ bus
supports. It also contains a Device Path Protocol that was placed there by the XYZ Bus Driver.
The Device Path Protocol is not required for all device handles. It is only required for device
handles that represent physical devices in the system. Handles for virtual devices will not contain a
Device Path Protocol.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

OM13152

Stop()
Start()

Installed by Start()
Uninstalled by Stop()

Figure 2-11. Connecting Device Drivers

Extensible Firmware Interface Specification

2-24 12/01/02 Version 1.10

The device driver that connects to the device handle in Figure 2-11 must have installed a Driver
Binding Protocol on its own image handle. The Driver Binding Protocol contains three functions
called Supported(), Start(), and Stop(). The Supported() function tests to see if the
driver supports a given controller. In this example, the driver will check to see if the device handle
supports the Device Path Protocol and the XYZ I/O Protocol. If a driver’s Supported()
function passes, then the driver can be connected to the controller by calling the driver’s Start()
function. The Start() function is what actually adds the additional I/O protocols to a device
handle. In this example, the Block I/O Protocol is being installed. To provide symmetry, the
Driver Binding Protocol also has a Stop() function that forces the driver to stop managing a
device handle. This will cause the device driver to uninstall any protocol interfaces that were
installed in Start().

The Supported(), Start(), and Stop() functions of the EFI Driver Binding Protocol are
required to make use of the boot service OpenProtocol() to get a protocol interface and the
boot service CloseProtocol() to release a protocol interface. OpenProtocol() and
CloseProtocol() update the handle database maintained by the system firmware to track
which drivers are consuming protocol interfaces. The information in the handle database can be
used to retrieve information about both drivers and controllers. The new boot service
OpenProtocolInformation() can be used to get the list of components that are currently
consuming a specific protocol interface.

2.5.5 Bus Drivers
Bus drivers and device drivers are virtually identical from the EFI Driver Model’s point of view.
The only difference is that a bus driver creates new device handles for the child controllers that the
bus driver discovers on its bus. As a result, bus drivers are slightly more complex than device
drivers, but this in turn simplifies the design and implementation of device drivers. There are two
major types of bus drivers. The first creates handles for all child controllers on the first call to
Start(). The other type allows the handles for the child controllers to be created across multiple
calls to Start(). This second type of bus driver is very useful in supporting a rapid boot
capability. It allows a few child handles or even one child handle to be created. On buses that take
a long time to enumerate all of their children (e.g. SCSI), this can lead to a very large timesaving in
booting a platform. Figure 2-12 shows the tree structure of a bus controller before and after
Start() is called. The dashed line coming into the bus controller node represents a link to the
bus controller’s parent controller. If the bus controller is a Host Bus Controller, then it will not
have a parent controller. Nodes A, B, C ,D, and E represent the child controllers of the bus
controller.

Overview

Version 1.10 12/01/02 2-25

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E

Figure 2-12. Connecting Bus Drivers

A bus driver that supports creating one child on each call to Start() might choose to create child
C first, and then child E, and then the remaining children A, B, and D. The Supported(),
Start(), and Stop() functions of the Driver Binding Protocol are flexible enough to allow this
type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a minimum,
it must install a protocol interface that provides an I/O abstraction of the bus’s services to the child
controllers. If the bus driver creates a child handle that represents a physical device, then the bus
driver must also install a Device Path Protocol instance onto the child handle. A bus driver may
optionally install a Bus Specific Driver Override Protocol onto each child handle. This protocol is
used when drivers are connected to the child controllers. The boot service
ConnectController() uses architecturally defined precedence rules to choose the best set of
drivers for a given controller. The Bus Specific Driver Override Protocol has higher precedence
than a general driver search algorithm, and lower precedence than platform overrides. An example
of a bus specific driver selection occurs with PCI. A PCI Bus Driver gives a driver stored in a PCI
controller’s option ROM a higher precedence than drivers stored elsewhere in the platform.
Figure 2-13 shows an example child device handle that was created by the XYZ Bus Driver that
supports a bus specific driver override mechanism.

Extensible Firmware Interface Specification

2-26 12/01/02 Version 1.10

OM13154

Optional

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Figure 2-13. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components
Under the EFI Driver Model, the act of connecting and disconnecting drivers from controllers in a
platform is under the platform firmware’s control. This will typically be implemented as part of the
EFI Boot Manager, but other implementations are possible. The boot services
ConnectController() and DisconnectController() can be used by the platform
firmware to determine which controllers get started and which ones do not. If the platform wishes
to perform system diagnostics or install an operating system, then it may choose to connect drivers
to all possible boot devices. If a platform wishes to boot a preinstalled operating system, it may
choose to only connect drivers to the devices that are required to boot the selected operating
system. The EFI Driver Model supports both these modes of operation through the boot services
ConnectController() and DisconnectController(). In addition, since the platform
component that is in charge of booting the platform has to work with device paths for console
devices and boot options, all of the services and protocols involved in the EFI Driver Model are
optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce consoles
and gain access to a boot device, the OS present device drivers cannot assume that an EFI driver for
a device has been executed. The presence of an EFI driver in the system firmware or in an option
ROM does not guarantee that the EFI driver will be loaded, executed, or allowed to manage any
devices in a platform. All OS present device drivers must be able to handle devices that have been
managed by an EFI driver and devices that have not been managed by an EFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override Protocol.
This is similar to the Bus Specific Driver Override Protocol, but it has higher priority. This gives
the platform firmware the highest priority when deciding which drivers are connected to which
controllers. The Platform Driver Override Protocol is attached to a handle in the system. The boot
service ConnectController() will make use of this protocol if it is present in the system.

Overview

Version 1.10 12/01/02 2-27

2.5.7 Hot-Plug Events
In the past, system firmware has not had to deal with hot-plug events in the preboot environment.
However, with the advent of buses like USB, where the end user can add and remove devices at any
time, it is important to make sure that it is possible to describe these types of buses in the EFI
Driver Model. It is up to the bus driver of a bus that supports the hot adding and removing of
devices to provide support for such events. For these types of buses, some of the platform
management is going to have to move into the bus drivers. For example, when a keyboard is hot
added to a USB bus on a platform, the end user would expect the keyboard to be active. A USB
Bus driver could detect the hot-add event and create a child handle for the keyboard device.
However, because drivers are not connected to controllers unless ConnectController() is
called, the keyboard would not become an active input device. Making the keyboard driver active
requires the USB Bus driver to call ConnectController() when a hot-add event occurs. In
addition, the USB Bus Driver would have to call DisconnectController() when a hot-
remove event occurs.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can be
removed without any notice. This means that the Stop() functions of USB device drivers will
have to deal with shutting down a driver for a device that is no longer present in the system. As a
result, any outstanding I/O requests will have to be flushed without actually being able to touch the
device hardware.

In general, adding support for hot-plug events greatly increases the complexity of both bus drivers
and device drivers. Adding this support is up to the driver writer, so the extra complexity and size
of the driver will need to be weighed against the need for the feature in the preboot environment.

2.6 Requirements

This document is an architectural specification. As such, care has been taken to specify
architecture in ways that allow maximum flexibility in implementation. However, there are certain
requirements on which elements of this specification must be implemented to ensure that operating
system loaders and other code designed to run with EFI boot services can rely upon a consistent
environment.

For the purposes of describing these requirements, the specification is broken up into required and
optional elements. In general, an optional element is completely defined in the section that matches
the element name. For required elements however, the definition may in a few cases not be entirely
self contained in the section that is named for the particular element. In implementing required
elements, care should be taken to cover all the semantics defined in this specification that relate to
the particular element.

Extensible Firmware Interface Specification

2-28 12/01/02 Version 1.10

2.6.1 Required Elements
Table 2-5 lists the required elements. Any system that is designed to conform to the EFI
specification must provide a complete implementation of all these elements. This means that all the
required service functions and protocols must be present and the implementation must deliver the
full semantics defined in the specification for all combinations of calls and parameters.
Implementers of EFI applications, drivers or operating system loaders that are designed to run on a
broad range of systems conforming to the EFI specification may assume that all such systems
implement all the required elements.

A system vendor may choose not to implement all the required elements, for example on
specialized system configurations that do not support all the services and functionality implied by
the required elements. However, since most EFI applications, drivers and operating system loaders
are written assuming all the required elements are present on a system that implements the EFI
specification; any such code is likely to require explicit customization to run on a less than
complete implementation of the required elements in the EFI specification.

Table 2-5. Required EFI Implementation Elements

Element Description

EFI System Table Provides access to EFI Boot Services, EFI Runtime Services,
consoles, firmware vendor information, and the system
configuration tables.

EFI Boot Services All functions defined as boot services.

EFI Runtime Services All functions defined as runtime services.

LOADED_IMAGE protocol Provides information on the image.

DEVICE_PATH protocol Provides the location of the device.

DECOMPRESS protocol Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

EBC Interpreter An EFI Byte Code Interpreter is required so EFI images compiled
to EFI Byte Code executables are guaranteed to function on all
EFI compliant platforms. The EBC Interpreter must also produce
the EBC protocol.

Overview

Version 1.10 12/01/02 2-29

2.6.2 Platform-Specific Elements
There are a number of EFI elements that can be added or removed depending on the specific
features that a platform requires. Platform firmware developers are required to implement EFI
elements based upon the features included. The following is a list of potential platform features
and the EFI elements that are required for each feature type:

1. If a platform includes console devices, the Simple Input Protocol and Simple Text Output
Protocol must be implemented.

2. If a platform includes graphical console devices, then the UGA Draw Protocol and the UGA
I/O Protocol must be implemented. In order to support UGA, a platform must contain a
driver to consume UGA Draw Protocol and produce Simple Text Output Protocol even if the
UGA Draw Protocol is produced by an external driver.

3. If a platform includes a pointer device as part of its console support, the Simple Pointer
Protocol must be implemented.

4. If a platform includes the ability to boot from a disk device, then the Block I/O Protocol, the
Disk I/O Protocol, the Simple File System Protocol, and the Unicode Collation Protocol are
required. In addition, partition support for MBR, GPT, and El Torito must be implemented.
An external driver may produce the Block I/O Protocol. All other protocols required to boot
from a disk device must be carried as part of the platform.

5. If a platform includes the ability to boot from a network device, then the UNDI interface, the
Simple Network Protocol, and the PXE Base Code Protocol are required. If a platform
includes the ability to validate a boot image received through a network device, the Boot
Integrity Services Protocol is also required. An external driver may produce the UNDI
interface. All other protocols required to boot from a network device must be carried by the
platform.

6. If a platform includes a byte-stream device such as a UART, then the Serial I/O Protocol
must be implemented.

7. If a platform includes PCI bus support, then the PCI Root Bridge I/O Protocol, the PCI I/O
Protocol, and the Device I/O Protocol must be implemented.

8. If a platform includes USB bus support, then the USB Host Controller Protocol and the USB
I/O Protocol must be implemented. An external device can support USB by producing a
USB Host Controller Protocol.

9. If a platform includes an I/O subsystem that uses SCSI command packets, the SCSI Pass
Thru Protocol must be implemented.

10. If a platform includes debugging capabilities, then the Debug Support Protocol, the Debug
Port Protocol, and the Debug Image Info Table must be implemented.

11. If a platform includes the ability to override the default driver to the controller matching
algorithm provided by the EFI Driver Model, then the Platform Driver Override Protocol
must be implemented.

Extensible Firmware Interface Specification

2-30 12/01/02 Version 1.10

2.6.3 Driver-Specific Elements
There are a number of EFI elements that can be added or removed depending on the features that a
specific driver requires. Drivers can be implemented by platform firmware developers to support
buses and devices in a specific platform. Drivers can also be implemented by add-in card vendors
for devices that might be integrated into the platform hardware or added to a platform through an
expansion slot. The following list includes possible driver features, and the EFI elements that are
required for each feature type:

1. If a driver follows the EFI 1.10 Driver Model, the EFI Driver Binding Protocol must be
implemented. It is strongly recommended that all drivers that follow the EFI Driver Model
also implement the Component Name Protocol.

2. If a driver requires configuration information, the Driver Configuration Protocol must be
implemented. A driver is not allowed to interact with the user unless the Driver
Configuration Protocol is invoked.

3. If a driver requires diagnostics, the Driver Diagnostics Protocol must be implemented. In
order to support low boot times, limit diagnostics during normal boots. Time consuming
diagnostics should be deferred until the Driver Diagnostics Protocol is invoked.

4. If a bus supports devices that are able to provide containers for EFI drivers (e.g. option
ROMs), then the bus driver for that bus type must implement the Bus Specific Driver
Override Protocol.

5. If a driver is written for a console output device, then the Simple Text Output Protocol must
be implemented.

6. If a driver is written for a graphical console output device, then the UGA Draw Protocol and
the UGA I/O Protocol must be implemented.

7. If a driver is written for a console input device, then the Simple Input Protocol must be
implemented.

8. If a driver is written for a pointer device, then the Simple Pointer Protocol must be
implemented.

9. If a driver is written for a network device, then the UNDI interface must be implemented.

10. If a driver is written for a disk device, then the Block I/O Protocol must be implemented.

11. If a driver is written for a device that is not a block oriented device but one that can provide a
file system-like interface, then the Simple File System Protocol must be implemented.

12. If a driver is written for a PCI root bridge, then the PCI Root Bridge I/O Protocol, the PCI I/O
Protocol, and the Device I/O Protocol must be implemented.

13. If a driver is written for a USB host controller, then the USB Host Controller Protocol must
be implemented.

14. If a driver is written for a SCSI controller, then the SCSI Pass Thru Protocol must be
implemented.

15. If a driver is written for a boot device that is not a block-oriented device, a file system-based
device, or a console device, then the Load File Protocol must be implemented.

Version 1.10 12/01/02 3-1

3
Boot Manager

The EFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load EFI
drivers and EFI applications (including EFI OS boot loaders) in an order defined by the global
NVRAM variables. The platform firmware must use the boot order specified in the global
NVRAM variables for normal boot. The platform firmware may add extra boot options or remove
invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an
exceptional condition is discovered in the firmware boot process. One example of a value added
feature would be not loading an EFI driver if booting failed the first time the driver was loaded.
Another example would be booting to an OEM-defined diagnostic environment if a critical error
was discovered in the boot process.

The boot sequence for EFI consists of the following:

• The boot order list is read from a globally defined NVRAM variable. The boot order list
defines a list of NVRAM variables that contain information about what is to be booted. Each
NVRAM variable defines a Unicode name for the boot option that can be displayed to a user.

• The variable also contains a pointer to the hardware device and to a file on that hardware device
that contains the EFI image to be loaded.

• The variable might also contain paths to the OS partition and directory along with other
configuration specific directories.

The NVRAM can also contain load options that are passed directly to the EFI image. The platform
firmware has no knowledge of what is contained in the load options. The load options are set by
higher level software when it writes to a global NVRAM variable to set the platform firmware boot
policy. This information could be used to define the location of the OS kernel if it was different
than the location of the EFI OS loader.

3.1 Firmware Boot Manager

The boot manager is a component in the EFI firmware that determines which EFI drivers and EFI
applications should be explicitly loaded and when. Once the EFI firmware is initialized, it passes
control to the boot manager. The boot manager is then responsible for determining what to load
and any interactions with the user that may be required to make such a decision. Much of the
behavior of the boot manager is left up to the firmware developer to decide, and details of boot
manager implementation are outside the scope of this specification. In particular, likely
implementation options might include any console interface concerning boot, integrated platform
management of boot selections, possible knowledge of other internal applications or recovery
drivers that may be integrated into the system through the boot manager.

Extensible Firmware Interface Specification

3-2 12/01/02 Version 1.10

Programmatic interaction with the boot manager is accomplished through globally defined
variables. On initialization the boot manager reads the values which comprise all of the published
load options among the EFI environment variables. By using the SetVariable() function the
data that contain these environment variables can be modified.

Each load option entry resides in a Boot#### variable or a Driver#### variable where the
is replaced by a unique option number in printable hexadecimal representation using the
digits 0–9, and the upper case versions of the characters A–F (0000–FFFF). The #### must
always be four digits, so small numbers must use leading zeros. The load options are then logically
ordered by an array of option numbers listed in the desired order. There are two such option
ordering lists. The first is DriverOrder that orders the Driver#### load option variables into
their load order. The second is BootOrder that orders the Boot#### load options variables into
their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the
option number of the new Boot#### variable would be added to the BootOrder ordered list and
the BootOrder variable would be rewritten. To change boot option on an existing Boot####,
only the Boot#### variable would need to be rewritten. A similar operation would be done to
add, remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS the boot manager will stop
processing the BootOrder variable and present a boot manager menu to the user. If a boot via
Boot#### returns a status other than EFI_SUCCESS, the boot has failed and the next
Boot#### in the BootOrder variable will be tried until all possibilities are exhausted.

The boot manager may perform automatic maintenance of the database variables. For example, it
may remove unreferenced load option variables, any unparseable or unloadable load option
variables, and rewrite any ordered list to remove any load options that do not have corresponding
load option variables. In addition, the boot manager may automatically update any ordered list to
place any of its own load options where it desires. The boot manager can also, at its own
discretion, provide for manual maintenance operations as well. Examples include choosing the
order of any or all load options, activating or deactivating load options, etc.

The boot manager is required to process the Driver load option entries before the Boot load option
entries. The boot manager is also required to initiate a boot of the boot option specified by the
BootNext variable as the first boot option on the next boot, and only on the next boot. The boot
manager removes the BootNext variable before transferring control to the BootNext boot
option. If the boot from the BootNext boot option fails the boot sequence continues utilizing the
BootOrder variable. If the boot from the BootNext boot option succeeds by returning
EFI_SUCCESS the boot manager will not continue to boot utilizing the BootOrder variable.

The boot manager must call LoadImage() which supports at least SIMPLE_FILE_PROTOCOL
and LOAD_FILE_PROTOCOL for resolving load options. If LoadImage() succeeds, the boot
manager must enable the watchdog timer for 5 minutes by using the SetWatchdogTimer()
boot service prior to calling StartImage(). If a boot option returns control to the boot manager,
the boot manager must disable the watchdog timer with an additional call to the
SetWatchdogTimer() boot service.

 Boot Manager

Version 1.10 12/01/02 3-3

If the boot image is not loaded via LoadImage() the boot manager is required to check for a
default application to boot. Searching for a default application to boot happens on both removable
and fixed media types. This search occurs when the device path of the boot image listed in any boot
option points directly to a SIMPLE_FILE_SYSTEM device and does not specify the exact file to
load. The file discovery method is explained in “Boot Option Variables Default Behavior” starting
on page 2-7 of this chapter. The default media boot case of a protocol other than
SIMPLE_FILE_SYSTEM is handled by the LOAD_FILE_PROTOCOL for the target device path
and does not need to be handled by the boot manager.

The boot manager must also support booting from a short-form device path that starts with the first
element being a hard drive media device path (see Table 8-24, “Hard Drive Media Device Path” in
Chapter 8). The boot manager must use the GUID or signature and partition number in the hard
drive device path to match it to a device in the system. If the drive supports the GPT partitioning
scheme the GUID in the hard drive media device path is compared with the
UniquePartitionGuid field of the GUID Partition Entry (see Table 11-2 in Chapter 11). If
the drive supports the PC-AT MBR scheme the signature in the hard drive media device path is
compared with the UniqueMBRSignature in the Legacy Master Boot Record (see Table 11-5 in
Chapter 11). If a signature match is made, then the partition number must also be matched. The
hard drive device path can be appended to the matching hardware device path and normal boot
behavior can then be used. If more than one device matches the hard drive device path, the boot
manager will pick one arbitrarily. Thus the operating system must ensure the uniqueness of the
signatures on hard drives to guarantee deterministic boot behavior.

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte packed buffer
of variable length fields. Since some of the fields are variable length, an EFI_LOAD_OPTION
cannot be described as a standard C data structure. Instead, the fields are listed below in the order
that they appear in an EFI_LOAD_OPTION descriptor:

Descriptor
 UINT32 Attributes;
 UINT16 FilePathListLength;
 CHAR16 Description[];
 EFI_DEVICE_PATH FilePathList[];
 UINT8 OptionalData[];

Parameters

Attributes The attributes for this load option entry. All unused bits must be
zero and are reserved by the EFI specification for future growth.
See “Related Definitions.”

FilePathListLength Length in bytes of the FilePathList. OptionalData
starts at offset sizeof(UINT32) + sizeof(UINT16) +
StrSize(Description) + FilePathListLength of
the EFI_LOAD_OPTION descriptor.

Description The user readable description for the load option. This field ends
with a Null Unicode character.

Extensible Firmware Interface Specification

3-4 12/01/02 Version 1.10

FilePathList A packed array of EFI device paths. The first element of the
array is an EFI device path that describes the device and location
of the Image for this load option. The FilePathList[0] is
specific to the device type. Other device paths may optionally
exist in the FilePathList, but their usage is OSV specific.
Each element in the array is variable length, and ends at the
device path end structure. Because the size of Description
is arbitrary, this data structure is not guaranteed to be aligned on
a natural boundary. This data structure may have to be copied to
an aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a binary
data buffer that is passed to the loaded image. If the field is zero
bytes long, a Null pointer is passed to the loaded image. The
number of bytes in OptionalData can be computed by
subtracting the starting offset of OptionalData from total
size in bytes of the EFI_LOAD_OPTION.

Related Definitions

//***
// Attributes
//***
#define LOAD_OPTION_ACTIVE 0x00000001
#define LOAD_OPTION_FORCE_RECONNECT 0x00000002

Description

Calling SetVariable() creates a load option. The size of the load option is the same as the size
of the DataSize argument to the SetVariable() call that created the variable. When
creating a new load option, all undefined attribute bits must be written as zero. When updating a
load option, all undefined attribute bits must be preserved. If a load option is not marked as
LOAD_OPTION_ACTIVE, the boot manager will not automatically load the option. This
provides an easy way to disable or enable load options without needing to delete and re-add them.
If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT, then all of
the EFI drivers in the system will be disconnected and reconnected after the last Driver####
load option is processed. This allows an EFI driver loaded with a Driver#### load option to
override an EFI driver that was loaded prior to the execution of the EFI Boot Manager.

 Boot Manager

Version 1.10 12/01/02 3-5

3.2 Globally-Defined Variables

This section defines a set of variables that have architecturally defined meanings. In addition to the
defined data content, each such variable has an architecturally defined attribute that indicates when
the data variable may be accessed. The variables with an attribute of NV are nonvolatile. This
means that their values are persistent across resets and power cycles. The value of any environment
variable that does not have this attribute will be lost when power is removed from the system and
the state of firmware reserved memory is not otherwise preserved. The variables with an attribute of
BS are only available before ExitBootServices() is called. This means that these
environment variables can only be retrieved or modified in the preboot environment. They are not
visible to an operating system. Environment variables with an attribute of RT are available before
and after ExitBootServices() is called. Environment variables of this type can be retrieved
and modified in the preboot environment, and from an operating system. All architecturally
defined variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \

{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}

To prevent name collisions with possible future globally defined variables, other internal firmware
data variables that are not defined here must be saved with a unique VendorGuid other than
EFI_GLOBAL_VARIABLE. Table 3-1 lists the global variables.

Table 3-1 Global Variables

Variable Name Attribute Description

LangCodes BS, RT The language codes that the firmware supports.

Lang NV, BS, RT The language code that the system is configured for.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds,
before initiating the default boot selection.

ConIn NV, BS, RT The device path of the default input console.

ConOut NV, BS, RT The device path of the default output console.

ErrOut NV, BS, RT The device path of the default error output device.

ConInDev BS, RT The device path of all possible console input devices.

ConOutDev BS, RT The device path of all possible console output devices.

ErrOutDev BS, RT The device path of all possible error output devices.

Boot#### NV, BS, RT A boot load option. #### is a printed hex value. No 0x
or h is included in the hex value.

BootOrder NV, BS, RT The ordered boot option load list.

BootNext NV, BS, RT The boot option for the next boot only.

BootCurrent BS, RT The boot option that was selected for the current boot.

Driver#### NV, BS, RT A driver load option. #### is a printed hex value.

DriverOrder NV, BS, RT The ordered driver load option list.

Extensible Firmware Interface Specification

3-6 12/01/02 Version 1.10

The LangCodes variable contains an array of 3-character (8-bit ASCII characters)
ISO-639-2 language codes that the firmware can support. At initialization time the firmware
computes the supported languages and creates this data variable. Since the firmware creates this
value on each initialization, its contents are not stored in nonvolatile memory. This value is
considered read-only.

The Lang variable contains the 3-character (8-bit ASCII characters) ISO-639-2 language code that
the machine has been configured for. This value may be changed to any value supported by
LangCodes; however, the change does not take effect until the next boot. If the language code is
set to an unsupported value, the firmware will choose a supported default at initialization and set
Lang to a supported value.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the
firmware will wait before initiating the original default boot selection. A value of 0 indicates that
the default boot selection is to be initiated immediately on boot. If the value is not present, or
contains the value of 0xFFFF then firmware will wait for user input before booting. This means the
default boot selection is not automatically started by the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI_DEVICE_PATH descriptor
that defines the default device to use on boot. Changes to these values do not take effect until the
next boot. If the firmware cannot resolve the device path, it is allowed to automatically replace the
value(s) as needed to provide a console for the system.

The ConInDev, ConOutDev, and ErrOutDev variables each contain an EFI_DEVICE_PATH
descriptor that defines all the possible default devices to use on boot. These variables are volatile,
and are set dynamically on every boot. ConIn, ConOut, and ErrOut are always proper subsets
of ConInDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four digit hexadecimal number. For example, Boot0001,
Boot0002, Boot0A02, etc.

The BootOrder variable contains an array of UINT16’s that make up an ordered list of the
Boot#### options. The first element in the array is the value for the first logical boot option, the
second element is the value for the second logical boot option, etc. The BootOrder order list is
used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried
first on the next boot. After the BootNext boot option is tried the normal BootOrder list is
used. To prevent loops, the boot manager deletes this variable before transferring control to the
preselected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was
selected on the current boot.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is
appended with a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of the
Driver#### variable. The first element in the array is the value for the first logical driver load
option, the second element is the value for the second logical driver load option, etc. The
DriverOrder list is used by the firmware’s boot manager as the default load order for EFI
drivers that it should explicitly load.

 Boot Manager

Version 1.10 12/01/02 3-7

3.3 Boot Option Variables Default Behavior

The default state of globally-defined variables is firmware vendor specific. However the boot
options require a standard default behavior in the exceptional case that valid boot options are not
present on a platform. The default behavior must be invoked any time the BootOrder variable
does not exist or only points to nonexistent boot options.

If no valid boot options exist, the boot manager will enumerate all removable EFI media devices
followed by all fixed EFI media devices. The order within each group is undefined. These new
default boot options are not saved to non volatile storage. The boot manger will then attempt to
boot from each boot option. If the device supports the SIMPLE_FILE_SYSTEM protocol then
the removable media boot behavior (see section 3.4.1.1) is executed. Otherwise the firmware will
attempt to boot the device via the LOAD_FILE protocol .

It is expected that this default boot will load an operating system or a maintenance utility. If this is
an operating system setup program it is then responsible for setting the requisite environment
variables for subsequent boots. The platform firmware may also decide to recover or set to a
known set of boot options.

3.4 Boot Mechanisms
EFI can boot from a device using the SIMPLE_FILE_SYSTEM protocol or the LOAD_FILE
protocol. A device that supports the SIMPLE_FILE_SYSTEM protocol must materialize a file
system protocol for that device to be bootable. If a device does not wish to support a complete file
system it may produce a LOAD_FILE protocol which allows it to materialize an image directly.
The Boot Manager will attempt to boot using the SIMPLE_FILE_SYSTEM protocol first. If that
fails, then the LOAD_FILE protocol will be used.

3.4.1 Boot via Simple File Protocol
When booting via the SIMPLE_FILE_SYSTEM protocol, the FilePath will start with a
device path that points to the device that “speaks” the SIMPLE_FILE_SYSTEM protocol. The
next part of the FilePath will point to the file name, including sub directories that contain the
bootable image. If the file name is a null device path, the file name must be discovered on the
media using the rules defined for removable media devices with ambiguous file names (see
section 3.4.1.1 below).

The format of the file system specified by EFI is contained in Chapter 11. While the firmware must
produce a SIMPLE_FILE_SYSTEM protocol that understands the EFI file system, any file system
can be abstracted with the SIMPLE_FILE_SYSTEM protocol interface.

3.4.1.1 Removable Media Boot Behavior
On a removable media device it is not possible for the FilePath to contain a file name, including
sub directories. The FilePath is stored in non volatile memory in the platform and cannot
possibly be kept in sync with a media that can change at any time. A FilePath for a removable
media device will point to a device that “speaks” the SIMPLE_FILE_SYSTEM protocol. The
FilePath will not contain a file name or sub directories.

Extensible Firmware Interface Specification

3-8 12/01/02 Version 1.10

The system firmware will attempt to boot from a removable media FilePath by adding a default
file name in the form \EFI\BOOT\BOOT{machine type short-name}.EFI. Where machine type
short-name defines a PE32+ image format architecture. Each file only contains one EFI image
type, and a system may support booting from one or more images types. Table 3-2 lists the EFI
image types.

Table 3-2 EFI Image Types

Architecture File name convention PE Executable machine type *

IA-32 BOOTIA32.EFI 0x14c

Itanium architecture BOOTIA64.EFI 0x200

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification,
Revision 6.0

A media may support multiple architectures by simply having a \EFI\BOOT\BOOT{machine type
short-name}.EFI file of each possible machine type.

3.4.2 Boot via LOAD_FILE Protocol
When booting via the LOAD_FILE protocol, the FilePath is a device path that points to a
device that “speaks” the LOAD_FILE protocol. The image is loaded directly from the device that
supports the LOAD_FILE protocol. The remainder of the FilePath will contain information that
is specific to the device. EFI firmware passes this device-specific data to the loaded image, but
does not use it to load the image. If the remainder of the FilePath is a null device path it is the
loaded image's responsibility to implement a policy to find the correct boot device.

The LOAD_FILE protocol is used for devices that do not directly support file systems. Network
devices commonly boot in this model where the image is materialized without the need of a file
system.

3.4.2.1 Network Booting
Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE specifies UDP,
DHCP, and TFTP network protocols that a booting platform can use to interact with an intelligent
system load server. EFI defines special interfaces that are used to implement PXE. These
interfaces are contained in the PXE_BASE_CODE protocol (Chapter 15).

3.4.2.2 Future Boot Media
Since EFI defines an abstraction between the platform and the OS and its loader it should be
possible to add new types of boot media as technology evolves. The OS loader will not necessarily
have to change to support new types of boot. The implementation of the EFI platform services
may change, but the interface will remain constant. The OS will require a driver to support the
new type of boot media so that it can make the transition from EFI boot services to OS control of
the boot media.

Version 1.10 12/01/02 4-1

4
EFI System Table

This chapter describes the entry point to an EFI image and the parameters that are passed to that
entry point. There are three types of EFI images that can be loaded and executed by EFI firmware.
These are EFI Applications, EFI OS Loaders, and EFI Drivers. There are no differences in the
entry point for these three image types.

4.1 EFI Image Entry Point

The most significant parameter that is passed to an EFI image is a pointer to the EFI System Table.
This pointer is EFI_IMAGE_ENTRY_POINT (see definition immediately below), the main entry
point for an EFI Image. The EFI System Table contains pointers to the active console devices, a
pointer to the EFI Boot Services Table, a pointer to the EFI Runtime Services Table, and a pointer
to the list of system configuration tables such as ACPI, SMBIOS, and the SAL System Table. This
chapter describes the EFI System Table in detail.

EFI_IMAGE_ENTRY_POINT

Summary

This is the main entry point for an EFI Image. This entry point is the same for EFI Applications,
EFI OS Loaders, and EFI Drivers including both device drivers and bus drivers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters

ImageHandle The firmware allocated handle for the EFI image.

SystemTable A pointer to the EFI System Table.

Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system
memory by the EFI Boot Service LoadImage(). An EFI image is invoked through the EFI Boot
Service StartImage().

Extensible Firmware Interface Specification

4-2 12/01/02 Version 1.10

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the
EFI_BOOT_SERVICES and EFI_RUNTIME_SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the EFI system table
contains pointers to other standard tables that a loaded image may use if the associated pointers are
initialized to nonzero values. Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images
support the EFI_LOADED_IMAGE protocol that returns the source location of the image, the
memory location of the image, the load options for the image, etc. The exact
EFI_LOADED_IMAGE structure is defined in Chapter 7.

If the EFI image is an EFI Application, then the EFI Application executes and either returns or calls
the EFI Boot Services Exit(). An EFI Application is always unloaded from memory when it
exits, and its return status is returned to the component that started the EFI Application.

If the EFI image is an EFI OS Loader, then the EFI OS Loader executes and either returns, calls the
EFI Boot Service Exit(), or calls the EFI Boot Service ExitBootServices(). If the EFI
OS Loader returns or calls Exit(), then the load of the OS has failed, and the EFI OS Loader is
unloaded from memory and control is returned to the component that attempted to boot the EFI OS
Loader. If ExitBootServices() is called, then the OS Loader has taken control of the
platform, and EFI will not regain control of the system until the platform is reset. One method of
resetting the platform is through the EFI Runtime Service ResetSystem().

If the EFI image is an EFI Driver, then the EFI Driver executes and either returns or calls the EFI
Boot Service Exit(). If an EFI driver returns an error, then the driver is unloaded from memory.
If the EFI driver returns EFI_SUCCESS, then it stays resident in memory. If the EFI Driver does
not follow the EFI Driver Model, then it performs any required initialization and installs its
protocol services before returning. If the EFI driver does follow the EFI Driver Model, then the
entry point is not allowed to touch any device hardware. Instead, the entry point is required to
create and install the EFI_DRIVER_BINDING_PROTOCOL (Chapter 9) on the ImageHandle
of the EFI Driver. If this process is completed, then EFI_SUCCESS is returned. If the resources
are not available to complete the driver initialization, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned
EFI_SUCCESS The driver was initialized.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 EFI System Table

Version 1.10 12/01/02 4-3

4.2 EFI Table Header

The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI
table types. It includes a signature that is unique for each table type, a revision of the table that may
be updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an
EFI table type can validate the contents of the EFI table.

EFI_TABLE_HEADER

Summary

Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {
 UINT64 Signature;
 UINT32 Revision;
 UINT32 HeaderSize;
 UINT32 CRC32;
 UINT32 Reserved;
} EFI_TABLE_HEADER;

Parameters

Signature A 64-bit signature that identifies the type of table that follows.
Unique signatures have been generated for the EFI System Table,
the EFI Boot Services Table, and the EFI Runtime Services Table.

Revision The revision of the EFI Specification to which this table conforms.
The upper 16 bits of this field contain the major revision value, and
the lower 16 bits contain the minor revision value. The minor
revision values are limited to the range of 00..99.

HeaderSize The size, in bytes, of the entire table including the
EFI_TABLE_HEADER.

CRC32 The 32-bit CRC for the entire table. This value is computed by
setting this field to 0, and computing the 32-bit CRC for
HeaderSize bytes.

Reserved Reserved field that must be set to 0.

NOTE

The size of the EFI system table, runtime services table, and boot services table may increase over
time. It is very important to always use the HeaderSize field of the EFI_TABLE_HEADER to
determine the size of these tables.

Extensible Firmware Interface Specification

4-4 12/01/02 Version 1.10

4.3 EFI System Table

The EFI System Table contains pointers to the runtime and boot services tables. The definition for
this table is shown in the following code fragments. Except for the table header, all elements in the
service tables are prototypes of function pointers to functions as defined in Chapters 5 and 6. Prior
to a call to ExitBootServices(), all of the fields of the EFI System Table are valid. After an
operating system has taken control of the platform with a call to ExitBootServices(), only
the Hdr, FirmwareVendor, FirmwareRevision, RuntimeServices,
NumberOfTableEntries, and ConfigurationTable fields are valid.

EFI_SYSTEM_TABLE

Summary

Contains pointers to the runtime and boot services tables.

Related Definitions
#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))

typedef struct {
 EFI_TABLE_HEADER Hdr;
 CHAR16 *FirmwareVendor;
 UINT32 FirmwareRevision;
 EFI_HANDLE ConsoleInHandle;
 SIMPLE_INPUT_INTERFACE *ConIn;
 EFI_HANDLE ConsoleOutHandle;
 SIMPLE_TEXT_OUTPUT_INTERFACE *ConOut;
 EFI_HANDLE StandardErrorHandle;
 SIMPLE_TEXT_OUTPUT_INTERFACE *StdErr;
 EFI_RUNTIME_SERVICES *RuntimeServices;
 EFI_BOOT_SERVICES *BootServices;
 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *ConfigurationTable;
} EFI_SYSTEM_TABLE;

 EFI System Table

Version 1.10 12/01/02 4-5

Parameters

Hdr The table header for the EFI System Table. This header contains
the EFI_SYSTEM_TABLE_SIGNATURE and
EFI_SYSTEM_TABLE_REVISION values along with the size
of the EFI_SYSTEM_TABLE structure and a 32-bit CRC to
verify that the contents of the EFI System Table are valid.

FirmwareVendor A pointer to a null terminated Unicode string that identifies the
vendor that produces the system firmware for the platform.

FirmwareRevision A firmware vendor specific value that identifies the revision of
the system firmware for the platform.

ConsoleInHandle The handle for the active console input device. This handle must
support the SIMPLE_INPUT_PROTOCOL.

ConIn A pointer to the SIMPLE_INPUT_PROTOCOL interface that is
associated with ConsoleInHandle.

ConsoleOutHandle The handle for the active console output device. This handle
must support the SIMPLE_TEXT_OUTPUT_PROTOCOL.

ConOut A pointer to the SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with ConsoleOutHandle.

StandardErrorHandle The handle for the active standard error console device. This
handle must support the
SIMPLE_TEXT_OUTPUT_PROTOCOL.

StdErr A pointer to the SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with StandardErrorHandle.

RuntimeServices A pointer to the EFI Runtime Services Table. See Section 4.5.

BootServices A pointer to the EFI Boot Services Table. See Section 4.4.

NumberOfTableEntries The number of system configuration tables in the buffer
ConfigurationTable.

ConfigurationTable A pointer to the system configuration tables. The number of
entries in the table is NumberOfTableEntries.

Extensible Firmware Interface Specification

4-6 12/01/02 Version 1.10

4.4 EFI Boot Services Table

The EFI Boot Services Table contains a table header and pointers to all of the boot services. The
definition for this table is shown in the following code fragments. Except for the table header, all
elements in the EFI Boot Services Tables are prototypes of function pointers to functions as defined
in Chapters 5. The function pointers in this table are not valid after the operating system has taken
control of the platform with a call to ExitBootServices().

EFI_BOOT_SERVICES

Summary

Contains a table header and pointers to all of the boot services.

Related Definitions
#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42
#define EFI_BOOT_SERVICES_REVISION ((1<<16) | (10))

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Task Priority Services
 //
 EFI_RAISE_TPL RaiseTPL;
 EFI_RESTORE_TPL RestoreTPL;

 //
 // Memory Services
 //
 EFI_ALLOCATE_PAGES AllocatePages;
 EFI_FREE_PAGES FreePages;
 EFI_GET_MEMORY_MAP GetMemoryMap;
 EFI_ALLOCATE_POOL AllocatePool;
 EFI_FREE_POOL FreePool;

 //
 // Event & Timer Services
 //
 EFI_CREATE_EVENT CreateEvent;
 EFI_SET_TIMER SetTimer;
 EFI_WAIT_FOR_EVENT WaitForEvent;
 EFI_SIGNAL_EVENT SignalEvent;
 EFI_CLOSE_EVENT CloseEvent;
 EFI_CHECK_EVENT CheckEvent;

 EFI System Table

Version 1.10 12/01/02 4-7

 //
 // Protocol Handler Services
 //
 EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface;
 EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface;
 EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface;
 EFI_HANDLE_PROTOCOL HandleProtocol;
 VOID *Reserved;
 EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify;
 EFI_LOCATE_HANDLE LocateHandle;
 EFI_LOCATE_DEVICE_PATH LocateDevicePath;
 EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable;

 //
 // Image Services
 //
 EFI_IMAGE_LOAD LoadImage;
 EFI_IMAGE_START StartImage;
 EFI_EXIT Exit;
 EFI_IMAGE_UNLOAD UnloadImage;
 EFI_EXIT_BOOT_SERVICES ExitBootServices;

 //
 // Miscellaneous Services
 //
 EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount;
 EFI_STALL Stall;
 EFI_SET_WATCHDOG_TIMER SetWatchdogTimer;

 //
 // DriverSupport Services
 //
 EFI_CONNECT_CONTROLLER ConnectController;
 EFI_DISCONNECT_CONTROLLER DisconnectController;

 //
 // Open and Close Protocol Services
 //
 EFI_OPEN_PROTOCOL OpenProtocol;
 EFI_CLOSE_PROTOCOL CloseProtocol;
 EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation;

 //
 // Library Services
 //
 EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle;
 EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer;
 EFI_LOCATE_PROTOCOL LocateProtocol;

Extensible Firmware Interface Specification

4-8 12/01/02 Version 1.10

 EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES

 InstallMultipleProtocolInterfaces;

 EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES

 IninstallMultipleProtocolInterfaces;

 //
 // 32-bit CRC Services
 //
 EFI_CALCULATE_CRC32 CalculateCrc32;

 //
 // Memory Utility Services
 //
 EFI_COPY_MEM CopyMem;
 EFI_SET_MEM SetMem;

} EFI_BOOT_SERVICES;

Parameters

Hdr The table header for the EFI Boot Services Table. This
header contains the EFI_BOOT_SERVICES_
SIGNATURE and EFI_BOOT_SERVICES_
REVISION values along with the size of the
EFI_BOOT_SERVICES_TABLE structure and a 32-bit
CRC to verify that the contents of the EFI Boot Services
Table are valid.

RaiseTPL Raises the task priority level.

RestoreTPL Restores/lowers the task priority level.

AllocatePages Allocates pages of a particular type.

FreePages Frees allocated pages.

GetMemoryMap Returns the current boot services memory map and
memory map key.

AllocatePool Allocates a pool of a particular type.

FreePool Frees allocated pool.

CreateEvent Creates a general-purpose event structure.

SetTimer Sets an event to be signaled at a particular time.

WaitForEvent Stops execution until an event is signaled.

SignalEvent Signals an event.

CloseEvent Closes and frees an event structure.

 EFI System Table

Version 1.10 12/01/02 4-9

CheckEvent Checks whether an event is in the signaled state.

InstallProtocolInterface Installs a protocol interface on a device handle.

ReinstallProtocolInterface Reinstalls a protocol interface on a device handle.

UninstallProtocolInterface Removes a protocol interface from a device handle.

HandleProtocol Queries a handle to determine if it supports a specified
protocol.

Reserved Reserved. Must be NULL.

RegisterProtocolNotify Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Returns an array of handles that support a specified
protocol.

LocateDevicePath Locates all devices on a device path that support a
specified protocol and returns the handle to the device
that is closest to the path.

InstallConfigurationTable Adds, updates, or removes a configuration table from the
EFI System Table.

LoadImage Loads an EFI image into memory.

StartImage Transfers control to a loaded image’s entry point.

Exit Exits the image’s entry point.

UnloadImage Unloads an image.

ExitBootServices Terminates boot services.

GetNextMonotonicCount Returns a monotonically increasing count for the
platform.

Stall Stalls the processor.

SetWatchdogTimer Resets and sets a watchdog timer used during boot
services time.

ConnectController Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Informs a set of drivers to stop managing a controller.

OpenProtocol Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Removes elements from the list of agents consuming a
protocol interface.

Extensible Firmware Interface Specification

4-10 12/01/02 Version 1.10

OpenProtocolInformation Retrieve the list of agents that are currently consuming a
protocol interface.

ProtocolsPerHandle Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Finds the first handle in the handle database the supports
the requested protocol.

InstallMultipleProtocolInterfaces

 Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces

 Uninstalls one or more protocol interfaces from a
handle.

CalculateCrc32 Computes and returns a 32-bit CRC for a data buffer.

CopyMem Copies the contents of one buffer to another buffer.

SetMem Fills a buffer with a specified value.

 EFI System Table

Version 1.10 12/01/02 4-11

4.5 EFI Runtime Services Table

The EFI Runtime Services Table contains a table header and pointers to all of the runtime services.
The definition for this table is shown in the following code fragments. Except for the table header,
all elements in the EFI Runtime Services Tables are prototypes of function pointers to functions as
defined in Chapters 6. Unlike the EFI Boot Services Table, this table, and the function pointers it
contains are valid after the operating system has taken control of the platform with a call to
ExitBootServices(). If a call to SetVirtualAddressMap() is made by the OS, then
the function pointers in this table are fixed up to point to the new virtually mapped entry points.

EFI_RUNTIME_SERVICES

Summary

Contains a table header and pointers to all of the runtime services.

Related Definitions
#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552
#define EFI_RUNTIME_SERVICES_REVISION ((1<<16) | (10))

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Time Services
 //
 EFI_GET_TIME GetTime;
 EFI_SET_TIME SetTime;
 EFI_GET_WAKEUP_TIME GetWakeupTime;
 EFI_SET_WAKEUP_TIME SetWakeupTime;

 //
 // Virtual Memory Services
 //
 EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;
 EFI_CONVERT_POINTER ConvertPointer;

 //
 // Variable Services
 //
 EFI_GET_VARIABLE GetVariable;
 EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
 EFI_SET_VARIABLE SetVariable;

Extensible Firmware Interface Specification

4-12 12/01/02 Version 1.10

 //
 // Miscellaneous Services
 //
 EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;
 EFI_RESET_SYSTEM ResetSystem;
} EFI_RUNTIME_SERVICES;

Parameters

Hdr The table header for the EFI Runtime Services Table.
This header contains the EFI_RUNTIME_SERVICES_
SIGNATURE and EFI_RUNTIME_SERVICES_
REVISION values along with the size of the
EFI_RUNTIME_SERVICES_TABLE structure and a
32-bit CRC to verify that the contents of the EFI
Runtime Services Table are valid.

GetTime Returns the current time and date, and the time-keeping
capabilities of the platform.

SetTime Sets the current local time and date information.

GetWakeupTime Returns the current wakeup alarm clock setting.

SetWakeupTime Sets the system wakeup alarm clock time.

SetVirtualAddressMap Used by an OS loader to convert from physical
addressing to virtual addressing.

ConvertPointer Used by EFI components to convert internal pointers
when switching to virtual addressing.

GetVariable Returns the value of a variable.

GetNextVariableName Enumerates the current variable names.

SetVariable Sets the value of a variable.

GetNextHighMonotonicCount Returns the next high 32 bits of the platform’s
monotonic counter.

ResetSystem Resets the entire platform.

 EFI System Table

Version 1.10 12/01/02 4-13

4.6 EFI Configuration Table

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by the
EFI_CONFIGURATION_TABLE structure below. The number of types of configuration tables is
expected to grow over time. This is why a GUID is used to identify the configuration table type.
The EFI Configuration Table may contain at most once instance of each table type. The list of
current configuration table types is also listed below.

EFI_CONFIGURATION_TABLE

Summary

Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI
System Table.

Related Definitions
typedef struct{
 EFI_GUID VendorGuid;
 VOID *VendorTable;
} EFI_CONFIGURATION_TABLE;

Parameters

VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.

VendorTable A pointer to the table associated with VendorGuid.

#define ACPI_20_TABLE_GUID \
 {0x8868e871,0xe4f1,0x11d3,0xbc,0x22,0x0,0x80,0xc7,0x3c,0x88,0x81}

#define ACPI_TABLE_GUID \
 {0xeb9d2d30,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define SAL_SYSTEM_TABLE_GUID \
 {0xeb9d2d32,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define SMBIOS_TABLE_GUID \
 {0xeb9d2d31,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define MPS_TABLE_GUID \
 {0xeb9d2d2f,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

Extensible Firmware Interface Specification

4-14 12/01/02 Version 1.10

4.7 EFI Image Entry Point Examples
The examples in the following sections show how the various table examples are presented in
the EFI environment.

4.7.1 EFI Image Entry Point Examples
The following example shows the EFI image entry point for an EFI Application. This
application makes use of the EFI System Table, the EFI Boot Services Table, and the EFI
Runtime Services Table.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_RUNTIME_SERVICES_TABLE *gRT;

EfiApplicationEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_TIME *Time;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Use EFI System Table to print “Hello World” to the active console output
 // device.
 //
 Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use EFI Boot Services Table to allocate a buffer to store the current time
 // and date.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_TIME),
 (VOID **)&Time
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 EFI System Table

Version 1.10 12/01/02 4-15

 //
 // Use the EFI Runtime Services Table to get the current time and date.
 //
 Status = gRT->GetTime (&Time, NULL)
 if (EFI_ERROR (Status)) {
 return Status;
 }

 return Status;
}

The following example shows the EFI image entry point for an EFI Driver that does not follow the
EFI Driver Model. Since this driver returns EFI_SUCCESS, it will stay resident in memory after
it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_RUNTIME_SERVICES_TABLE *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Implement driver initialization here.
 //

 return EFI_SUCCESS;
}

The following example shows the EFI image entry point for an EFI Driver that also does not follow
the EFI Driver Model. Since this driver returns EFI_DEVICE_ERROR, it will not stay resident in
memory after it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_RUNTIME_SERVICES_TABLE *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

Extensible Firmware Interface Specification

4-16 12/01/02 Version 1.10

 //
 // Implement driver initialization here.
 //

 return EFI_DEVICE_ERROR;
}

4.7.2 EFI Driver Model Example
The following is an EFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL is
defined in Chapter 9. The function prototypes for the AbcSupported(), AbcStart(), and
AbcStop() functions are defined in Section 9.1. This function saves the driver’s image handle
and a pointer to the EFI boot services table in global variables, so the other functions in the same
driver can have access to these values. It then creates an instance of the
EFI_DRIVER_BINDING_PROTOCOL and installs it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES_TABLE *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

 EFI System Table

Version 1.10 12/01/02 4-17

4.7.3 EFI Driver Model Example (Unloadable)
The following is the same EFI Driver Model example as above, except it also includes the code
required to allow the driver to be unloaded through the boot service Unload(). Any protocols
installed or memory allocated in AbcEntryPoint() must be uninstalled or freed in the
AbcUnload().

extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES_TABLE *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
);

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

 gBS = SystemTable->BootServices;

 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiLoadedImageProtocolGuid,
 &LoadedImage,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }
 LoadedImage->Unload = AbcUnload;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);

 return Status;
}

Extensible Firmware Interface Specification

4-18 12/01/02 Version 1.10

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
)

{
 EFI_STATUS Status;

 Status = gBS->UninstallMultipleProtocolInterfaces (
 ImageHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

4.7.4 EFI Driver Model Example (Multiple Instances)
The following is the same as the first EFI Driver Model example, except it produces three
EFI_DRIVER_BINDING_PROTOCOL instances. The first one is installed onto the driver’s
image handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES_TABLE *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
 AbcSupportedA,
 AbcStartA,
 AbcStopA,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
 AbcSupportedB,
 AbcStartB,
 AbcStopB,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
 AbcSupportedC,
 AbcStartC,
 AbcStopC,
 1,
 NULL,
 NULL
};

 EFI System Table

Version 1.10 12/01/02 4-19

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 //
 // Install mAbcDriverBindingA onto ImageHandle
 //
 mAbcDriverBindingA->ImageHandle = ImageHandle;
 mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingA->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingB onto a newly created handle
 //
 mAbcDriverBindingB->ImageHandle = ImageHandle;
 mAbcDriverBindingB->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingB->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingC onto a newly created handle
 //
 mAbcDriverBindingC->ImageHandle = ImageHandle;
 mAbcDriverBindingC->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingC->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
 NULL
);

 return Status;
}

Version 1.10 12/01/02 4-20

Version 1.10 12/01/02 5-1

5
Services — Boot Services

This chapter discusses the fundamental boot services that are present in an EFI-compliant system.
The services are defined by interface functions that may be used by code running in the EFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as EFI applications running in the preboot environment and EFI OS loaders.

Two types of services apply in an EFI-compliant system:

• Boot Services. Functions that are available before a successful call to
ExitBootServices(). These functions are described in this chapter.

• Runtime Services. Functions that are available before and after any call to
ExitBootServices(). These functions are described in Chapter 6.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms
(since some devices are not available on some platforms). Protocols are created dynamically. This
chapter discusses the “global” functions and runtime functions; subsequent chapters discuss the
“handle-based.”

EFI applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an EFI Image is provided a pointer to an EFI system table which
contains the Boot Services dispatch table and the default handles for accessing the console. All
boot services functionality is available until an EFI OS loader loads enough of its own environment
to take control of the system’s continued operation and then terminates boot services with a call to
ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing
to boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS
loader, however, may or may not choose to call ExitBootServices(). This choice may in
part depend upon whether or not such code is designed to make continued use of EFI boot services
or the boot services environment.

Extensible Firmware Interface Specification

5-2 12/01/02 Version 1.10

The rest of this chapter discusses individual functions. Global boot services functions fall into
these categories:

• Event, Timer, and Task Priority Services (Section 5.1)
• Memory Allocation Services (Section 5.2)
• Protocol Handler Services (Section 5.3)
• Image Services (Section 5.4)
• Miscellaneous Services (Section 5.5)

5.1 Event, Timer, and Task Priority Services
The functions that make up the Event, Timer, and Task Priority Services are used during preboot to
create, close, signal, and wait for events; to set timers; and to raise and restore task priority levels.
See Table 5-1.

Table 5-1. Event, Timer, and Task Priority Functions

Name Type Description

CreateEvent Boot Creates a general-purpose event structure.

CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.

CheckEvent Boot Checks whether an event is in the signaled state.

SetTimer Boot Sets an event to be signaled at a particular time.

RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.

Execution in the boot services environment occurs at different task priority levels, or TPLs. The
boot services environment exposes only three of these levels to EFI applications and drivers:

• TPL_APPLICATION, the lowest priority level
• TPL_CALLBACK, an intermediate priority level
• TPL_NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority
level. For example, tasks that run at the TPL_NOTIFY level may interrupt tasks that run at the
TPL_APPLICATION or TPL_CALLBACK level. While TPL_NOTIFY is the highest level
exposed to the boot services applications, the firmware may have higher task priority items it deals
with. For example, the firmware may have to deal with tasks of higher priority like timer ticks and
internal devices. Consequently, there is a fourth TPL, TPL_HIGH_LEVEL, designed for use
exclusively by the firmware.

Services — Boot Services

Version 1.10 12/01/02 5-3

The intended usage of the priority levels is shown in Table 5-2 from the lowest level
(TPL_APPLICATION) to the highest level (TPL_HIGH_LEVEL). As the level increases, the
duration of the code and the amount of blocking allowed decrease. Execution generally occurs at
the TPL_APPLICATION level. Execution occurs at other levels as a direct result of the triggering
of an event notification function(this is typically caused by the signaling of an event). During timer
interrupts, firmware signals timer events when an event’s “trigger time” has expired. This allows
event notification functions to interrupt lower priority code to check devices (for example). The
notification function can signal other events as required. After all pending event notification
functions execute, execution continues at the TPL_APPLICATION level.

Table 5-2. TPL Usage

Task Priority Level Usage
TPL_APPLICATION This is the lowest priority level. It is the level of execution which occurs when

no event notifications are pending and which interacts with the user. User I/O
(and blocking on User I/O) can be performed at this level. The boot manager
executes at this level and passes control to other EFI applications at this level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level. Long term

operations (such as file system operations and disk I/O) can occur at this level.
TPL_NOTIFY Interrupts code executing below TPL_NOTIFY level. Blocking is not

allowed at this level. Code executes to completion and returns. If code
requires more processing, it needs to signal an event to wait to reobtain
control at whatever level it requires. This level is typically used to process low
level IO to or from a device.

(Firmware Interrupts) This level is internal to the firmware. It is the level at which internal interrupts
occur. Code running at this level interrupts code running at the
TPL_NOTIFY level (or lower levels). If the interrupt requires extended time

to complete, firmware signals another event (or events) to perform the longer
term operations so that other interrupts can occur.

TPL_HIGH_LEVEL Interrupts code executing below TPL_HIGH_LEVEL. This is the highest
priority level. It is not interruptable (interrupts are disabled) and is used
sparingly by firmware to synchronize operations that need to be accessible
from any priority level. For example, it must be possible to signal events while
executing at any priority level. Therefore, firmware manipulates the internal
event structure while at this priority level.

Extensible Firmware Interface Specification

5-4 12/01/02 Version 1.10

Executing code can temporarily raise its priority level by calling the RaiseTPL() function.
Doing this masks event notifications from code running at equal or lower priority levels until the
RestoreTPL() function is called to reduce the priority to a level below that of the pending event
notifications. There are restrictions on the TPL levels at which many EFI service functions and
protocol interface functions can execute. Table 5-3 summarizes the restrictions.

Table 5-3. TPL Restrictions

Name Restriction Task Priority Level

Memory Allocation Services <= TPL_NOTIFY

Variable Services <= TPL_CALLBACK

ExitBootServices() = TPL_APPLICATION

LoadImage() < TPL_CALLBACK

StartImage() < TPL_CALLBACK

UnloadImage() <= TPL_CALLBACK

Exit() <= TPL_CALLBACK

Time Services <= TPL_CALLBACK

WaitForEvent() = TPL_APPLICATION

SignalEvent() <= TPL_HIGH_LEVEL

Event Notification Levels >
<=

TPL_APPLICATION
TPL_HIGH_LEVEL

Protocol Interface Functions <= TPL_NOTIIFY

Block I/O Protocol <= TPL_CALLBACK

Disk I/O Protocol <= TPL_CALLBACK

Simple File System Protocol <= TPL_CALLBACK

Simple Input Protocol <= TPL_APPLICATION

Simple Text Output Protocol <= TPL_NOTIFY

Serial I/O Protocol <= TPL_CALLBACK

PXE Base Code Protocol <= TPL_CALLBACK

Simple Network Protocol <= TPL_CALLBACK

Services — Boot Services

Version 1.10 12/01/02 5-5

CreateEvent()

Summary
Creates an event.

Prototype

EFI_STATUS
CreateEvent (

IN UINT32 Type,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction,
IN VOID *NotifyContext,
OUT EFI_EVENT *Event

);

Parameters
Type The type of event to create and its mode and attributes. The

#define statements in “Related Definitions” can be used to
specify an event’s mode and attributes.

NotifyTpl The task priority level of event notifications. See RaiseTPL().

NotifyFunction Pointer to the event’s notification function. See “Related
Definitions.”

NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Related Definitions
//***
// EFI_EVENT
//***
typedef VOID *EFI_EVENT

//***
// Event Types
//***
// These types can be “ORed” together as needed – for example,
// EVT_TIMER might be “Ored” with EVT_NOTIFY_WAIT or
// EVT_NOTIFY_SIGNAL.
#define EVT_TIMER 0x80000000
#define EVT_RUNTIME 0x40000000
#define EVT_RUNTIME_CONTEXT 0x20000000

Extensible Firmware Interface Specification

5-6 12/01/02 Version 1.10

#define EVT_NOTIFY_WAIT 0x00000100
#define EVT_NOTIFY_SIGNAL 0x00000200

#define EVT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201
#define EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202

EVT_TIMER The event is a timer event and may be passed to SetTimer().
Note that timers only function during boot services time.

EVT_RUNTIME The event is allocated from runtime memory. If an event is to be
signaled after the call to ExitBootServices(), the event’s data
structure and notification function need to be allocated from runtime
memory. For more information, see
SetVirtualAddressMap() in Chapter 6.

EVT_RUNTIME_CONTEXT
The event’s NotifyContext pointer points to a runtime memory
address. See the discussion of EVT_RUNTIME above.

EVT_NOTIFY_WAIT The event’s NotifyFunction is to be invoked whenever the
event is being waited on via WaitForEvent() or
CheckEvent().

EVT_NOTIFY_SIGNAL
The event’s NotifyFunction is to be invoked whenever the
event is signaled via SignalEvent().

EVT_SIGNAL_EXIT_BOOT_SERVICES
This event is to be notified by the system when
ExitBootServices() is invoked. This type cannot be used
with any other EVT bit type. The notification function for this
event is not allowed to use the Memory Allocation Services, or call
any functions that use the Memory Allocation Services, because
these services modify the current memory map.

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
The event is to be notified by the system when
SetVirtualAddressMap() is performed. This type cannot be
used with any other EVT bit type. See the discussion of
EVT_RUNTIME.

Services — Boot Services

Version 1.10 12/01/02 5-7

//***
// EFI_EVENT_NOTIFY
//***
typedef
VOID
(EFIAPI *EFI_EVENT_NOTIFY) (

IN EFI_EVENT Event,
IN VOID *Context
);

Event Event whose notification function is being invoked.

Context Pointer to the notification function’s context, which is
implementation-dependent. Context corresponds to
NotifyContext in CreateEvent().

Description
The CreateEvent() function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created, firmware puts
it in the “waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EVT_NOTIFY_SIGNAL is specified, places a call to its notification function in a FIFO queue.
There is a queue for each of the “basic” task priority levels defined in Section 5.1
(TPL_APPLICATION, TPL_CALLBACK, and TPL_NOTIFY). The functions in these queues are
invoked in FIFO order, starting with the highest priority level queue and proceeding to the lowest
priority queue that is unmasked by the current TPL. If the current TPL is equal to or greater than
the queued notification, it will wait until the TPL is lowered via RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of
program execution. This capability is typically used with device drivers. For example, a network
device driver that needs to poll for the presence of new packets could create an event whose type
includes EVT_TIMER and then call the SetTimer() function. When the timer expires, the
firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the ExitBootServices() function.
ExitBootServices() can clean up the firmware since it understands firmware internals, but it
cannot clean up on behalf of drivers that have been loaded into the system. The drivers have to do
that themselves by creating an event whose type is EVT_SIGNAL_EXIT_BOOT_SERVICES and
whose notification function is a function within the driver itself. Then, when
ExitBootServices() has finished its cleanup, it signals each event of type
EVT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the use of synchronous events occurs when an event of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE is used in conjunction with the
SetVirtualAddressMap() function in Chapter 6.

Extensible Firmware Interface Specification

5-8 12/01/02 Version 1.10

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag is
specified, the caller does not require any notification concerning the event and the NotifyTpl,
NotifyFunction, and NotifyContext parameters are ignored. If EVT_NOTIFY_WAIT is
specified, then the event is signaled and its notify function is queued whenever a consumer of the
event is waiting for it (via WaitForEvent() or CheckEvent()). If the
EVT_NOTIFY_SIGNAL flag is specified then the event’s notify function is queued whenever the
event is signaled.

NOTE

Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Status Codes Returned
EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_OUT_OF_RESOURCES The event could not be allocated.

Services — Boot Services

Version 1.10 12/01/02 5-9

CloseEvent()

Summary
Closes an event.

Prototype

EFI_STATUS
CloseEvent (

IN EFI_EVENT Event
);

Parameters
Event The event to close. Type EFI_EVENT is defined in the

CreateEvent() function description.

Description
The CloseEvent() function removes the caller’s reference to the event and closes it. Once the
event is closed, the event is no longer valid and may not be used on any subsequent function calls.

Status Codes Returned
EFI_SUCCESS The event has been closed.

Extensible Firmware Interface Specification

5-10 12/01/02 Version 1.10

SignalEvent()

Summary
Signals an event.

Prototype

EFI_STATUS
SignalEvent (

IN EFI_EVENT Event
);

Parameters
Event The event to signal. Type EFI_EVENT is defined in the

CreateEvent() function description.

Description
The supplied Event is signaled and, if the event has a signal notification function, it is scheduled
to be invoked at the event’s notification task priority level. SignalEvent() may be invoked
from any task priority level.

Status Codes Returned
EFI_SUCCESS The event was signaled.

Services — Boot Services

Version 1.10 12/01/02 5-11

WaitForEvent()

Summary
Stops execution until an event is signaled.

Prototype

EFI_STATUS
WaitForEvent (

IN UINTN NumberOfEvents,
IN EFI_EVENT *Event,
OUT UINTN *Index
);

Parameters
NumberOfEvents The number of events in the Event array.

Event An array of EFI_EVENT. Type EFI_EVENT is defined in the
CreateEvent() function description.

Index Pointer to the index of the event which satisfied the wait condition.

Description
The WaitForEvent() function waits for any event in the Event array to be signaled. On
success, the signaled state of the event is cleared and execution is returned with Index indicating
which event caused the return. It is possible for an event to be signaled before being waited on. In
this case, the next wait operation for that event would immediately return with the signaled event.

Waiting on an event of type EVT_NOTIFY_SIGNAL is not permitted. If any event in Event is of
type EVT_NOTIFY_SIGNAL, WaitForEvent() returns EFI_INVALID_PARAMETER and
sets Index to indicate which event caused the failure. This function must be called at priority
level TPL_APPLICATION. If an attempt is made to call it at any other priority level,
EFI_UNSUPPORTED is returned.

To wait for a specified time, a timer event must be included in the Event array.

WaitForEvent() will always check for signaled events in order, with the first event in the array
being checked first. To check if an event is signaled without waiting, an already signaled event can
be used as the last event in the list being checked, or the CheckEvent() interface may be used.

Status Codes Returned
EFI_SUCCESS The event indicated by Index was signaled.

EFI_INVALID_PARAMETER The event indicated by Index has a notification function or
Event was not a valid type.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.

Extensible Firmware Interface Specification

5-12 12/01/02 Version 1.10

CheckEvent()

Summary
Checks whether an event is in the signaled state.

Prototype

EFI_STATUS
CheckEvent (

IN EFI_EVENT Event
);

Parameters
Event The event to check. Type EFI_EVENT is defined in the

CreateEvent() function description.

Description
The CheckEvent() function checks to see whether Event is in the signaled state. If Event is
of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned. Otherwise,
there are three possibilities:

• If Event is in the signaled state, it is cleared and EFI_SUCCESS is returned.

• If Event is not in the signaled state and has no notification function, EFI_NOT_READY is
returned.

• If Event is not in the signaled state but does have a notification function, the function is
executed. If that causes Event to be signaled, it is cleared and EFI_SUCCESS is returned; if
it does not cause Event to be signaled, EFI_NOT_READY is returned.

Status Codes Returned
EFI_SUCCESS The event is in the signaled state.

EFI_NOT_READY The event is not in the signaled state.

EFI_INVALID_PARAMETER Event is of type EVT_NOTIFY_SIGNAL.

Services — Boot Services

Version 1.10 12/01/02 5-13

SetTimer()

Summary
Sets the type of timer and the trigger time for a timer event.

Prototype

EFI_STATUS
SetTimer (

IN EFI_EVENT Event,
IN EFI_TIMER_DELAY Type,
IN UINT64 TriggerTime
);

Parameters
Event The timer event that is to be signaled at the specified time. Type

EFI_EVENT is defined in the CreateEvent() function
description.

Type The type of time that is specified in TriggerTime. See the
timer delay types in “Related Definitions.”

TriggerTime The number of 100ns units until the timer expires.

Related Definitions

//***
//EFI_TIMER_DELAY
//***
typedef enum {

TimerCancel,
TimerPeriodic,
TimerRelative

} EFI_TIMER_DELAY;

TimerCancel The event’s timer setting is to be cancelled and no timer trigger is
to be set. TriggerTime is ignored when canceling a timer.

TimerPeriodic The event is to be signaled periodically at TriggerTime
intervals from the current time. This is the only timer trigger
Type for which the event timer does not need to be reset for each
notification. All other timer trigger types are “one shot.”

TimerRelative The event is to be signaled in TriggerTime 100ns units.

Extensible Firmware Interface Specification

5-14 12/01/02 Version 1.10

Description
The SetTimer() function cancels any previous time trigger setting for the event, and sets the
new trigger time for the event. This function can only be used on events of type EVT_TIMER.

Status Codes Returned
EFI_SUCCESS The event has been set to be signaled at the requested time.

EFI_INVALID_PARAMETER Event or Type is not valid.

Services — Boot Services

Version 1.10 12/01/02 5-15

RaiseTPL()

Summary
Raises a task’s priority level and returns its previous level.

Prototype

EFI_TPL
RaiseTPL (

IN EFI_TPL NewTpl
);

Parameters
NewTpl The new task priority level. It must be greater than or equal to the

current task priority level. See “Related Definitions.”

Related Definitions
//***
// EFI_TPL
//***
typedef UINTN EFI_TPL

//***
// Task Priority Levels
//***
#define TPL_APPLICATION 4
#define TPL_CALLBACK 8
#define TPL_NOTIFY 16
#define TPL_HIGH_LEVEL 31

Extensible Firmware Interface Specification

5-16 12/01/02 Version 1.10

Description
The RaiseTPL() function raises the priority of the currently executing task and returns its
previous priority level.

Only three task priority levels are exposed outside of the firmware during EFI boot services
execution. The first is TPL_APPLICATION where all normal execution occurs. That level may
be interrupted to perform various asynchronous interrupt style notifications, which occur at the
TPL_CALLBACK or TPL_NOTIFY level. By raising the task priority level to TPL_NOTIFY such
notifications are masked until the task priority level is restored, thereby synchronizing execution
with such notifications. Synchronous blocking I/O functions execute at TPL_NOTIFY.
TPL_CALLBACK is the typically used for application level notification functions. Device drivers
will typically use TPL_CALLBACK or TPL_NOTIFY for their notification functions. Applications
and drivers may also use TPL_NOTIFY to protect data structures in critical sections of code.
The caller must restore the task priority level with RestoreTPL() to the previous level before
returning.

NOTE

If NewTpl is below the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at TPL
levels above TPL_APPLICATION for extended periods of time may also result in unpredictable
behavior.

Status Codes Returned
Unlike other EFI interface functions, RaiseTPL() does not return a status code. Instead, it
returns the previous task priority level, which is to be restored later with a matching call to
RestoreTPL().

Services — Boot Services

Version 1.10 12/01/02 5-17

RestoreTPL()

Summary
Restores a task’s priority level to its previous value.

Prototype

VOID
RestoreTPL (

IN EFI_TPL OldTpl
)

Parameters
OldTpl The previous task priority level to restore (the value from a

previous, matching call to RaiseTPL()). Type EFI_TPL is
defined in the RaiseTPL() function description.

Description
The RestoreTPL() function restores a task’s priority level to its previous value. Calls to
RestoreTPL() are matched with calls to RaiseTPL().

NOTE

If OldTpl is above the current TPL level, then the system behavior is indeterminate.
Additionally, only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and
TPL_HIGH_LEVEL may be used. All other values are reserved for use by the firmware; using
them will result in unpredictable behavior. Good coding practice dictates that all code should
execute at its lowest possible TPL level, and the use of TPL levels above TPL_APPLICATION
must be minimized. Executing at TPL levels above TPL_APPLICATION for extended periods of
time may also result in unpredictable behavior.

Status Codes Returned
None.

Extensible Firmware Interface Specification

5-18 12/01/02 Version 1.10

5.2 Memory Allocation Services
The functions that make up Memory Allocation Services are used during preboot to allocate and
free memory, and to obtain the system’s memory map. See Table 5-4.

Table 5-4. Memory Allocation Functions

Name Type Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory map key.

AllocatePool Boot Allocates a pool of a particular type.

FreePool Boot Frees allocated pool.

The way in which these functions are used is directly related to an important feature of EFI memory
design. This feature, which stipulates that EFI firmware owns the system’s memory map during
preboot, has three major consequences:

1. During preboot, all components (including executing EFI images) must cooperate with the
firmware by allocating and freeing memory from the system with the functions
AllocatePages(), AllocatePool(), FreePages(), and FreePool(). The
firmware dynamically maintains the memory map as these functions are called.

2. During preboot, an executing EFI Image must only use the memory it has allocated.
3. Before an executing EFI image exits and returns control to the firmware, it must free all

resources it has explicitly allocated. This includes all memory pages, pool allocations, open file
handles, etc. Memory allocated by the firmware to load an image is freed by the firmware
when the image is unloaded.

When EFI memory is allocated, it is “typed” according to the values in EFI_MEMORY_TYPE (see
the description for AllocatePages()). Some of the types have a different usage before
ExitBootServices() is called than they do afterwards. Table 5-5 lists each type and its
usage before the call; Table 5-6 lists each type and its usage after the call. The system firmware
must follow the processor-specific rules outlined in sections 2.3.2 and 2.3.3 in the layout of the EFI
memory map to enable the OS to make the required virtual mappings.

Services — Boot Services

Version 1.10 12/01/02 5-19

Table 5-5. Memory Type Usage before ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The code portions of a loaded EFI application. (Note that EFI OS
loaders are EFI applications.)

EfiLoaderData The data portions of a loaded EFI application and the default data
allocation type used by an EFI application to allocate pool memory.

EfiBootServicesCode The code portions of a loaded Boot Services Driver.

EfiBootServicesData The data portions of a loaded Boot Serves Driver, and the default data
allocation type used by a Boot Services Driver to allocate pool memory.

EfiRuntimeServicesCode The code portions of a loaded Runtime Services Driver.

EfiRuntimeServicesData The data portions of a loaded Runtime Services Driver and the default
data allocation type used by a Runtime Services Driver to allocate pool
memory.

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables.

EfiACPIMemoryNVS Address space reserved for use by the firmware.

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO region
be mapped by the OS to a virtual address so it can be accessed by EFI
runtime services.

EfiMemoryMappedIOPortSpace System memory-mapped IO region that is used to translate memory
cycles to IO cycles by the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the
processor.

NOTE

There is only one region of type EfiMemoryMappedIoPortSpace defined in the architecture
for Itanium-based platforms. As a result, there should be one and only one region of type
EfiMemoryMappedIoPortSpace in the EFI memory map of an Itanium-based platform.

Extensible Firmware Interface Specification

5-20 12/01/02 Version 1.10

Table 5-6. Memory Type Usage after ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices() is utilizing one or
more EfiLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices() is utilizing one or
more EfiLoaderData ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1–S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1–S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the loader and OS until ACPI is
enabled. Once ACPI is enabled, the memory in this range is available
for general use.

EfiACPIMemoryNVS This memory is to be preserved by the loader and OS in the working
and ACPI S1–S3 states.

EfiMemoryMappedIO This memory is not used by the OS. All system memory-mapped IO
information should come from ACPI tables.

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-mapped IO
port space information should come from ACPI tables.

EfiPalCode This memory is to be preserved by the loader and OS in the working
and ACPI S1–S3 states. This memory may also have other attributes
that are defined by the processor implementation.

NOTE

An image that calls ExitBootServices() first calls GetMemoryMap() to obtain the current
memory map. Following the ExitBootServices() call, the image implicitly owns all unused
memory in the map. This includes memory types EfiLoaderCode, EfiLoaderData,
EfiBootServicesCode, EfiBootServicesData, and EfiConventionalMemory. An EFI-compatible
loader and operating system must preserve the memory marked as EfiRuntimeServicesCode and
EfiRuntimeServicesData.

Services — Boot Services

Version 1.10 12/01/02 5-21

AllocatePages()
Summary

Allocates memory pages from the system.

Prototype

EFI_STATUS
AllocatePages(

IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS*Memory
);

Parameters
Type The type of allocation to perform. See “Related Definitions.”

MemoryType The type of memory to allocate. The type EFI_MEMORY_TYPE is
defined in “Related Definitions” below. These memory types are also
described in more detail in Table 5-5 and Table 5-6. Normal allocations
(that is, allocations by any EFI application) are of type
EfiLoaderData. MemoryType values in the range
0x80000000..0xFFFFFFFF are reserved for use by EFI OS loaders that
are provided by operating system vendors. The only illegal memory type
values are those in the range EfiMaxMemoryType..0x7FFFFFFF.

Pages The number of contiguous 4 KB pages to allocate.

Memory Pointer to a physical address. On input, the way in which the address is
used depends on the value of Type. See “Description” for more
information. On output the address is set to the base of the page range
that was allocated. See “Related Definitions.”

Extensible Firmware Interface Specification

5-22 12/01/02 Version 1.10

Related Definitions

//***
//EFI_ALLOCATE_TYPE
//***
// These types are discussed in the “Description” section below.
typedef enum {

AllocateAnyPages,
AllocateMaxAddress,
AllocateAddress,
MaxAllocateType

} EFI_ALLOCATE_TYPE;

//***
//EFI_MEMORY_TYPE
//***
// These type values are discussed in Table 5-5 and Table 5-6.
typedef enum {

EfiReservedMemoryType,
EfiLoaderCode,
EfiLoaderData,
EfiBootServicesCode,
EfiBootServicesData,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiConventionalMemory,
EfiUnusableMemory,
EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiMemoryMappedIO,
EfiMemoryMappedIOPortSpace,
EfiPalCode,
EfiMaxMemoryType

} EFI_MEMORY_TYPE;

//***
//EFI_PHYSICAL_ADDRESS
//***
typedef UINT64 EFI_PHYSICAL_ADDRESS;

Services — Boot Services

Version 1.10 12/01/02 5-23

Description
The AllocatePages() function allocates the requested number of pages and returns a pointer
to the base address of the page range in the location referenced by Memory. The function scans the
memory map to locate free pages. When it finds a physically contiguous block of pages that is
large enough and also satisfies the value of Type, it changes the memory map to indicate that the
pages are now of type MemoryType.

In general, EFI OS loaders and EFI applications should allocate memory (and pool) of type
EfiLoaderData. Boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. Runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot services
time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages
whose uppermost address is less than or equal to the address pointed to by Memory on input.

Allocation requests of Type AllocateAddress allocate pages at the address pointed to by
Memory on input.

Status Codes Returned
EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or
AllocateMaxAddress or AllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range
EfiMaxMemoryType..0x7FFFFFFF.

EFI_NOT_FOUND The requested pages could not be found.

Extensible Firmware Interface Specification

5-24 12/01/02 Version 1.10

FreePages()
Summary

Frees memory pages.

Prototype

EFI_STATUS
FreePages (

IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN Pages
);

Parameters
Memory The base physical address of the pages to be freed. Type

EFI_PHYSICAL_ADDRESS is defined in the AllocatePages()
function description.

Pages The number of contiguous 4 KB pages to free.

Description
The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid.

Services — Boot Services

Version 1.10 12/01/02 5-25

GetMemoryMap()

Summary
Returns the current memory map.

Prototype

EFI_STATUS
GetMemoryMap (

IN OUT UINTN *MemoryMapSize,
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
OUT UINTN *MapKey,
OUT UINTN *DescriptorSize,
OUT UINT32 *DescriptorVersion
);

Parameters
MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On

input, this is the size of the buffer allocated by the caller. On
output, it is the size of the buffer returned by the firmware if the
buffer was large enough, or the size of the buffer needed to contain
the map if the buffer was too small.

MemoryMap A pointer to the buffer in which firmware places the current
memory map. The map is an array of
EFI_MEMORY_DESCRIPTORs. See “Related Definitions.”

MapKey A pointer to the location in which firmware returns the key for the
current memory map.

DescriptorSize A pointer to the location in which firmware returns the size, in
bytes, of an individual EFI_MEMORY_DESCRIPTOR.

DescriptorVersion A pointer to the location in which firmware returns the version
number associated with the EFI_MEMORY_DESCRIPTOR. See
“Related Definitions.”

Extensible Firmware Interface Specification

5-26 12/01/02 Version 1.10

Related Definitions

//***
//EFI_MEMORY_DESCRIPTOR
//***
typedef struct {
UINT32 Type;
EFI_PHYSICAL_ADDRESS PhysicalStart;
EFI_VIRTUAL_ADDRESS VirtualStart;
UINT64 NumberOfPages;
UINT64 Attribute;
} EFI_MEMORY_DESCRIPTOR;

Type Type of the memory region. Type EFI_MEMORY_TYPE is
defined in the AllocatePages() function description.

PhysicalStart Physical address of the first byte in the memory region. Physical
start must be aligned on a 4 KB boundary. Type
EFI_PHYSICAL_ADDRESS is defined in the
AllocatePages() function description.

VirtualStart Virtual address of the first byte in the memory region. Virtual start
must be aligned on a 4 KB boundary. Type
EFI_VIRTUAL_ADDRESS is defined in “Related Definitions.”

NumberOfPages Number of 4 KB pages in the memory region.

Attribute Attributes of the memory region that describe the bit mask of
capabilities for that memory region, and not necessarily the current
settings for that memory region. See the following “Memory
Attribute Definitions.”

//***
// Memory Attribute Definitions
//***
// These types can be “ORed” together as needed.
#define EFI_MEMORY_UC 0x0000000000000001
#define EFI_MEMORY_WC 0x0000000000000002
#define EFI_MEMORY_WT 0x0000000000000004
#define EFI_MEMORY_WB 0x0000000000000008
#define EFI_MEMORY_UCE 0x0000000000000010
#define EFI_MEMORY_WP 0x0000000000001000
#define EFI_MEMORY_RP 0x0000000000002000
#define EFI_MEMORY_XP 0x0000000000004000
#define EFI_MEMORY_RUNTIME 0x8000000000000000

Services — Boot Services

Version 1.10 12/01/02 5-27

EFI_MEMORY_UC Memory cacheability attribute: The memory region supports
being configured as not cacheable.

EFI_MEMORY_WC Memory cacheability attribute: The memory region supports
being configured as write combining.

EFI_MEMORY_WT Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write through” policy.
Writes that hit in the cache will also be written to main memory.

EFI_MEMORY_WB Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write back” policy. Reads
and writes that hit in the cache do not propagate to main memory.
Dirty data is written back to main memory when a new cache line
is allocated.

EFI_MEMORY_UCE Memory cacheability attribute: The memory region supports
being configured as not cacheable, exported, and supports the
“fetch and add” semaphore mechanism.

EFI_MEMORY_WP Physical memory protection attribute: The memory region
supports being configured as write-protected by system hardware.

EFI_MEMORY_RP Physical memory protection attribute: The memory region
supports being configured as read-protected by system hardware.

EFI_MEMORY_XP Physical memory protection attribute: The memory region
supports being configured so it is protected by system hardware
from executing code.

EFI_MEMORY_RUNTIME
Runtime memory attribute: The memory region needs to be given
a virtual mapping by the operating system when
SetVirtualAddressMap() is called (described in
Chapter 6).

//***
//EFI_VIRTUAL_ADDRESS
//***
typedef UINT64 EFI_VIRTUAL_ADDRESS;

//***
// Memory Descriptor Version Number
//***
#define EFI_MEMORY_DESCRIPTOR_VERSION 1

Extensible Firmware Interface Specification

5-28 12/01/02 Version 1.10

Description
The GetMemoryMap() function returns a copy of the current memory map. The map is an array
of memory descriptors, each of which describes a contiguous block of memory. The map describes
all of memory, no matter how it is being used. That is, it includes blocks allocated by
AllocatePages() and AllocatePool(), as well as blocks that the firmware is using for its
own purposes. The memory map is only used to describe memory that is present in the system.
Memory descriptors are never used to describe holes in the system memory map.

Until ExitBootServices() is called, the memory map is owned by the firmware and the
currently executing EFI Image should only use memory pages it has explicitly allocated.

If the MemoryMap buffer is too small, the EFI_BUFFER_TOO_SMALL error code is returned and
the MemoryMapSize value contains the size of the buffer needed to contain the current
memory map.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is
changed every time something in the memory map changes. In order to successfully invoke
ExitBootServices() the caller must provide the current memory map key.

The GetMemoryMap() function also returns the size and revision number of the
EFI_MEMORY_DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY_DESCRIPTOR array element returned in MemoryMap. The size is returned to
allow for future expansion of the EFI_MEMORY_DESCRIPTOR in response to hardware
innovation. The structure of the EFI_MEMORY_DESCRIPTOR may be extended in the future but
it will remain backwards compatible with the current definition. Thus OS software must use the
DescriptorSize to find the start of each EFI_MEMORY_DESCRIPTOR in the MemoryMap
array.

Status Codes Returned
EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services — Boot Services

Version 1.10 12/01/02 5-29

AllocatePool()
Summary

Allocates pool memory.

Prototype

EFI_STATUS
AllocatePool (

IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
);

Parameters
PoolType The type of pool to allocate. Type EFI_MEMORY_TYPE is defined in

the AllocatePages() function description. PoolType values in
the range 0x80000000..0xFFFFFFFF are reserved for use by EFI OS
loaders that are provided by operating system vendors. The only illegal
memory type values are those in the range
EfiMaxMemoryType..0x7FFFFFFF.

Size The number of bytes to allocate from the pool.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Description
The AllocatePool() function allocates a memory region of Size bytes from memory of type
PoolType and returns the address of the allocated memory in the location referenced by Buffer.
This function allocates pages from EfiConventionalMemory as needed to grow the requested
pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the FreePool() function.

Status Codes Returned
EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_INVALID_PARAMETER PoolType was invalid.

Extensible Firmware Interface Specification

5-30 12/01/02 Version 1.10

FreePool()
Summary

Returns pool memory to the system.

Prototype

EFI_STATUS
FreePool (

IN VOID *Buffer
);

Parameters
Buffer Pointer to the buffer to free.

Description
The FreePool() function returns the memory specified by Buffer to the system. On return,
the memory’s type is EfiConventionalMemory. The Buffer that is freed must have been
allocated by AllocatePool().

Status Codes Returned
EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.

Services — Boot Services

Version 1.10 12/01/02 5-31

5.3 Protocol Handler Services
In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a Protocol
Interface structure. The structure contains the functions and instance data that are used to access a
device. The functions that make up Protocol Handler Services allow applications to install a
protocol on a handle, identify the handles that support a given protocol, determine whether a handle
supports a given protocol, and so forth. See Table 5-7.

Table 5-7. Protocol Interface Functions

Name Type Description

InstallProtocolInterface Boot Installs a protocol interface on a device handle.

UninstallProtocolInterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolInterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified
protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

LocateDevicePath Boot Locates all devices on a device path that support a
specified protocol and returns the handle to the device
that is closest to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolInformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Boot Finds the first handle in the handle database the
supports the requested protocol.

InstallMultipleProtocolInterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces Boot Uninstalls one or more protocol interfaces from a handle.

Extensible Firmware Interface Specification

5-32 12/01/02 Version 1.10

The Protocol Handler boot services have been modified to take advantage of the information that is
now being tracked with the OpenProtocol() and CloseProtocol() boot services. Since
the usage of protocol interfaces is being tracked with these new boot services, it is now possible to
safely uninstall and reinstall protocol interfaces that are being consumed by EFI drivers.

As depicted in Figure 5-1, the firmware is responsible for maintaining a “data base” that shows
which protocols are attached to each device handle. (The figure depicts the “data base” as a linked
list, but the choice of data structure is implementation-dependent.) The “data base” is built
dynamically by calling the InstallProtocolInterface() function. Protocols can only be
installed by EFI drivers or the firmware itself. In the figure, a device handle (EFI_HANDLE) refers
to a list of one or more registered protocol interfaces for that handle. The first handle in the system
has four attached protocols, and the second handle has two attached protocols. Each attached
protocol is represented as a GUID/Interface pointer pair. The GUID is the name of the protocol,
and Interface points to a protocol instance. This data structure will typically contain a list of
interface functions, and some amount of instance data.

Access to devices is initiated by calling the HandleProtocol() function, which determines
whether a handle supports a given protocol. If it does, a pointer to the matching Protocol Interface
structure is returned.

When a protocol is added to the system, it may either be added to an existing device handle or it
may be added to create a new device handle. Figure 5-1 shows that protocol handlers are listed for
each device handle and that each protocol handler is logically an EFI driver.

OM13155

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

First Handle

Figure 5-1. Device Handle to Protocol Handler Mapping

Services — Boot Services

Version 1.10 12/01/02 5-33

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces
provides great flexibility. Layering makes it possible to add a new protocol that builds on a
device’s basic protocols. An example of this might be to layer on a SIMPLE_TEXT_OUTPUT
protocol support that would build on the handle’s underlying SERIAL_IO protocol.

The ability to add new handles can be used to generate new devices as they are found, or even to
generate abstract devices. An example of this might be to add a multiplexing device that replaces
ConsoleOut with a virtual device that multiplexes the SIMPLE_TEXT_OUTPUT protocol onto
multiple underlying device handles.

5.3.1 Driver Model Boot Services
This section provides a detailed description of the new EFI boot services that are required by the
EFI Driver Model. These boot services are being added to reduce the size and complexity of the
bus drivers and device drivers. This, in turn, will reduce the amount of ROM space required by
drivers that are programmed into ROMs on adapters or into system FLASH, and reduce the
development and testing time required by driver writers.

These new services fall into two categories. The first group is used to track the usage of protocol
interfaces by different agents in the system. Protocol interfaces are stored in a handle database.
The handle database consists of a list of handles, and on each handle there is a list of one or more
protocol interfaces. The boot services InstallProtocolInterface(),
UninstallProtocolInterface(), and ReinstallProtocolInterface() are used
to add, remove, and replace protocol interfaces in the handle database. The boot service
HandleProtocol() is used to look up a protocol interface in the handle database. However,
agents that call HandleProtocol() are not tracked, so it is not safe to call
UninstallProtocolInterface() or ReinstallProtocolInterface() because an
agent may be using the protocol interface that is being removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To accomplish
this, each protocol interface includes a list of agents that are consuming the protocol interface.
Figure 5-2 shows an example handle database with these new agent lists. An agent consists of an
image handle, a controller handle, and some attributes. The image handle identifies the driver or
application that is consuming the protocol interface. The controller handle identifies the controller
that is consuming the protocol interface. Since a driver may manage more than one controller, the
combination of a driver's image handle and a controller's controller handle uniquely identifies the
agent that is consuming the protocol interface. The attributes show how the protocol interface is
being used.

Extensible Firmware Interface Specification

5-34 12/01/02 Version 1.10

OM13156

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

Image Handle
Controller Handle
Attributes

First Handle

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Figure 5-2. Handle Database

In order to maintain these agent lists in the handle database, some new boot services are required.
These are OpenProtocol(), CloseProtocol(), and OpenProtocolInformation().
OpenProtocol() adds elements to the list of agents consuming a protocol interface.
CloseProtocol() removes elements from the list of agents consuming a protocol interface,
and OpenProtocolInformation() retrieves the entire list of agents that are currently using a
protocol interface.

Services — Boot Services

Version 1.10 12/01/02 5-35

The second group of boot services is used to deterministically connect and disconnect drivers to
controllers. The boot services in this group are ConnectController() and
DisconnectController(). These services take advantage of the new features of the handle
database along with the new protocols described in this document to manage the drivers and
controllers present in the system. ConnectController() uses a set of strict precedence rules
to find the best set of drivers for a controller. This provides a deterministic matching of drivers to
controllers with extensibility mechanisms for OEMs, IBVs, and IHVs.
DisconnectController() allows drivers to be disconnected from controllers in a controlled
manner, and by using the new features of the handle database it is possible to fail a disconnect
request because a protocol interface cannot be released at the time of the disconnect request.

The third group of boot services is designed to help simplify the implementation of drivers, and
produce drivers with smaller executable footprints. The LocateHandleBuffer() is a new
version of LocateHandle() that allocates the required buffer for the caller. This eliminates two
calls to LocateHandle() and a call to AllocatePool() from the caller's code.
LocateProtocol() searches the handle database for the first protocol instance that matches the
search criteria. The InstallMultipleProtocolInterfaces() and
UninstallMutipleProtocolInterfaces() are very useful to driver writers. These boot
services allow one or more protocol interfaces to be added or removed from a handle. In addition,
InstallMultipleProtocolInterfaces() guarantees that a duplicate device path is
never added to the handle database. This is very useful to bus drivers that can create one child
handle at a time, because it guarantees that the bus driver will not inadvertently create two instances
of the same child handle.

Extensible Firmware Interface Specification

5-36 12/01/02 Version 1.10

InstallProtocolInterface()
Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created and added
to the list of handles in the system.

Prototype

EFI_STATUS
InstallProtocolInterface (

IN OUT EFI_HANDLE *Handle,
IN EFI_GUID *Protocol,
IN EFI_INTERFACE_TYPE InterfaceType,
IN VOID *Interface
);

Parameters
Handle A pointer to the EFI_HANDLE on which the interface is to be installed.

If *Handle is NULL on input, a new handle is created and returned on
output. If *Handle is not NULL on input, the protocol is added to the
handle, and the handle is returned unmodified. The type EFI_HANDLE
is defined in “Related Definitions.” If *Handle is not a valid handle,
then EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the protocol interface. The type EFI_GUID is
defined in “Related Definitions.” It is the callers responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values.

InterfaceType Indicates whether Interface is supplied in native form. This value
indicates the original execution environment of the request. See
“Related Definitions.”

Interface A pointer to the protocol interface. The Interface must adhere to the
structure defined by Protocol. NULL can be used if a structure is not
associated with Protocol.

Services — Boot Services

Version 1.10 12/01/02 5-37

Related Definitions

//***
//EFI_HANDLE
//***
typedef VOID *EFI_HANDLE;

//***
//EFI_GUID
//***
typedef struct {

UINT32 Data1;
UINT16 Data2;
UINT16 Data3;
UINT8 Data4[8];

} EFI_GUID;

//***
//EFI_INTERFACE_TYPE
//***
typedef enum {

EFI_NATIVE_INTERFACE
} EFI INTERFACE_TYPE;

Description
The InstallProtocolInterface() function installs a protocol interface (a GUID/Protocol
Interface structure pair) on a device handle. The same GUID cannot be installed more than once
onto the same handle. If the same GUID is installed more than once onto the same handle, then the
results are not predictable.

Installing a protocol interface allows other components to locate the Handle, and the interfaces
installed on it. A protocol interface is always installed at the head of the device handle’s queue.

When a protocol interface is installed, the firmware calls all notification functions that have
registered to wait for the installation of Protocol. For more information, see the
RegisterProtocolNotify() function description.

Status Codes Returned
EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

5-38 12/01/02 Version 1.10

UninstallProtocolInterface()

Summary
Removes a protocol interface from a device handle.

Prototype
typedef
EFI_STATUS
UninstallProtocolInterface (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN VOID *Interface
);

Parameters
Handle The handle on which the interface was installed. If Handle is not a

valid handle, then EFI_INVALID_PARAMETER is returned. Type
EFI_HANDLE is defined in the InstallProtocolInterface()
function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

Interface A pointer to the interface. NULL can be used if a structure is not
associated with Protocol.

Description
The UninstallProtocolInterface() function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has
been removed. In some cases, outstanding reference information is not available in the protocol, so
the protocol, once added, cannot be removed. Examples include Console I/O, Block I/O, Disk I/O,
and (in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.

EFI 1.10 Extension
The extension to this service directly addresses the limitations described in the section above.
There may be some drivers that are currently consuming the protocol interface that needs to be
uninstalled, so it may be dangerous to just blindly remove a protocol interface from the system.
Since the usage of protocol interfaces is now being tracked for components that use the
OpenProtocol() and CloseProtocol() boot services, a safe version of this function can be
implemented. Before the protocol interface is removed, an attempt is made to force all the drivers
that are consuming the protocol interface to stop consuming that protocol interface. This is done by
looping through all the drivers that currently have the protocol interface open with an attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER or EFI_OPEN_PROTOCOL_BY_DRIVER |

Services — Boot Services

Version 1.10 12/01/02 5-39

EFI_OPEN_PROTOCOL_EXCLUSIVE and calling the boot service
DisconnectController() for each of them. If the disconnect succeeds, then those agents
will have called the boot service CloseProtocol() to release the protocol interface. Lastly, all
of the agents that have the protocol interface open with an attribute of
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL, or EFI_OPEN_PROTOCOL_TEST_PROTOCOL are
closed. If there are any agents remaining that still have the protocol interface open, the protocol
interface is not removed from the handle and EFI_ACCESS_DENIED is returned. In addition, all
of the drivers that were disconnected with the boot service DisconnectController() earlier,
are reconnected with the boot service ConnectController(). If there are no agents remaining
that are consuming the protocol interface, then the protocol interface is removed from the handle as
described above.

Status Codes Returned
EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface
is still being used by a driver.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

5-40 12/01/02 Version 1.10

ReinstallProtocolInterface()

Summary
Reinstalls a protocol interface on a device handle.

Prototype
typedef
EFI_STATUS
ReinstallProtocolInterface (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN VOID *OldInterface,
IN VOID *NewInterface
);

Parameters
Handle Handle on which the interface is to be reinstalled. If Handle is not a

valid handle, then EFI_INVALID_PARAMETER is returned. Type
EFI_HANDLE is defined in the InstallProtocolInterface()
function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

OldInterface A pointer to the old interface. NULL can be used if a structure is not
associated with Protocol.

NewInterface A pointer to the new interface. NULL can be used if a structure is not
associated with Protocol.

Description
The ReinstallProtocolInterface() function reinstalls a protocol interface on a device
handle. The OldInterface for Protocol is replaced by the NewInterface.
NewInterface may be the same as OldInterface. If it is, the registered protocol notifies
occur for the handle without replacing the interface on the handle.

As with InstallProtocolInterface(), any process that has registered to wait for the
installation of the interface is notified.

The caller is responsible for ensuring that there are no references to the OldInterface that is
being removed.

EFI 1.10 Extension
The extension to this service directly addresses the limitations described in the section above.
There may be some number of drivers currently consuming the protocol interface that is being
reinstalled. In this case, it may be dangerous to replace a protocol interface in the system. It could
result in an unstable state, because a driver may attempt to use the old protocol interface after a new
one has been reinstalled. Since the usage of protocol interfaces is now being tracked for

Services — Boot Services

Version 1.10 12/01/02 5-41

components that use the OpenProtocol() and CloseProtocol() boot services, a safe
version of this function can be implemented.

When this function is called, a call is first made to the boot service
UninstallProtocolInterface(). This will guarantee that all of the agents are currently
consuming the protocol interface OldInterface will stop using OldInterface. If
UninstallProtocolInterface() returns EFI_ACCESS_DENIED, then this function
returns EFI_ACCESS_DENIED, OldInterface remains on Handle, and the protocol notifies
are not processed because NewInterface was never installed.

If UninstallProtocolInterface() succeeds, then a call is made to the boot service
InstallProtocolInterface() to put the NewInterface onto Handle.

Finally, the boot service ConnectController() is called so all agents that were forced to
release OldInterface with UninstallProtocolInterface() can now consume the
protocol interface NewInterface that was installed with InstallProtocolInterface().
After OldInterface has been replaced with NewInterface, any process that has registered
to wait for the installation of the interface is notified.

Status Codes Returned
EFI_SUCCESS The protocol interface was reinstalled.

EFI_NOT_FOUND The OldInterface on the handle was not found.

EFI_ACCESS_DENIED The protocol interface could not be reinstalled,
because OldInterface is still being used by a
driver that will not release it.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

5-42 12/01/02 Version 1.10

RegisterProtocolNotify()

Summary
Creates an event that is to be signaled whenever an interface is installed for a specified protocol.

Prototype

EFI_STATUS
RegisterProtocolNotify (

IN EFI_GUID *Protocol,
IN EFI_EVENT Event,
OUT VOID **Registration

);

Parameters
Protocol The numeric ID of the protocol for which the event is to be registered.

Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

Event Event that is to be signaled whenever a protocol interface is registered
for Protocol. The type EFI_EVENT is defined in the
InstallProtocolInterface() function description. The same
EFI_EVENT may be used for multiple protocol notify registrations.

Registration A pointer to a memory location to receive the registration value. This
value must be saved and used by the notification function of Event to
retrieve the list of handles that have added a protocol interface of type
Protocol.

Description
The RegisterProtocolNotify() function creates an event that is to be signaled whenever a
protocol interface is installed for Protocol by InstallProtocolInterface() or
ReinstallProtocolInterface().

Once Event has been signaled, the LocateHandle() function can be called to identify the
newly installed, or reinstalled, handles that support Protocol. The Registration parameter
in RegisterProtocolNotify() corresponds to the SearchKey parameter in
LocateHandle(). Note that the same handle may be returned multiple times if the handle
reinstalls the target protocol ID multiple times. This is typical for removable media devices,
because when such a device reappears, it will reinstall the Block I/O protocol to indicate that the
device needs to be checked again. In response, layered Disk I/O and Simple File System protocols
may then reinstall their protocols to indicate that they can be re-checked, and so forth.

Status Codes Returned
EFI_SUCCESS The notification event has been registered.

EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services — Boot Services

Version 1.10 12/01/02 5-43

LocateHandle()

Summary
Returns an array of handles that support a specified protocol.

Prototype

EFI_STATUS
LocateHandle (

IN EFI_LOCATE_SEARCH_TYPE SearchType,
IN EFI_GUID *Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *BufferSize,
OUT EFI_HANDLE *Buffer
);

Parameters
SearchType Specifies which handle(s) are to be returned. Type

EFI_LOCATE_SEARCH_TYPE is defined in “Related Definitions.”

Protocol Specifies the protocol to search by. This parameter is only valid if
SearchType is ByProtocol. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

SearchKey Specifies the search key. This parameter is ignored if SearchType is
AllHandles or ByProtocol. If SearchType is
ByRegisterNotify, the parameter must be the Registration
value returned by function RegisterProtocolNotify().

BufferSize On input, the size in bytes of Buffer. On output, the size in bytes of
the array returned in Buffer (if the buffer was large enough) or the
size, in bytes, of the buffer needed to obtain the array (if the buffer was
not large enough).

Buffer The buffer in which the array is returned. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

Extensible Firmware Interface Specification

5-44 12/01/02 Version 1.10

Related Definitions
//***
// EFI_LOCATE_SEARCH_TYPE
//***
typedef enum {

AllHandles,
ByRegisterNotify,
ByProtocol

} EFI_LOCATE_SEARCH_TYPE;

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration value returned by
RegisterProtocolNotify(). The function returns the
next handle that is new for the registration. Only one handle is
returned at a time, and the caller must loop until no more handles
are returned. Protocol is ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

Description
The LocateHandle() function returns an array of handles that match the SearchType
request. If the input value of BufferSize is too small, the function returns
EFI_BUFFER_TOO_SMALL and updates BufferSize to the size of the buffer needed to obtain
the array.

Status Codes Returned
EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result.
BufferSize has been updated with the size needed to
complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services — Boot Services

Version 1.10 12/01/02 5-45

HandleProtocol()

Summary
Queries a handle to determine if it supports a specified protocol.

Prototype
typedef
EFI_STATUS
HandleProtocol (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
OUT VOID **Interface
);

Parameters
Handle The handle being queried. If Handle is not a valid EFI_HANDLE, then

EFI_INVALID_PARAMETER is returned. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For Management
Baseline” for a description of valid GUID values. Type EFI_GUID is
defined in the InstallProtocolInterface() function
description.

Interface Supplies the address where a pointer to the corresponding Protocol
Interface is returned. NULL will be returned in *Interface if a
structure is not associated with Protocol.

Description
The HandleProtocol() function queries Handle to determine if it supports Protocol. If it
does, then on return Interface points to a pointer to the corresponding Protocol Interface.
Interface can then be passed to any protocol service to identify the context of the request.

Extensible Firmware Interface Specification

5-46 12/01/02 Version 1.10

EFI 1.10 Extension
The HandleProtocol() function is still available for use by old EFI applications and drivers.
However, all new applications and drivers should use OpenProtocol() in place of
HandleProtocol(). The following code fragment shows a possible implementation of
HandleProtocol() using OpenProtocol(). The variable EfiCoreImageHandle is the
image handle of the EFI core.

EFI_STATUS
HandleProtocol (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
OUT VOID **Interface
)

{
return OpenProtocol (

Handle,
Protocol,
Interface,
EfiCoreImageHandle,
NULL,
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL
);

}

Status Codes Returned
EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services — Boot Services

Version 1.10 12/01/02 5-47

LocateDevicePath()

Summary
Locates the handle to a device on the device path that supports the specified protocol.

Prototype

EFI_STATUS
LocateDevicePath (

IN EFI_GUID *Protocol,
IN OUT EFI_DEVICE_PATH **DevicePath,
OUT EFI_HANDLE *Device
);

Parameters
Protocol The protocol to search for. Type EFI_GUID is defined in the

InstallProtocolInterface() function description.

DevicePath On input, a pointer to a pointer to the device path. On output, the device
path pointer is modified to point to the remaining part of the device
path—that is, when the function finds the closest handle, it splits the
device path into two parts, stripping off the front part, and returning the
remaining portion. Type EFI_DEVICE_PATH is defined in “Related
Definitions.”

Device A pointer to the returned device handle. Type EFI_HANDLE is defined
in the InstallProtocolInterface() function description.

Related Definitions

//***
// EFI_DEVICE_PATH
//***
typedef struct _EFI_DEVICE_PATH {
UINT8 Type;
UINT8 SubType;
UINT8 Length[2];
} EFI_DEVICE_PATH;

Extensible Firmware Interface Specification

5-48 12/01/02 Version 1.10

Description
The LocateDevicePath() function locates all devices on DevicePath that support
Protocol and returns the handle to the device that is closest to DevicePath. DevicePath is
advanced over the device path nodes that were matched.

This function is useful for locating the proper instance of a protocol interface to use from a logical
parent device driver. For example, a target device driver may issue the request with its own device
path and locate the interfaces to perform I/O on its bus. It can also be used with a device path that
contains a file path to strip off the file system portion of the device path, leaving the file path and
handle to the file system driver needed to access the file.

If the handle for DevicePath supports the protocol (a direct match), the resulting device path is
advanced to the device path terminator node.

Status Codes Returned
EFI_SUCCESS The resulting handle was returned.

EFI_NOT_FOUND No handles matched the search.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services — Boot Services

Version 1.10 12/01/02 5-49

OpenProtocol()

Summary
Queries a handle to determine if it supports a specified protocol. If the protocol is supported by the
handle, it opens the protocol on behalf of the calling agent. This is an extended version of the EFI
boot service HandleProtocol().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL) (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
OUT VOID **Interface OPTIONAL,
IN EFI_HANDLE AgentHandle,
IN EFI_HANDLE ControllerHandle,
IN UINT32 Attributes
);

Parameters
Handle The handle for the protocol interface that is being opened.

Protocol The published unique identifier of the protocol. It is the callers
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

Interface Supplies the address where a pointer to the corresponding
Protocol Interface is returned. NULL will be returned in
*Interface if a structure is not associated with Protocol.
This parameter is optional, and will be ignored if Attributes
is EFI_OPEN_PROTOCOL_TEST_PROTOCOL.

AgentHandle The handle of the agent that is opening the protocol interface
specified by Protocol and Interface. For agents that
follow the EFI Driver Model, this parameter is the handle that
contains the EFI_DRIVER_BINDING_PROTOCOL instance
that is produced by the EFI Driver that is opening the protocol
interface. For EFI Applications, this is the image handle of the
EFI Application that is opening the protocol interface. For EFI
Applications that use HandleProtocol() to open a protocol
interface, this parameter is the image handle of the EFI firmware.

Extensible Firmware Interface Specification

5-50 12/01/02 Version 1.10

ControllerHandle If the agent that is opening a protocol is a driver that follows the
EFI Driver Model, then this parameter is the controller handle
that requires the protocol interface. If the agent does not follow
the EFI Driver Model, then this parameter is optional and may
be NULL.

Attributes The open mode of the protocol interface specified by Handle
and Protocol. See "Related Definitions" for the list of legal
attributes.

Description
This function opens a protocol interface on the handle specified by Handle for the protocol
specified by Protocol. The first three parameters are the same as HandleProtocol(). The
only difference is that the agent that is opening a protocol interface is tracked in EFI's internal
handle database. The tracking is used by the EFI Driver Model, and also used to determine if it is
safe to uninstall or reinstall a protocol interface.

The agent that is opening the protocol interface is specified by AgentHandle,
ControllerHandle, and Attributes. If the protocol interface can be opened, then
AgentHandle, ControllerHandle, and Attributes are added to the list of agents that
are consuming the protocol interface specified by Handle and Protocol. In addition, the
protocol interface is returned in Interface, and EFI_SUCCESS is returned. If Attributes
is TEST_PROTOCOL, then Interface is optional, and can be NULL.

There are a number of reasons that this function call can return an error. If an error is returned, then
AgentHandle, ControllerHandle, and Attributes are not added to the list of agents
consuming the protocol interface specified by Handle and Protocol, and Interface is
returned unmodified. The following is the list of conditions that must be checked before this
function can return EFI_SUCCESS.

If Protocol is NULL, then EFI_INVALID_PARAMETER is returned.

If Interface is NULL and Attributes is not TEST_PROTOCOL, then
EFI_INVALID_PARAMETER is returned.

If Handle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is returned.

If Handle does not support Protocol, then EFI_UNSUPPORTED is returned.

If Attributes is not a legal value, then EFI_INVALID_PARAMETER is returned. The legal
values are listed in “Related Definitions.”

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, EXCLUSIVE, or
BY_DRIVER|EXCULSIVE, and AgentHandle is not a valid EFI_HANDLE, then
EFI_INVALID_PARAMETER is returned.

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, or BY_DRIVER|EXCULSIVE,
and ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER
is returned.

If Attributes is BY_CHILD_CONTROLLER and Handle is identical to
ControllerHandle, then EFI_INVALID_PARAMETER is returned.

Services — Boot Services

Version 1.10 12/01/02 5-51

If Attributes is BY_DRIVER , BY_DRIVER|EXCLUSIVE, or EXCLUSIVE, and there are any
items on the open list of the protocol interface with an attribute of EXCLUSIVE or
BY_DRIVER|EXCLUSIVE, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is the same agent handle in the open list
item, then EFI_ALREADY_STARTED is returned.

If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is different than the agent handle in the
open list item, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is the
same agent handle in the open list item, then EFI_ALREADY_STARTED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is different
than the agent handle in the open list item, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE or EXCLUSIVE, and there are any items on
the open list of the protocol interface with an attribute of BY_DRIVER, then the boot service
DisconnectController() is called for each of these drivers on the open list. If there are
any items in the open list of the protocol interface with an attribute of BY_DRIVER remaining
after all the DisconnectController() calls have been made, EFI_ACCESS_DENIED
is returned.

Related Definitions
#define EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001
#define EFI_OPEN_PROTOCOL_GET_PROTOCOL 0x00000002
#define EFI_OPEN_PROTOCOL_TEST_PROTOCOL 0x00000004
#define EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 0x00000008
#define EFI_OPEN_PROTOCOL_BY_DRIVER 0x00000010
#define EFI_OPEN_PROTOCOL_EXCLUSIVE 0x00000020

The following is the list of legal values for the Attributes parameter, and how each value is
used.

BY_HANDLE_PROTOCOL Used in the implementation of HandleProtocol(). Since
OpenProtocol() performs the same function as
HandleProtocol() with additional functionality,
HandleProtocol() can simply call OpenProtocol()
with this Attributes value.

GET_PROTOCOL Used by a driver to get a protocol interface from a handle. Care
must be taken when using this open mode because the driver that
opens a protocol interface in this manner will not be informed if
the protocol interface is uninstalled or reinstalled. The caller is
also not required to close the protocol interface with
CloseProtocol().

Extensible Firmware Interface Specification

5-52 12/01/02 Version 1.10

TEST_PROTOCOL Used by a driver to test for the existence of a protocol interface
on a handle. Interface is optional for this attribute value, so
it is ignored, and the caller should only use the return status
code. The caller is also not required to close the protocol
interface with CloseProtocol().

BY_CHILD_CONTROLLER Used by bus drivers to show that a protocol interface is being
used by one of the child controllers of a bus. This information is
used by the boot service ConnectController() to
recursively connect all child controllers and by the boot service
DisconnectController() to get the list of child
controllers that a bus driver created.

BY_DRIVER Used by a driver to gain access to a protocol interface. When
this mode is used, the driver’s Stop() function will be called
by DisconnectController() if the protocol interface is
reinstalled or uninstalled. Once a protocol interface is opened by
a driver with this attribute, no other drivers will be allowed to
open the same protocol interface with the BY_DRIVER attribute.

BY_DRIVER|EXCLUSIVE Used by a driver to gain exclusive access to a protocol interface.
If any other drivers have the protocol interface opened with an
attribute of BY_DRIVER, then an attempt will be made to
remove them with DisconnectController().

EXCLUSIVE Used by applications to gain exclusive access to a protocol
interface. If any drivers have the protocol interface opened with
an attribute of BY_DRIVER, then an attempt will be made to
remove them by calling the driver’s Stop() function.

Status Codes Returned
EFI_SUCCESS An item was added to the open list for the protocol interface, and the

protocol interface was returned in Interface.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL, and Attributes is not
TEST_PROTOCOL.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_UNSUPPORTED Handle does not support Protocol.

EFI_INVALID_PARAMETER Attributes is not a legal value.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and
AgentHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and AgentHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and
AgentHandle is not a valid EFI_HANDLE.

continued

Services — Boot Services

Version 1.10 12/01/02 5-53

Status Codes Returned (continued)
EFI_INVALID_PARAMETER Attributes is EXCLUSIVE and AgentHandle is not a valid

EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and
ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and ControllerHandle is not a
valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and
ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and Handle is
identical to ControllerHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list
with an attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item
on the open list with an attribute of EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is EXCLUSIVE and there is an item on the open list
with an attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.

EFI_ALREADY_STARTED Attributes is BY_DRIVER and there is an item on the open list
with an attribute of BY_DRIVER whose agent handle is the same as
AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list
with an attribute of BY_DRIVER whose agent handle is different than
AgentHandle.

EFI_ALREADY_STARTED Attributes is BY_DRIVER|EXCLUSIVE and there is an item
on the open list with an attribute of BY_DRIVER|EXCLUSIVE whose
agent handle is the same as AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item
on the open list with an attribute of BY_DRIVER|EXCLUSIVE whose
agent handle is different than AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLSUIVE or EXCLUSIVE and
there are items in the open list with an attribute of BY_DRIVER that
could not be removed when DisconnectController() was

called for that open item.

Extensible Firmware Interface Specification

5-54 12/01/02 Version 1.10

Examples
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_XYZ_IO_PROTOCOL *XyzIo;
EFI_STATUS Status;

//
// EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The application that is opening the protocol is identified by ImageHandle
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (

ControllerHandle,
&gEfiXyzIoProtocol,
&XyzIo,
ImageHandle,
NULL,
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_GET_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (

ControllerHandle,
&gEfiXyzIoProtocol,
&XyzIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_TEST_PROTOCOL example
// Tests to see if the XYZ I/O Protocol is present on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (

ControllerHandle,
&gEfiXyzIoProtocol,

Services — Boot Services

Version 1.10 12/01/02 5-55

NULL,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver
//
Status = gBS->OpenProtocol (

ControllerHandle,
&gEfiXyzIoProtocol,
&XyzIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo. If
// a different driver had the XYZ I/O Protocol opened
// BY_DRIVER, then that driver was disconnected to
// allow this driver to open the XYZ I/O Protocol.
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver that
// already has the protocol opened with an EXCLUSIVE
// attribute.
//
Status = gBS->OpenProtocol (

ControllerHandle,
&gEfiXyzIoProtocol,
&XyzIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE
);

Extensible Firmware Interface Specification

5-56 12/01/02 Version 1.10

CloseProtocol()

Summary
Closes a protocol on a handle that was opened using OpenProtocol().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CLOSE_PROTOCOL) (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN EFI_HANDLE AgentHandle,
IN EFI_HANDLE ControllerHandle
);

Parameters
Handle The handle for the protocol interface that was previously opened

with OpenProtocol(), and is now being closed.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

AgentHandle The handle of the agent that is closing the protocol interface.
For agents that follow the EFI Driver Model, this parameter is
the handle that contains the
EFI_DRIVER_BINDING_PROTOCOL instance that is
produced by the EFI Driver that is opening the protocol
interface. For EFI Applications, this is the image handle of the
EFI Application. For EFI Applications that used
HandleProtocol() to open the protocol interface, this will
be the image handle of the EFI firmware.

ControllerHandle If the agent that opened a protocol is a driver that follows the
EFI Driver Model, then this parameter is the controller handle
that required the protocol interface. If the agent does not follow
the EFI Driver Model, then this parameter is optional and may
be NULL.

Services — Boot Services

Version 1.10 12/01/02 5-57

Description
This function updates the handle database to show that the protocol instance specified by Handle
and Protocol is no longer required by the agent and controller specified AgentHandle and
ControllerHandle.

If Handle or AgentHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER
is returned. If ControllerHandle is not NULL, and ControllerHandle is not a valid
EFI_HANDLE, then EFI_INVALID_PARAMETER is returned. If Protocol is NULL, then
EFI_INVALID_PARAMETER is returned.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then a
check is made to see if the protocol instance specified by Protocol and Handle was opened by
AgentHandle and ControllerHandle with OpenProtocol(). If the protocol instance
was not opened by AgentHandle and ControllerHandle, then EFI_NOT_FOUND is
returned. If the protocol instance was opened by AgentHandle and ControllerHandle,
then all of those references are removed from the handle database, and EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The protocol instance was closed.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER AgentHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ControllerHandle is not NULL and ControllerHandle is
not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_NOT_FOUND The protocol interface specified by Handle and Protocol is not
currently open by AgentHandle and ControllerHandle.

Extensible Firmware Interface Specification

5-58 12/01/02 Version 1.10

Examples
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_STATUS Status;

//
// Close the XYZ I/O Protocol that was opened on behalf of ControllerHandle
//
Status = gBS->CloseProtocol (

ControllerHandle,
&gEfiXyzIoProtocol,
This->DriverBindingHandle,
ControllerHandle
);

//
// Close the XYZ I/O Protocol that was opened with BY_HANDLE_PROTOCOL
//
Status = gBS->CloseProtocol (

ControllerHandle,
&gEfiXyzIoProtocol,
ImageHandle,
NULL
);

Services — Boot Services

Version 1.10 12/01/02 5-59

OpenProtocolInformation()

Summary
Retrieves the list of agents that currently have a protocol interface opened.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL_INFORMATION) (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
OUT EFI_OPEN_PROTOCOL_INFORMATION_ENTRY **EntryBuffer,
OUT UINTN *EntryCount
);

Parameters
Handle The handle for the protocol interface that is being queried.

Protocol The published unique identifier of the protocol. It is the callers
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

EntryBuffer A pointer to a buffer of open protocol information in the form of
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures.
See "Related Definitions" for the declaration of this type. The
buffer is allocated by this service, and it is the caller's
responsibility to free this buffer when the caller no longer
requires the buffer's contents.

EntryCount A pointer to the number of entries in EntryBuffer.

Related Definitions
typedef struct {

EFI_HANDLE AgentHandle;
EFI_HANDLE ControllerHandle;
UINT32 Attributes;
UINT32 OpenCount;

} EFI_OPEN_PROTOCOL_INFORMATION_ENTRY;

Extensible Firmware Interface Specification

5-60 12/01/02 Version 1.10

Description
This function allocates and returns a buffer of EFI_OPEN_PROTOCOL_INFORMATION_ENTRY
structures. The buffer is returned in EntryBuffer, and the number of entries is returned in
EntryCount.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then
EntryBuffer is allocated with the boot service AllocatePool(), and EntryCount is set
to the number of entries in EntryBuffer. Each entry of EntryBuffer is filled in with the
image handle, controller handle, and attributes that were passed to OpenProtocol() when the
protocol interface was opened. The field OpenCount shows the number of times that the protocol
interface has been opened by the agent specified by ImageHandle, ControllerHandle, and
Attributes. After the contents of EntryBuffer have been filled in, EFI_SUCCESS is
returned. It is the caller’s responsibility to call FreePool() on EntryBuffer when the caller
no longer required the contents of EntryBuffer.

If there are not enough resources available to allocate EntryBuffer, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The open protocol information was returned in EntryBuffer, and the

number of entries was returned EntryCount.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate EntryBuffer.

Examples
See example in the LocateHandleBuffer() function description for an example on how
LocateHandleBuffer(), ProtocolsPerHandle(), OpenProtocol(), and
OpenProtocolInformation() can be used to traverse the entire handle database.

Services — Boot Services

Version 1.10 12/01/02 5-61

ConnectController()
Summary

Connects one or more drivers to a controller.

Prototype
typedef
EFI_STATUS
ConnectController (

IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE *DriverImageHandle OPTIONAL,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,
IN BOOLEAN Recursive
);

Parameters
ControllerHandle The handle of the controller to which driver(s) are to be

connected.

DriverImageHandle A pointer to an ordered list of driver image handles. The list is
terminated by a NULL image handle. These driver image
handles are candidates for the driver(s) that will manage the
controller specified by ControllerHandle. This is an
optional parameter that may be NULL. This parameter is
typically used to debug new drivers.

RemainingDevicePath A pointer to the device path that specifies a child of the
controller specified by ControllerHandle. This is an
optional parameter that may be NULL. If it is NULL, then
handles for all the children of ControllerHandle will be
created. This parameter is passed unchanged to the
Supported() and Start() services of the
EFI_DRIVER_BINDING_PROTOCOL attached to
ControllerHandle.

Recursive If TRUE, then ConnectController() is called recursively
until the entire tree of controllers below the controller specified
by ControllerHandle have been created. If FALSE, then
the tree of controllers is only expanded one level.

Extensible Firmware Interface Specification

5-62 12/01/02 Version 1.10

Description
This function connects one or more drivers to the controller specified by ControllerHandle.
If ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. If there are no EFI_DRIVER_BINDING_PROTOCOL instances present in the system,
then return EFI_NOT_FOUND. If there are not enough resources available to complete this
function, then EFI_OUT_OF_RESOURCES is returned.

If Recursive is FALSE, then this function returns after all drivers have been connected to
ControllerHandle. If Recursive is TRUE, then ConnectController() is called
recursively on all of the child controllers of ControllerHandle. The child controllers can be
identified by searching the handle database for all the controllers that have opened
ControllerHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_
CONTROLLER.

This functions uses four precedence rules when deciding the order that drivers are tested against
controllers. These four rules from highest precedence to lowest precedence are as follows:
1. Context Override : DriverImageHandle is an ordered list of image handles. The highest

priority image handle is the first element of the list, and the lowest priority image handle is the
last element of the list. The list is terminated with a NULL image handle.

2. Platform Driver Override : If an EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
instance is present in the system, then the GetDriver() service of this protocol is used to
retrieve an ordered list of image handles for ControllerHandle. The first image handle
returned from GetDriver() has the highest precedence, and the last image handle returned
from GetDriver() has the lowest precedence. The ordered list is terminated when
GetDriver() returns EFI_NOT_FOUND. It is legal for no image handles to be returned by
GetDriver(). There can be at most a single instance in the system of the
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL. If there is more than one, then the
system behavior is not deterministic.

3. Bus Specific Driver Override : If there is an instance of the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL attached to
ControllerHandle, then the GetDriver() service of this protocol is used to retrieve an
ordered list of image handle for ControllerHandle. The first image handle returned from
GetDriver() has the highest precedence, and the last image handle returned from
GetDriver() has the lowest precedence. The ordered list is terminated when
GetDriver() returns EFI_NOT_FOUND. It is legal for no image handles to be returned by
GetDriver().

4. Driver Binding Search : The list of available driver image handles can be found by using the
boot service LocateHandle() with a SearchType of ByProtocol for the GUID of the
EFI_DRIVER_BINDING_PROTOCOL. From this list, the image handles found in rules (1),
(2), and (3) above are removed. The remaining image handles are sorted from highest to lowest
based on the Version field of the EFI_DRIVER_BINDING_PROTOCOL instance
associated with each image handle.

Services — Boot Services

Version 1.10 12/01/02 5-63

Each of the four groups of image handles listed above is tested against ControllerHandle in
order by using the EFI_DRIVER_BINDING_PROTOCOL service Supported().
RemainingDevicePath is passed into Supported() unmodified. The first image handle
whose Supported() service returns EFI_SUCCESS is marked so the image handle will not be
tried again during this call to ConnectController(). Then, the Start() service of the
EFI_DRIVER_BINDING_PROTOCOL is called for ControllerHandle. Once again,
RemainingDevicePath is passed in unmodified. Every time Supported() returns
EFI_SUCCESS, the search for drivers restarts with the highest precedence image handle. This
process is repeated until no image handles pass the Supported() check.

If at least one image handle returned EFI_SUCCESS from its Start() service, then
EFI_SUCCESS is returned.

If no image handles returned EFI_SUCCESS from their Start() service then
EFI_NOT_FOUND is returned unless RemainingDevicePath is not NULL, and
RemainingDevicePath is an End Node. In this special case, EFI_SUCCESS is returned
because it is not an error to fail to start a child controller that is specified by an End Device Path
Node.

Status Codes Returned
EFI_SUCCESS One or more drivers were connected to ControllerHandle.

EFI_SUCCESS No drivers were connected to ControllerHandle, but
RemainingDevicePath is not NULL, and it is an End Device
Path Node.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_NOT_FOUND There are no EFI_DRIVER_BINDING_PROTOCOL instances

present in the system.

EFI_NOT_FOUND No drivers were connected to ControllerHandle.

Extensible Firmware Interface Specification

5-64 12/01/02 Version 1.10

Examples
//
// Connect All Handles Example
// The following example recusively connects all controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES_TABLE *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

AllHandles,
NULL,
NULL,
&HandleCount,
&HandleBuffer
);

if (!EFI_ERROR (Status)) {
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {

Status = gBS->ConnectController (
HandleBuffer[HandleIndex],
NULL,
NULL,
TRUE
);

}
gBS->FreePool(HandleBuffer);

}

//
// Connect Device Path Example
// The following example walks the device path nodes of a device path, and
// connects only the drivers required to force a handle with that device path
// to be present in the handle database. This algorithms guarantees that
// only the minimum number of devices and drivers are initialized.
//

EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
EFI_HANDLE Handle;

Services — Boot Services

Version 1.10 12/01/02 5-65

do {
//
// Find the handle that best matches the Device Path. If it is only a
// partial match the remaining part of the device path is returned in
// RemainingDevicePath.
//
RemainingDevicePath = DevicePath;
Status = gBS->LocateDevicePath (

&gEfiDevicePathProtocolGuid,
&RemainingDevicePath,
&Handle
);

if (EFI_ERROR(Status)) {
return EFI_NOT_FOUND;

}

//
// Connect all drivers that apply to Handle and RemainingDevicePath
// If no drivers are connected Handle, then return EFI_NOT_FOUND
// The Recursive flag is FALSE so only one level will be expanded.
//
Status = gBS->ConnectController (

Handle,
NULL,
RemainingDevicePath,
FALSE
);

if (EFI_ERROR(Status)) {
return EFI_NOT_FOUND;

}

//
// Loop until RemainingDevicePath is an empty device path
//

} while (!IsDevicePathEnd (RemainingDevicePath));

//
// A handle with DevicePath exists in the handle database
//
return EFI_SUCCESS;

Extensible Firmware Interface Specification

5-66 12/01/02 Version 1.10

DisconnectController()

Summary
Disconnects one or more drivers from a controller.

Prototype
typedef
EFI_STATUS
DisconnectController (

IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE DriverImageHandle OPTIONAL,
IN EFI_HANDLE ChildHandle OPTIONAL
);

Parameters
ControllerHandle The handle of the controller from which driver(s) are to be

disconnected.

DriverImageHandle The driver to disconnect from ControllerHandle. If
DriverImageHandle is NULL, then all the drivers currently
managing ControllerHandle are disconnected from
ControllerHandle.

ChildHandle The handle of the child to destroy. If ChildHandle is NULL,
then all the children of ControllerHandle are destroyed
before the drivers are disconnected from
ControllerHandle.

Description
This function disconnects one or more drivers from the controller specified by
ControllerHandle. If DriverImageHandle is NULL, then all of the drivers currently
managing ControllerHandle are disconnected from ControllerHandle. If
DriverImageHandle is not NULL, then only the driver specified by DriverImageHandle
is disconnected from ControllerHandle. If ChildHandle is NULL, then all of the children
of ControllerHandle are destroyed before the drivers are disconnected from
ControllerHandle. If ChildHandle is not NULL, then only the child controller specified
by ChildHandle is destroyed. If ChildHandle is the only child of ControllerHandle,
then the driver specified by DriverImageHandle will be disconnected from
ControllerHandle. A driver is disconnected from a controller by calling the Stop() service
of the EFI_DRIVER_BINDING_PROTOCOL. The EFI_DRIVER_BINDING_PROTOCOL is on
the driver image handle, and the handle of the controller is passed into the Stop() service. The
list of drivers managing a controller, and the list of children for a specific controller can be
retrieved from the handle database with the boot service OpenProtocolInformation(). If
all the required drivers are disconnected from ControllerHandle, then EFI_SUCCESS is
returned.

If ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. If no drivers are managing ControllerHandle, then EFI_SUCCESS is returned. If
DriverImageHandle is not NULL, and DriverImageHandle is not a valid EFI_HANDLE,

Services — Boot Services

Version 1.10 12/01/02 5-67

then EFI_INVALID_PARAMETER is returned. If DriverImageHandle is not NULL, and
DriverImageHandle is not currently managing ControllerHandle, then EFI_SUCCESS
is returned. If ChildHandle is not NULL, and ChildHandle is not a valid EFI_HANDLE,
then EFI_INVALID_PARAMETER is returned. If there are not enough resources available to
disconnect drivers from ControllerHandle, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS One or more drivers were disconnected from the controller.

EFI_SUCCESS On entry, no drivers are managing ControllerHandle.

EFI_SUCCESS DriverImageHandle is not NULL, and on entry
DriverImageHandle is not managing ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER DriverImageHandle is not NULL, and it is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL, and it is not a valid EFI_HANDLE.

EFI_OUT_OF_RESOURCES There are not enough resources available to disconnect any drivers from
ControllerHandle.

EFI_DEVICE_ERROR The controller could not be disconnected because of a device error.

Examples
//
// Disconnect All Handles Example
// The following example recusively disconnects all drivers from all
// controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES_TABLE *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

AllHandles,
NULL,
NULL,
&HandleCount,
&HandleBuffer
);

if (!EFI_ERROR (Status)) {
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {

Status = gBS->DisconnectController (
HandleBuffer[HandleIndex],
NULL,
NULL
);

}
gBS->FreePool(HandleBuffer);

Extensible Firmware Interface Specification

5-68 12/01/02 Version 1.10

ProtocolsPerHandle()

Summary
Retrieves the list of protocol interface GUIDs that are installed on a handle in a buffer allocated
from pool.

Prototype
typedef
EFI_STATUS
ProtocolsPerHandle (

IN EFI_HANDLE Handle,
OUT EFI_GUID ***ProtocolBuffer,
OUT UINTN *ProtocolBufferCount
);

Parameters
Handle The handle from which to retrieve the list of protocol interface

GUIDs.

ProtocolBuffer A pointer to the list of protocol interface GUID pointers that are
installed on Handle. This buffer is allocated with a call to the
Boot Service AllocatePool(). It is the caller's
responsibility to call the Boot Service FreePool() when the
caller no longer requires the contents of ProtocolBuffer.

ProtocolBufferCount A pointer to the number of GUID pointers present in
ProtocolBuffer.

Description
The ProtocolsPerHandle() function retrieves the list of protocol interface GUIDs that are
installed on Handle. The list is returned in ProtocolBuffer, and the number of GUID
pointers in ProtocolBuffer is returned in ProtocolBufferCount.

If Handle is NULL or Handle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER
is returned.

If ProtocolBuffer is NULL, then EFI_INVALID_PAREMETER is returned.

If ProtocolBufferCount is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to allocate ProtocolBuffer, then
EFI_OUT_OF_RESOURCES is returned.

Services — Boot Services

Version 1.10 12/01/02 5-69

Status Codes Returned
EFI_SUCCESS The list of protocol interface GUIDs installed on Handle was returned in

ProtocolBuffer. The number of protocol interface GUIDs was
returned in ProtocolBufferCount.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ProtocolBuffer is NULL.

EFI_INVALID_PARAMETER ProtocolBufferCount is NULL.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results.

Examples
See example in the LocateHandleBuffer() function description for an example on how
LocateHandleBuffer(), ProtocolsPerHandle(), OpenProtocol(), and
OpenProtocolInformation() can be used to traverse the entire handle database.

Extensible Firmware Interface Specification

5-70 12/01/02 Version 1.10

LocateHandleBuffer()
Summary

Returns an array of handles that support the requested protocol in a buffer allocated from pool.

Prototype
typedef
EFI_STATUS
LocateHandleBuffer (

IN EFI_LOCATE_SEARCH_TYPE SearchType,
IN EFI_GUID *Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *NoHandles,
OUT EFI_HANDLE **Buffer
);

Parameters
SearchType Specifies which handle(s) are to be returned.

Protocol Provides the protocol to search by. This parameter is only valid for a
SearchType of ByProtocol.

SearchKey Supplies the search key depending on the SearchType.

NoHandles The number of handles returned in Buffer.

Buffer A pointer to the buffer to return the requested array of handles that
support Protocol. This buffer is allocated with a call to the Boot
Service AllocatePool(). It is the caller's responsibility to call the
Boot Service FreePool() when the caller no longer requires the
contents of Buffer.

Description
The LocateHandleBuffer() function returns one or more handles that match the
SearchType request. Buffer is allocated from pool, and the number of entries in Buffer is
returned in NoHandles. Each SearchType is described below:

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration returned by
RegisterProtocolNotify(). The function returns the
next handle that is new for the Registration. Only one handle is
returned at a time, and the caller must loop until no more handles
are returned. Protocol is ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

Services — Boot Services

Version 1.10 12/01/02 5-71

If NoHandles is NULL, then EFI_INVALID_PARAMETER is returned.

If Buffer is NULL, then EFI_INVALID_PARAMETER is returned.

If there are no handles in the handle database that match the search criteria, then
EFI_NOT_FOUND is returned.

If there are not enough resources available to allocate Buffer, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned
EFI_SUCCESS The array of handles was returned in Buffer, and the number of

handles in Buffer was returned in NoHandles.

EFI_INVALID_PARAMETER NoHandles is NULL

EFI_INVALID_PARAMETER Buffer is NULL

EFI_NOT_FOUND No handles match the search.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.

Examples
//
// The following example traverses the entire handle database. First all of
// the handles in the handle database are retrieved by using
// LocateHandleBuffer(). Then it uses ProtocolsPerHandle() to retrieve the
// list of protocol GUIDs attached to each handle. Then it uses OpenProtocol()
// to get the protocol instance associated with each protocol GUID on the
// handle. Finally, it uses OpenProtocolInformation() to retrieve the list of
// agents that have opened the protocol on the handle. The caller of these
// functions must make sure that they free the return buffers with FreePool()
// when they are done.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_HANDLE ImageHandle;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;
EFI_GUID **ProtocolGuidArray;
UINTN ArrayCount;
UINTN ProtocolIndex;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfo;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

AllHandles,
NULL,
NULL,
&HandleCount,
&HandleBuffer
);

if (!EFI_ERROR (Status)) {
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {

Extensible Firmware Interface Specification

5-72 12/01/02 Version 1.10

//
// Retrieve the list of all the protocols on each handle
//
Status = gBS->ProtocolsPerHandle (

HandleBuffer[HandleIndex],
&ProtocolGuidArray,
&ArrayCount
);

if (!EFI_ERROR (Status)) {
for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++) {
//
// Retrieve the protocol instance for each protocol
//
Status = gBS->OpenProtocol (

HandleBuffer[HandleIndex],
ProtocolGuidArray[ProtocolIndex],
&Instance,
ImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

//
// Retrieve the list of agents that have opened each protocol
//
Status = gBS->OpenProtocolInformation (

HandleBuffer[HandleIndex],
ProtocolGuidArray[ProtocolIndex],
&OpenInfo,
&OpenInfoCount
);

if (!EFI_ERROR (Status)) {
for (OpenInfoIndex=0;OpenInfoIndex<OpenInfoCount;OpenInfoIndex++) {

//
// HandleBuffer[HandleIndex] is the handle
// ProtocolGuidArray[ProtocolIndex] is the protocol GUID
// Instance is the protocol instance for the protocol
// OpenInfo[OpenInfoIndex] is an agent that has opened a protocol
//

}
if (OpenInfo != NULL) {

gBS->FreePool(OpenInfo);
}

}
}
if (ProtocolGuidArray != NULL) {
gBS->FreePool(ProtocolGuidArray);

}
}

}
if (HandleBuffer != NULL) {

gBS->FreePool (HandleBuffer);
}

}

Services — Boot Services

Version 1.10 12/01/02 5-73

LocateProtocol()

Summary
Returns the first protocol instance that matches the given protocol.

Prototype
typedef
EFI_STATUS
LocateProtocol (

IN EFI_GUID *Protocol,
IN VOID *Registration OPTIONAL,
OUT VOID **Interface
);

Parameters
Protocol Provides the protocol to search for.

Registration Optional registration key returned from
RegisterProtocolNotify(). If Registration is NULL, then
it is ignored.

Interface On return, a pointer to the first interface that matches Protocol and
Registration.

Description
The LocateProtocol() function finds the first device handle that support Protocol, and
returns a pointer to the protocol interface from that handle in Interface. If no protocol
instances are found, then Interface is set to NULL.

If Interface is NULL, then EFI_INVALID_PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support
Protocol, then EFI_NOT_FOUND is returned.

If Registration is not NULL, and there are no new handles for Registration, then
EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS A protocol instance matching Protocol was found and returned in

Interface.

EFI_INVALID_PARAMETER Interface is NULL.

EFI_NOT_FOUND No protocol instances were found that match Protocol.

Extensible Firmware Interface Specification

5-74 12/01/02 Version 1.10

InstallMultipleProtocolInterfaces()

Summary
Installs one or more protocol interfaces into the boot services environment.

Prototype
typedef
EFI_STATUS
InstallMultipleProtocolInterfaces (

IN OUT EFI_HANDLE *Handle,
...
);

Parameters
Handle The handle to install the new protocol interfaces on, or NULL if a new

handle is to be allocated.

... A variable argument list containing pairs of protocol GUIDs and protocol
interfaces.

Description
This function installs a set of protocol interfaces into the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs
are used to call the boot service InstallProtocolInterface() to add a protocol interface
to Handle. If Handle is NULL on entry, then a new handle will be allocated. The pairs of
arguments are removed in order from the variable argument list until a NULL protocol GUID value
is found. If any errors are generated while the protocol interfaces are being installed, then all the
protocols installed prior to the error will be uninstalled with the boot service
UninstallProtocolInterface() before the error is returned. The same GUID cannot be
installed more than once onto the same handle. If the same GUID is installed more than once onto
the same handle, then the results are not predictable.

It is illegal to have two handles in the handle database with identical device paths. This service
performs a test to guarantee a duplicate device path is not inadvertently installed on two different
handles. Before any protocol interfaces are installed onto Handle, the list of GUID/pointer pair
parameters are searched to see if a Device Path Protocol instance is being installed. If a Device
Path Protocol instance is going to be installed onto Handle, then a check is made to see if a handle
is already present in the handle database with an identical Device Path Protocol instance. If an
identical Device Path Protocol instance is already present in the handle database, then no protocols
are installed onto Handle, and EFI_ALREADY_STARTED is returned.

Status Codes Returned
EFI_SUCCESS All the protocol interfaces were installed.

EFI_ALREADY_STARTED A Device Path Protocol instance was passed in that is already present in
the handle database.

EFI_OUT_OF_RESOURCES There was not enough memory in pool to install all the protocols.

Services — Boot Services

Version 1.10 12/01/02 5-75

UninstallMultipleProtocolInterfaces()

Summary
Removes one or more protocol interfaces into the boot services environment.

Prototype
typedef
EFI_STATUS
UninstallMultipleProtocolInterfaces (

IN EFI_HANDLE Handle,
...
);

Parameters
Handle The handle to remove the protocol interfaces from.

... A variable argument list containing pairs of protocol GUIDs and
protocol interfaces.

Description
This function removes a set of protocol interfaces from the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs
are used to call the boot service UninstallProtocolInterface() to remove a protocol
interface from Handle. The pairs of arguments are removed in order from the variable argument
list until a NULL protocol GUID value is found. If all of the protocols are uninstalled from
Handle, then EFI_SUCCESS is returned. If any errors are generated while the protocol
interfaces are being uninstalled, then the protocols uninstalled prior to the error will be reinstalled
with the boot service InstallProtocolInterface() and the status code
EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS All the protocol interfaces were removed.

EFI_INVALID_PARAMETER One of the protocol interfaces was not previously installed on
Handle.

Extensible Firmware Interface Specification

5-76 12/01/02 Version 1.10

5.4 Image Services
Three types of images can be loaded: EFI Applications, EFI Boot Services Drivers, and EFI
Runtime Services Drivers. An EFI OS Loader is a type of EFI Application. The most significant
difference between these image types is the type of memory into which they are loaded by the
firmware’s loader. Table 5-8 summarizes the differences between images.

Table 5-8. Image Type Differences Summary

EFI Application EFI Boot Services Driver EFI Runtime Services Driver

Description A transient application

that is loaded during boot

services time. EFI

applications are either

unloaded when they

complete, or they take

responsibility for the

continued operation of the

system via
ExitBootServices().

The applications are

loaded in sequential order

by the boot manager, but

one application may

dynamically load another.

A program that is loaded into boot

services memory and stays resident

until boot services terminates.

A program that is loaded into

runtime services memory and

stays resident during runtime. The

memory required for a Runtime

Services Driver must be performed

in a single memory allocation, and

marked as
EfiRuntimeServicesData.

(Note that the memory only stays

resident when booting an EFI-

compatible operating system.

Legacy operating systems will

reuse the memory.)

Loaded into

memory type

EfiLoaderCode,

EfiLoaderData

EfiBootServicesCode,

EfiBootServicesData

EfiRuntimeServicesCode,

EfiRuntimeServicesData

Default pool

allocations

from memory

type

EfiLoaderData EfiBootServicesData EfiRuntimeServicesData

Exit behavior When an application

exits, firmware frees the

memory used to hold its

image.

When a boot services driver exits with

an error code, firmware frees the

memory used to hold its image.

When a boot services driver’s entry
point completes with EFI_SUCCESS,

the image is retained in memory.

When a runtime services driver

exits with an error code, firmware

frees the memory used to hold its

image.

When a runtime services driver’s

entry point completes with
EFI_SUCCESS, the image is

retained in memory.

Notes This type of image would

not install any protocol

interfaces or handles.

This type of image would typically use
InstallProtocolInterface().

A runtime driver can only allocate

runtime memory during boot

services time. Due to the

complexity of performing a virtual

relocation for a runtime image, this

driver type is discouraged unless it

is absolutely required.

Services — Boot Services

Version 1.10 12/01/02 5-77

Most images are loaded by the boot manager. When an EFI application or driver is installed, the
installation procedure registers itself with the boot manager for loading. However, in some cases
an application or driver may want to programmatically load and start another EFI image. This can
be done with the LoadImage() and StartImage() interfaces. Drivers may only load
applications during the driver’s initialization entry point. Table 5-9 lists the functions that make up
Image Services.

Table 5-9. Image Functions

Name Type Description

LoadImage Boot Loads an EFI image into memory.

StartImage Boot Transfers control to a loaded image’s entry point.

UnloadImage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI Image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

The Image boot services have been modified to take advantage of the information that is now being
tracked with the OpenProtocol() and CloseProtocol() boot services. Since the usage of
protocol interfaces is being tracked with these new boot services, it is now possible to automatically
close protocol interfaces when an EFI Application or an EFI Driver is unloaded or exited.

Extensible Firmware Interface Specification

5-78 12/01/02 Version 1.10

LoadImage()
Summary

Loads an EFI image into memory.

Prototype

EFI_STATUS
LoadImage (

IN BOOLEAN BootPolicy,
IN EFI_HANDLE ParentImageHandle,
IN EFI_DEVICE_PATH *FilePath,
IN VOID *SourceBuffer OPTIONAL,
IN UINTN SourceSize,
OUT EFI_HANDLE *ImageHandle
);

Parameters
BootPolicy If TRUE, indicates that the request originates from the boot

manager, and that the boot manager is attempting to load
FilePath as a boot selection. Ignored if SourceBuffer is
not NULL.

ParentImageHandle The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function description.
This field is used to initialize the ParentHandle field of the
EFI_LOADED_IMAGE protocol for the image that is being
loaded.

FilePath The DeviceHandle specific file path from which the image is
loaded. Type EFI_DEVICE_PATH is defined in the
LocateDevicePath() function description.

SourceBuffer If not NULL, a pointer to the memory location containing a copy
of the image to be loaded.

SourceSize The size in bytes of SourceBuffer. Ignored if
SourceBuffer is NULL.

ImageHandle Pointer to the returned image handle that is created when the
image is successfully loaded. Type EFI_HANDLE is defined in
the InstallProtocolInterface() function description.

Services — Boot Services

Version 1.10 12/01/02 5-79

Description
The LoadImage() function loads an EFI image into memory and returns a handle to the image.
The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a
memory-to-memory load in which SourceBuffer points to the image to be loaded and
SourceSize indicates the image’s size in bytes. In this case, the caller has copied the image into
SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the
SIMPLE_FILE_SYSTEM protocol and then the LOAD_FILE protocol on the DeviceHandle to
access the file referred to by FilePath. In this case, the BootPolicy flag is passed to the
LOAD_FILE.LoadFile() function and is used to load the default image responsible for booting
when the FilePath only indicates the device. For more information see the discussion of the
Load File Protocol in Chapter 11.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the EFI_LOADED_IMAGE protocol. The caller may fill in the image’s “load
options” data, or add additional protocol support to the handle before passing control to the newly
loaded image by calling StartImage(). Also, once the image is loaded, the caller either starts it
by calling StartImage() or unloads it by calling UnloadImage().

Status Codes Returned
EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND The FilePath was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

Extensible Firmware Interface Specification

5-80 12/01/02 Version 1.10

StartImage()

Summary
Transfers control to a loaded image’s entry point.

Prototype

EFI_STATUS
StartImage (

IN EFI_HANDLE ImageHandle,
OUT UINTN *ExitDataSize,
OUT CHAR16 **ExitData OPTIONAL
);

Parameters
ImageHandle Handle of image to be started. Type EFI_HANDLE is defined in the

InstallProtocolInterface() function description.

ExitDataSize Pointer to the size, in bytes, of ExitData. If ExitData is NULL,
then this parameter is ignored and the contents of ExitDataSize are
not modified.

ExitData Pointer to a pointer to a data buffer that includes a Null-terminated
Unicode string, optionally followed by additional binary data. The string
is a description that the caller may use to further indicate the reason for
the image’s exit.

Description
The StartImage() function transfers control to the entry point of an image that was loaded by
LoadImage(). The image may only be started one time.

Control returns from StartImage() when the loaded image calls Exit(). When that call is
made, the ExitData buffer and ExitDataSize from Exit() are passed back through the
ExitData buffer and ExitDataSize in this function. The caller of this function is responsible
for returning the ExitData buffer to the pool by calling FreePool() when the buffer is no
longer needed.

EFI 1.10 Extension
To maintain compatibility with EFI drivers that are written to the EFI 1.02 Specification,
StartImage() must monitor the handle database before and after each image is started. If any
handles are created or modified when an image is started, then ConnectController() must be
called for each of the newly created or modified handles before StartImage() returns.

Status Codes Returned
EFI_INVALID_PARAMETER ImageHandle is not a handle to an unstarted image.

Exit code from image Exit code from image.

Services — Boot Services

Version 1.10 12/01/02 5-81

UnloadImage()

Summary
Unloads an image.

Prototype

typedef
EFI_STATUS
UnloadImage (

IN EFI_HANDLE ImageHandle
);

Parameters
ImageHandle Handle that identifies the image to be unloaded.

Description
The UnloadImage() function unloads a previously loaded image.

There are three possible scenarios. If the image has not been started, the function unloads the
image and returns EFI_SUCCESS.

If the image has been started and has an Unload() entry point, control is passed to that entry
point. If the image’s unload function returns EFI_SUCCESS, the image is unloaded; otherwise,
the error returned by the image’s unload function is returned to the caller. The image unload
function is responsible for freeing all allocated memory and ensuring that there are no references to
any freed memory, or to the image itself, before returning EFI_SUCCESS.

If the image has been started and does not have an Unload() entry point, the function returns
EFI_UNSUPPORTED.

EFI 1.10 Extension
All of the protocols that were opened by ImageHandle using the boot service
OpenProtocol() are automatically closed with the boot service CloseProtocol(). If all of
the open protocols are closed, then EFI_SUCCESS is returned. If any call to
CloseProtocol() fails, then the error code from CloseProtocol() is returned.

Status Codes Returned
EFI_SUCCESS The image has been unloaded.

EFI_UNSUPPORTED The image has been started, and does not support unload.

EFI_INVALID_PARAMETER ImageHandle is not a valid image handle.

Exit code from Unload handler Exit code from the image’s unload function.

Extensible Firmware Interface Specification

5-82 12/01/02 Version 1.10

EFI_IMAGE_ENTRY_POINT
Summary

This is the declaration of an EFI image entry point. This can be the entry point to an EFI
application, an EFI boot service driver, or an EFI runtime driver.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters
ImageHandle Handle that identifies the loaded image. Type EFI_HANDLE is defined

in the InstallProtocolInterface() function description.

SystemTable System Table for this image. Type EFI_SYSTEM_TABLE is defined in
Chapter 4.

Description
An image’s entry point is of type EFI_IMAGE_ENTRY_POINT. After firmware loads an image
into memory, control is passed to the image’s entry point. The entry point is responsible for
initializing the image. The image’s ImageHandle is passed to the image. The ImageHandle
provides the image with all the binding and data information it needs. This information is available
through protocol interfaces. However, to access the protocol interfaces on ImageHandle
requires access to boot services functions. Therefore, LoadImage() passes to the
EFI_IMAGE_ENTRY_POINT a SystemTable that is inherited from the current scope of
LoadImage().

All image handles support the EFI_LOADED_IMAGE protocol. This protocol can be used to
obtain information about the loaded image’s state—for example, the device from which the image
was loaded and the image’s load options. In addition, the ImageHandle may support other
protocols provided by the parent image.

If the image supports dynamic unloading, it must supply an unload function in the
EFI_LOADED_IMAGE structure before returning control from its entry point.

In general, an image returns control from its initialization entry point by calling Exit() or by
returning control from its entry point. If the image returns control from its entry point, the
firmware passes control to Exit() using the return code as the ExitStatus parameter to
Exit().

See Exit() below for entry point exit conditions.

Services — Boot Services

Version 1.10 12/01/02 5-83

Exit()
Summary

Terminates the currently loaded EFI image and returns control to boot services.

Prototype
typedef
EFI_STATUS
Exit (

IN EFI_HANDLE ImageHandle,
IN EFI_STATUS ExitStatus,
IN UINTN ExitDataSize,
IN CHAR16 *ExitData OPTIONAL
);

Parameters
ImageHandle Handle that identifies the image. This parameter is passed to the image

on entry.

ExitStatus The image’s exit code.

ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatus is
EFI_SUCCESS.

ExitData Pointer to a data buffer that includes a Null-terminated Unicode string,
optionally followed by additional binary data. The string is a description
that the caller may use to further indicate the reason for the image’s exit.
ExitData is only valid if ExitStatus is something other than
EFI_SUCCESS. The ExitData buffer must be allocated by calling
AllocatePool().

Description
The Exit() function terminates the image referenced by ImageHandle and returns control to
boot services. This function can only be called by the currently executing image. This function
may not be called if the image has already returned from its entry point
(EFI_IMAGE_ENTRY_POINT) or if it has loaded any child images that have not exited (all child
images must exit before this image can exit).

Using Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that
Exit() may also return additional ExitData.

Extensible Firmware Interface Specification

5-84 12/01/02 Version 1.10

When an EFI application exits, firmware frees the memory used to hold the image. The firmware
also frees its references to the ImageHandle and the handle itself. Before exiting, the application
is responsible for freeing any resources it allocated. This includes memory (pages and/or pool),
open file system handles, and so forth. The only exception to this rule is the ExitData buffer,
which must be freed by the caller of StartImage(). (If the buffer is needed, firmware must
allocate it by calling AllocatePool() and must return a pointer to it to the caller of
StartImage().)

When an EFI boot service driver or runtime service driver exits, firmware frees the image only if
the ExitStatus is an error code; otherwise the image stays resident in memory. The driver must
not return an error code if it has installed any protocol handlers or other active callbacks into the
system that have not (or cannot) be cleaned up. If the driver exits with an error code, it is
responsible for freeing all resources before exiting. This includes any allocated memory (pages
and/or pool), open file system handles, and so forth.

It is valid to call Exit() or Unload() for an image that was loaded by LoadImage() before
calling StartImage(). This will free the image from memory without having started it.

EFI 1.10 Extension
If ImageHandle is an EFI Application, then all of the protocols that were opened by
ImageHandle using the boot service OpenProtocol() are automatically closed with the boot
service CloseProtocol(). If ImageHandle is an EFI boot services driver or runtime service
driver, and ExitStatus is an error code, then all of the protocols that were opened by
ImageHandle using the boot service OpenProtocol() are automatically closed with the boot
service CloseProtocol(). If ImageHandle is an EFI boot services driver or runtime service
driver, and ExitStatus is not an error code, then no protocols are automatically closed by this
service.

Status Codes Returned
(Does not return.) Image exit. Control is returned to the StartImage() call that

invoked the image.

EFI_SUCCESS The image was unloaded. Exit() only returns success if the

image has not been started; otherwise, the exit returns to the
StartImage() call that invoked the image.

EFI_INVALID_PARAMETER The specified image is not the current image.

Services — Boot Services

Version 1.10 12/01/02 5-85

ExitBootServices()

Summary
Terminates all boot services.

Prototype

EFI_STATUS
ExitBootServices (

IN EFI_HANDLE ImageHandle,
IN UINTN MapKey
);

Parameters
ImageHandle Handle that identifies the exiting image. Type EFI_HANDLE is defined

in the InstallProtocolInterface() function description.

MapKey Key to the latest memory map.

Description
The ExitBootServices() function is called by the currently executing EFI OS loader image
to terminate all boot services. On success, the loader becomes responsible for the continued
operation of the system.

An EFI OS loader must ensure that it has the system’s current memory map at the time it calls
ExitBootServices(). This is done by passing in the current memory map’s MapKey value
as returned by GetMemoryMap(). Care must be taken to ensure that the memory map does not
change between these two calls. It is suggested that GetMemoryMap()be called immediately
before calling ExitBootServices().

On success, the EFI OS loader owns all available memory in the system. In addition, the loader can
treat all memory in the map marked as EfiBootServicesCode and
EfiBootServicesData as available free memory. No further calls to boot service functions or
EFI device-handle-based protocols may be used, and the boot services watchdog timer is disabled.
On success, several fields of the EFI System Table should be set to NULL. These include
ConsoleInHandle, ConIn, ConsoleOutHandle, ConOut, StandardErrorHandle,
StdErr, and BootServicesTable. In addition, since fields of the EFI System Table are
being modified, the 32-bit CRC for the EFI System Table must be recomputed.

Status Codes Returned
EFI_SUCCESS Boot services have been terminated.

EFI_INVALID_PARAMETER MapKey is incorrect.

Extensible Firmware Interface Specification

5-86 12/01/02 Version 1.10

5.5 Miscellaneous Boot Services
This section contains the remaining function definitions for boot services not defined elsewhere but
which are required to complete the definition of the EFI environment. Table 5-10 lists the
Miscellaneous Boot Services Functions.

Table 5-10. Miscellaneous Boot Services Functions

Name Type Description

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services time.

Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the EFI
System Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.

The CalculateCrc32() service was added because there are several places in EFI that 32-bit
CRCs are used. These include the EFI System Table, the EFI Boot Services Table, the EFI
Runtime Services Table, and the Guided Partition Table (GPT) structures. The
CalculateCrc32() service allows new 32-bit CRCs to be computed, and existing 32-bit CRCs
to be validated.

Services — Boot Services

Version 1.10 12/01/02 5-87

SetWatchdogTimer()
Summary

Sets the system’s watchdog timer.

Prototype

EFI_STATUS
SetWatchdogTimer (

IN UINTN Timeout,
IN UINT64 WatchdogCode,
IN UINTN DataSize,
IN CHAR16 *WatchdogData OPTIONAL
);

Parameters
Timeout The number of seconds to set the watchdog timer to. A value of zero

disables the timer.
WatchdogCode The numeric code to log on a watchdog timer timeout event. The

firmware reserves codes 0x0000 to 0xFFFF. Loaders and operating
systems may use other timeout codes.

DataSize The size, in bytes, of WatchdogData.
WatchdogData A data buffer that includes a Null-terminated Unicode string, optionally

followed by additional binary data. The string is a description that the
call may use to further indicate the reason to be logged with a watchdog
event.

Description
The SetWatchdogTimer() function sets the system’s watchdog timer.

If the watchdog timer expires, the event is logged by the firmware. The system may then either
reset with the Runtime Service ResetSystem(), or perform a platform specific action that must
eventually cause the platform to be reset. The watchdog timer is armed before the firmware's boot
manager invokes an EFI boot option. The watchdog must be set to a period of 5 minutes. The EFI
Image may reset or disable the watchdog timer as needed. If control is returned to the firmware's
boot manager, the watchdog timer must be disabled.

The watchdog timer is only used during boot services. On successful completion of
ExitBootServices() the watchdog timer is disabled.

The accuracy of the watchdog timer is +/- 1 second from the requested Timeout.

Status Codes Returned
EFI_SUCCESS The timeout has been set.

EFI_INVALID_PARAMETER The supplied WatchdogCode is invalid.

EFI_UNSUPPORTED The system does not have a watchdog timer.

EFI_DEVICE_ERROR The watch dog timer could not be programmed due to a hardware
error.

Extensible Firmware Interface Specification

5-88 12/01/02 Version 1.10

Stall()

Summary
Induces a fine-grained stall.

Prototype

EFI_STATUS
Stall (

IN UINTN Microseconds
)

Parameters
Microseconds The number of microseconds to stall execution.

Description
The Stall() function stalls execution on the processor for at least the requested number of
microseconds. Execution of the processor is not yielded for the duration of the stall.

Status Codes Returned
EFI_SUCCESS Execution was stalled at least the requested number of

Microseconds.

Services — Boot Services

Version 1.10 12/01/02 5-89

CopyMem()
Summary

The CopyMem() function copies the contents of one buffer to another buffer.

Prototype
VOID
CopyMem (

IN VOID *Destination,
IN VOID *Source,
IN UINTN Length
);

Parameters
Destination Pointer to the destination buffer of the memory copy.

Source Pointer to the source buffer of the memory copy.

Length Number of bytes to copy from Source to Destination.

Description
The CopyMem() function copies Length bytes from the buffer Source to the buffer
Destination.

The implementation of CopyMem() must be reentrant, and it must handle overlapping Source
and Destination buffers. This means that the implementation of CopyMem() must choose the
correct direction of the copy operation based on the type of overlap that exists between the
Source and Destination buffers. If either the Source buffer or the Destination buffer
crosses the top of the processor’s address space, then the result of the copy operation is
unpredictable.

The contents of the Destination buffer on exit from this service must match the contents of the
Source buffer on entry to this service. Due to potential overlaps, the contents of the Source
buffer may be modified by this service. The following rules can be used to guarantee the correct
behavior:

1. If Destination and Source are identical, then no operation should be performed.

2. If Destination > Source and Destination < (Source + Length), then the data
should be copied from the Source buffer to the Destination buffer starting from the end
of the buffers and working toward the beginning of the buffers.

3. Otherwise, the data should be copied from the Source buffer to the Destination buffer
starting from the beginning of the buffers and working toward the end of the buffers.

Status Codes Returned
None.

Extensible Firmware Interface Specification

5-90 12/01/02 Version 1.10

SetMem()
Summary

The SetMem() function fills a buffer with a specified value.

Prototype
VOID
SetMem (

IN VOID *Buffer,
IN UINTN Size,
IN UINT8 Value
);

Parameters
Buffer Pointer to the buffer to fill.

Size Number of bytes in Buffer to fill.

Value Value to fill Buffer with.

Description
This function fills Size bytes of Buffer with Value. The implementation of SetMem() must
be reentrant. If Buffer crosses the top of the processor’s address space, the result of the
SetMem() operation is unpredictable.

Status Codes Returned
None.

Services — Boot Services

Version 1.10 12/01/02 5-91

GetNextMonotonicCount()
Summary

Returns a monotonically increasing count for the platform.

Prototype

EFI_STATUS
GetNextMonotonicCount (

OUT UINT64 *Count
);

Parameters
Count Pointer to returned value.

Description
The GetNextMonotonicCount() function returns a 64-bit value that is numerically larger
then the last time the function was called.

The platform’s monotonic counter is comprised of two parts: the high 32 bits and the low 32 bits.
The low 32-bit value is volatile and is reset to zero on every system reset. It is increased by 1 on
every call to GetNextMonotonicCount(). The high 32-bit value is nonvolatile and is
increased by one on whenever the system resets or the low 32-bit counter overflows.

Status Codes Returned
EFI_SUCCESS The next monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

5-92 12/01/02 Version 1.10

InstallConfigurationTable()

Summary
Adds, updates, or removes a configuration table entry from the EFI System Table.

Prototype

EFI_STATUS
InstallConfigurationTable (

IN EFI_GUID *Guid,
IN VOID *Table
);

Parameters
Guid A pointer to the GUID for the entry to add, update, or remove.

Table A pointer to the configuration table for the entry to add, update, or
remove. May be NULL.

Description
The InstallConfigurationTable() function is used to maintain the list of configuration
tables that are stored in the EFI System Table. The list is stored as an array of (GUID, Pointer)
pairs. The list must be allocated from pool memory with PoolType set to
EfiRuntimeServicesData.

If Guid is not a valid GUID, EFI_INVALID_PARAMETER is returned. If Guid is valid, there
are four possibilities:

• If Guid is not present in the System Table, and Table is not NULL, then the (Guid, Table)
pair is added to the System Table. See Note below.

• If Guid is not present in the System Table, and Table is NULL, then EFI_NOT_FOUND
is returned.

• If Guid is present in the System Table, and Table is not NULL, then the (Guid, Table) pair
is updated with the new Table value.

• If Guid is present in the System Table, and Table is NULL, then the entry associated with
Guid is removed from the System Table.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

NOTE

If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned
EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is not valid.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.

EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.

Services — Boot Services

Version 1.10 12/01/02 5-93

CalculateCrc32()

Summary
Computes and returns a 32-bit CRC for a data buffer.

Prototype
typedef
EFI_STATUS
CalculateCrc32 (

IN VOID *Data,
IN UINTN DataSize,
OUT UINT32 *Crc32
);

Parameters
Data A pointer to the buffer on which the 32-bit CRC is to be computed.

DataSize The number of bytes in the buffer Data.

Crc32 The 32-bit CRC that was computed for the data buffer specified by
Data and DataSize.

Description
This function computes the 32-bit CRC for the data buffer specified by Data and DataSize. If
the 32-bit CRC is computed, then it is returned in Crc32 and EFI_SUCCESS is returned.

If Data is NULL, then EFI_INVALID_PARAMETER is returned.

If Crc32 is NULL, then EFI_INVALID_PARAMETER is returned.

If DataSize is 0, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS The 32-bit CRC was computed for the data buffer and returned in

Crc32.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER Crc32 is NULL.

EFI_INVALID_PARAMETER DataSize is 0.

Extensible Firmware Interface Specification

5-94 12/01/02 Version 1.10

Version 1.10 12/01/02 6-1

6
Services - Runtime Services

This chapter discusses the fundamental services that are present in an EFI-compliant system. The
services are defined by interface functions that may be used by code running in the EFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as EFI applications running in the preboot environment and EFI OS loaders.

Two types of services are described here:

• Boot Services. Functions that are available before a successful call to
ExitBootServices(). These functions are described in Chapter 5.

• Runtime Services. Functions that are available before and after any call to
ExitBootServices(). These functions are described in this chapter.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms
(since some devices are not available on some platforms). Protocols are created dynamically. This
chapter discusses the “global” functions and runtime functions; subsequent chapters discuss the
“handle-based.”

EFI applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an EFI Image is provided a pointer to an EFI system table which
contains the Boot Services dispatch table and the default handles for accessing the console. All
boot services functionality is available until an EFI OS loader loads enough of its own environment
to take control of the system’s continued operation and then terminates boot services with a call to
ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing
to boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS
loader, however, may or may not choose to call ExitBootServices(). This choice may in
part depend upon whether or not such code is designed to make continued use of EFI boot services
or the boot services environment.

The rest of this chapter discusses individual functions. Runtime Services fall into these categories:

• Variable Services (Section 6.1)
• Time Services (Section 6.2)
• Virtual Memory Services (Section 6.3)
• Miscellaneous Services (Section 6.4)

Extensible Firmware Interface Specification

6-2 12/01/02 Version 1.10

6.1 Variable Services

Variables are defined as key/value pairs that consist of identifying information plus attributes (the
key) and arbitrary data (the value). Variables are intended for use as a means to store data that is
passed between the EFI environment implemented in the platform and EFI OS loaders and other
applications that run in the EFI environment.

Although the implementation of variable storage is not defined in this specification, variables must
be persistent in most cases. This implies that the EFI implementation on a platform must arrange it
so that variables passed in for storage are retained and available for use each time the system boots,
at least until they are explicitly deleted or overwritten. Provision of this type of nonvolatile storage
may be very limited on some platforms, so variables should be used sparingly in cases where other
means of communicating information cannot be used.

Table 6-1 lists the variable services functions described in this section:

Table 6-1. Variable Services Functions

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

 Services — Runtime Services

Version 1.10 12/01/02 6-3

GetVariable()

Summary

Returns the value of a variable.

Prototype

EFI_STATUS
GetVariable (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,

OUT UINT32 *Attributes OPTIONAL,
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Parameters

VariableName A Null-terminated Unicode string that is the name of the
vendor’s variable.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in the InstallProtocolInterface() function
description.

Attributes If not NULL, a pointer to the memory location to return the
attributes bitmask for the variable. See “Related Definitions.”

DataSize On input, the size in bytes of the return Data buffer.
On output the size of data returned in Data.

Data The buffer to return the contents of the variable.

Related Definitions

//***
// Variable Attributes
//***
#define EFI_VARIABLE_NON_VOLATILE 0x0000000000000001
#define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x0000000000000002
#define EFI_VARIABLE_RUNTIME_ACCESS 0x0000000000000004

Extensible Firmware Interface Specification

6-4 12/01/02 Version 1.10

Description
Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid. When a variable is set its Attributes are supplied to indicate how the
data variable should be stored and maintained by the system. The attributes affect when the
variable may be accessed and volatility of the data. Any attempts to access a variable that does not
have the attribute set for runtime access will yield the EFI_NOT_FOUND error.

If the Data buffer is too small to hold the contents of the variable, the error
EFI_BUFFER_TOO_SMALL is returned and DataSize is set to the required buffer size to obtain
the data.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has
been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.

 Services — Runtime Services

Version 1.10 12/01/02 6-5

GetNextVariableName()

Summary
Enumerates the current variable names.

Prototype

EFI_STATUS
GetNextVariableName (
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VendorGuid
);

Parameters

VariableNameSize The size of the VariableName buffer.

VariableName On input, supplies the last VariableName that was returned
by GetNextVariableName(). On output, returns the Null-
terminated Unicode string of the current variable.

VendorGuid On input, supplies the last VendorGuid that was returned by
GetNextVariableName(). On output, returns the
VendorGuid of the current variable. Type EFI_GUID is
defined in the InstallProtocolInterface() function
description.

Description

GetNextVariableName() is called multiple times to retrieve the VariableName and
VendorGuid of all variables currently available in the system. On each call to
GetNextVariableName() the previous results are passed into the interface, and on output the
interface returns the next variable name data. When the entire variable list has been returned, the
error EFI_NOT_FOUND is returned.

Note that if EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small
for the next variable. When such an error occurs, the VariableNameSize is updated to reflect
the size of buffer needed. In all cases when calling GetNextVariableName() the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

To start the search, a Null-terminated string is passed in VariableName; that is,
VariableName is a pointer to a Null Unicode character. This is always done on the initial call to
GetNextVariableName(). When VariableName is a pointer to a Null Unicode character,
VendorGuid is ignored. GetNextVariableName() cannot be used as a filter to return
variable names with a specific GUID. Instead, the entire list of variables must be retrieved, and the

Extensible Firmware Interface Specification

6-6 12/01/02 Version 1.10

caller may act as a filter if it chooses. Calls to SetVariable() between calls to
GetNextVariableName() may produce unpredictable results.

Once ExitBootServices() is performed, variables that are only visible during boot services
will no longer be returned. To obtain the data contents or attribute for a variable returned by
GetNextVariableName(), the GetVariable() interface is used.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The next variable was not found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
VariableNameSize has been updated with the size needed

to complete the request.

EFI_INVALID_PARAMETER VariableNameSize is NULL.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_DEVICE_ERROR The variable name could not be retrieved due to a hardware error.

 Services — Runtime Services

Version 1.10 12/01/02 6-7

SetVariable()

Summary

Sets the value of a variable.

Prototype

EFI_STATUS
SetVariable (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 IN UINT32 Attributes,
 IN UINTN DataSize,
 IN VOID *Data
);

Parameters

VariableName A Null-terminated Unicode string that is the name of the
vendor’s variable. Each VariableName is unique for each
VendorGuid. VariableName must contain 1 or more
Unicode characters. If VariableName is an empty Unicode
string, then EFI_INVALID_PARAMETER is returned.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in the InstallProtocolInterface() function
description.

Attributes Attributes bitmask to set for the variable. Refer to the
GetVariable() function description.

DataSize The size in bytes of the Data buffer. A size of zero causes the
variable to be deleted.

Data The contents for the variable.

Description

Variables are stored by the firmware and may maintain their values across power cycles. Each
vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid.

Each variable has Attributes that define how the firmware stores and maintains the data value.
If the EFI_VARIABLE_NON_VOLATILE attribute is not set, the firmware stores the variable in
normal memory and it is not maintained across a power cycle. Such variables are used to pass
information from one component to another. An example of this is the firmware’s language code

Extensible Firmware Interface Specification

6-8 12/01/02 Version 1.10

support variable. It is created at firmware initialization time for access by EFI components that
may need the information, but does not need to be backed up to nonvolatile storage.

EFI_VARIABLE_NON_VOLATILE variables are stored in fixed hardware that has a limited
storage capacity; sometimes a severely limited capacity. Software should only use a nonvolatile
variable when absolutely necessary. In addition, if software uses a nonvolatile variable it should
use a variable that is only accessible at boot services time if possible.

A variable must contain one or more bytes of Data. Using SetVariable() with a DataSize
of zero causes the entire variable to be deleted. The space consumed by the deleted variable may
not be available until the next power cycle.

The Attributes have the following usage rules:

• Storage attributes are only applied to a variable when creating the variable. If a preexisting
variable is rewritten with different attributes, the result is indeterminate and may vary between
implementations. The correct method of changing the attributes of a variable is to delete the
variable and recreate it with different attributes. There is one exception to this rule. If a
preexisting variable is rewritten with no access attributes specified, the variable will be deleted.

• Setting a data variable with no access, or zero DataSize attributes specified causes it to be
deleted.

• Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE_RUNTIME_ACCESS set must also have
EFI_VARIABLE_BOOTSERVICE_ACCESS set. The caller is responsible for following this
rule.

• Once ExitBootServices() is performed, data variables that did not have
EFI_VARIABLE_RUNTIME_ACCESS set are no longer visible to GetVariable().

• Once ExitBootServices() is performed, only variables that have
EFI_VARIABLE_RUNTIME_ACCESS and EFI_VARIABLE_NON_VOLATILE set can be
set with SetVariable(). Variables that have runtime access but that are not nonvolatile are
read-only data variables once ExitBootServices() is performed.

The only rules the firmware must implement when saving a nonvolatile variable is that it has
actually been saved to nonvolatile storage before returning EFI_SUCCESS, and that a partial save
is not performed. If power fails during a call to SetVariable() the variable may contain its
previous value, or its new value. In addition there is no read, write, or delete security protection.

Status Codes Returned
EFI_SUCCESS The firmware has successfully stored the variable and its data as

defined by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied, or the
DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER VariableName is an empty Unicode string.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

 Services — Runtime Services

Version 1.10 12/01/02 6-9

6.2 Time Services

This section contains function definitions for time-related functions that are typically needed by
operating systems at runtime to access underlying hardware that manages time information and
services. The purpose of these interfaces is to provide operating system writers with an abstraction
for hardware time devices, thereby relieving the need to access legacy hardware devices directly.
There is also a stalling function for use in the preboot environment. Table 6-2 lists the time
services functions described in this section:

Table 6-2. Time Services Functions

Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities of the
platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.

Extensible Firmware Interface Specification

6-10 12/01/02 Version 1.10

GetTime()

Summary

Returns the current time and date information, and the time-keeping capabilities of the hardware
platform.

Prototype

EFI_STATUS
GetTime (
 OUT EFI_TIME *Time,
 OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
);

Parameters

Time A pointer to storage to receive a snapshot of the current time. Type
EFI_TIME is defined in “Related Definitions.”

Capabilities An optional pointer to a buffer to receive the real time clock device’s
capabilities. Type EFI_TIME_CAPABILITIES is defined in “Related
Definitions.”

Related Definitions

//***
//EFI_TIME
//***
// This represents the current time information
typedef struct {
 UINT16 Year; // 1998 – 20XX
 UINT8 Month; // 1 – 12
 UINT8 Day; // 1 – 31
 UINT8 Hour; // 0 – 23
 UINT8 Minute; // 0 – 59
 UINT8 Second; // 0 – 59
 UINT8 Pad1;
 UINT32 Nanosecond; // 0 – 999,999,999
 INT16 TimeZone; // -1440 to 1440 or 2047
 UINT8 Daylight;
 UINT8 Pad2;
} EFI_TIME;

 Services — Runtime Services

Version 1.10 12/01/02 6-11

//***
// Bit Definitions for EFI_TIME.Daylight. See below.
//***
#define EFI_TIME_ADJUST_DAYLIGHT 0x01
#define EFI_TIME_IN_DAYLIGHT 0x02

//***
// Value Definition for EFI_TIME.TimeZone. See below.
//***
#define EFI_UNSPECIFIED_TIMEZONE 0x07FF

Year, Month, Day The current local date.

Hour, Minute, Second, Nanosecond

The current local time. Nanoseconds report the current fraction
of a second in the device. The format of the time is
hh:mm:ss.nnnnnnnnn. A battery backed real time clock
device maintains the date and time.

TimeZone The time’s offset in minutes from GMT. If the value is
EFI_UNSPECIFIED_TIMEZONE, then the time is interpreted
as a local time.

Daylight A bitmask containing the daylight savings time information for
the time.

The EFI_TIME_ADJUST_DAYLIGHT bit indicates if the time
is affected by daylight savings time or not. This value does not
indicate that the time has been adjusted for daylight savings
time. It indicates only that it should be adjusted when the
EFI_TIME enters daylight savings time.

If EFI_TIME_IN_DAYLIGHT is set, the time has been
adjusted for daylight savings time.

All other bits must be zero.

Extensible Firmware Interface Specification

6-12 12/01/02 Version 1.10

//***
// EFI_TIME_CAPABILITIES
//***
// This provides the capabilities of the
// real time clock device as exposed through the EFI interfaces.
typedef struct {
 UINT32 Resolution;
 UINT32 Accuracy;
 BOOLEAN SetsToZero;
} EFI_TIME_CAPABILITIES;

Resolution Provides the reporting resolution of the real-time clock device in counts
per second. For a normal PC-AT CMOS RTC device, this value would
be 1 Hz, or 1, to indicate that the device only reports the time to the
resolution of 1 second.

Accuracy Provides the timekeeping accuracy of the real-time clock in an error rate
of 1E-6 parts per million. For a clock with an accuracy of 50 parts per
million, the value in this field would be 50,000,000.

SetsToZero A TRUE indicates that a time set operation clears the device’s time below
the Resolution reporting level. A FALSE indicates that the state
below the Resolution level of the device is not cleared when the time
is set. Normal PC-AT CMOS RTC devices set this value to FALSE.

Description

The GetTime() function returns a time that was valid sometime during the call to the function.
While the returned EFI_TIME structure contains TimeZone and Daylight savings time
information, the actual clock does not maintain these values. The current time zone and daylight
saving time information returned by GetTime() are the values that were last set via
SetTime().

The GetTime() function should take approximately the same amount of time to read the time
each time it is called. All reported device capabilities are to be rounded up.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetTime().

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER Time is NULL.

EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.

 Services — Runtime Services

Version 1.10 12/01/02 6-13

SetTime()

Summary

Sets the current local time and date information.

Prototype

EFI_STATUS
SetTime (
 IN EFI_TIME *Time
);

Parameters

Time A pointer to the current time. Type EFI_TIME is defined in the
GetTime() function description. Full error checking is performed on
the different fields of the EFI_TIME structure (refer to the EFI_TIME
definition in the GetTime() function description for full details), and
EFI_INVALID_PARAMETER is returned if any field is out of range.

Description

The SetTime() function sets the real time clock device to the supplied time, and records the
current time zone and daylight savings time information. The SetTime() function is not allowed
to loop based on the current time. For example, if the device does not support a hardware reset for
the sub-resolution time, the code is not to implement the feature by waiting for the time to wrap.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetTime().

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The time could not be set due to a hardware error.

Extensible Firmware Interface Specification

6-14 12/01/02 Version 1.10

GetWakeupTime()

Summary

Returns the current wakeup alarm clock setting.

Prototype

EFI_STATUS
GetWakeupTime (
 OUT BOOLEAN *Enabled,
 OUT BOOLEAN *Pending,
 OUT EFI_TIME *Time
);

Parameters

Enabled Indicates if the alarm is currently enabled or disabled.

Pending Indicates if the alarm signal is pending and requires acknowledgement.

Time The current alarm setting. Type EFI_TIME is defined in the
GetTime() function description.

Description

The alarm clock time may be rounded from the set alarm clock time to be within the resolution of
the alarm clock device. The resolution of the alarm clock device is defined to be one second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetWakeupTime().

Status Codes Returned
EFI_SUCCESS The alarm settings were returned.

EFI_INVALID_PARAMETER Enabled is NULL.

EFI_INVALID_PARAMETER Pending is NULL.

EFI_INVALID_PARAMETER Time is NULL.

EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.

EFI_UNSUPPORTED A wakeup timer is not supported on this platform.

 Services — Runtime Services

Version 1.10 12/01/02 6-15

SetWakeupTime()

Summary

Sets the system wakeup alarm clock time.

Prototype

EFI_STATUS
SetWakeupTime (
 IN BOOLEAN Enable,
 IN EFI_TIME *Time OPTIONAL
);

Parameters

Enable Enable or disable the wakeup alarm.

Time If Enable is TRUE, the time to set the wakeup alarm for. Type
EFI_TIME is defined in the GetTime() function description. If
Enable is FALSE, then this parameter is optional, and may be NULL.

Description

Setting a system wakeup alarm causes the system to wake up or power on at the set time. When the
alarm fires, the alarm signal is latched until acknowledged by calling SetWakeupTime() to
disable the alarm. If the alarm fires before the system is put into a sleeping or off state, since the
alarm signal is latched the system will immediately wake up. If the alarm fires while the system is
off and there is insufficient power to power on the system, the system is powered on when power
is restored.

For an ACPI-aware operating system, this function only handles programming the wakeup alarm
for the desired wakeup time. The operating system still controls the wakeup event as it normally
would through the ACPI Power Management register set.

The resolution for the wakeup alarm is defined to be 1 second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetWakeupTime().

Status Codes Returned
EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If

Enable is FALSE, then the wakeup alarm was disabled.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.

EFI_UNSUPPORTED A wakeup timer is not supported on this platform.

Extensible Firmware Interface Specification

6-16 12/01/02 Version 1.10

6.3 Virtual Memory Services

This section contains function definitions for the virtual memory support that may be optionally
used by an operating system at runtime. If an operating system chooses to make EFI runtime
service calls in a virtual addressing mode instead of the flat physical mode, then the operating
system must use the services in this section to switch the EFI runtime services from flat physical
addressing to virtual addressing. Table 6-3 lists the virtual memory service functions described in
this section. The system firmware must follow the processor-specific rules outlined in sections
2.3.2 and 2.3.3 in the layout of the EFI memory map to enable the OS to make the required virtual
mappings.

Table 6-3. Virtual Memory Functions

Name Type Description

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to virtual
addressing.

ConvertPointer Runtime Used by EFI components to convert internal pointers when switching
to virtual addressing.

 Services — Runtime Services

Version 1.10 12/01/02 6-17

SetVirtualAddressMap()

Summary

Changes the runtime addressing mode of EFI firmware from physical to virtual.

Prototype

EFI_STATUS
SetVirtualAddressMap (

IN UINTN MemoryMapSize,
IN UINTN DescriptorSize,
IN UINT32 DescriptorVersion,
IN EFI_MEMORY_DESCRIPTOR *VirtualMap

);

Parameters

MemoryMapSize The size in bytes of VirtualMap.

DescriptorSize The size in bytes of an entry in the VirtualMap.

DescriptorVersion The version of the structure entries in VirtualMap.

VirtualMap An array of memory descriptors which contain new virtual
address mapping information for all runtime ranges. Type
EFI_MEMORY_DESCRIPTOR is defined in the
GetMemoryMap() function description.

Description

The SetVirtualAddressMap() function is used by the OS loader. The function can only be
called at runtime, and is called by the owner of the system’s memory map. I.e., the component
which called ExitBootServices().

This call changes the addresses of the runtime components of the EFI firmware to the new virtual
addresses supplied in the VirtualMap. The supplied VirtualMap must provide a new virtual
address for every entry in the memory map at ExitBootServices() that is marked as being
needed for runtime usage. All of the virtual address fields in the VirtualMap must be aligned
on 4 KB boundaries.

The call to SetVirtualAddressMap() must be done with the physical mappings. On
successful return from this function, the system must then make any future calls with the newly
assigned virtual mappings. All address space mappings must be done in accordance to the
cacheability flags as specified in the original address map.

Extensible Firmware Interface Specification

6-18 12/01/02 Version 1.10

When this function is called, all events that were registered to be signaled on an address map
change are notified. Each component that is notified must update any internal pointers for their
new addresses. This can be done with the ConvertPointer() function. Once all events have
been notified, the EFI firmware reapplies image “fix-up” information to virtually relocate all
runtime images to their new addresses. In addition, all of the fields of the EFI Runtime Services
Table except SetVirtualAddressMap and ConvertPointer must be converted from
physical pointers to virtual pointers using the ConvertPointer() service. The
SetVirtualAddressMap() and ConvertPointer() services are only callable in physical
mode, so they do not need to be converted from physical pointers to virtual pointers. Several fields
of the EFI System Table must be converted from physical pointers to virtual pointers using the
ConvertPointer() service. These fields include FirmwareVendor, RuntimeServices,
and ConfigurationTable. Because contents of both the EFI Runtime Services Table and the
EFI System Table are modified by this service, the 32-bit CRC for the EFI Runtime Services Table
and the EFI System Table must be recomputed.

A virtual address map may only be applied one time. Once the runtime system is in virtual mode,
calls to this function return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The virtual address map has been applied.

EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in
virtual address mapped mode.

EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is

invalid.

EFI_NO_MAPPING A virtual address was not supplied for a range in the memory
map that requires a mapping.

EFI_NOT_FOUND A virtual address was supplied for an address that is not found
in the memory map.

 Services — Runtime Services

Version 1.10 12/01/02 6-19

ConvertPointer()

Summary
Determines the new virtual address that is to be used on subsequent memory accesses.

Prototype

EFI_STATUS
ConvertPointer (

IN UINTN DebugDisposition,
 IN VOID **Address
);

Parameters

DebugDisposition Supplies type information for the pointer being converted. See
“Related Definitions.”

Address A pointer to a pointer that is to be fixed to be the value needed
for the new virtual address mappings being applied.

Related Definitions

//***
// EFI_OPTIONAL_PTR
//***
#define EFI_OPTIONAL_PTR 0x00000001

Description
The ConvertPointer() function is used by an EFI component during the
SetVirtualAddressMap() operation.

The ConvertPointer() function updates the current pointer pointed to by Address to be the
proper value for the new address map. Only runtime components need to perform this operation.
The CreateEvent() function is used to create an event that is to be notified when the address
map is changing. All pointers the component has allocated or assigned must be updated.

If the EFI_OPTIONAL_PTR flag is specified, the pointer being converted is allowed to be NULL.

Once all components have been notified of the address map change, firmware fixes any compiled in
pointers that are embedded in any runtime image.

Status Codes Returned
EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part

of the current memory map. This is normally fatal.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

6-20 12/01/02 Version 1.10

6.4 Miscellaneous Runtime Services

This section contains the remaining function definitions for runtime services not defined elsewhere
but which are required to complete the definition of the EFI environment. Table 6-4 lists the
Miscellaneous Runtime Services.

Table 6-4. Miscellaneous Runtime Services

Name Type Description

ResetSystem Runtime Resets the entire platform.

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s monotonic
counter.

 Services — Runtime Services

Version 1.10 12/01/02 6-21

ResetSystem()

Summary

Resets the entire platform.

Prototype

VOID
ResetSystem (
 IN EFI_RESET_TYPE ResetType,

IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
);

Parameters

ResetType The type of reset to perform. Type EFI_RESET_TYPE is defined in
“Related Definitions” below.

ResetStatus The status code for the reset. If the system reset is part of a normal
operation, the status code would be EFI_SUCCESS. If the system reset
is due to some type of failure the most appropriate EFI Status code
would be used.

DataSize The size, in bytes, of ResetData.

ResetData A data buffer that includes a Null-terminated Unicode string, optionally
followed by additional binary data. The string is a description that the
caller may use to further indicate the reason for the system reset.
ResetData is only valid if ResetStatus is something other then
EFI_SUCCESS. This pointer must be a physical address.

Related Definitions

//***
// EFI_RESET_TYPE
//***
typedef enum {
 EfiResetCold,
 EfiResetWarm,
 EfiResetShutdown
} EFI_RESET_TYPE;

Extensible Firmware Interface Specification

6-22 12/01/02 Version 1.10

Description

The ResetSystem()function resets the entire platform, including all processors and devices, and
reboots the system.

Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets
all circuitry within the system to its initial state. This type of reset is asynchronous to system
operation and operates without regard to cycle boundaries. EfiResetCold is tantamount to a
system power cycle.

Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization.
The processors are set to their initial state, and pending cycles are not corrupted. If the system does
not support this reset type, then an EfiResetCold must be performed.

Calling this interface with ResetType of EfiResetShutdown causes the system to enter a
power state equivalent to the ACPI G2/S5 or G3 states. If the system does not support this reset
type, then when the system is rebooted, it should exhibit the EfiResetCold attributes. If the
ACPI S5 state is supported on the system, then this reset type should not be used.

The platform may optionally log the parameters from any non-normal reset that occurs.

The ResetSystem() function does not return.

 Services — Runtime Services

Version 1.10 12/01/02 6-23

GetNextHighMonotonicCount()

Summary

Returns the next high 32 bits of the platform’s monotonic counter.

Prototype

EFI_STATUS
GetNextHighMonotonicCount (
 OUT UINT32 *HighCount
);

Parameters

HighCount Pointer to returned value.

Description

The GetNextHighMonotonicCount() function returns the next high 32 bits of the platform’s
monotonic counter.

The platform’s monotonic counter is comprised of two 32-bit quantities: the high 32 bits and the
low 32 bits. During boot service time the low 32-bit value is volatile: it is reset to zero on every
system reset and is increased by 1 on every call to GetNextMonotonicCount(). The high
32-bit value is nonvolatile and is increased by 1 whenever the system resets or whenever the low
32-bit count (returned by GetNextMonoticCount()) overflows.

The GetNextMonotonicCount() function is only available at boot services time. If the
operating system wishes to extend the platform monotonic counter to runtime, it may do so by
utilizing GetNextHighMonotonicCount(). To do this, before calling
ExitBootServices() the operating system would call GetNextMonotonicCount() to
obtain the current platform monotonic count. The operating system would then provide an
interface that returns the next count by:

• Adding 1 to the last count.
• Before the lower 32 bits of the count overflows, call GetNextHighMonotonicCount().

This will increase the high 32 bits of the platform’s nonvolatile portion of the monotonic count
by 1.

This function may only be called at Runtime.

Status Codes Returned
EFI_SUCCESS The next high monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER HighCount is NULL.

Extensible Firmware Interface Specification

6-24 12/01/02 Version 1.10

Version 1.10 12/01/02 7-1

7
Protocols - EFI Loaded Image

This chapter defines the EFI_LOADED_IMAGE protocol. This protocol describes an EFI Image
that has been loaded into memory. This description includes the source from which the image was
loaded, the current location of the image in memory, the type of memory allocated for the image,
and the parameters passed to the image when it was invoked.

EFI_LOADED_IMAGE Protocol

Summary

Can be used on any image handle to obtain information about the loaded image.

GUID
#define LOADED_IMAGE_PROTOCOL \
 {0x5B1B31A1,0x9562,0x11d2,0x8E,0x3F,0x00,0xA0,0xC9,0x69,0x72,0x3B}

Revision Number
#define EFI_LOADED_IMAGE_INFORMATION_REVISION 0x1000

Protocol Interface Structure
typedef struct {
 UINT32 Revision;
 EFI_HANDLE ParentHandle;
 EFI_SYSTEM_TABLE *SystemTable;

 // Source location of the image
 EFI_HANDLE DeviceHandle;
 EFI_DEVICE_PATH *FilePath;
 VOID *Reserved;

 // Image’s load options
 UINT32 LoadOptionsSize;
 VOID *LoadOptions;

Extensible Firmware Interface Specification

7-2 12/01/02 Version 1.10

 // Location where image was loaded
 VOID *ImageBase;
 UINT64 ImageSize;
 EFI_MEMORY_TYPE ImageCodeType;
 EFI_MEMORY_TYPE ImageDataType;

 EFI_IMAGE_UNLOAD Unload;
} EFI_LOADED_IMAGE;

Parameters

Revision Defines the revision of the EFI_LOADED_IMAGE structure.
All future revisions will be backward compatible to the current
revision.

ParentHandle Parent image’s image handle. NULL if the image is loaded
directly from the firmware’s boot manager. Type EFI_HANDLE
is defined in Chapter 5.

SystemTable The image’s EFI system table pointer. Type
EFI_SYSTEM_TABLE is defined in Chapter 4.

DeviceHandle The device handle that the EFI Image was loaded from. Type
EFI_HANDLE is defined in Chapter 5.

FilePath A pointer to the file path portion specific to DeviceHandle
that the EFI Image was loaded from. The EFI_DEVICE_PATH
protocol is defined in Chapter 8.

Reserved Reserved. DO NOT USE.

LoadOptionsSize The size in bytes of LoadOptions.

LoadOptions A pointer to the image’s binary load options.

ImageBase The base address at which the image was loaded.

ImageSize The size in bytes of the loaded image.

ImageCodeType The memory type that the code sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Chapter 5.

ImageDataType The memory type that the data sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Chapter 5.

Unload Function that unloads the image. See Unload().

Description

Each loaded image has an image handle that supports the EFI_LOADED_IMAGE protocol. When
an image is started, it is passed the image handle for itself. The image can use the handle to obtain
its relevant image data stored in the EFI_LOADED_IMAGE structure, such as its load options.

 Protocols — EFI Loaded Image

Version 1.10 12/01/02 7-3

LOADED_IMAGE.Unload()

Summary

Unloads an image from memory.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_UNLOAD_IMAGE) (
 IN EFI_HANDLE ImageHandle,
);

Parameters

ImageHandle The handle to the image to unload. Type EFI_HANDLE is defined in
Chapter 5.

Description

The Unload() function unloads an image from memory if ImageHandle is valid.

Status Codes Returned
EFI_SUCCESS The image was unloaded.

EFI_INVALID_PARAMETER The ImageHandle was not valid.

Extensible Firmware Interface Specification

7-4 12/01/02 Version 1.10

Version 1.10 12/01/02 8-1

8
Protocols - Device Path Protocol

This chapter contains the definition of the device path protocol and the information needed to
construct and manage device paths in the EFI environment. A device path is constructed and used
by the firmware to convey the location of important devices, such as the boot device and console,
consistent with the software-visible topology of the system.

8.1 Device Path Overview

A Device Path is used to define the programmatic path to a device. The primary purpose of a
Device Path is to allow an application, such as an OS loader, to determine the physical device that
the EFI interfaces are abstracting.

A collection of device paths is usually referred to as a name space. ACPI, for example, is rooted
around a name space that is written in ASL (ACPI Source Language). Given that EFI does not
replace ACPI and defers to ACPI when ever possible, it would seem logical to utilize the ACPI
name space in EFI. However, the ACPI name space was designed for usage at operating system
runtime and does not fit well in platform firmware or OS loaders. Given this, EFI defines its own
name space, called a Device Path.

A Device Path is designed to make maximum leverage of the ACPI name space. One of the key
structures in the Device Path defines the linkage back to the ACPI name space. The Device Path
also is used to fill in the gaps where ACPI defers to buses with standard enumeration algorithms.
The Device Path is able to relate information about which device is being used on buses with
standard enumeration mechanisms. The Device Path is also used to define the location on a
medium where a file should be, or where it was loaded from. A special case of the Device Path can
also be used to support the optional booting of legacy operating systems from legacy media.

The Device Path was designed so that the OS loader and the operating system could tell which
devices the platform firmware was using as boot devices. This allows the operating system to
maintain a view of the system that is consistent with the platform firmware. An example of this is a
“headless” system that is using a network connection as the boot device and console. In such a
case, the firmware will convey to the operating system the network adapter and network protocol
information being used as the console and boot device in the device path for these devices.

Extensible Firmware Interface Specification

8-2 12/01/02 Version 1.10

8.2 EFI_DEVICE_PATH Protocol

This section provides a detailed description of the EFI_DEVICE_PATH protocol.

EFI_DEVICE_PATH Protocol

Summary

Can be used on any device handle to obtain generic path/location information concerning the
physical device or logical device. If the handle does not logically map to a physical device, the
handle may not necessarily support the device path protocol.

GUID
#define DEVICE_PATH_PROTOCOL \

{ 09576e91-6d3f-11d2-8e39-00a0c969723b }

Protocol Interface Structure
EFI_DEVICE_PATH *DevicePath ;

Parameters

DevicePath A pointer to device path data. The device path describes the location of
the device the handle is for. The size of the Device Path can be
determined from the structures that make up the Device Path. Type
EFI_DEVICE_PATH is defined in the LocateDevicePath()
function description.

Description

The executing EFI Image may use the device path to match its own device drivers to the particular
device. Note that the executing EFI OS loader and EFI application images must access all physical
devices via Boot Services device handles until ExitBootServices() is successfully called.
An EFI driver may access only a physical device for which it provides functionality.

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-3

8.3 Device Path Nodes

There are six major types of Device Path nodes:

• Hardware Device Path. This Device Path defines how a device is attached to the resource
domain of a system, where resource domain is simply the shared memory, memory mapped
I/O, and I/O space of the system.

• ACPI Device Path. This Device Path is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described using ACPI AML
in the ACPI name space; this Device Path is a linkage to the ACPI name space.

• Messaging Device Path. This Device Path is used to describe the connection of devices outside
the resource domain of the system. This Device Path can describe physical messaging
information (e.g., a SCSI ID) or abstract information (e.g., networking protocol IP addresses).

• Media Device Path. This Device Path is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define which partition
on a hard drive was being used.

• BIOS Boot Specification Device Path. This Device Path is used to point to boot legacy
operating systems; it is based on the BIOS Boot Specification Version 1.01. Refer to the
References appendix for details on obtaining this specification.

• End of Hardware Device Path. Depending on the Sub-Type, this Device Path node is used to
indicate the end of the Device Path instance or Device Path structure.

8.3.1 Generic Device Path Structures
A Device Path is a variable-length binary structure that is made up of variable-length generic
Device Path nodes. Table 8-1 defines the structure of a such a node and the lengths of its
components. The table defines the type and sub-type values corresponding to the Device Paths
described Section 8.3; all other type and sub-type values are Reserved.

Table 8-1. Generic Device Path Node Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x01 – Hardware Device Path

Type 0x02 – ACPI Device Path

Type 0x03 – Messaging Device Path

Type 0x04 – Media Device Path

Type 0x05 – BIOS Boot Specification Device Path

Type 0xFF – End of Hardware Device Path

Sub-Type 1 1 Sub-Type – Varies by Type. (See Table 8-2.)

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Specific Device Path Data 4 n Specific Device Path data. Type and Sub-Type define
type of data. Size of data is included in Length.

Extensible Firmware Interface Specification

8-4 12/01/02 Version 1.10

A Device Path is a series of generic Device Path nodes. The first Device Path node starts at byte
offset zero of the Device Path. The next Device Path node starts at the end of the previous Device
Path node. Therefore all nodes are byte-packed data structures that may appear on any byte
boundary. All code references to device path notes must assume all fields are UNALIGNED. Since
every Device Path node contains a length field in a known place, it is possible to traverse Device
Path nodes that are of an unknown type. There is no limit to the number, type, or sequence of
nodes in a Device Path.

A Device Path is terminated by an End of Hardware Device Path node. This type of node has two
sub-types (see Table 8-2):

• End This Instance of a Device Path (sub-type 0x01). This type of node terminates one Device
Path instance and denotes the start of another. This is only required when an environment
variable represents multiple devices. An example of this would be the ConsoleOut
environment variable that consists of both a VGA console and serial output console. This
variable would describe a console output stream that is sent to both VGA and serial
concurrently and thus has a Device Path that contains two complete Device Paths.

• End Entire Device Path (sub-type 0xFF). This type of node terminates an entire Device Path.
Software searches for this sub-type to find the end of a Device Path. All Device Paths must
end with this sub-type.

Table 8-2. Device Path End Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x7F – End of Hardware Device Path

Type 0xFF – End of Hardware Device Path

Sub-Type 1 1 Sub-Type 0xFF – End Entire Device Path, or

Sub-Type 0x01 – End This Instance of a Device Path and start a new
Device Path

Length 2 2 Length of this structure in bytes. Length is 4 bytes.

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-5

8.3.2 Hardware Device Path
This Device Path defines how a device is attached to the resource domain of a system, where
resource domain is simply the shared memory, memory mapped I/O, and I/O space of the system.
It is possible to have multiple levels of Hardware Device Path such as a PCCARD device that was
attached to a PCCARD PCI controller.

8.3.2.1 PCI Device Path
The Device Path for PCI defines the path to the PCI configuration space address for a PCI device.
There is one PCI Device Path entry for each device and function number that defines the path from
the root PCI bus to the device. Because the PCI bus number of a device may potentially change, a
flat encoding of single PCI Device Path entry cannot be used. An example of this is when a PCI
device is behind a bridge, and one of the following events occurs:

• OS performs a Plug and Play configuration of the PCI bus.
• A hot plug of a PCI device is performed.
• The system configuration changes between reboots.

The PCI Device Path entry must be preceded by an ACPI Device Path entry that uniquely identifies
the PCI root bus. The programming of root PCI bridges is not defined by any PCI specification and
this is why an ACPI Device Path entry is required.

Table 8-3. PCI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 1 – PCI

Length 2 2 Length of this structure is 6 bytes

Function 4 1 PCI Function Number

Device 5 1 PCI Device Number

8.3.2.2 PCCARD Device Path

Table 8-4. PCCARD Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 2 – PCCARD

Length 2 2 Length of this structure in bytes. Length is 5 bytes.

Function Number 4 1 Function Number (0 = First Function)

Extensible Firmware Interface Specification

8-6 12/01/02 Version 1.10

8.3.2.3 Memory Mapped Device Path

Table 8-5. Memory Mapped Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 3 – Memory Mapped.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Memory Type 4 4 EFI_MEMORY_TYPE. Type EFI_MEMORY_TYPE is
defined in the AllocatePages() function description.

Start Address 8 8 Starting Memory Address.

End Address 16 8 Ending Memory Address.

8.3.2.4 Vendor Device Path
The Vendor Device Path allows the creation of vendor-defined Device Paths. A vendor must
allocate a Vendor_GUID for a Device Path. The Vendor_GUID can then be used to define the
contents on the n bytes that follow in the Vendor Device Path node.

Table 8-6. Vendor-Defined Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 4 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.

8.3.2.5 Controller Device Path

Table 8-7. Controller Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 5 – Controller.

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Controller Number 4 4 Controller number.

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-7

8.3.3 ACPI Device Path
This Device Path contains ACPI Device IDs that represent a device’s Plug and Play Hardware ID
and its corresponding unique persistent ID. The ACPI IDs are stored in the ACPI _HID, _CID, and
_UID device identification objects that are associated with a device. The ACPI Device Path
contains values that must match exactly the ACPI name space that is provided by the platform
firmware to the operating system. Refer to the ACPI specification for a complete description of the
_HID, _CID, and _UID device identification objects.

The _HID and _CID values are optional device identification objects that appear in the ACPI name
space. If only _HID is present, the _HID must be used to describe any device that will be
enumerated by the ACPI driver. The _CID, if present, contains information that is important for the
OS to attach generic driver (e.g., PCI Bus Driver), while the _HID contains information important
for the OS to attach device-specific driver. The ACPI bus driver only enumerates a device when no
standard bus enumerator exists for a device.

The _UID object provides the OS with a serial number-style ID for a device that does not change
across reboots. The object is optional, but is required when a system contains two devices that
report the same _HID. The _UID only needs to be unique among all device objects with the same
_HID value. If no _UID exists in the APCI name space for a _HID the value of zero must be stored
in the _UID field of the ACPI Device Path.

The ACPI Device Path is only used to describe devices that are not defined by a Hardware Device
Path. An _HID (along with _CID if present) is required to represent a PCI root bridge, since the
PCI specification does not define the programming model for a PCI root bridge. There are two
subtypes of the ACPI Device Path: a simple subtype that only includes the _HID and _UID fields,
and an extended subtype that includes the _HID, _CID, and _UID fields.

The ACPI Device Path node only supports numeric 32-bit values for the _HID and _UID values.
The Expanded ACPI Device Path node supports both numeric and string values for the _HID,
_UID, and _CID values. As a result, the ACPI Device Path node is smaller and should be used if
possible to reduce the size of device paths that may potentially be stored in nonvolatile storage. If a
string value is required for the _HID field, or a string value is required for the _UID field, or a
_CID field is required, then the Expanded ACPI Device Path node must be used. If a string field of
the Expanded ACPI Device Path node is present, then the corresponding numeric field is ignored.

The _HID and _CID fields in the ACPI Device Path node and Expanded ACPI Device Path node
are stored as a 32-bit compressed EISA-type IDs. The following macro can be used to compute
these EISA-type IDs from a Plug and Play Hardware ID. The Plug and Play Hardware IDs used to
compute the _HID and _CID fields in the EFI device path nodes must match the Plug and Play
Hardware IDs used to build the matching entries in the ACPI tables. The compressed EISA-type
IDs produced by this macro differ from the compressed EISA-type IDs stored in ACPI tables. As a
result, the compressed EISA-type IDs from the ACPI Device Path nodes cannot be directly
compared to the compressed EISA-type IDs from the ACPI table.

#define EFI_PNP_ID(ID) (UINT32)(((ID) << 16) | 0x41D0)

#define EISA_PNP_ID(ID) EFI_PNP_ID(ID)

Extensible Firmware Interface Specification

8-8 12/01/02 Version 1.10

Table 8-8. ACPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 1 ACPI Device Path.

Length 2 2 Length of this structure in bytes. Length is 12 bytes.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. Only the 32-bit
numeric value type of _UID is supported; thus strings must
not be used for the _UID in the ACPI name space.

Table 8-9. Expanded ACPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 2 Expanded ACPI Device Path.

Length 2 2 Length of this structure in bytes. Minimum length is
19 bytes. The actual size will depend on the size of
the _HIDSTR, _UIDSTR, and _CIDSTR fields.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space.

_CID 12 4 Device’s compatible PnP hardware ID stored in a numeric
32-bit compressed EISA-type ID. This value must match at
least one of the compatible device IDs returned by the
corresponding _CID in the ACPI name space.

_HIDSTR 16 >=1 Device’s PnP hardware ID stored as a null-terminated ASCII
string. This value must match the corresponding _HID in
the ACPI name space. If the length of this string not
including the null-terminator is 0, then the _HID field is used.
If the length of this null-terminated string is greater than 0,
then this field supercedes the _HID field.

continued

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-9

Table 8-9. Expanded ACPI Device Path (continued)

Mnemonic

Byte
Offset

Byte
Length

Description

_UIDSTR Varies >=1 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. This value is
stored as a null-terminated ASCII string. If the length of this
string not including the null-terminator is 0, then the _UID
field is used. If the length of this null-terminated string is
greater than 0, then this field supercedes the _UID field.
The Byte Offset of this field can be computed by adding 16
to the size of the _HIDSTR field.

_CIDSTR Varies >=1 Device’s compatible PnP hardware ID stored as a null-
terminated ASCII string. This value must match at least one
of the compatible device IDs returned by the corresponding
_CID in the ACPI name space. If the length of this string not
including the null-terminator is 0, then the _CID field is used.
If the length of this null-terminated string is greater than 0,
then this field supercedes the _CID field. The Byte Offset of
this field can be computed by adding 16 to the sum of the
sizes of the _HIDSTR and _UIDSTR fields.

8.3.4 Messaging Device Path
This Device Path is used to describe the connection of devices outside the resource domain of the
system. This Device Path can describe physical messaging information like SCSI ID or abstract
information like networking protocol IP addresses.

8.3.4.1 ATAPI Device Path

Table 8-10. ATAPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 1 – ATAPI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

PrimarySecondary 4 1 Set to zero for primary or one for secondary

SlaveMaster 5 1 Set to zero for master or one for slave mode

Logical Unit Number 6 2 Logical Unit Number

Extensible Firmware Interface Specification

8-10 12/01/02 Version 1.10

8.3.4.2 SCSI Device Path

Table 8-11. SCSI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 2 – SCSI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Target ID 4 2 Target ID on the SCSI bus, PUN

Logical Unit Number 6 2 Logical Unit Number, LUN

8.3.4.3 Fibre Channel Device Path

Table 8-12. Fibre Channel Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 3 – Fibre Channel

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Number 8 8 Fibre Channel World Wide Number

Logical Unit Number 16 8 Fibre Channel Logical Unit Number

8.3.4.4 1394 Device Path

Table 8-13. 1394 Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 4 – 1394

Length 2 2 Length of this structure in bytes. Length is 16 bytes.

Reserved 4 4 Reserved

GUID1 8 8 1394 Global Unique ID (GUID)1

Notes: 1The usage of the term GUID is per the 1394 specification. This is not the same as the EFI_GUID
type defined in the EFI Specification.

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-11

8.3.4.5 USB Device Path

Table 8-14. USB Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 5 – USB

Length 2 2 Length of this structure in bytes. Length is 16 bytes.

USB Parent Port Number 4 1 USB Parent Port Number

Interface 5 1 USB Interface Number

8.3.4.6 USB Class Device Path

Table 8-15. USB Class Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 - Messaging Device Path.

Sub-Type 1 1 Sub-Type 15 - USB Class.

Length 2 2 Length of this structure in bytes. Length is 11 bytes.

Vendor ID 4 2 Vendor ID assigned by USB-IF. A value of 0xFFFF will
match any Vendor ID.

Product ID 6 2 Product ID assigned by USB-IF. A value of 0xFFFF will
match any Product ID.

Device Class 8 1 The class code assigned by the USB-IF. A value of 0xFF
will match any class code.

Device Subclass 9 1 The subclass code assigned by the USB-IF. A value of
0xFF will match any subclass code.

Device Protocol 10 1 The protocol code assigned by the USB-IF. A value of 0xFF
will match any protocol code.

Extensible Firmware Interface Specification

8-12 12/01/02 Version 1.10

8.3.4.7 I2O Device Path

Table 8-16. I2O Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 6 – I2O Random Block Storage Class

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

TID 4 4 Target ID (TID) for a device

8.3.4.8 MAC Address Device Path

Table 8-17. MAC Address Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 11 – MAC Address for a network interface

Length 2 2 Length of this structure in bytes. Length is 37 bytes.

MAC Address 4 32 The MAC address for a network interface padded with 0s

IfType 36 1 Network interface type(i.e. 802.3, FDDI). See RFC 1700

8.3.4.9 IPv4 Device Path

Table 8-18. IPv4 Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 12 – IPv4

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Local IP Address 4 4 The local IPv4 address

Remote IP Address 8 4 The remote IPv4 address

Local Port 12 2 The local port number

Remote Port 14 2 The remote port number

Protocol 16 2 The network protocol(i.e. UDP, TCP). See RFC 1700

StaticIPAddress 18 1 0x00 - The Source IP Address was assigned though DHCP

0x01 - The Source IP Address is statically bound

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-13

8.3.4.10 IPv6 Device Path

Table 8-19. IPv6 Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 13 – IPv6

Length 2 2 Length of this structure in bytes. Length is 43 bytes.

Local IP Address 4 16 The local IPv6 address

Remote IP Address 20 16 The remote IPv6 address

Local Port 36 2 The local port number

Remote Port 38 2 The remote port number

Protocol 40 2 The network protocol (i.e. UDP, TCP). See RFC 1700

StaticIPAddress 42 1 0x00 - The Source IP Address was assigned though DHCP

0x01 - The Source IP Address is statically bound

8.3.4.11 InfiniBand Device Path

Table 8-20. InfiniBand Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 9 – InfiniBand

Length 2 2 Length of this structure in bytes. Length is 48 bytes.

Resource Flags 4 4 Flags to help identify/manage InfiniBand device path
elements:

• Bit 0 – IOC/Service (0b = IOC, 1b = Service)

• Bit 1 – Extend Boot Environment

• Bit 2 – Console Protocol

• Bit 3 – Storage Protocol

• Bit 4 – Network Protocol

All other bits are reserved.

PORT GID 8 16 128-bit Global Identifier for remote fabric port

IOC GUID/Service ID 24 8 64-bit unique identifier to remote IOC or server process.
Interpretation of field specified by Resource Flags (bit 0)

Target Port ID 32 8 64-bit persistent ID of remote IOC port

Device ID 40 8 64-bit persistent ID of remote device

Note: The usage of the terms GUID and GID is per the InfiniBand Specification. The term GUID is not
the same as the EFI_GUID type defined in this EFI Specification.

Extensible Firmware Interface Specification

8-14 12/01/02 Version 1.10

8.3.4.12 UART Device Path

Table 8-21. UART Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 14 – UART

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Reserved 4 4 Reserved

Baud Rate 8 8 The baud rate setting for the UART style device. A value of
0 means that the device's default baud rate will be used.

Data Bits 16 1 The number of data bits for the UART style device. A value
of 0 means that the device's default number of data bits will
be used.

Parity 17 1 The parity setting for the UART style device.

Parity 0x00 - Default Parity
Parity 0x01 - No Parity
Parity 0x02 - Even Parity

Parity 0x03 - Odd Parity
Parity 0x04 - Mark Parity
Parity 0x05 - Space Parity

Stop Bits 18 1 The number of stop bits for the UART style device.
Stop Bits 0x00 - Default Stop Bits

Stop Bits 0x01 - 1 Stop Bit
Stop Bits 0x02 - 1.5 Stop Bits
Stop Bits 0x03 - 2 Stop Bits

8.3.4.13 Vendor-Defined Messaging Device Path

Table 8-22. Vendor-Defined Messaging Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows

Vendor Defined Data 20 n Vendor-defined variable size data

The following two GUIDs are used with a Vendor-Defined Messaging Device Path to describe the
transport protocol for use with PC-ANSI, VT-100, VT-100+, and VT-UTF8 terminals. Device
paths can be constructed with this node as the last node in the device path. The rest of the device
path describes the physical device that is being used to transmit and receive data. The PC-ANSI,
VT-100, VT-100+, and VT-UTF8 GUIDs define the format of the data that is being sent though the
physical device. Additional GUIDs can be generated to describe additional transport protocols.

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-15

#define EFI_PC_ANSI_GUID \
 { 0xe0c14753,0xf9be,0x11d2,0x9a,0x0c,0x00,0x90,0x27,0x3f,0xc1,0x4d }

#define EFI_VT_100_GUID \
 { 0xdfa66065,0xb419,0x11d3,0x9a,0x2d,0x00,0x90,0x27,0x3f,0xc1,0x4d }

#define EFI_VT_100_PLUS_GUID \
 { 0x7baec70b,0x57e0,0x4c76,0x8e,0x87,0x2f,0x9e,0x28,0x08,0x83,0x43 }

#define EFI_VT_UTF8_GUID \
 { 0xad15a0d6,0x8bec,0x4acf,0xa0,0x73,0xd0,0x1d,0xe7,0x7e,0x2d,0x88 }

8.3.4.14 UART Flow Control Messaging Path
The UART messaging device path defined in the EFI 1.02 specification does not contain a
provision for flow control. Therefore, a new device path node is needed to declare flow control
characteristics. It is a vendor-defined messaging node which may be appended to the UART node
in a device path. It has the following definition:

#define DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL \
{0X37499A9D,0X542F,0X4C89,0XA0,0X26,0X35,0XDA,0X14,0X20,0X94,0XE4}

Table 8-23. UART Flow Control Messaging Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Vendor_GUID 4 16 DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL

Flow_Control_Map 20 4 Bitmap of supported flow control types.

Bit 0 set indicates hardware flow control.

Bit 1 set indicates Xon/Xoff flow control.

All other bits are reserved and are clear.

A debugport driver that implements Xon/Xoff flow control would produce a device path similar to
the following:
ACPI(PciRootBridge)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,n,8,1)
/UartFlowCtrl(2)/DebugPort()

NOTE

If no bits are set in the Flow_Control_Map, this indicates there is no flow control and is equivalent
to leaving the flow control node out of the device path completely.

Extensible Firmware Interface Specification

8-16 12/01/02 Version 1.10

8.3.5 Media Device Path
This Device Path is used to describe the portion of the medium that is being abstracted by a boot
service. An example of Media Device Path would be defining which partition on a hard drive was
being used.

8.3.5.1 Hard Drive
The Hard Drive Media Device Path is used to represent a partition on a hard drive. The master boot
record (MBR) that resides in the first sector of the disk defines the partitions on a disk. Partitions
are addressed in EFI starting at LBA zero. Partitions are numbered one through n. A partition
number of zero can be used to represent the raw hard drive.

The MBR Type is stored in the Device Path to allow new MBR types to be added in the future.
The Hard Drive Device Path also contains a Disk Signature and a Disk Signature Type. The disk
signature is maintained by the OS and only used by EFI to partition Device Path nodes. The disk
signature enables the OS to find disks even after they have been physically moved in a system.

Table 8-24. Hard Drive Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub-Type 1 – Hard Drive

Length 2 2 Length of this structure in bytes. Length is 42 bytes.

Partition Number 4 4 Partition Number of the hard drive. Partition numbers start
at one. Partition number zero represents the entire device.
Partitions are defined by entries in the master boot record in
the first sector of the hard disk device.

Partition Start 8 8 Starting LBA of the partition on the hard drive

Partition Size 16 8 Size of the partition in units of Logical Blocks

Partition Signature 24 16 Signature unique to this partition

MBR Type 40 1 MBR Type: (Unused values reserved)

0x01 – PC-AT compatible MBR. Partition Start and Partition
Size come from PartitionStartingLBA and
PartitionSizeInLBA for the partition.

0x02 – EFI Partition Table Header.

Signature Type 41 1 Type of Disk Signature: (Unused values reserved)

0x00 – No Disk Signature.

0x01 – 32-bit signature from address 0x1b8 of the type
0x01 MBR.

0x02 – GUID signature.

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-17

The following structure defines a MBR for EFI:

typedef struct _MBR_PARTITION {
 UINT8 BootIndicator; // 0x80 for active partition
 UINT8 PartitionStartCHS[3];
 UINT8 OS_Indicator;
 UINT8 PartitionEndCHS[3];
 UINT32 PartitionStartingLBA;
 UINT32 PartitionSizeInLBA;
} MBR_PARTITION;

typedef struct _PC_MBR {
 UINT8 MBRCode[0x1BE];
 MBR_PARTITION PartitionEntry[4];
 UINT16 Signature; // Must be 0xaa55
} PC_MBR;

8.3.5.2 CD-ROM Media Device Path
The CD-ROM Media Device Path is used to define a system partition that exists on a CD-ROM.
The CD-ROM is assumed to contain an ISO-9660 file system and follow the CD-ROM “El Torito”
format. The Boot Entry number from the Boot Catalog is how the “El Torito” specification defines
the existence of bootable entities on a CD-ROM. In EFI the bootable entity is an EFI System
Partition that is pointed to by the Boot Entry.

Table 8-25. CD-ROM Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 2 – CD-ROM “El Torito” Format.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Boot Entry 4 4 Boot Entry number from the Boot Catalog. The
Initial/Default entry is defined as zero.

Partition Start 8 8 Starting RBA of the partition on the medium. CD-ROMs use
Relative logical Block Addressing.

Partition Size 16 8 Size of the partition in units of Blocks, also called Sectors.

Extensible Firmware Interface Specification

8-18 12/01/02 Version 1.10

8.3.5.3 Vendor-Defined Media Device Path

Table 8-26. Vendor-Defined Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 3 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.

8.3.5.4 File Path Media Device Path

Table 8-27. File Path Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 4 – File Path.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Path Name 4 n Unicode Path string including directory and file names. The
length of this string n can be determined by subtracting 4
from the Length entry. A device path may contain one or
more of these nodes. The complete path to a file can be
found by concatenating all the File Path Media Device Path
nodes. This is typically used to describe the directory path
in one node, and the filename in another node.

8.3.5.5 Media Protocol Device Path
The Media Protocol Device Path is used to denote the protocol that is being used in a device path at
the location of the path specified. Many protocols are inherent to the style of device path.

Table 8-28. Media Protocol Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 5 – Media Protocol.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Protocol GUID 4 16 The ID of the protocol.

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-19

8.3.6 BIOS Boot Specification Device Path
This Device Path is used to describe the booting of non-EFI-aware operating systems. This Device
Path is based on the IPL and BCV table entry data structures defined in Appendix A of the BIOS
Boot Specification. The BIOS Boot Specification Device Path defines a complete Device Path and
is not used with other Device Path entries. This Device Path is only needed to enable platform
firmware to select a legacy non-EFI OS as a boot option.

Table 8-29. BIOS Boot Specification Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 5 – BIOS Boot Specification Device Path.

Sub-Type 1 1 Sub-Type 1 – BIOS Boot Specification Version 1.01.

Length 2 2 Length of this structure in bytes. Length is 8 + n bytes.

Device Type 4 2 Device Type as defined by the BIOS Boot Specification.

Status Flag 6 2 Status Flags as defined by the BIOS Boot Specification

Description String 8 n ASCIIZ string that describes the boot device to a user. The
length of this string n can be determined by subtracting 8
from the Length entry.

Example BIOS Boot Specification Device Types would include:

• 00h = Reserved
• 01h = Floppy
• 02h = Hard Disk
• 03h = CD-ROM
• 04h = PCMCIA
• 05h = USB
• 06h = Embedded network
• 07h..7Fh = Reserved
• 80h = BEV device
• 81h..FEh = Reserved
• FFh = Unknown

Extensible Firmware Interface Specification

8-20 12/01/02 Version 1.10

8.4 Device Path Generation Rules

8.4.1 Housekeeping Rules
The Device Path is a set of Device Path nodes. The Device Path must be terminated by an End of
Device Path node with a sub-type of End the Entire Device Path. A NULL Device Path consists of
a single End Device Path Node. A Device Path that contains a NULL pointer and no Device Path
structures is illegal.

All Device Path nodes start with the generic Device Path structure. Unknown Device Path types
can be skipped when parsing the Device Path since the length field can be used to find the next
Device Path structure in the stream. Any future additions to the Device Path structure types will
always start with the current standard header. The size of a Device Path can be determined by
traversing the generic Device Path structures in each header and adding up the total size of the
Device Path. This size will include the four bytes of the End of Device Path structure.

Multiple hardware devices may be pointed to by a single Device Path. Each hardware device will
contain a complete Device Path that is terminated by the Device Path End Structure. The Device
Path End Structures that do not end the Device Path contain a sub-type of End This Instance of the
Device Path. The last Device Path End Structure contains a sub-type of End Entire Device Path.

8.4.2 Rules with ACPI _HID and _UID
As described in the ACPI specification, ACPI supports several different kinds of device
identification objects, including _HID, _CID and _UID. The _UID device identification objects are
optional in ACPI and only required if more than one _HID exists with the same ID. The ACPI
Device Path structure must contain a zero in the _UID field if the ACPI name space does not
implement _UID. The _UID field is a unique serial number that persists across reboots.

If a device in the ACPI name space has a _HID and is described by a _CRS (Current Resource
Setting) then it should be described by an ACPI Device Path structure. A _CRS implies that a
device is not mapped by any other standard. A _CRS is used by ACPI to make a nonstandard
device into a Plug and Play device. The configuration methods in the ACPI name space allow the
ACPI driver to configure the device in a standard fashion. The presence of a _CID determines
whether the ACPI Device Path node or the Expanded ACPI Device Path node should be used.

Table 8-30 maps ACPI _CRS devices to EFI Device Path.

Table 8-30. ACPI _CRS to EFI Device Path Mapping

ACPI _CRS Item EFI Device Path

PCI Root Bus ACPI Device Path: _HID PNP0A03, _UID

Floppy ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

Keyboard ACPI Device Path: _HID PNP0301, _UID 0

Serial Port ACPI Device Path: _HID PNP0501, _UID Serial Port COM number 0-3

Parallel Port ACPI Device Path: _HID PNP0401, _UID LPT number 0-3

 Protocols — Device Path Protocol

Version 1.10 12/01/02 8-21

Support of root PCI bridges requires special rules in the EFI Device Path. A root PCI bridge is a
PCI device usually contained in a chipset that consumes a proprietary bus and produces a PCI bus.
In typical desktop and mobile systems there is only one root PCI bridge. On larger server systems
there are typically multiple root PCI bridges. The operation of root PCI bridges is not defined in
any current PCI specification. A root PCI bridge should not be confused with a PCI to PCI bridge
that both consumes and produces a PCI bus. The operation and configuration of PCI to PCI bridges
is fully specified in current PCI specifications.

Root PCI bridges will use the plug and play ID of PNP0A03, This will be stored in the ACPI
Device Path _HID field, or in the Expanded ACPI Device Path _CID field to match the ACPI name
space. The _UID in the ACPI Device Path structure must match the _UID in the ACPI name space.

8.4.3 Rules with ACPI _ADR
If a device in the ACPI name space can be completely described by a _ADR object then it will map
to an EFI ACPI, Hardware, or Message Device Path structure. A _ADR method implies a bus with
a standard enumeration algorithm. If the ACPI device has a _ADR and a _CRS method, then it
should also have a _HID method and follow the rules for using _HID.

Table 8-31 relates the ACPI_ADR bus definition to the EFI Device Path:

Table 8-31. ACPI _ADR to EFI Device Path Mapping

ACPI _ADR Bus EFI Device Path

EISA Not supported

Floppy Bus ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

IDE Controller ATAPI Message Device Path: Maser/Slave : LUN

IDE Channel ATAPI Message Device Path: Maser/Slave : LUN

PCI PCI Hardware Device Path

PCMCIA Not Supported

PC CARD PC CARD Hardware Device Path

SMBus Not Supported

Extensible Firmware Interface Specification

8-22 12/01/02 Version 1.10

8.4.4 Hardware vs. Messaging Device Path Rules
Hardware Device Paths are used to define paths on buses that have a standard enumeration
algorithm and that relate directly to the coherency domain of the system. The coherency domain is
defined as a global set of resources that is visible to at least one processor in the system. In a
typical system this would include the processor memory space, IO space, and PCI configuration
space.

Messaging Device Paths are used to define paths on buses that have a standard enumeration
algorithm, but are not part of the global coherency domain of the system. SCSI and Fibre Channel
are examples of this kind of bus. The Messaging Device Path can also be used to describe virtual
connections over network-style devices. An example would be the TCPI/IP address of a internet
connection.

Thus Hardware Device Path is used if the bus produces resources that show up in the coherency
resource domain of the system. A Message Device Path is used if the bus consumes resources from
the coherency domain and produces resources out side the coherency domain of the system.

8.4.5 Media Device Path Rules
The Media Device Path is used to define the location of information on a medium. Hard Drives are
subdivided into partitions by the MBR and a Media Device Path is used to define which partition is
being used. A CD-ROM has boot partitions that are defined by the “El Torito” specification, and
the Media Device Path is used to point to these partitions.

A BLOCK_IO protocol is produced for both raw devices and partitions on devices. This allows the
SIMPLE_FILE_SYSTEM protocol to not have to understand media formats. The BLOCK_IO
protocol for a partition contains the same Device Path as the parent BLOCK_IO protocol for the
raw device with the addition of a Media Device Path that defines which partition is being
abstracted.

The Media Device Path is also used to define the location of a file in a file system. This Device
Path is used to load files and to represent what file an image was loaded from.

8.4.6 Other Rules
The BIOS Boot Specification Device Path is not a typical Device Path. A Device Path containing
the BIOS Boot Specification Device Path should only contain the required End Device Path
structure and no other Device Path structures. The BIOS Boot Specification Device Path is only
used to allow the EFI boot menus to boot a legacy operating system from legacy media.

The EFI Device Path can be extended in a compatible fashion by assigning your own vendor GUID
to a Hardware, Messaging, or Media Device Path. This extension is guaranteed to never conflict
with future extensions of this specification

The EFI specification reserves all undefined Device Path types and subtypes. Extension is only
permitted using a Vendor GUID Device Path entry.

Version 1.10 12/01/02 9-1

9
Protocols - EFI Driver Model

EFI drivers that follow the EFI Driver Model are not allowed to search for controllers to manage.
When a specific controller is needed, the EFI boot service ConnectController() is used
along with the EFI_DRIVER_BINDING_PROTOCOL services to identify the best drivers for a
controller. Once ConnectController() has identified the best drivers for a controller, the
start service in the EFI_DRIVER_BINDING_PROTOCOL is used by ConnectController()
to start each driver on the controller. Once a controller is no longer needed, it can be released with
the EFI boot service DisconnectController(). DisconnectController() calls the
stop service in each EFI_DRIVER_BINDING_PROTOCOL to stop the controller.

The driver initialization routine of an EFI driver is not allowed to touch any device hardware.
Instead, it just installs an instance of the EFI_DRIVER_BINDING_PROTOCOL on the
ImageHandle of the EFI driver. The test to determine if a driver supports a given controller
must be performed in as little time as possible without causing any side effects on any of the
controllers it is testing. As a result, most of the controller initialization code is present in the start
and stop services of the EFI_DRIVER_BINDING_PROTOCOL.

9.1 EFI Driver Binding Protocol

This section provides a detailed description of the EFI_DRIVER_BINDING_PROTOCOL. This
protocol is produced by every driver that follows the EFI Driver Model, and it is the central
component that allows drivers and controllers to be managed. It provides a service to test if a
specific controller is supported by a driver, a service to start managing a controller, and a service to
stop managing a controller. These services apply equally to drivers for both bus controllers and
device controllers.

EFI_DRIVER_BINDING_PROTOCOL

Summary

Provides the services required to determine if a driver supports a given controller. If a controller is
supported, then it also provides routines to start and stop the controller.

GUID
#define EFI_DRIVER_BINDING_PROTOCOL_GUID \
{0x18A031AB,0xB443,0x4D1A,0xA5,0xC0,0x0C,0x09,0x26,0x1E,0x9F,0x71}

Extensible Firmware Interface Specification

9-2 12/01/02 Version 1.10

Protocol Interface Structure
typedef struct _EFI_DRIVER_BINDING_PROTOCOL {
 EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED Supported;
 EFI_DRIVER_BINDING_PROTOCOL_START Start;
 EFI_DRIVER_BINDING_PROTOCOL_STOP Stop;
 UINT32 Version;
 EFI_HANDLE ImageHandle;
 EFI_HANDLE DriverBindingHandle;
} EFI_DRIVER_BINDING_PROTOCOL;

Parameters

Supported Tests to see if this driver supports a given controller. This
service is called by the EFI boot service
ConnectController(). In order to make drivers as small
as possible, there are a few calling restrictions for this service.
ConnectController() must follow these calling
restrictions. If any other agent wishes to call Supported() it
must also follow these calling restrictions. See the
Supported() function description.

Start Starts a controller using this driver. This service is called by the
EFI boot service ConnectController(). In order to make
drivers as small as possible, there are a few calling restrictions
for this service. ConnectController() must follow these
calling restrictions. If any other agent wishes to call Start()
it must also follow these calling restrictions. See the Start()
function description.

Stop Stops a controller using this driver. This service is called by the
EFI boot service DisconnectController(). In order to
make drivers as small as possible, there are a few calling
restrictions for this service. DisconnectController()
must follow these calling restrictions. If any other agent wishes
to call Stop() it must also follow these calling restrictions.
See the Stop() function description.

Version The version number of the EFI Driver that produced the
EFI_DRIVER_BINDING_PROTOCOL. This field is used by
the EFI boot service ConnectController() to determine
the order that driver’s Supported() service will be used
when a controller needs to be started. EFI Driver Binding
Protocol instances with higher Version values will be used
before ones with lower Version values. The Version values
of 0x0-0x0f and 0xfffffff0-0xffffffff are reserved
for platform/OEM specific drivers. The Version values of
0x10-0xffffffef are reserved for IHV-developed drivers.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-3

ImageHandle The image handle of the EFI Driver that produced this instance
of the EFI_DRIVER_BINDING_PROTOCOL.

DriverBindingHandle The handle on which this instance of the
EFI_DRIVER_BINDING_PROTOCOL is installed. In most
cases, this is the same handle as ImageHandle. However, for
EFI Drivers that produce more than one instance of the
EFI_DRIVER_BINDING_PROTOCOL, this value may not be
the same as ImageHandle.

Description

The EFI_DRIVER_BINDING_PROTOCOL provides a service to determine if a driver supports a
given controller. If a controller is supported, then it also provides services to start and stop the
controller. All EFI drivers are required to be reentrant so they can manage one or more controllers.
This requires that drivers not use global variables to store device context. Instead, they must
allocate a separate context structure per controller that the driver is managing. Bus drivers must
support starting and stopping the same bus multiple times, and they must also support starting and
stopping all of their children, or just a subset of their children.

Extensible Firmware Interface Specification

9-4 12/01/02 Version 1.10

EFI_DRIVER_BINDING_PROTOCOL.Supported()

Summary

Tests to see if this driver supports a given controller. If a child device is provided, it further tests to
see if this driver supports creating a handle for the specified child device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL
instance.

ControllerHandle The handle of the controller to test. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.
Sometimes just the presence of this I/O abstraction is enough for
the driver to determine if it supports ControllerHandle.
Sometimes, the driver may use the services of the I/O abstraction
to determine if this driver supports ControllerHandle.

RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.

Description

This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that
the device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with
FreePages(), AllocatePool() with FreePool(), and OpenProtocol() with

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-5

CloseProtocol(). Since ControllerHandle may have been previously started by the
same driver, if a protocol is already in the opened state, then it must not be closed with
CloseProtocol(). This is required to guarantee the state of ControllerHandle is not
modified by this function.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already open for exclusive access by a different driver or
application, then EFI_ACCESS_DENIED is returned.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already opened by the same driver, then
EFI_ALREADY_STARTED is returned. However, if the driver specified by This is a bus driver
that is able to create one child handle at a time, then it is not an error, and the bus driver should
continue with its test of ControllerHandle. This allows a bus driver to create one child
handle on the first call to Supported() and Start(), and create additional child handles on
additional calls to Supported() and Start().

If ControllerHandle is not supported by This, then EFI_UNSUPPORTED is returned.

If This is a bus driver that creates child handles with an EFI_DEVICE_PATH_PROTOCOL, then
ControllerHandle must support the EFI_DEVICE_PATH. If it does not, then
EFI_UNSUPPORTED is returned.

If ControllerHandle is supported by This, and This is a device driver, then
EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is NULL, then EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is not NULL, then RemainingDevicePath must be analyzed. If
RemainingDevicePath starts with an EFI Device Path node that the bus driver recognizes and
supports, then EFI_SUCCESS is returned. Otherwise, EFI_UNSUPPORTED is returned.

The Supported() function is designed to be invoked from the EFI boot service
ConnectController(). As a result, much of the error checking on the parameters to
Supported() has been moved into this common boot service. It is legal to call Supported()
from other locations, but the following calling restrictions must be followed or the system behavior
will not be deterministic.

ControllerHandle must be a valid EFI_HANDLE. If RemainingDevicePath is not
NULL, then it must be a pointer to a naturally aligned EFI_DEVICE_PATH that contains at least
one device path node other than the end node.

Extensible Firmware Interface Specification

9-6 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The device specified by ControllerHandle and

RemainingDevicePath is supported by the driver specified by
This.

EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.

EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different

driver or an application that requires exclusive access.

EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by
This.

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
return Status;

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-7

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example

 // would return EFI_SUCCESS if the SCSI driver supports creating the
 // child handle for PUN=3, LUN=0. Otherwise it would return an error.

//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
return Status;

Pseudo Code

Listed below are the algorithms for the Supported() function for three different types of
drivers. How the Start() function of a driver is implemented can affect how the
Supported() function is implemented. All of the services in the
EFI_DRIVER_BINDING_PROTOCOL need to work together to make sure that all resources
opened or allocated in Supported() and Start() are released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a bus driver that always creates
all of its child handles on the first call to Start(). The third is a more advanced bus driver that
can either create one child handles at a time on successive calls to Start(), or it can create all of
its child handles or all of the remaining child handles in a single call to Start().

Device Driver:

1. Ignore the parameter RemainingDevicePath.
2. Open all required protocols with OpenProtocol(). A standard driver should use an

Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol() and
return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol().
6. Return EFI_SUCCESS.

Extensible Firmware Interface Specification

9-8 12/01/02 Version 1.10

Bus Driver that creates all of its child handles on the first call to Start():

1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure
it is a legal Device Path Node for this bus driver’s children. If it is not, then return
EFI_UNSUPPORTED.

2. Open all required protocols with OpenProtocol(). A standard driver should use an
Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol() and
return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol().
6. Return EFI_SUCCESS.

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure
it is a legal Device Path Node for this bus driver’s children. If it is not, then return
EFI_UNSUPPORTED.

2. Open all required protocols with OpenProtocol(). A standard driver should use an
Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) failed with an error other than
EFI_ALREADY_STARTED, then close all of the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol(), and return the status code from the
OpenProtocol() call that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol() and return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) that did not return EFI_ALREADY_STARTED with
CloseProtocol().

6. Return EFI_SUCCESS.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-9

Listed below is sample code of the Supported() function of device driver for a device on the
XYZ bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. Just the presence of
the EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. The gBS variable is initialized in this driver’s entry point. See
Chapter 4.

extern EFI_GUID gEfiXyzIoProtocol;
EFI_BOOT_SERVICES_TABLE *gBS;

EFI_STATUS
AbcSupported (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;

 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 This->DriverBindingHandle,
 ControllerHandle
);

 return EFI_SUCCESS;
}

Extensible Firmware Interface Specification

9-10 12/01/02 Version 1.10

EFI_DRIVER_BINDING_PROTOCOL.Start()

Summary

Starts a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_START) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH *RemainingDevicePath OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL
instance.

ControllerHandle The handle of the controller to start. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.

RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL, then only the handle for the child
device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.

Description

This function starts the device specified by Controller with the driver specified by This.
Whatever resources are allocated in Start() must be freed in Stop(). For example, every
AllocatePool(), AllocatePages(), OpenProtocol(), and
InstallProtocolInterface() in Start() must be matched with a FreePool(),
FreePages(), CloseProtocol(), and UninstallProtocolInterface() in
Stop().

If Controller is started, then EFI_SUCCESS is returned. If Controller cannot be started
due to a device error, then EFI_DEVICE_ERROR is returned. If there are not enough resources to
start the device or bus specified by Controller, then EFI_OUT_OF_RESOURCES is returned.

If the driver specified by This is a device driver, then RemainingDevicePath is ignored.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-11

If the driver specified by This is a bus driver, and RemainingDevicePath is NULL, then all
of the children of Controller are discovered and enumerated, and a device handle is created for
each child.

If the driver specified by This is a bus driver that is capable of creating one child handle at a time
and RemainingDevicePath is not NULL, then only the device handle for the child device
specified by RemainingDevicePath is created. Depending on the bus type, all of the child
devices may need to be discovered and enumerated, but only device handle for the one child
specified by RemainingDevicePath shall be created.

The Start() function is designed to be invoked from the EFI boot service
ConnectController(). As a result, much of the error checking on the parameters to
Start() has been moved into this common boot service. It is legal to call Start() from other
locations, but the following calling restrictions must be followed or the system behavior will not be
deterministic.

1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned

EFI_DEVICE_PATH that contains at least one device path node other than the end node.
3. Prior to calling Start(), the Supported() function for the driver specified by This must

have been called with the same calling parameters, and Supported() must have returned
EFI_SUCCESS.

Status Codes Returned
EFI_SUCCESS The device was started.

EFI_DEVICE_ERROR The device could not be started due to a device error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

Extensible Firmware Interface Specification

9-12 12/01/02 Version 1.10

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 NULL
);
}

return Status;

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example

 // would return EFI_SUCCESS if the SCSI driver supports creating the
 // child handle for PUN=3, LUN=0. Otherwise it would return an error.

//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
}

return Status;

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-13

Pseudo Code

Listed below are the algorithms for the Start() function for three different types of drivers.
How the Start() function of a driver is implemented can affect how the Supported()
function is implemented. All of the services in the EFI_DRIVER_BINDING_PROTOCOL need to
work together to make sure that all resources opened or allocated in Supported() and
Start() are released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a simple bus driver that always
creates all of its child handles on the first call to Start(). It does not attach any additional
protocols to the handle for the bus controller. The third is a more advanced bus driver that can
either create one child handles at a time on successive calls to Start(), or it can create all of its
child handles or all of the remaining child handles in a single call to Start(). Once again, it does
not attach any additional protocols to the handle for the bus controller.

Device Driver:

1. Ignore the parameter RemainingDevicePath.
2. Open all required protocols with OpenProtocol(). A standard driver should use an

Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

4. Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in (2) with CloseProtocol(), and return EFI_DEVICE_ERROR.

5. Allocate and initialize all of the data structures that this driver requires to manage the device
specified by ControllerHandle. This would include space for public protocols and space
for any additional private data structures that are related to ControllerHandle. If an error
occurs allocating the resources, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_OUT_OF_RESOURCES.

6. Install all the new protocol interfaces onto ControllerHandle using
InstallMultipleProtocolInterfaces(). If an error occurs, close all of the
protocols opened in (1) with CloseProtocol(), and return the error from
InstallMultipleProtocolInterfaces().

7. Return EFI_SUCCESS.

Extensible Firmware Interface Specification

9-14 12/01/02 Version 1.10

Bus Driver that creates all of its child handles on the first call to Start():

1. Ignore the parameter RemainingDevicePath.
2. Open all required protocols with OpenProtocol(). A standard driver should use an

Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the
protocols opened in (2) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

4. Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in (2) with CloseProtocol(), and return EFI_DEVICE_ERROR.

5. Discover all the child devices of the bus controller specified by ControllerHandle.
6. If the bus requires it, allocate resources to all the child devices of the bus controller specified by

ControllerHandle.
7. FOR each child C of ControllerHandle:

a. Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (2) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

b. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

c. Initialize the child device C. If an error occurs, close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR.

d. Create a new handle for C, and install the protocol interfaces for child device C using
InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH protocol.

e. Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

8. END FOR
9. Return EFI_SUCCESS.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-15

Bus Driver that is able to create all or one of its child handles on each call to Start():
1. Open all required protocols with OpenProtocol(). A standard driver should use an

Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().

2. If any of the calls to OpenProtocol() in (1) returned an error, then close all of the protocols
opened in (1) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

3. Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in (1) with CloseProtocol(), and return EFI_DEVICE_ERROR.

4. IF RemainingDevicePath is not NULL, THEN
a. C is the child device specified by RemainingDevicePath.
b. Allocate and initialize all of the data structures that this driver requires to manage the child

device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (1) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

c. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

d. Initialize the child device C.
e. Create a new handle for C, and install the protocol interfaces for child device C using

InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH protocol.

f. Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

ELSE

5. Discover all the child devices of the bus controller specified by ControllerHandle.
6. If the bus requires it, allocate resources to all the child devices of the bus controller specified by

ControllerHandle.
7. FOR each child C of ControllerHandle

a. Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (1) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

b. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

c. Initialize the child device C.
d. Create a new handle for C, and install the protocol interfaces for child device C using

InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH protocol.

Extensible Firmware Interface Specification

9-16 12/01/02 Version 1.10

e. Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

8. END FOR
9. END IF
10. Return EFI_SUCCESS.

Listed below is sample code of the Start() function of a device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on
ControllerHandle. The gBS variable is initialized in this driver’s entry point as shown in the
EFI Driver Model examples in Chapter 4.

extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES_TABLE *gBS;

EFI_STATUS
AbcStart (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Open the Xyz I/O Protocol that this driver consumes
 //
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Allocate and zero a private data structure for the Abc device.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_ABC_DEVICE),
 &AbcDevice
);

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-17

 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }
 ZeroMem (AbcDevice, sizeof (EFI_ABC_DEVICE));

 //
 // Initialize the contents of the private data structure for the Abc device.
 // This includes the XyzIo protocol instance and other private data fields
 // and the EFI_ABC_IO_PROTOCOL instance that will be installed.
 //
 AbcDevice->Signature = EFI_ABC_DEVICE_SIGNATURE;
 AbcDevice->XyzIo = XyzIo;

 AbcDevice->PrivateData1 = PrivateValue1;
 AbcDevice->PrivateData2 = PrivateValue2;
 . . .
 AbcDevice->PrivateDataN = PrivateValueN;

 AbcDevice->AbcIo.Revision = EFI_ABC_IO_PROTOCOL_REVISION;
 AbcDevice->AbcIo.Func1 = AbcIoFunc1;
 AbcDevice->AbcIo.Func2 = AbcIoFunc2;
 . . .
 AbcDevice->AbcIo.FuncN = AbcIoFuncN;

 AbcDevice->AbcIo.Data1 = Value1;
 AbcDevice->AbcIo.Data2 = Value2;
 . . .
 AbcDevice->AbcIo.DataN = ValueN;

 //
 // Install protocol interfaces for the ABC I/O device.
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 &ControllerHandle,
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
 NULL
);
 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }

 return EFI_SUCCESS;

ErrorExit:
 //
 // When there is an error, the private data structures need to be freed and
 // the protocols that were opened need to be closed.
 //
 if (AbcDevice != NULL) {
 gBS->FreePool (AbcDevice);
 }
 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);
 return Status;
}

Extensible Firmware Interface Specification

9-18 12/01/02 Version 1.10

EFI_DRIVER_BINDING_PROTOCOL.Stop()

Summary

Stops a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_STOP) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN UINTN NumberOfChildren,
 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL
instance. Type EFI_DRIVER_BINDING_PROTOCOL is
defined in section 9.1.

ControllerHandle A handle to the device being stopped. The handle must support
a bus specific I/O protocol for the driver to use to stop the
device.

NumberOfChildren The number of child device handles in ChildHandleBuffer.

ChildHandleBuffer An array of child handles to be freed. May be NULL if
NumberOfChildren is 0.

Description

This function performs different operations depending on the parameter NumberOfChildren. If
NumberOfChildren is not zero, then the driver specified by This is a bus driver, and it is
being requested to free one or more of its child handles specified by NumberOfChildren and
ChildHandleBuffer. If all of the child handles are freed, then EFI_SUCCESS is returned. If
NumberOfChildren is zero, then the driver specified by This is either a device driver or a bus
driver, and it is being requested to stop the controller specified by ControllerHandle. If
ControllerHandle is stopped, then EFI_SUCCESS is returned. In either case, this function is
required to undo what was performed in Start(). Whatever resources are allocated in
Start() must be freed in Stop(). For example, every AllocatePool(),
AllocatePages(), OpenProtocol(), and InstallProtocolInterface() in
Start() must be matched with a FreePool(), FreePages(), CloseProtocol(), and
UninstallProtocolInterface() in Stop().

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-19

If ControllerHandle cannot be stopped, then EFI_DEVICE_ERROR is returned. If, for
some reason, there are not enough resources to stop ControllerHandle, then
EFI_OUT_OF_RESOURCES is returned. If ControllerHandle was not started by the driver
specified by This, then EFI_UNSUPPORTED is returned.

The Stop() function is designed to be invoked from the EFI boot service
DisconnectController(). As a result, much of the error checking on the parameters to
Stop() has been moved into this common boot service. It is legal to call Stop() from other
locations, but the following calling restrictions must be followed or the system behavior will not be
deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this

same driver’s Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid

EFI_HANDLE. In addition, all of these handles must have been created in this driver’s
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

Status Codes Returned
EFI_SUCCESS The device was stopped.

EFI_DEVICE_ERROR The device could not be stopped due to a device error.

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_HANDLE ChildHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// Use the Driver Binding Protocol instance to free the child
// specified by ChildHandle. Then, use the Driver Binding
// Protocol to stop ControllerHandle.
//

Extensible Firmware Interface Specification

9-20 12/01/02 Version 1.10

Status = DriverBinding->Stop (
 DriverBinding,
 ControllerHandle,
 1,
 &ChildHandle
);

Status = DriverBinding->Stop (
 DriverBinding,
 ControllerHandle,
 0,
 NULL
);

Pseudo Code

Device Driver:

1. Uninstall all the protocols that were installed onto ControllerHandle in Start().
2. Close all the protocols that were opened on behalf of ControllerHandle in Start().
3. Free all the structures that were allocated on behalf of ControllerHandle in Start().
4. Return EFI_SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. IF NumberOfChildren is zero THEN:
a. Uninstall all the protocols that were installed onto ControllerHandle in Start().
b. Close all the protocols that were opened on behalf of ControllerHandle in Start().
c. Free all the structures that were allocated on behalf of ControllerHandle in

Start().
2. ELSE

a. FOR each child C in ChildHandleBuffer
 Uninstall all the protocols that were installed onto C in Start().
 Close all the protocols that were opened on behalf of C in Start().
 Free all the structures that were allocated on behalf of C in Start().
b. END FOR

3. END IF
4. Return EFI_SUCCESS.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-21

Listed below is sample code of the Stop() function of a device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on
ControllerHandle in Start(). The gBS variable is initialized in this driver’s entry point.
See Chapter 4.

extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES_TABLE *gBS;

EFI_STATUS
AbcStop (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle
 IN UINTN NumberOfChildren,
 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_ABC_IO AbcIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Get our context back
 //
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiAbcIoProtocolGuid,
 &AbcIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return EFI_UNSUPPORTED;
 }

 //
 // Use Containment Record Macro to get AbcDevice structure from
 // a pointer to the AbcIo structure within the AbcDevice structure.
 //
 AbcDevice = ABC_IO_PRIVATE_DATA_FROM_THIS (AbcIo);

Extensible Firmware Interface Specification

9-22 12/01/02 Version 1.10

 //
 // Uninstall the protocol installed in Start()
 //
 Status = gBS->UninstallMultipleProtocolInterfaces (
 ControllerHandle,
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
 NULL
);
 if (!EFI_ERROR (Status)) {

 //
 // Close the protocol opened in Start()
 //
 Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);

 //
 // Free the structure allocated in Start().
 //
 gBS->FreePool (AbcDevice);
 }

 return Status;

}

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-23

9.2 EFI Platform Driver Override Protocol

This section provides a detailed description of the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL. This protocol can override the default algorithm for matching drivers to controllers.

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. A platform driver produces this protocol,
and it is installed on a separate handle. This protocol is used by the ConnectController()
boot service to select the best driver for a controller. All of the drivers returned by this protocol
have a higher precedence than drivers found from an EFI Bus Specific Driver Override Protocol or
drivers found from the general EFI Driver Binding search algorithm. If more than one driver is
returned by this protocol, then the drivers are returned in order from highest precedence to lowest
precedence.

GUID
#define EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL_GUID \
 { 0x6b30c738,0xa391,0x11d4,0x9a,0x3b,0x00,0x90,0x27,0x3f,0xc1,0x4d }

Protocol Interface Structure
typedef struct _EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL {
 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER GetDriver;
 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH GetDriverPath;
 EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED DriverLoaded;
} EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL;

Parameters

GetDriver Retrieves the image handle of a platform override driver for a
controller in the system. See the GetDriver() function
description.

GetDriverPath Retrieves the device path of a platform override driver for a
controller in the system. See the GetDriverPath() function
description.

DriverLoaded This function is used after a driver has been loaded using a
device path returned by GetDriverPath(). This function
associates a device path to an image handle, so the image handle
can be returned the next time that GetDriver() is called for
the same controller. See the DriverLoaded() function
description.

Extensible Firmware Interface Specification

9-24 12/01/02 Version 1.10

Description

The EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL is used by the EFI boot service
ConnectController() to determine if there is a platform specific driver override for a
controller that is about to be started. The bus drivers in a platform will use a bus defined matching
algorithm for matching drivers to controllers. This protocol allows the platform to override the bus
driver’s default driver matching algorithm. This protocol can be used to specify the drivers for on-
board devices whose drivers may be in a system ROM not directly associated with the on-board
controller, or it can even be used to manage the matching of drivers and controllers in add-in cards.
This can be very useful if there are two adapters that are identical except for the revision of the
driver in the adapter’s ROM. This protocol, along with a platform configuration utility, could
specify which of the two drivers to use for each of the adapters.

The drivers that this protocol returns can be either in the form of an image handle or a device path.
ConnectController() can only use image handles, so ConnectController() is
required to use the GetDriver() service. A different component, such as the Boot Manager,
will have to use the GetDriverPath() service to retrieve the list of drivers that need to be
loaded from I/O devices. Once a driver has been loaded and started, this same component can use
the DriverLoaded() service to associate the device path of a driver with the image handle of
the loaded driver. Once this association has been established, the image handle can then be
returned by the GetDriver() service the next time it is called by ConnectController().

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-25

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Retrieves the image handle of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN OUT EFI_HANDLE *DriverImageHandle
);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImageHandle On input, a pointer to the previous driver image handle returned
by GetDriver(). On output, a pointer to the next driver
image handle. Passing in a NULL, will return the first driver
image handle for ControllerHandle.

Description

This function is used to retrieve a driver image handle that is selected in a platform specific manner.
The first driver image handle is retrieved by passing in a DriverImageHandle value of NULL.
This will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. If
ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. The first driver image handle has the highest precedence, and the last driver image handle
has the lowest precedence. This ordered list of driver image handles is used by the boot service
ConnectController() to search for the best driver for a controller.

Extensible Firmware Interface Specification

9-26 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The driver override for ControllerHandle was returned in

DriverImageHandle.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a
previous call to GetDriver().

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-27

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()

Summary

Retrieves the device path of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DriverImagePath
);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImagePath On input, a pointer to the previous driver device path returned by
GetDriverPath(). On output, a pointer to the next driver
device path. Passing in a pointer to NULL, will return the first
driver device path for ControllerHandle.

Description

This function is used to retrieve a driver device path that is selected in a platform specific manner.
The first driver device path is retrieved by passing in a DriverImagePath value that is a pointer
to NULL. This will cause the first driver device path to be returned in DriverImagePath. On
each successive call, the previous value of DriverImagePath must be passed in. If a call to this
function returns a valid driver device path, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImagePath is passed in that was not
returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. If
ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. The first driver device path has the highest precedence, and the last driver device path has
the lowest precedence. This ordered list of driver device paths is used by a platform specific
component, such as the EFI Boot Manager, to load and start the platform override drivers by using
the EFI boot services LoadImage() and StartImage(). Each time one of these drivers is
loaded and started, the DriverLoaded() service is called.

Extensible Firmware Interface Specification

9-28 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The driver override for ControllerHandle was returned in

DriverImagePath.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImagePath is not a device path that was returned on a
previous call to GetDriverPath().

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-29

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

Summary

Used to associate a driver image handle with a device path that was returned on a prior call to the
GetDriverPath() service. This driver image handle will then be available through the
GetDriver() service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *DriverImagePath,
 IN EFI_HANDLE DriverImageHandle
);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL instance.

ControllerHandle The device handle of a controller. This must match the
controller handle that was used in a prior call to GetDriver()
to retrieve DriverImagePath.

DriverImagePath A pointer to the driver device path that was returned in a prior
call to GetDriverPath().

DriverImageHandle The driver image handle that was returned by LoadImage()
when the driver specified by DriverImagePath was loaded
into memory.

Description

This function associates the image handle specified by DriverImageHandle with the device
path of a driver specified by DriverImagePath. DriverImagePath must be a value that
was returned on a prior call to GetDriverPath() for the controller specified by
ControllerHandle. Once this association has been established, then the service
GetDriver() must return DriverImageHandle as one of the override drivers for the
controller specified by ControllerHandle.

Extensible Firmware Interface Specification

9-30 12/01/02 Version 1.10

If the association between the image handle specified by DriverImageHandle and the device
path specified by DriverImagePath is established for the controller specified by
ControllerHandle, then EFI_SUCCESS is returned. If ControllerHandle is not a valid
EFI_HANDLE, or DriverImagePath is not a valid device path, or DriverImageHandle is
not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is returned. If
DriverImagePath is not a device path that was returned on a prior call to GetDriver() for
the controller specified by ControllerHandle, then EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS The association between DriverImagePath and

DriverImageHandle was established for the controller specified
by ControllerHandle.

EFI_NOT_FOUND DriverImagePath is not a device path that was returned on a prior
call to GetDriverPath() for the controller specified by
ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid device handle.

EFI_INVALID_PARAMETER DriverImagePath is not a valid device path.

EFI_INVALID_PARAMETER DriverImageHandle is not a valid image handle.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-31

9.3 EFI Bus Specific Driver Override Protocol

This section provides a detailed description of the EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_
PROTOCOL. Bus drivers that have a bus specific algorithm for matching drivers to controllers are
required to produce this protocol for each controller. For example, a PCI Bus Driver will produce
an instance of this protocol for every PCI controller that has a PCI option ROM that contains one or
more EFI drivers. The protocol instance is attached to the handle of the PCI controller.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. This protocol is produced by a bus
driver, and it is installed on the child handles of buses that require a bus specific algorithm for
matching drivers to controllers. This protocol is used by the ConnectController() boot
service to select the best driver for a controller. All of the drivers returned by this protocol have a
higher precedence than drivers found in the general EFI Driver Binding search algorithm, but a
lower precedence than those drivers returned by the EFI Platform Driver Override Protocol. If
more than one driver image handle is returned by this protocol, then the drivers image handles are
returned in order from highest precedence to lowest precedence.

GUID
#define EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL_GUID \
 { 0x3bc1b285,0x8a15,0x4a82,0xaa,0xbf,0x4d,0x7d,0x13,0xfb,0x32,0x65 }

Protocol Interface Structure
typedef struct _EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL {
 EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER GetDriver;
} EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL;

Parameters

GetDriver Uses a bus specific algorithm to retrieve a driver image handle
for a controller. See the GetDriver() function description.

Description

The EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL provides a mechanism for bus
drivers to override the default driver selection performed by the ConnectController() boot
service. This protocol is attached to the handle of a child device after the child handle is created by
the bus driver. The service in this protocol can return a bus specific override driver to
ConnectController(). ConnectController() must call this service until all of the bus
specific override drivers have been retrieved. ConnectController() uses this information
along with the EFI Platform Driver Override Protocol and all of the EFI Driver Binding protocol
instances to select the best drivers for a controller. Since a controller can be managed by more than
one driver, this protocol can return more than one bus specific override driver.

Extensible Firmware Interface Specification

9-32 12/01/02 Version 1.10

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Uses a bus specific algorithm to retrieve a driver image handle for a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER) (
 IN EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL *This,
 IN OUT EFI_HANDLE *DriverImageHandle
);

Parameters

This A pointer to the EFI_BUS_SPECIFIC_DRIVER_
OVERRIDE_PROTOCOL instance.

DriverImageHandle On input, a pointer to the previous driver image handle returned
by GetDriver(). On output, a pointer to the next driver
image handle. Passing in a NULL, will return the first driver
image handle.

Description

This function is used to retrieve a driver image handle that is selected in a bus specific manner. The
first driver image handle is retrieved by passing in a DriverImageHandle value of NULL. This
will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. The
first driver image handle has the highest precedence, and the last driver image handle has the lowest
precedence. This ordered list of driver image handles is used by the boot service
ConnectController() to search for the best driver for a controller.

Status Codes Returned
EFI_SUCCESS A bus specific override driver is returned in DriverImageHandle.

EFI_NOT_FOUND The end of the list of override drivers was reached. A bus specific
override driver is not returned in DriverImageHandle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a
previous call to GetDriver().

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-33

9.4 EFI Driver Configuration Protocol

This section provides a detailed description of the EFI_DRIVER_CONFIGURATION_
PROTOCOL. This is a protocol that allows an EFI Driver to provide the ability to set controller
specific options on a controller that the driver is managing. Unlike legacy option ROMs, the
configuration of drivers and controllers is delayed until a platform management utility chooses to
use the services of this protocol. EFI Drivers are not allowed to perform setup-like operations
outside the context of this protocol. This means that a driver is not allowed to interact with the user
outside the context of this protocol.

EFI_DRIVER_CONFIGURATION_PROTOCOL

Summary

Used to set configuration options for a controller that an EFI Driver is managing.

GUID
#define EFI_DRIVER_CONFIGURATION_PROTOCOL_GUID \
 { 0x107a772b,0xd5e1,0x11d4,0x9a,0x46,0x0,0x90,0x27,0x3f,0xc1,0x4d }

Protocol Interface Structure
typedef struct _EFI_DRIVER_CONFIGURATION_PROTOCOL {
 EFI_DRIVER_CONFIGURATION_SET_OPTIONS SetOptions;
 EFI_DRIVER_CONFIGURATION_OPTIONS_VALID OptionsValid;
 EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS ForceDefaults;
 CHAR8 *SupportedLanguages;
} EFI_DRIVER_CONFIGURATION_PROTOCOL;

Parameters

SetOptions Allows the use to set drivers specific configuration options for a
controller that the driver is currently managing. See the
SetOptions() function description.

OptionsValid Tests to see if a controller’s current configuration options are
valid. See the OptionsValid() function description.

ForceDefaults Forces a driver to set the default configuration options for a
controller. See the ForceDefaults() function description.

SupportedLanguages A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes. This is the list of language codes
that this protocol supports.

Extensible Firmware Interface Specification

9-34 12/01/02 Version 1.10

Description

The EFI_DRIVER_CONFIGURATION_PROTOCOL is used by a platform management utility to
allow the user to set controller specific options. This protocol is optionally attached to the image
handle of driver in the driver’s entry point. The platform management utility can collect all the
EFI_DRIVER_CONFIGURATION_PROTOCOL instances present in the system, and present the
user with a menu of the controllers than have user selectable options. This platform management
utility is invoked through a platform component such as the EFI Boot Manager.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-35

EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions()

Summary

Allows the user to set controller specific options for a controller that a driver is currently managing.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_CONFIGURATION_SET_OPTIONS) (
 IN EFI_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN CHAR8 *Language,
 OUT EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED *ActionRequired
);

Parameters

This A pointer to the EFI_DRIVER_CONFIGURATION_
PROTOCOL instance.

ControllerHandle The handle of the controller to set options on. If
ControllerHandle is a valid EFI_HANDLE that is being
managed by this driver, then the user will be allowed to set
options for the controller specified by ControllerHandle.
If this parameter is NULL, then the options will be set for all the
controllers that this driver is currently managing. If
ControllerHandle is NULL, then setting options for a child
controller is not supported, so ChildHandle must also be
NULL.

ChildHandle The handle of the child controller to set options on. This is an
optional parameter that may be NULL. It will be NULL for
device drivers, and for a bus drivers that wish to set options for
the bus controller. It will not be NULL for a bus driver that
wishes to set options for one of its child controllers.

Language A pointer to a three character ISO 639-2 language identifier.
This is the language of the user interface that should be
presented to the user, and it must match one of the languages
specified in SupportedLanguages. The number of
languages supported by a driver is up to the driver writer.

ActionRequired A pointer to the action that the calling agent is required to
perform when this function returns. See "Related Definitions"
for a list of the actions that the calling agent is required to
perform prior to accessing ControllerHandle again.

Extensible Firmware Interface Specification

9-36 12/01/02 Version 1.10

Description

This function allows the configuration options to be set for the driver specified by This on the
controller specified by ControllerHandle and ChildHandle. This function must only use
the SIMPLE_INPUT_PROTOCOL and SIMPLE_TEXT_OUPUT_PROTOCOL from the
EFI_SYSTEM_TABLE to interact with the user, and it must use the language specified by
Language. If the driver specified by This does not support the language specified by
Language, then EFI_UNSUPPORTED is returned. If the controller specified by
ControllerHandle and ChildHandle is not supported by the driver specified by This,
then EFI_UNSUPPORTED is returned. If a device error occurs while setting the configuration
options, EFI_DEVICE_ERROR is returned. If there are not enough resources available to set the
configuration options, then EFI_OUT_OF_RESOURCES is returned.

The ActionRequired return value must always be set to a legal value by this function. The
caller must perform the required action regardless of the return status. The calling agent must also
perform the action described by ActionRequired prior to using any of the services produced by
ControllerHandle or any of its children.

Related Definitions
//***
// EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED
//***
typedef enum {
 EfiDriverConfigurationActionNone = 0,
 EfiDriverConfigurationActionStopController = 1,
 EfiDriverConfigurationActionRestartController = 2,
 EfiDriverConfigurationActionRestartPlatform = 3,
 EfiDriverConfigurationActionMaximum
} EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED;

EfiDriverConfigurationActionNone

The controller specified by ControllerHandle is still in a usable state. No actions
are required before this controller can be used again.

EfiDriverConfigurationStopController

The driver has detected that the controller specified by ControllerHandle is not in a
usable state, and it needs to be stopped. The calling agent can use the
DisconnectController() service to perform this operation, and it should be
performed as soon as possible.

EfiDriverConfigurationRestartController

This controller specified by ControllerHandle needs to be stopped and restarted
before it can be used again. The calling agent can use the
DisconnectController() and ConnectController() services to perform
this operation. The restart operation can be delayed until all of the configuration options
have been set.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-37

EfiDriverConfigurationRestartPlatform

A configuration change has been made that requires the platform to be restarted before
the controller specified by ControllerHandle can be used again. The calling agent
can use the ResetSystem() services to perform this operation. The restart operation
can be delayed until all of the configuration options have been set.

Status Codes Returned
EFI_SUCCESS The driver specified by This successfully set the configuration options

for the controller specified by ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This does not support setting configuration
options for the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_DEVICE_ERROR A device error occurred while attempt to set the configuration options for
the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to set the configuration options
for the controller specified by ControllerHandle and
ChildHandle.

Extensible Firmware Interface Specification

9-38 12/01/02 Version 1.10

EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid()

Summary

Tests to see if a controller’s current configuration options are valid.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_CONFIGURATION_OPTIONS_VALID) (
 IN EFI_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_CONFIGURATION_
PROTOCOL instance.

ControllerHandle The handle of the controller to test if it’s current configuration
options are valid.

ChildHandle The handle of the child controller to test if it’s current
configuration options are valid. This is an optional parameter
that may be NULL. It will be NULL for device drivers. It will
also be NULL for a bus drivers that wish to test the configuration
options for the bus controller. It will not be NULL for a bus
driver that wishes to test configuration options for one of its
child controllers.

Description

This function tests to see if the configuration options for the driver specified by This on the
controller specified by ControllerHandle and ChildHandle are valid. If they are, then
EFI_SUCCESS is returned. If they are not valid, then EFI_DEVICE_ERROR is returned. If the
controller specified by ControllerHandle and ChildHandle is not currently being managed
by the driver specified by This, then EFI_UNSUPPORTED is returned. This function is not
allowed to interact with the user. Since the driver is responsible for maintaining the configuration
options for each controller it manages, the exact method by which the configuration options are
validated is driver specific.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-39

Status Codes Returned
EFI_SUCCESS The controller specified by ControllerHandle and

ChildHandle that is being managed by the driver specified by This

has a valid set of configuration options.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This

has an invalid set of configuration options.

Extensible Firmware Interface Specification

9-40 12/01/02 Version 1.10

EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults()

Summary

Forces a driver to set the default configuration options for a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS) (
 IN EFI_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN UINT32 DefaultType,
 OUT EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED *ActionRequired
);

Parameters

This A pointer to the EFI_DRIVER_CONFIGURATION_
PROTOCOL instance.

ControllerHandle The handle of the controller to force default configuration
options on.

ChildHandle The handle of the child controller to force default configuration
options on. This is an optional parameter that may be NULL. It
will be NULL for device drivers. It will also be NULL for a bus
drivers that wish to force default configuration options for the
bus controller. It will not be NULL for a bus driver that wishes
to force default configuration options for one of its child
controllers.

DefaultType The type of default configuration options to force on the
controller specified by ControllerHandle and
ChildHandle. See Table 9-1 for legal values. A
DefaultType of 0x00000000 must be supported by this
protocol.

ActionRequired A pointer to the action that the calling agent is required to
perform when this function returns. See “Related Definitions” in
the SetOptions() function description for a list of the actions
that the calling agent is required to perform prior to accessing
ControllerHandle again.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-41

Description

This function forces the default configuration options specified by DefaultType for the driver
specified by This on the controller specified by ControllerHandle and ChildHandle.
This function is not allowed to interact with the user. If the controller specified by
ControllerHandle and ChildHandle is not supported by the driver specified by This,
then EFI_UNSUPPORTED is returned. If the configuration type specified by DefaultType is
not supported, then EFI_UNSUPPORTED is returned. If a device error occurs while setting the
default configuration options, EFI_DEVICE_ERROR is returned. If there are not enough
resources available to set the default configuration options, then EFI_OUT_OF_RESOURCES is
returned.

The ActionRequired return value must always be set to a legal value by this function. The
caller must perform the required action regardless of the return status. The calling agent must also
perform the action described by ActionRequired prior to using any of the services produced by
ControllerHandle or any of its children.

Table 9-1. EFI Driver Configuration Default Type

Bits Description

Bit 0-15

0x0000

0x0001

0x0002

0x0003

If bits 16-31 are 0x0000, then the following values are defined:

Safe Defaults. This type must be supported by all implementations of the
EFI_DRIVER_CONFIGURATION_PROTOCOL. It places a controller a safe configuration that
has the greatest probability of functioning correctly in a platform.

Manufacturing Defaults. Optional type that places the controller in a configuration suitable
for a manufacturing and test environment.

Custom Defaults. Optional type that places the controller in a custom configuration.

Performance Defaults. Optional type that places the controller in a configuration the
maximizes the controller’s performance in a platform.

All other values are reserved for future versions of the EFI Specification.

Bits16-31 A value of 0x0000 is reserved by this specification. Values 0x0001-0xFFFF are available for
expansion by third parties.

Extensible Firmware Interface Specification

9-42 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The driver specified by This successfully forced the default

configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This does not support forcing the default

configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the configuration type
specified by DefaultType.

EFI_DEVICE_ERROR A device error occurred while attempt to force the default configuration
options on the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to force the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-43

9.5 EFI Driver Diagnostics Protocol

This section provides a detailed description of the EFI_DRIVER_DIAGNOSTICS_PROTOCOL.
This is a protocol that allows an EFI Driver to perform diagnostics on a controller that the driver is
managing.

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

Summary

Used to perform diagnostics on a controller that an EFI Driver is managing.

GUID
#define EFI_DRIVER_DIAGNOSTICS_PROTOCOL_GUID \
 { 0x0784924f,0xe296,0x11d4,0x9a,0x49,0x0,0x90,0x27,0x3f,0xc1,0x4d }

Protocol Interface Structure
typedef struct _EFI_DRIVER_DIAGNOSTICS_PROTOCOL {
 EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS RunDiagnostics;
 CHAR8 *SupportedLanguages;
} EFI_DRIVER_DIAGNOSTICS_PROTOCOL;

Parameters

RunDiagnostics Runs diagnostics on a controller. See the
RunDiagnostics() function description.

SupportedLanguages A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes. This is the list of language codes
that this protocol supports.

Description

The EFI_DRIVER_DIAGNOSTICS_PROTOCOL is used by a platform management utility to
allow the user to run driver specific diagnostics on a controller. This protocol is optionally attached
to the image handle of driver in the driver’s entry point. The platform management utility can
collect all the EFI_DRIVER_DISAGNOTICS_PROTOCOL instances present in the system, and
present the user with a menu of the controllers that have diagnostic capabilities. This platform
management utility is invoked through a platform component such as the EFI Boot Manager.

Extensible Firmware Interface Specification

9-44 12/01/02 Version 1.10

EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics()

Summary

Runs diagnostics on a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS) (
 IN EFI_DRIVER_DIAGNOSTICS_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN EFI_DRIVER_DIAGNOSTIC_TYPE DiagnosticType,
 IN CHAR8 *Language,
 OUT EFI_GUID **ErrorType,
 OUT UINTN *BufferSize,
 OUT CHAR16 **Buffer
);

Parameters

This A pointer to the EFI_DRIVER_DIAGNOSTICS_PROTOCOL
instance.

ControllerHandle The handle of the controller to run diagnostics on.

ChildHandle The handle of the child controller to run diagnostics on. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for a bus drivers that wish
to run diagnostics on the bus controller. It will not be NULL for
a bus driver that wishes to run diagnostics on one of its child
controllers.

DiagnosticType Indicates type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. See
“Related Definitions” for the list of supported types.

Language A pointer to a three character ISO 639-2 language identifier.
This is the language in which the optional error message should
be returned in Buffer, and it must match one of the languages
specified in SupportedLanguages. The number of
languages supported by a driver is up to the driver writer.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-45

ErrorType A GUID that defines the format of the data returned in Buffer.

BufferSize The size, in bytes, of the data returned in Buffer.

Buffer A buffer that contains a Null-terminated Unicode string plus
some additional data whose format is defined by ErrorType.
Buffer is allocated by this function with AllocatePool(),
and it is the caller’s responsibility to free it with a call to
FreePool().

Description

This function runs diagnostics on the controller specified by ControllerHandle and
ChildHandle. DiagnoticType specifies the type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. If the driver specified by This does
not support the language specified by Language, then EFI_UNSUPPORTED is returned. If the
controller specified by ControllerHandle and ChildHandle is not supported by the driver
specified by This, then EFI_UNSUPPORTED is returned. If the diagnostics type specified by
DiagnosticType is not supported by this driver, then EFI_UNSUPPORTED is returned. If
there are not enough resources available to complete the diagnostic, then
EFI_OUT_OF_RESOURCES is returned. If the controller specified by ControllerHandle
and ChildHandle passes the diagnostic, then EFI_SUCCESS is returned. Otherwise,
EFI_DEVICE_ERROR is returned.

If the language specified by Language is supported by this driver, then status information is
returned in ErrorType, BufferSize, and Buffer. Buffer contains a Null-terminated
Unicode string followed by additional data whose format is defined by ErrorType.
BufferSize is the size of Buffer is bytes, and it is the caller's responsibility to call
FreePool() on Buffer when the caller is done with the return data. If there are not enough
resources available to return the status information, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_DRIVER_DIAGNOSTIC_TYPE
//***
typedef enum {
 EfiDriverDiagnosticTypeStandard = 0,
 EfiDriverDiagnosticTypeExtended = 1,
 EfiDriverDiagnosticTypeManufacturing = 2,
 EfiDriverDiagnosticTypeMaximum
} EFI_DRIVER_DIAGNOSTIC_TYPE;

Extensible Firmware Interface Specification

9-46 12/01/02 Version 1.10

EfiDriverDiagnosticTypeStandard

Performs standard diagnostics on the controller. This diagnostic type is required to be
supported by all implementations of this protocol.

EfiDriverDiagnosticTypeExtended

This is an optional diagnostic type that performs diagnostics on the controller that may
take an extended amount of time to execute.

EfiDriverDiagnosticTypeManufacturing

This is an optional diagnostic type that performs diagnostics on the controller that are
suitable for a manufacturing and test environment.

Status Codes Returned
EFI_SUCCESS The controller specified by ControllerHandle and

ChildHandle passed the diagnostic.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ErrorType is NULL.

EFI_INVALID_PARAMETER BufferType is NULL.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The driver specified by This does not support running diagnostics for
the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the type of diagnostic
specified by DiagnosticType.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_OUT_OF_RESOURCES There are not enough resources available to complete the diagnostics.

EFI_OUT_OF_RESOURCES There are not enough resources available to return the status information
in ErrorType, BufferSize, and Buffer.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle did not pass the diagnostic.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-47

9.6 EFI Component Name Protocol

This section provides a detailed description of the EFI_COMPONENT_NAME_PROTOCOL. This is
a protocol that allows an EFI Driver to provide a user readable name of an EFI Driver, and a user
readable name for each of the controllers that the EFI Driver is managing. This protocol is used by
platform management utilities that wish to display names of components. These names may
include the names of expansion slots, external connectors, embedded devices, and add-in devices.

EFI_COMPONENT_NAME_PROTOCOL

Summary

Used to retrieve user readable names of EFI Drivers and controllers managed by EFI Drivers.

GUID
#define EFI_COMPONENT_NAME_PROTOCOL_GUID \
 { 0x107a772c,0xd5e1,0x11d4,0x9a,0x46,0x0,0x90,0x27,0x3f,0xc1,0x4d }

Protocol Interface Structure
typedef struct _EFI_COMPONENT_NAME_PROTOCOL {
 EFI_COMPONENT_NAME_GET_DRIVER_NAME GetDriverName;
 EFI_COMPONENT_NAME_GET_CONTROLLER_NAME GetControllerName;
 CHAR8 *SupportedLanguages;
} EFI_COMPONENT_NAME_PROTOCOL;

Parameters

GetDriverName Retrieves a Unicode string that is the user readable name of the
EFI Driver. See the GetDriverName() function description.

GetControllerName Retrieves a Unicode string that is the user readable name of a
controller that is being managed by an EFI Driver. See the
GetControllerName() function description.

SupportedLanguages A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes. This is the list of language codes
that this protocol supports.

Description

The EFI_COMPONENT_NAME_PROTOCOL is used retrieve a driver’s user readable name and the
names of all the controllers that a driver is managing from the driver’s point of view. Each of these
names is returned as a Null-terminated Unicode string. The caller is required to specify the
language in which the Unicode string is returned, and this language must be present in the list of
languages that this protocol supports specified by SupportedLanguages.

Extensible Firmware Interface Specification

9-48 12/01/02 Version 1.10

EFI_COMPONENT_NAME_PROTOCOL.GetDriverName()

Summary

Retrieves a Unicode string that is the user readable name of the EFI Driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_DRIVER_NAME) (
 IN EFI_COMPONENT_NAME_PROTOCOL *This,
 IN CHAR8 *Language,
 OUT CHAR16 **DriverName
);

Parameters

This A pointer to the EFI_COMPONENT_NAME_PROTOCOL
instance.

Language A pointer to a three character ISO 639-2 language identifier.
This is the language of the driver name that that the caller is
requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported
by a driver is up to the driver writer.

DriverName A pointer to the Unicode string to return. This Unicode string is
the name of the driver specified by This in the language
specified by Language.

Description

This function retrieves the user readable name of an EFI Driver in the form of a Unicode string. If
the driver specified by This has a user readable name in the language specified by Language,
then a pointer to the driver name is returned in DriverName, and EFI_SUCCESS is returned. If
the driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-49

Status Codes Returned
EFI_SUCCESS The Unicode string for the user readable name in the language specified

by Language for the driver specified by This was returned in
DriverName.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER DriverName is NULL.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

Extensible Firmware Interface Specification

9-50 12/01/02 Version 1.10

EFI_COMPONENT_NAME_PROTOCOL.GetControllerName()

Summary

Retrieves a Unicode string that is the user readable name of the controller that is being managed by
an EFI Driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_CONTROLLER_NAME) (
 IN EFI_COMPONENT_NAME_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN CHAR8 *Language,
 OUT CHAR16 **ControllerName
);

Parameters

This A pointer to the EFI_COMPONENT_NAME_PROTOCOL
instance.

ControllerHandle The handle of a controller that the driver specified by This is
managing. This handle specifies the controller whose name is to
be returned.

ChildHandle The handle of the child controller to retrieve the name of. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for a bus drivers that wish
to retrieve the name of the bus controller. It will not be NULL
for a bus driver that wishes to retrieve the name of a child
controller.

Language A pointer to a three character ISO 639-2 language identifier.
This is the language of the controller name that that the caller is
requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported
by a driver is up to the driver writer.

ControllerName A pointer to the Unicode string to return. This Unicode string is
the name of the controller specified by ControllerHandle
and ChildHandle in the language specified by Language
from the point of view of the driver specified by This.

 Protocols — EFI Driver Model

Version 1.10 12/01/02 9-51

Description

This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the driver
specified by This has a user readable name in the language specified by Language, then a
pointer to the controller name is returned in ControllerName, and EFI_SUCCESS is returned.

If the driver specified by This is not currently managing the controller specified by
ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned.

If the driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

Status Codes Returned
EFI_SUCCESS The Unicode string for the user readable name specified by This,

ControllerHandle, ChildHandle, and Language was returned in
ControllerName.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ControllerName is NULL.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

Extensible Firmware Interface Specification

9-52 12/01/02 Version 1.10

Version 1.10 12/01/02 10-1

10
Protocols - Console Support

10.1 Console I/O Protocol

This chapter defines the Console I/O protocol. This protocol is used to handle input and output of
text-based information intended for the system user during the operation of code in the EFI boot
services environment. Also included here are the definitions of three console devices: one for input
and one each for normal output and errors.

These interfaces are specified by function call definitions to allow maximum flexibility in
implementation. For example, there is no requirement for compliant systems to have a keyboard or
screen directly connected to the system. Implementations may choose to direct information passed
using these interfaces in arbitrary ways provided that the semantics of the functions are preserved
(in other words, provided that the information is passed to and from the system user).

10.1.1 Overview
The EFI console is built out of the SIMPLE_INPUT and SIMPLE_TEXT_OUTPUT protocols.
These two protocols implement a basic text-based console that allows platform firmware, EFI
applications, and EFI OS loaders to present information to and receive input from a system
administrator. The EFI console consists of 16-bit Unicode characters, a simple set of input control
characters (Scan Codes), and a set of output-oriented programmatic interfaces that give
functionality equivalent to an intelligent terminal. The EFI console does not support pointing
devices on input or bitmaps on output.

The EFI specification requires that the SIMPLE_INPUT protocol support the same languages as
the corresponding SIMPLE_TEXT_OUTPUT protocol. The SIMPLE_TEXT_OUTPUT protocol is
recommended to support at least the printable Basic Latin Unicode character set to enable standard
terminal emulation software to be used with an EFI console. The Basic Latin Unicode character
set implements a superset of ASCII that has been extended to 16-bit characters. Any number of
other Unicode character sets may be optionally supported.

Extensible Firmware Interface Specification

10-2 12/01/02 Version 1.10

10.1.2 ConsoleIn Definition
The SIMPLE_INPUT protocol defines an input stream that contains Unicode characters and
required EFI scan codes. Only the control characters defined in Table 10-1 have meaning in the
Unicode input or output streams. The control characters are defined to be characters U+0000
through U+001F. The input stream does not support any software flow control.

Table 10-1. Supported Unicode Control Characters

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is at the left
margin, no action is taken.

TAB U+0x0009 Tab.

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the current line.

 Protocols — Console Support

Version 1.10 12/01/02 10-3

The input stream supports Scan Codes in addition to Unicode characters. If the Scan Code is set to
0x00 then the Unicode character is valid and should be used. If the Scan Code is set to a non-0x00
value it represents a special key as defined by Table 10-2.

Table 10-2. EFI Scan Codes for SIMPLE_INPUT_INTERFACE

EFI Scan Code Description

0x00 Null scan code.

0x01 Move cursor up 1 row.

0x02 Move cursor down 1 row.

0x03 Move cursor right 1 column.

0x04 Move cursor left 1 column.

0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.

0x0a Page Down.

0x0b Function 1.

0x0c Function 2.

0x0d Function 3.

0x0e Function 4.

0x0f Function 5.

0x10 Function 6.

0x11 Function 7.

0x12 Function 8.

0x13 Function 9.

0x14 Function 10.

0x17 Escape.

Extensible Firmware Interface Specification

10-4 12/01/02 Version 1.10

10.2 Simple Input Protocol

The Simple Input protocol defines the minimum input required to support the ConsoleIn device.

SIMPLE_INPUT

Summary

This protocol is used to obtain input from the ConsoleIn device. The EFI specification requires
that the SIMPLE_INPUT protocol support the same languages as the corresponding
SIMPLE_TEXT_OUTPUT protocol.

GUID
#define SIMPLE_INPUT_PROTOCOL \
 { 387477c1-69c7-11d2-8e39-00a0c969723b }

Protocol Interface Structure
typedef struct _SIMPLE_INPUT_INTERFACE {
 EFI_INPUT_RESET Reset;
 EFI_INPUT_READ_KEY ReadKeyStroke;
 EFI_EVENT WaitForKey;
} SIMPLE_INPUT_INTERFACE;

Parameters

Reset Reset the ConsoleIn device. See Reset().

ReadKeyStroke Returns the next input character. See ReadKeyStroke().

WaitForKey Event to use with WaitForEvent() to wait for a key to be available.

Description

The SIMPLE_INPUT protocol is used on the ConsoleIn device. It is the minimum required
protocol for ConsoleIn.

 Protocols — Console Support

Version 1.10 12/01/02 10-5

SIMPLE_INPUT.Reset()

Summary

Resets the input device hardware.

Prototype

EFI_STATUS
(EFIAPI *EFI_INPUT_RESET) (
 IN SIMPLE_INPUT_INTERFACE *This,
 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the SIMPLE_INPUT_INTERFACE instance. Type
SIMPLE_INPUT_INTERFACE is defined in Section 10.2

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset() function resets the input device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.

Extensible Firmware Interface Specification

10-6 12/01/02 Version 1.10

SIMPLE_INPUT.ReadKeyStroke()

Summary

Reads the next keystroke from the input device.

Prototype

EFI_STATUS
(EFIAPI *EFI_INPUT_READ_KEY) (
 IN SIMPLE_INPUT_INTERFACE *This,
 OUT EFI_INPUT_KEY *Key
);

Parameters

This A pointer to the SIMPLE_INPUT_INTERFACE instance. Type
SIMPLE_INPUT_INTERFACE is defined in Section 10.2.

Key A pointer to a buffer that is filled in with the keystroke
information for the key that was pressed. Type
EFI_INPUT_KEY is defined in “Related Definitions” below.

Related Definitions
//***
// EFI_INPUT_KEY
//***
typedef struct {
 UINT16 ScanCode;
 CHAR16 UnicodeChar;
} EFI_INPUT_KEY;

 Protocols — Console Support

Version 1.10 12/01/02 10-7

Description

The ReadKeyStroke() function reads the next keystroke from the input device. If there is
no pending keystroke the function returns EFI_NOT_READY. If there is a pending keystroke,
then ScanCode is the EFI scan code defined in Table 10-2. The UnicodeChar is the actual
printable character or is zero if the key does not represent a printable character (control key,
function key, etc.).

Status Codes Returned
EFI_SUCCESS The keystroke information was returned.

EFI_NOT_READY There was no keystroke data available.

EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.

Extensible Firmware Interface Specification

10-8 12/01/02 Version 1.10

10.2.1 ConsoleOut or StandardError
The SIMPLE_TEXT_OUTPUT protocol must implement the same Unicode code pages as the
SIMPLE_INPUT protocol. The protocol must also support the Unicode control characters defined
in Table 10-1. The SIMPLE_TEXT_OUTPUT protocol supports special manipulation of the screen
by programmatic methods and therefore does not support the EFI scan codes defined in Table 10-2.

10.3 Simple Text Output Protocol

The Simple Text Output protocol defines the minimum requirements for a text-based
ConsoleOut device. The EFI specification requires that the SIMPLE_INPUT protocol support
the same languages as the corresponding SIMPLE_TEXT_OUTPUT protocol.

SIMPLE_TEXT_OUTPUT Protocol

Summary

This protocol is used to control text-based output devices.

GUID
#define SIMPLE_TEXT_OUTPUT_PROTOCOL \

{ 387477c2-69c7-11d2-8e39-00a0c969723b }

Protocol Interface Structure
typedef struct _SIMPLE_TEXT_OUTPUT_INTERFACE {
 EFI_TEXT_RESET Reset;
 EFI_TEXT_STRING OutputString;
 EFI_TEXT_TEST_STRING TestString;
 EFI_TEXT_QUERY_MODE QueryMode;
 EFI_TEXT_SET_MODE SetMode;
 EFI_TEXT_SET_ATTRIBUTE SetAttribute;
 EFI_TEXT_CLEAR_SCREEN ClearScreen;
 EFI_TEXT_SET_CURSOR_POSITION SetCursorPosition;
 EFI_TEXT_ENABLE_CURSOR EnableCursor;
 SIMPLE_TEXT_OUTPUT_MODE *Mode;
} SIMPLE_TEXT_OUTPUT_INTERFACE;

Parameters
Reset Reset the ConsoleOut device. See Reset().

OutputString Displays the Unicode string on the device at the current cursor location.
See OutputString().

TestString Tests to see if the ConsoleOut device supports this Unicode string.
See TestString().

QueryMode Queries information concerning the output device’s supported text mode.
See QueryMode().

 Protocols — Console Support

Version 1.10 12/01/02 10-9

SetMode Sets the current mode of the output device. See SetMode().

SetAttribute Sets the foreground and background color of the text that is output. See
SetAttribute().

ClearScreen Clears the screen with the currently set background color. See
ClearScreen().

SetCursorPosition Sets the current cursor position. See SetCursorPosition().

EnableCursor Turns the visibility of the cursor on/off. See EnableCursor().

Mode Pointer to SIMPLE_TEXT_OUTPUT_MODE data. Type
SIMPLE_TEXT_OUTPUT_MODE is defined in “Related Definitions”
below.

The following data values in the SIMPLE_TEXT_OUTPUT_MODE interface are read-only and are
changed by using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and SetMode().

Mode The text mode of the output device(s).

Attribute The current character output attribute.

CursorColumn The cursor’s column.

CursorRow The cursor’s row.

CursorVisible The cursor is currently visible or not.

Related Definitions

//***
// SIMPLE_TEXT_OUTPUT_MODE
//***
typedef struct {
 INT32 MaxMode;
 // current settings
 INT32 Mode;
 INT32 Attribute;
 INT32 CursorColumn;
 INT32 CursorRow;
 BOOLEAN CursorVisible;
} SIMPLE_TEXT_OUTPUT_MODE;

Extensible Firmware Interface Specification

10-10 12/01/02 Version 1.10

Description

The SIMPLE_TEXT_OUTPUT protocol is used to control text-based output devices. It is the
minimum required protocol for any handle supplied as the ConsoleOut or StandardError
device. In addition, the minimum supported text mode of such devices is at least 80 x 25
characters.

A video device that only supports graphics mode is required to emulate text mode functionality.
Output strings themselves are not allowed to contain any control codes other than those defined in
Table 10-1. Positional cursor placement is done only via the SetCursorPosition() function.
It is highly recommended that text output to the StandardError device be limited to sequential
string outputs. (That is, it is not recommended to use ClearScreen() or
SetCursorPosition() on output messages to StandardError.)

If the output device is not in a valid text mode at the time of the HandleProtocol() call, the
device is to indicate that its CurrentMode is –1. On connecting to the output device the caller is
required to verify the mode of the output device, and if it is not acceptable to set it to something it
can use.

 Protocols — Console Support

Version 1.10 12/01/02 10-11

SIMPLE_TEXT_OUTPUT.Reset()

Summary

Resets the text output device hardware.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_RESET) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE

instance. Type SIMPLE_TEXT_OUTPUT_INTERFACE is
defined in the “Related Definitions” section of Section 10.3.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the text output device hardware. The cursor position is set to (0, 0),
and the screen is cleared to the default background color for the output device.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The text output device was reset.

EFI_DEVICE_ERROR The text output device is not functioning correctly and could not be reset.

Extensible Firmware Interface Specification

10-12 12/01/02 Version 1.10

SIMPLE_TEXT_OUTPUT.OutputString()

Summary

Writes a Unicode string to the output device.

Prototype
EFI_STATUS
(EFIAPI *EFI_TEXT_STRING) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN CHAR16 *String
);

Parameters
This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE

instance. Type SIMPLE_TEXT_OUTPUT_INTERFACE is
defined in the “Related Definitions” section of Section 10.3.

String The Null-terminated Unicode string to be displayed on the
output device(s). All output devices must also support the
Unicode drawing characters defined in “Related Definitions.”

Related Definitions

//***
// UNICODE DRAWING CHARACTERS
//***

#define BOXDRAW_HORIZONTAL 0x2500
#define BOXDRAW_VERTICAL 0x2502
#define BOXDRAW_DOWN_RIGHT 0x250c
#define BOXDRAW_DOWN_LEFT 0x2510
#define BOXDRAW_UP_RIGHT 0x2514
#define BOXDRAW_UP_LEFT 0x2518
#define BOXDRAW_VERTICAL_RIGHT 0x251c
#define BOXDRAW_VERTICAL_LEFT 0x2524
#define BOXDRAW_DOWN_HORIZONTAL 0x252c
#define BOXDRAW_UP_HORIZONTAL 0x2534
#define BOXDRAW_VERTICAL_HORIZONTAL 0x253c

 Protocols — Console Support

Version 1.10 12/01/02 10-13

#define BOXDRAW_DOUBLE_HORIZONTAL 0x2550
#define BOXDRAW_DOUBLE_VERTICAL 0x2551
#define BOXDRAW_DOWN_RIGHT_DOUBLE 0x2552
#define BOXDRAW_DOWN_DOUBLE_RIGHT 0x2553
#define BOXDRAW_DOUBLE_DOWN_RIGHT 0x2554
#define BOXDRAW_DOWN_LEFT_DOUBLE 0x2555
#define BOXDRAW_DOWN_DOUBLE_LEFT 0x2556
#define BOXDRAW_DOUBLE_DOWN_LEFT 0x2557

#define BOXDRAW_UP_RIGHT_DOUBLE 0x2558
#define BOXDRAW_UP_DOUBLE_RIGHT 0x2559
#define BOXDRAW_DOUBLE_UP_RIGHT 0x255a

#define BOXDRAW_UP_LEFT_DOUBLE 0x255b
#define BOXDRAW_UP_DOUBLE_LEFT 0x255c
#define BOXDRAW_DOUBLE_UP_LEFT 0x255d

#define BOXDRAW_VERTICAL_RIGHT_DOUBLE 0x255e
#define BOXDRAW_VERTICAL_DOUBLE_RIGHT 0x255f
#define BOXDRAW_DOUBLE_VERTICAL_RIGHT 0x2560

#define BOXDRAW_VERTICAL_LEFT_DOUBLE 0x2561
#define BOXDRAW_VERTICAL_DOUBLE_LEFT 0x2562
#define BOXDRAW_DOUBLE_VERTICAL_LEFT 0x2563

#define BOXDRAW_DOWN_HORIZONTAL_DOUBLE 0x2564
#define BOXDRAW_DOWN_DOUBLE_HORIZONTAL 0x2565
#define BOXDRAW_DOUBLE_DOWN_HORIZONTAL 0x2566

#define BOXDRAW_UP_HORIZONTAL_DOUBLE 0x2567
#define BOXDRAW_UP_DOUBLE_HORIZONTAL 0x2568
#define BOXDRAW_DOUBLE_UP_HORIZONTAL 0x2569

#define BOXDRAW_VERTICAL_HORIZONTAL_DOUBLE 0x256a
#define BOXDRAW_VERTICAL_DOUBLE_HORIZONTAL 0x256b
#define BOXDRAW_DOUBLE_VERTICAL_HORIZONTAL 0x256c

//***
// EFI Required Block Elements Code Chart
//***

#define BLOCKELEMENT_FULL_BLOCK 0x2588
#define BLOCKELEMENT_LIGHT_SHADE 0x2591

Extensible Firmware Interface Specification

10-14 12/01/02 Version 1.10

//***
// EFI Required Geometric Shapes Code Chart
//***

#define GEOMETRICSHAPE_UP_TRIANGLE 0x25b2
#define GEOMETRICSHAPE_RIGHT_TRIANGLE 0x25ba
#define GEOMETRICSHAPE_DOWN_TRIANGLE 0x25bc
#define GEOMETRICSHAPE_LEFT_TRIANGLE 0x25c4

//***
// EFI Required Arrow shapes
//***

#define ARROW_UP 0x2191
#define ARROW_DOWN 0x2193

Description

The OutputString() function writes a Unicode string to the output device. This is the most
basic output mechanism on an output device. The String is displayed at the current cursor
location on the output device(s) and the cursor is advanced according to the rules listed in
Table 10-3.

Table 10-3. EFI Cursor Location/Advance Rules

Mnemonic Unicode Description

Null U+0000 Ignore the character, and do not move the cursor.

BS U+0008 If the cursor is not at the left edge of the display, then move the cursor left one
column.

LF U+000A If the cursor is at the bottom of the display, then scroll the display one row, and
do not update the cursor position. Otherwise, move the cursor down one row.

CR U+000D Move the cursor to the beginning of the current row.

Other U+XXXX Print the character at the current cursor position and move the cursor right one
column. If this moves the cursor past the right edge of the display, then the line
should wrap to the beginning of the next line. This is equivalent to inserting a
CR and an LF. Note that if the cursor is at the bottom of the display, and the line
wraps, then the display will be scrolled one line.

If desired, the system’s NVRAM environment variables may be used at install time to determine
the configured locale of the system or the installation procedure can query the user for the proper
language support. This is then used to either install the proper EFI image/loader or to configure the
installed image’s strings to use the proper text for the selected locale.

 Protocols — Console Support

Version 1.10 12/01/02 10-15

Status Codes Returned
EFI_SUCCESS The string was output to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to output
the text.

EFI_UNSUPPORTED The output device’s mode is not currently in a defined
text mode.

EFI_WARN_UNKNOWN_GLYPH This warning code indicates that some of the characters
in the Unicode string could not be rendered and were
skipped.

Extensible Firmware Interface Specification

10-16 12/01/02 Version 1.10

SIMPLE_TEXT_OUTPUT.TestString()

Summary

Verifies that all characters in a Unicode string can be output to the target device.

Prototype
EFI_STATUS
(EFIAPI *EFI_TEXT_TEST_STRING) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN CHAR16 *String
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

String The Null-terminated Unicode string to be examined for the output
device(s).

Description

The TestString() function verifies that all characters in a Unicode string can be output to the
target device.

This function provides a way to know if the desired character set is present for rendering on the
output device(s). This allows the installation procedure (or EFI image) to at least select a letter set
that the output devices are capable of displaying. Since the output device(s) may be changed
between boots, if the loader cannot adapt to such changes it is recommended that the loader call
OutputString() with the text it has and ignore any “unsupported” error codes. The devices(s)
that are capable of displaying the Unicode letter set will do so.

Status Codes Returned
EFI_SUCCESS The device(s) are capable of rendering the output string.

EFI_UNSUPPORTED Some of the characters in the Unicode string cannot be rendered
by one or more of the output devices mapped by the EFI handle.

 Protocols — Console Support

Version 1.10 12/01/02 10-17

SIMPLE_TEXT_OUTPUT.QueryMode()

Summary

Returns information for an available text mode that the output device(s) supports.

Prototype
EFI_STATUS
(EFIAPI *EFI_TEXT_QUERY_MODE) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN UINTN ModeNumber,
 OUT UINTN *Columns,
 OUT UINTN *Rows
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

ModeNumber The mode number to return information on.

Columns, Rows Returns the geometry of the text output device for the request
ModeNumber.

Description

The QueryMode() function returns information for an available text mode that the output
device(s) supports.

It is required that all output devices support at least 80x25 text mode. This mode is defined to be
mode 0. If the output devices support 80x50, that is defined to be mode 1. Any other text
dimensions supported by the device may then follow as mode 2 and above. (For example, it is a
prerequisite that 80x25 and 80x50 text modes be supported before any other modes are.)

Status Codes Returned
EFI_SUCCESS The requested mode information was returned.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.

Extensible Firmware Interface Specification

10-18 12/01/02 Version 1.10

SIMPLE_TEXT_OUTPUT.SetMode()

Summary

Sets the output device(s) to a specified mode.

Prototype
EFI_STATUS
(* EFIAPI EFI_TEXT_SET_MODE) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN UINTN ModeNumber
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

ModeNumber The text mode to set.

Description

The SetMode() function sets the output device(s) to the requested mode. On success the device
is in the geometry for the requested mode, and the device has been cleared to the current
background color with the cursor at (0,0).

Status Codes Returned
EFI_SUCCESS The requested text mode was set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.

 Protocols — Console Support

Version 1.10 12/01/02 10-19

SIMPLE_TEXT_OUTPUT.SetAttribute()

Summary

Sets the background and foreground colors for the OutputString() and ClearScreen()
functions.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_SET_ATTRIBUTE) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN UINTN Attribute
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

Attribute The attribute to set. Bits 0..3 are the foreground color, and bits 4..6 are
the background color. All other bits are undefined and must be zero.
See “Related Definitions” below.

Related Definitions

//***
// Attributes
//***
#define EFI_BLACK 0x00
#define EFI_BLUE 0x01
#define EFI_GREEN 0x02
#define EFI_CYAN 0x03
#define EFI_RED 0x04
#define EFI_MAGENTA 0x05
#define EFI_BROWN 0x06
#define EFI_LIGHTGRAY 0x07
#define EFI_BRIGHT 0x08
#define EFI_DARKGRAY 0x08
#define EFI_LIGHTBLUE 0x09
#define EFI_LIGHTGREEN 0x0A
#define EFI_LIGHTCYAN 0x0B
#define EFI_LIGHTRED 0x0C
#define EFI_LIGHTMAGENTA 0x0D
#define EFI_YELLOW 0x0E
#define EFI_WHITE 0x0F

Extensible Firmware Interface Specification

10-20 12/01/02 Version 1.10

#define EFI_BACKGROUND_BLACK 0x00
#define EFI_BACKGROUND_BLUE 0x10
#define EFI_BACKGROUND_GREEN 0x20
#define EFI_BACKGROUND_CYAN 0x30
#define EFI_BACKGROUND_RED 0x40
#define EFI_BACKGROUND_MAGENTA 0x50
#define EFI_BACKGROUND_BROWN 0x60
#define EFI_BACKGROUND_LIGHTGRAY 0x70

#define EFI_TEXT_ATTR(foreground,background) \

((foreground) | ((background) << 4))

Description

The SetAttribute() function sets the background and foreground colors for the
OutputString() and ClearScreen() functions.

The color mask can be set even when the device is in an invalid text mode.

Devices supporting a different number of text colors are required to emulate the above colors to the
best of the device’s capabilities.

Status Codes Returned
EFI_SUCCESS The requested attributes were set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The attribute requested is not defined by this specification.

 Protocols — Console Support

Version 1.10 12/01/02 10-21

SIMPLE_TEXT_OUTPUT.ClearScreen()

Summary

Clears the output device(s) display to the currently selected background color.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_CLEAR_SCREEN) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

Description

The ClearScreen() function clears the output device(s) display to the currently selected
background color. The cursor position is set to (0, 0).

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode.

Extensible Firmware Interface Specification

10-22 12/01/02 Version 1.10

SIMPLE_TEXT_OUTPUT.SetCursorPosition()

Summary

Sets the current coordinates of the cursor position.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_SET_CURSOR_POSITION) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN UINTN Column,
 IN UINTN Row
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

Column, Row The position to set the cursor to. Must greater than or equal to zero and
less than the number of columns and rows returned by QueryMode().

Description

The SetCursorPosition() function sets the current coordinates of the cursor position. The
upper left corner of the screen is defined as coordinate (0, 0).

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode, or the cursor
position is invalid for the current mode.

 Protocols — Console Support

Version 1.10 12/01/02 10-23

SIMPLE_TEXT_OUTPUT.EnableCursor()

Summary

Makes the cursor visible or invisible.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_ENABLE_CURSOR) (
 IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
 IN BOOLEAN Visible
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

Visible If TRUE, the cursor is set to be visible. If FALSE, the cursor is set to be
invisible.

Description

The EnableCursor() function makes the cursor visible or invisible.

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request or
the device does not support changing the cursor mode.

EFI_UNSUPPORTED The output device does not support visibility control of the
cursor.

Extensible Firmware Interface Specification

10-24 12/01/02 Version 1.10

10.4 Universal Graphics Adapter Protocols

This section describes abstractions for displaying graphics on an EFI compliant platform. These
abstractions consist of the UGA Draw Protocols that abstract the drawing to the graphics screen in
the pre-OS space. The UGA I/O protocol also abstracts access to the graphics screen in addition to
supporting child devices of the video controller, such as graphics display devices. The UGA I/O
protocol is targeted primarily for use in the OS present environment.

The goal of this document is to replace the functionality that currently exists with VGA hardware
and its corresponding video BIOS. The UGA ROM is a software abstraction and its goal is to
support any foreseeable graphics hardware and not require VGA hardware, while at the same time
also lending itself to implementation on the current generation of VGA hardware.

Graphics output is important in the preboot space to support modern firmware features. These
features include the display of logos, the localization of output to any language, and setup and
configuration screens.

There are also needs for graphics abstractions in a modern graphics oriented operating system.
These operating systems generally contain a high performance driver that is specific to video
device, but there are times when some required hardware related operations are not available in the
high performance driver. In these cases it may be advantageous for the operating system to be able
to take advantage of a graphics driver that was distributed with the graphics hardware that does
include such capabilities.

More information on EFI 1.10 UGA ROM usage under an OS can be found at
www.microsoft.com/hwdev/uga

10.4.1 UGA ROM
The EFI_UGA_DRAW_PROTOCOL provides a lightweight set of services to draw on a video
screen. Graphics primitives are needed prior to operating system boot to support the localization of
output to all known languages. The need for localization is the reason that
EFI_UGA_DRAW_PROTOCOL does not support any text modes because a font database for all the
glyphs in the Unicode character set would make an EFI_UGA_DRAW_PROTOCOL option ROM
prohibitively large. The EFI_UGA_DRAW_PROTOCOL was constructed with the theory that the
system firmware carries the fonts for the characters it chooses to display.

The availability of platform independent graphics primitives prior to an operating system boot
allows the platform vendor to display a logo while the system is booting. Graphics primitives also
allow more options for the user interfaces of configuration and diagnostic programs associated with
the platform independent of the installed operating system.

The EFI_UGA_IO_PROTOCOL provides a mechanism for the OS to construct a generic OS
specific driver that would make it possible to draw on an output device in the event that a high
performance OS video driver was not available. The EFI_UGA_IO_PROTOCOL also provides
services that can be used by an OS present high performance video driver.

http://www.microsoft.com/hwdev/tech/display/uga/

 Protocols — Console Support

Version 1.10 12/01/02 10-25

10.4.2 UGA Draw Protocol
The EFI_UGA_DRAW_PROTOCOL supports three member functions to support the limited
graphics needs of the pre-OS space. These member functions allow the caller to draw to a
virtualized frame buffer, to get the current video mode, and to set a video mode. These simple
primitives are sufficient to support the general needs of pre-OS firmware code

10.4.3 Blt Buffer
The basic graphics operation in the EFI_UGA_DRAW_PROTOCOL is the Block Transfer or Blt.
The Blt operation allows data to be read or written to the video adapter’s video memory. The Blt
operation abstracts the video adapters hardware implementation by introducing the concept of a
software Blt buffer.

The frame buffer abstracts the video display as an array of pixels. Each pixels location on the video
display is defined by its X and Y coordinates. The X coordinate represents a scan line. A scan line
is a horizontal line of pixels on the display. The Y coordinate represents a vertical line on the
display. The upper left hand corner of the video display is defined as (0, 0) where the notation
(X, Y) represents the X and Y coordinate of the pixel. The lower right corner of the video display
is represented by (Width –1, Height -1).

The software Blt buffer is structured as an array of pixels. Pixel (0, 0) is the first element of the
software Blt buffer. The Blt buffer can be thought of as a set of scan lines. It is possible to convert
a pixel location on the video display to the Blt buffer using the following algorithm: Blt buffer
array index = Y * Width + X.

Each software Blt buffer entry represents a pixel that is comprised of a 32-bit quantity. Byte zero
of the Blt buffer entry represents the Red component of the pixel. Byte one of the Blt buffer entry
represents the Green component of the pixel. Byte two of the Blt buffer entry represents the Blue
component of the pixel. Byte three of the Blt buffer entry is reserved and must be zero.

OM13157

Software BLT Buffer

(0, 0) X-axis
(Width -1, 0)

Y-axis

Pixel

Scan Line

(0, Height - 1) (Width -1, Height - 1)

Figure 10-1. Software BLT Buffer

Extensible Firmware Interface Specification

10-26 12/01/02 Version 1.10

10.4.4 UGA I/O Protocol
The EFI_UGA_IO_PROTOCOL supports an I/O request mode of operation that is targeted at
providing services to the OS high performance driver. The I/O requests are accessed via the
EFI_UGA_IO_PROTOCOL DispatchService() member function. The I/O request services
include the capabilities supported by the EFI_UGA_DRAW_PROTOCOL.

The I/O request mode services support a full set of services for the Graphics Controller, and all its
child devices. Currently Output Controllers, Output Ports, and vendor defined child devices are
supported. An example of an Output Controller would be a RAMDAC or TV OUT. An example
of an Output Port would include a Monitor, TV, or HDTV.

10.4.5 Fallback Mode Driver
A fallback mode driver is defined as a simple driver that can be carried with a hardware device that
can be made to run under any operating system given appropriate operating system support. The
term fallback mode stems from the ability to use this driver when a standard high performance
operating system driver is not available or some capability to manipulate the hardware is not
available in the high performance operating system driver.

A fallback mode driver for a video device can be constructed by layering operating system specific
code on top and below an EBC UGA option ROM. Since a UGA driver uses EFI abstractions to
allocate memory and touch hardware it will be possible to replace the EFI 1.10 core services and
protocols that a UGA ROM depends on with an operating specific driver. The operating system
will also need to abstract the EFI_UGA_IO_PROTOCOL in some form that is compatible with the
operating system driver model. The DispatchService member of the
EFI_UGA_IO_PROTOCOL is designed to make binding this protocol into an Operation System
device driver model.

OM13158

OS EFI 1.1 EBC Driver
Virtual Machine

OS PCI Driver

EBC Simple
Graphic Output

Protocol
Driver

OS Friendly version of
UGA I/O Protocol

Same code used by
firmware

Figure 10-2. Fallback Mode Driver

From the UGA ROM’s point of view it cannot tell the difference between a virtual machine that is
produced in the pre-OS and OS present space.

 Protocols — Console Support

Version 1.10 12/01/02 10-27

10.5 UGA Draw Protocol

The interface structure for the UGA Draw Protocol is defined in this section. A unique UGA Draw
Protocol must represent each video frame buffer in the system.

EFI_UGA_DRAW_PROTOCOL

Summary

Provides a basic abstraction to set video modes and copy pixels to and from the graphics
controller’s frame buffer.

GUID
#define EFI_UGA_DRAW_PROTOCOL_GUID \
 { 0x982c298b,0xf4fa,0x41cb,0xb8,0x38,0x77,0xaa,0x68,0x8f,0xb8,0x39 }

Protocol Interface Structure
typedef struct EFI_UGA_DRAW_PROTCOL {
 EFI_UGA_DRAW_PROTOCOL_GET_MODE GetMode;
 EFI_UGA_DRAW_PROTOCOL_SET_MODE SetMode;
 EFI_UGA_DRAW_PROTOCOL_BLT Blt;
} EFI_UGA_DRAW_PROTOCOL;

Parameters

GetMode Returns information about the geometry and configuration of the
graphics controller’s current frame buffer configuration.

SetMode Set the graphics device into a given mode and clears the frame
buffer to black.

Blt Software abstraction to draw on the video device’s frame buffer.

Description

The EFI_UGA_DRAW_PROTOCOL provides a software abstraction to allow pixels to be drawn
directly to the frame buffer. The EFI_UGA_DRAW_PROTOCOL is designed to be lightweight and
to support the basic needs of graphics output prior to Operating System boot.

A video device can support an arbitrary number of geometries, but it must support the following
mode to conform to this specification:

• 800 x 600 with 32-bit color with a 60 Hz refresh rate.

Extensible Firmware Interface Specification

10-28 12/01/02 Version 1.10

EFI_UGA_DRAW_PROTOCOL.GetMode()

Summary

Return the current frame buffer geometry and display refresh rate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UGA_DRAW_PROTOCOL_GET_MODE) (
 IN EFI_UGA_DRAW_PROTOCOL *This,
 OUT UINT32 *HorizontalResolution,
 OUT UINT32 *VerticalResolution,
 OUT UINT32 *ColorDepth,
 OUT UINT32 *RefreshRate
);

Parameters

This The EFI_UGA_DRAW_PROTOCOL instance. Type
EFI_UGA_DRAW_PROTOCOL is defined in Section 10.5.

HorizontalResolution The size of video screen in pixels in the X dimension.

VerticalResolution The size of video screen in pixels in the Y dimension.

ColorDepth Number of bits per pixel, currently defined to be 32.

RefreshRate The refresh rate of the monitor in Hertz.

Description

The GetMode() function returns information about the current mode. All UGA devices must
support an 800 x 600 x 32-bit per pixel x 60 Hz mode of operation. A UGA device may support an
arbitrary number of modes in addition to the required mode.

Status Codes Returned
EFI_SUCCESS Valid mode information was returned.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.

EFI_INVALID_PARAMETER HorizontalResolution, or
VerticalResolution, or RefreshRate, is NULL.

 Protocols — Console Support

Version 1.10 12/01/02 10-29

EFI_UGA_DRAW_PROTOCOL.SetMode()

Summary

Set the video device into the specified mode and clears the output display to black.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UGA_DRAW_PROTOCOL_SET_MODE) (
 IN EFI_UGA_DRAW_PROTOCOL *This,
 IN UINT32 HorizontalResolution,
 IN UINT32 VerticalResolution,
 IN UINT32 ColorDepth,
 IN UINT32 RefreshRate
);

Parameters

This The EFI_UGA_DRAW_PROTOCOL instance. Type
EFI_UGA_DRAW_PROTOCOL is defined in Section 10.5.

HorizontalResolution The size of video screen in pixels in the X dimension.

VerticalResolution The size of video screen in pixels in the Y dimension.

ColorDepth Number of bits per pixel, currently defined to be 32.

RefreshRate The refresh rate of the monitor in Hertz.

Description

This SetMode() function sets the output device to the video mode specified by
HorizontalResolution, VerticalResolution, and RefreshRate. If any of the
arguments (HorizontalResolution, VerticalResolution, or RefreshRate) are
not supported EFI_UNSUPPORTED is returned.

If a device error occurs while attempt to set the video mode, then EFI_DEVICE_ERROR is
returned. On success the device is in the requested geometry and the hardware frame buffer
has been cleared to black (Red = 0, Green = 0, Blue = 0) and any enabled video display device
is updated.

Extensible Firmware Interface Specification

10-30 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS Graphics mode was changed.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED HorizontalResolution, VerticalResolution,
or RefreshRate is not supported.

 Protocols — Console Support

Version 1.10 12/01/02 10-31

EFI_UGA_DRAW_PROTOCOL.Blt()

Summary

Blt a rectangle of pixels on the graphics screen. Blt stands for BLock Transfer.

Prototype
typedef struct {
 UINT8 Blue;
 UINT8 Green;
 UINT8 Red;
 UINT8 Reserved;
} EFI_UGA_PIXEL;

typedef struct {
 EfiUgaVideoFill,
 EfiUgaVideoToBltBuffer,
 EfiUgaBltBufferToVideo,
 EfiUgaVideoToVideo,
 EfiUgaBltMax
} EFI_UGA_BLT_OPERATION;

typedef
EFI_STATUS
(EFIAPI *EFI_UGA_DRAW_PROTOCOL_BLT) (
 IN EFI_UGA_DRAW_PROTOCOL *This,
 IN OUT EFI_UGA_PIXEL *BltBuffer, OPTIONAL
 IN EFI_UGA_BLT_OPERATION BltOperation,
 IN UINTN SourceX,
 IN UINTN SourceY,
 IN UINTN DestinationX,
 IN UINTN DestinationY,
 IN UINTN Width,
 IN UINTN Height,
 IN UINTN Delta OPTIONAL
);

Extensible Firmware Interface Specification

10-32 12/01/02 Version 1.10

Parameters

This The EFI_UGA_DRAW_PROTOCOL instance.

BltBuffer The data to transfer to the graphics screen. Size is at least
Width*Height*sizeof(EFI_UGA_PIXEL).

BltOperation The operation to perform when copying BltBuffer on to the graphics
screen.

SourceX The X coordinate of the source for the BltOperation. The origin of
the screen is 0, 0 and that is the upper left-hand corner of the screen.

SourceY The Y coordinate of the source for the BltOperation. The origin of
the screen is 0, 0 and that is the upper left-hand corner of the screen.

DestinationX The X coordinate of the destination for the BltOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the screen.

DestinationY The Y coordinate of the destination for the BltOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the screen.

Width The width of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_UGA_PIXEL element.

Height The height of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_UGA_PIXEL element.

Delta Not used for EfiUgaVideoFill or the EfiUgaVideoToVideo
operation. If a Delta of zero is used, the entire BltBuffer is being
operated on. If a subrectangle of the BltBuffer is being used then
Delta represents the number of bytes in a row of the BltBuffer.

 Protocols — Console Support

Version 1.10 12/01/02 10-33

Description

The Blt() function is used to draw the BltBuffer rectangle onto the video screen.

The BltBuffer represents a rectangle of Height by Width pixels that will be drawn on the
graphics screen using the operation specified by BltOperation. The Delta value can be used
to enable the BltOperation to be performed on a sub-rectangle of the BltBuffer.

Table 10-4 describes the BltOperations that are supported on rectangles. Rectangles have
coordinates (left, upper) (right, bottom):

Table 10-4. Blt Operation Table

Blt Operation Operation

EfiUgaVideoFill Write data from the BltBuffer pixel (SourceX,
SourceY) directly to every pixel of the video display
rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY + Height).
Only one pixel will be used from the BltBuffer. Delta
is NOT used.

EfiUgaVideoToBltBuffer Read data from the video display rectangle (SourceX,
SourceY) (SourceX + Width, SourceY + Height) and
place it in the BltBuffer rectangle (DestinationX,
DestinationY) (DestinationX + Width,
DestinationY + Height). If DestinationX or
DestinationY is not zero then Delta must be set to
the length in bytes of a row in the BltBuffer.

EfiUgaBltBufferToVideo Write data from the BltBuffer rectangle (SourceX,
SourceY) (SourceX + Width, SourceY + Height)
directly to the video display rectangle (DestinationX,
DestinationY) (DestinationX + Width,
DestinationY + Height). If SourceX or SourceY is
not zero then Delta must be set to the length in bytes
of a row in the BltBuffer.

EfiUgaVideoToVideo Copy from the video display rectangle (SourceX,
SourceY) (SourceX + Width, SourceY + Height) to
the video display rectangle (X, Y) (X + Width, Y +
Height). The BltBuffer and Delta are not used in
this mode. There is no limitation on the overlapping of
the source and destination rectangles.

Status Codes Returned
EFI_SUCCESS BltBuffer was drawn to the graphics screen.

EFI_INVALID_PARAMETER BltOperation is not valid.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

Extensible Firmware Interface Specification

10-34 12/01/02 Version 1.10

10.6 Rules for PCI/AGP Devices

In an EFI system that contains PCI or AGP devices each PCI device/function will be abstracted by
a PCI I/O protocol on a handle with its associated device path.

If the PCI device/function contains a single frame buffer the EFI_UGA_DRAW_PROTOCOL must
be placed on the same handle as the PCI I/O Protocol.

If the PCI device/function contains multiple frame buffers the UGA ROM must create child handles
of the PCI I/O protocol that inherit its device path and append a controller device path node. The
UGA ROM is responsible for creating the child handle and placing the device path protocol and
EFI_UGA_DRAW_PROTOCOL.

 Protocols — Console Support

Version 1.10 12/01/02 10-35

10.7 UGA I/O Protocol

The interface structure for the UGA I/O Protocol is defined in this section. Each device abstracted
by a UGA ROM must produce a unique EFI_UGA_IO_PROTOCOL.

EFI_UGA_IO_PROTOCOL

Summary

Provides a basic abstraction to send I/O requests to the graphics device and any of its children.

GUID
#define EFI_UGA_IO_PROTOCOL_GUID \

 { 0x61a4d49e, 0x6f68, 0x4f1b, 0xb9,0x22,0xa8,0x6e,0xed,0xb,0x7,0xa2}

Protocol Interface Structure

typedef struct {
 EFI_UGA_IO_PROTOCOL_CREATE_DEVICE CreateDevice;
 EFI_UGA_IO_PROTOCOL_DELETE_DEVICE DeleteDevice;
 PUGA_FW_SERVICE_DISPATCH DispatchService;
} EFI_UGA_IO_PROTOCOL;

Parameters

CreateDevice Create a UGA_DEVICE object for a child device of a given parent
UGA_DEVICE.

DeleteDevice Delete the UGA_DEVICE returned from CreateDevice().

DispatchService Dispatches I/O requests to the display device and its associate child
devices.

Description

The EFI_UGA_IO_PROTOCOL is the primary interface exported by a UGA ROM in the OS
present environment. The EFI_UGA_IO_PROTOCOL.DispatchService() allows
communication with the video frame buffer and all its associated child devices. Child devices of
the EFI_UGA_IO_PROTOCOL include output controllers such as a TV tuner, and display devices
such as a HDTV.

Extensible Firmware Interface Specification

10-36 12/01/02 Version 1.10

The EFI_UGA_IO_PROTOCOL operates on UGA_DEVICE objects. Child devices can be
enumerated by using DispatchService() to send a pIoRequest of type
UgaIoGetChildDevice. A UGA_DEVICE object can be created via a call to
CreateDevice() with the data returned from UgaIoGetChildDevice.

A video device can support an arbitrary number of geometries, but it must support one of the
following modes to operate with the EFI_UGA_IO_PROTOCOL:

• 800 x 600 with 32-bit color with a 60 Hz refresh rate.

The advanced features of a UGA device are accessible via its DispatchService(). More
information on the advanced capabilities of an EFI 1.10 UGA ROM can be found at
www.microsoft.com/hwdev/uga.

http://www.microsoft.com/hwdev/tech/display/uga/

 Protocols — Console Support

Version 1.10 12/01/02 10-37

EFI_UGA_IO_PROTOCOL.CreateDevice()

Summary

Dynamically allocate storage for a child UGA_DEVICE.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UGA_IO_CREATE_DEVICE) (
 IN EFI_UGA_IO_PROTOCOL *This,
 IN UGA_DEVICE *ParentDevice,
 IN UGA_DEVICE_DATA *DeviceData,
 IN VOID *RunTimeContext,
 OUT UGA_DEVICE **Device
);

Parameters

This The EFI_UGA_IO_PROTOCOL instance. Type
EFI_UGA_IO_PROTOCOL is defined in Section 10.7.

ParentDevice ParentDevice specifies a pointer to the parent device of Device.

DeviceData A pointer to UGA_DEVICE_DATA returned from a call to
DispatchService() with a UGA_DEVICE of Parent and an
IoRequest of type UgaIoGetChildDevice.

RuntimeContext Context to associate with Device.

Device The Device returns a dynamically allocated child UGA_DEVICE object
for ParentDevice. The caller is responsible for deleting Device.

Description

A UGA_DEVICE object contains data fields that are defined by this specification and pointers to
implementation specific data structures. Since a UGA_DEVICE contains implementation specific
data that must be dynamically allocated, the CreateDevice() member function is required to
create a UGA_DEVICE object to enable the enumerate all the child UGA_DEVICE(s).

The device must not be started when its UGA_DEVICE Device is allocated.

Status Codes Returned
EFI_SUCCESS Device was returned

EFI_INVALID_PARAMETER One of the arguments was not valid

EFI_DEVICE_ERROR The device had an error and could not complete the request.

Extensible Firmware Interface Specification

10-38 12/01/02 Version 1.10

EFI_UGA_IO_PROTOCOL.DeleteDevice()

Summary

Deletes a dynamically allocated child UGA_DEVICE object that was allocated using
CreateDevice().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UGA_IO_DELETE_DEVICE) (
 IN EFI_UGA_IO_PROTOCOL *This,
 IN UGA_DEVICE *Device
);

Parameters

This The EFI_UGA_IO_PROTOCOL instance. Type
EFI_UGA_IO_PROTOCOL is defined in Section 10.7.

Device The Device points to a UGA_DEVICE object that was dynamically
allocated via a CreateDevice() call.

Description

An object that was created via a CreateDevice() is destroyed.

Status Codes Returned
EFI_SUCCESS The Device was deleted.

EFI_INVALID_PARAMETER The Device was not allocated via CreateDevice().

 Protocols — Console Support

Version 1.10 12/01/02 10-39

PUGA_FW_SERVICE_DISPATCH.DispatchService()

Summary

This function is the main UGA service dispatch routine for all UGA_IO_REQUESTs.

Prototype
typedef
UGA_STATUS
(EFIAPI *PUGA_FW_SERVICE_DISPATCH) (
 IN PUGA_DEVICE pDevice,
 IN OUT PUGA_IO_REQUEST pIoRequest
);

Parameters

pDevice pDevice specifies a pointer to a device object associated with a device
enumerated by a pIoRequest->ioRequestCode of type
UgaIoGetChildDevice. The root device for the
EFI_UGA_IO_PROTOCOL is represented by pDevice being set
to NULL.

pIoRequest pIoRequest points to a caller allocated buffer that contains data
defined by pIoRequest->ioRequestCode. See “Related
Definitions” below for a definition of UGA_IO_REQUEST_CODEs and
their associated data structures.

Related Definitions
typedef UINT32 UGA_STATUS;

typedef enum _UGA_DEVICE_TYPE {
 UgaDtParentBus = 1,
 UgaDtGraphicsController,
 UgaDtOutputController,
 UgaDtOutputPort,
 UgaDtOther
} UGA_DEVICE_TYPE, *PUGA_DEVICE_TYPE;

typedef UINT32 UGA_DEVICE_ID, *PUGA_DEVICE_ID;

typedef struct _UGA_DEVICE_DATA {
 UGA_DEVICE_TYPE deviceType;
 UGA_DEVICE_ID deviceId;
 UINT32 ui32DeviceContextSize;
 UINT32 ui32SharedContextSize;
} UGA_DEVICE_DATA, *PUGA_DEVICE_DATA;

Extensible Firmware Interface Specification

10-40 12/01/02 Version 1.10

typedef struct _UGA_DEVICE {
 PVOID pvDeviceContext;
 PVOID pvSharedContext;
 PVOID pvRunTimeContext;
 struct _PUGA_DEVICE pParentDevice;
 PVOID pvBusIoServices;
 PVOID pvStdIoServices;
 UGA_DEVICE_DATA deviceData;
} UGA_DEVICE, *PUGA_DEVICE;

A UGA_DEVICE is the basic device abstraction for enumerating child devices behind an
EFI_UGA_IO_PROTOCOL. A UGA_DEVICE object is allocated dynamically via a call to
CreateDevice(). A programmatic abstraction is required to allocate a UGA_DEVICE, since
some of the data structures pointed to by a UGA_DEVICE are implementation specific.

typedef enum _UGA_IO_REQUEST_CODE {
 UgaIoGetVersion = 1,
 UgaIoGetChildDevice,
 UgaIoStartDevice,
 UgaIoStopDevice,
 UgaIoFlushDevice,
 UgaIoResetDevice,
 UgaIoGetDeviceState,
 UgaIoSetDeviceState,
 UgaIoSetPowerState,
 UgaIoGetMemoryConfiguration,
 UgaIoSetVideoMode,
 UgaIoCopyRectangle,
 UgaIoGetEdidSegment,
 UgaIoDeviceChannelOpen,
 UgaIoDeviceChannelClose,
 UgaIoDeviceChannelRead,
 UgaIoDeviceChannelWrite,
 UgaIoGetPersistentDataSize,
 UgaIoGetPersistentData,
 UgaIoSetPersistentData,
 UgaIoGetDevicePropertySize,
 UgaIoGetDeviceProperty,
 UgaIoBtPrivateInterface
} UGA_IO_REQUEST_CODE, *PUGA_IO_REQUEST_CODE;

 Protocols — Console Support

Version 1.10 12/01/02 10-41

typedef struct _UGA_IO_REQUEST {
 IN UGA_IO_REQUEST_CODE ioRequestCode;
 IN PVOID pvInBuffer;
 IN UINT64 ui64InBufferSize;
 OUT PVOID pvOutBuffer;
 IN UINT64 ui64OutBufferSize;
 OUT UINT64 ui64BytesReturned;
} UGA_IO_REQUEST, *PUGA_IO_REQUEST;

A more complete definition of the data structures in this section can be found at
www.microsoft.com/hwdev/uga

Description

This is the main UGA service dispatch routine for all UGA_IO_REQUESTs. The
DispatchService() method exports all the support UGA_IO_REQUEST firmware
functionality of a device.

The EFI_UGA_DRAW_PROTCOL exist to provide lightweight access methods in the pre-OS space
to draw on the video screen. All the functionality of EFI_UGA_DRAW_PROTCOL can be accessed
directly via an IoRequest.

Status Codes Returned

The status returned by this function is defined on a per IoRequest basis.

http://www.microsoft.com/hwdev/tech/display/uga/

Extensible Firmware Interface Specification

10-42 12/01/02 Version 1.10

10.8 Implementation Rules for an EFI UGA Driver

An EFI driver designed to manage the UGA controller must follow the EFI 1.10 driver model and
thus produce an EFI_DRIVER_BINDING_PROTOCOL and follow the rules on implementing the
Supported(), Start(), and Stop(). The Start() function must not initialize or start the
video hardware, and it should just register an EFI_UGA_IO_PROTOCOL and one or more
EFI_UGA_DRAW_PROTOCOL(s). The video hardware must be initialized via
EFI_UGA_IO_PROTOCOL I/O requests or via the first call to
EFI_UGA_DRAW_PROTOCOL.SetMode().

An EFI_UGA_DRAW_PROTOCOL must be implemented for every video frame buffer that exists
on a video adapter. In most cases there will be a single EFI_UGA_DRAW_PROTOCOL placed on
the Controller handle passed into the EFI_DRIVER_BINDING.Start() function. As a UGA
ROM can contain more than one EFI Image, the EFI_UGA_DRAW_PROTOCOL can be produced
by a separate driver that consumes the EFI_UGA_IO_PROTOCOL.

An EFI_UGA_IO_PROTOCOL must be produced on the Controller handle passed into the
EFI_DRIVER_BINDING.Start() function. There is only one EFI_UGA_IO_PROTOCOL
produced for every device being managed by an UGA ROM.

For PCI based video device all hardware access will be done via EFI_UGA_IO_PROTOCOL. This
includes IO, MMIO, BAR based access, and DMA.

The EFI Boot Service and Runtime APIs are used to allocate memory and register protocol
interfaces.

Every UGA device must support an 800 x 600 x 32-bit color per pixel at 60 Hz by video mode.

The EFI_UGA_IO_PROTOCOL.UgaIoDispatchServce() function must support the
following UGA_IO_REQUESTs:
 UgaIoCopyRectangle
 UgaIoFlushDevice
 UgaIoGetChildDevice
 UgaIoGetDeviceProperty
 UgaIoGetDevicePropertySize
 UgaIoGetDeviceState
 UgaIoGetMemoryConfiguration
 UgaIoResetDevice
 UgaIoSetDeviceState
 UgaIoSetPowerState
 UgaIoSetVideoMode
 UgaIoStartDevice
 UgaIoStopDevice

 Protocols — Console Support

Version 1.10 12/01/02 10-43

The following UGA_IO_REQUESTs may not be required for specific hardware configurations:
 UgaIoDeviceChannelClose
 UgaIoDeviceChannelOpen
 UgaIoDeviceChannelRead
 UgaIoDeviceChannelWrite
 UgaIoGetEdidSegment

For additional information on how implementations can be constructed please refer to the
specification found at www.microsoft.com/hwdev/uga

10.9 UGA Draw Protocol to UGA I/O Protocol Mapping

As the EFI_UGA_DRAW_PROTOCOL member functions, GetMode(), SetMode(), and Blt()
exist as a lightweight abstraction of the more extensive functionality abstracted by
DispatchService(). This section describes the conceptual relationship between the protocol
member functions and I/O requests.

The GetMode() function can be implemented via remembering the values passed to the previous
call to SetMode().

The SetMode()function can be implemented via an UgaIoSetVideoMode I/O request. The
actual geometry of screen can be read via an UgaIoGetMemoryConfiguration I/O request.

The Blt() function can be implemented via an UgaIoCopyRectangle I/O request.

10.9.1 UGA System Requirements
This section defines the requirements a system must meet to support an EFI 1.10 UGA driver. A
system could be defined as an EFI firmware implementation or a Virtual Machine (VM) that runs
under an OS.

http://www.microsoft.com/hwdev/tech/display/uga/

Extensible Firmware Interface Specification

10-44 12/01/02 Version 1.10

10.9.2 System Abstraction Requirements
The system must support the loading of an EFI 1.10 image. The system must support the EBC
image type, and it may optionally support native images. When an EFI 1.10 driver is started it is
passed a pointer to the EFI 1.10 System Table, and an EFI Image Handle for the loaded image.
Thus the system must support the EFI system table and its associated runtime and boot services.

For PCI or AGP devices the system must produce a PCI_IO protocol on a handle for every UGA
device that can be supported.

The system will follow the following sequence of events to bind an EFI UGA driver to a
hardware device:

1. Initialize the EFI firmware or VM.

2. Create handles and PCI_IO protocols to abstract the supported devices.

3. Load the EFI 1.10 UGA drivers (drivers register Driver Binding Protocol but do not
touch hardware).

4. Bind the EFI 1.10 UGA driver to the hardware device. EFI firmware or VM uses
gBS->ConnectController() to bind driver handle to the PCI_IO device handle.

5. UGA protocols are now available for use.

10.9.3 Firmware to OS Hand-off
The system firmware must hand off to the OS the devices to which EFI 1.10 ROMs should be
bound. The EFI firmware must create entries in the Configuration Table of the EFI System Table.

The Configuration Table entry for EFI 1.10 UGA ROMs will contain the
EFI_UGA_IO_PROTOCOL_GUID and a pointer to the EFI_DRIVER_OS_HANDOFF_HEADER
(See “Related Definitions” below.) The EFI_DRIVER_OS_HANDOFF_HEADER describes a list
of EFI_DRIVER_OS_HANDOFF structures that describe to the OS what EFI 1.10 UGA ROMs are
present in the system.

There is an EFI_DRIVER_OS_HANDOFF entry for each PCI device that the firmware discovered
that is capable of supporting UGA. There may also be EFI_DRIVER_OS_HANDOFF entries for
EFI 1.10 UGA drivers that were not associated with a device. It should be noted that the
PciRomImage for a device may not contain the PeImage that firmware used as an EFI 1.10
UGA driver for the device.

Related Definitions
typedef struct {
 UINT32 Version;
 UINT32 HeaderSize;
 UINT32 SizeOfEntries;
 UINT32 NumberOfEntries;
} EFI_DRIVER_OS_HANDOFF_HEADER;

 Protocols — Console Support

Version 1.10 12/01/02 10-45

typedef enum {
 EfiUgaDriverFromPciRom,
 EfiUgaDriverFromSystem,
 EfiDriverHandoffMax
} EFI_DRIVER_HANOFF_ENUM;

typedef struct {
 EFI_DRIVER_HANOFF_ENUM Type;
 EFI_DEVICE_PATH *DevicePath;
 VOID *PciRomImage;
 UINT64 PciRomSize;
} EFI_DRIVER_OS_HANDOFF;

Type The type of the EFI_DRIVER_OS_HANDOFF structure. Currently only
EfiUgaDriverHandoff is defined and it represents the
EFI_DRIVER_OS_HANDOFF in the context of a UGA device.

DevicePath Pointer to the EFI device path that represents the UGA PCI address.
Please note the device path does not contain the PCI bus as it may
change from boot to boot.

PciRomImage If Type is EfiUgaDriverFromPciRom then PciRomImage
represents the contains of the PCI devices ROM bar. If Type is
EfiUgaDriverFromSystem then the PciRomImage was produced
by system for an onboard device. A PCI ROM can contain multiple EFI
images and every image in the ROM must be loaded.

PciRomSize The size of PciRomImage in bytes. The size will only include areas
defines in the PCI 2.2 Option ROM header and not the entire space
decoded by the ROM BAR. For example if the ROM BAR decoded to
16 MB, but the ROM image physically only contained 64 KB of
information this value would be 64 KB.

Extensible Firmware Interface Specification

10-46 12/01/02 Version 1.10

10.10 Simple Pointer Protocol

This section defines the Simple Pointer Protocol and a detailed description of the
EFI_SIMPLE_POINTER_PROTOCOL. The intent of this section is to specify a simple method
for accessing pointer devices. This would include devices such as mice and trackballs.

The EFI_SIMPLE_POINTER_PROTOCOL allows information about a pointer device to be
retrieved. This would include the status of buttons and the motion of the pointer device since the
last time it was accessed. This protocol is attached the device handle of a pointer device, and can
be used for input from the user in the preboot environment.

EFI_SIMPLE_POINTER_PROTOCOL

Summary

Provides services that allow information about a pointer device to be retrieved.

GUID
#define EFI_SIMPLE_POINTER_PROTOCOL_GUID \
 {0x31878c87,0xb75,0x11d5,0x9a,0x4f,0x0,0x90,0x27,0x3f,0xc1,0x4d}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_POINTER_PROTOCOL {
 EFI_SIMPLE_POINTER_RESET Reset;
 EFI_SIMPLE_POINTER_GET_STATE GetState;
 EFI_EVENT WaitForInput;
 EFI_SIMPLE_INPUT_MODE *Mode;
} EFI_SIMPLE_POINTER_PROTOCOL;

Parameters

Reset Resets the pointer device. See the Reset() function
description.

GetState Retrieves the current state of the pointer device. See the
GetState() function description.

WaitForInput Event to use with WaitForEvent() to wait for input from the
pointer device.

Mode Pointer to EFI_SIMPLE_POINTER_MODE data. The type
EFI_SIMPLE_POINTER_MODE is defined in “Related
Definitions” below.

 Protocols — Console Support

Version 1.10 12/01/02 10-47

Related Definitions
//***
// EFI_SIMPLE_POINTER_MODE
//***
typedef struct {
 UINT64 ResolutionX;
 UINT64 ResolutionY;
 UINT64 ResolutionZ;
 BOOLEAN LeftButton;
 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_MODE;

The following data values in the EFI_SIMPLE_POINTER_MODE interface are read-only and are
changed by using the appropriate interface functions:

ResolutionX The resolution of the pointer device on the x-axis in counts/mm. If 0,
then the pointer device does not support an x-axis.

ResolutionY The resolution of the pointer device on the y-axis in counts/mm. If 0,
then the pointer device does not support a y-axis.

ResolutionZ The resolution of the pointer device on the z-axis in counts/mm. If 0,
then the pointer device does not support a z-axis.

LeftButton TRUE if a left button is present on the pointer device. Otherwise FALSE.

RightButton TRUE if a right button is present on the pointer device. Otherwise
FALSE.

Description

The EFI_SIMPLE_POINTER_PROTOCOL provides a set of services for a pointer device that
can use used as an input device from an EFI application. The services include the ability to reset
the pointer device, retrieve get the state of the pointer device, and retrieve the capabilities of the
pointer device.

Extensible Firmware Interface Specification

10-48 12/01/02 Version 1.10

EFI_SIMPLE_POINTER.Reset()

Summary

Resets the pointer device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_POINTER_RESET) (
 IN EFI_SIMPLE_POINTER_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL
instance. Type EFI_SIMPLE_POINTER_PROTOCOL is
defined in Section 10.10.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

This Reset() function resets the pointer device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.

 Protocols — Console Support

Version 1.10 12/01/02 10-49

EFI_SIMPLE_POINTER.GetState()

Summary

Retrieves the current state of a pointer device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_POINTER_GET_STATE)
 IN EFI_SIMPLE_POINTER_PROTOCOL *This,
 IN OUT EFI_SIMPLE_POINTER_STATE *State
);

Parameters

This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL
instance. Type EFI_SIMPLE_POINTER_PROTOCOL is
defined in Section 10.10.

State A pointer to the state information on the pointer device. Type
EFI_SIMPLE_POINTER_STATE is defined in “Related
Definitions” below.

Related Definitions
//***
// EFI_SIMPLE_POINTER_STATE
//***
typedef struct {
 INT32 RelativeMovementX;
 INT32 RelativeMovementY;
 INT32 RelativeMovementZ;
 BOOLEAN LeftButton;
 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_STATE;

RelativeMovementX The signed distance in counts that the pointer device has been
moved along the x-axis. The actual distance moved is
RelativeMovementX / ResolutionX millimeters. If the
ResolutionX field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support an x-axis,
and this field must be ignored.

Extensible Firmware Interface Specification

10-50 12/01/02 Version 1.10

RelativeMovementY The signed distance in counts that the pointer device has been
moved along the y-axis. The actual distance moved is
RelativeMovementY / ResolutionY millimeters. If the
ResolutionY field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support a y-axis,
and this field must be ignored.

RelativeMovementZ The signed distance in counts that the pointer device has been
moved along the z-axis. The actual distance moved is
RelativeMovementZ / ResolutionZ millimeters. If the
ResolutionZ field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support a z-axis,
and this field must be ignored.

LeftButton If TRUE, then the left button of the pointer device is being
pressed. If FALSE, then the left button of the pointer device is
not being pressed. If the LeftButton field of the
EFI_SIMPLE_POINTER_MODE structure is FALSE, then this
field is not valid, and must be ignored.

RightButton If TRUE, then the right button of the pointer device is being
pressed. If FALSE, then the right button of the pointer device is
not being pressed. If the RightButton field of the
EFI_SIMPLE_POINTER_MODE structure is FALSE, then this
field is not valid, and must be ignored.

Description

The GetState() function retrieves the current state of a pointer device. This includes
information on the buttons associated with the pointer device and the distance that each of the axes
associated with the pointer device has been moved. If the state of the pointer device has not
changed since the last call to GetState(), then EFI_NOT_READY is returned. If the state of the
pointer device has changed since the last call to GetState(), then the state information is placed
in State, and EFI_SUCCESS is returned. If a device error occurs while attempting to retrieve
the state information, then EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS The state of the pointer device was returned in State.

EFI_NOT_READY The state of the pointer device has not changed since the last call to
GetState().

EFI_DEVICE_ERROR A device error occurred while attempting to retrieve the pointer device’s
current state.

 Protocols — Console Support

Version 1.10 12/01/02 10-51

10.11 EFI Simple Pointer Device Paths

An EFI_SIMPLE_POINTER_PROTOCOL must be installed on a handle for its services to be
available to EFI Drivers and EFI Applications. In addition to the
EFI_SIMPLE_POINTER_PROTOCOL, an EFI_DEVICE_PATH must also be installed on the
same handle. See Chapter 5 of the EFI Specification for detailed description of the
EFI_DEVICE_PATH.

A device path describes the location of a hardware component in a system from the processor’s
point of view. This includes the list of busses that lie between the processor and the pointer
controller. The EFI Specification takes advantage of the ACPI Specification to name system
components. The following set of examples shows sample device paths for a PS/2† mouse, a serial
mouse, and a USB mouse.

Table 10-5 shows an example device path for a PS/2 mouse that is located behind a PCI to ISA
bridge that is located at PCI device number 0x07 and PCI function 0x00, and is directly attached to
a PCI root bridge. This device path consists of an ACPI Device Path Node for the PCI Root
Bridge, a PCI Device Path Node for the PCI to ISA bridge, an ACPI Device Path Node for the PS/2
mouse, and a Device Path End Structure. The _HID and _UID of the first ACPI Device Path Node
must match the ACPI table description of the PCI Root Bridge. The shorthand notation for this
device path is:
ACPI(PNP0A03,0)/PCI(7|0)/ACPI(PNP0F03,0)

Table 10-5. PS/2 Mouse Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

continued

Extensible Firmware Interface Specification

10-52 12/01/02 Version 1.10

Table 10-5. PS/2 Mouse Device Path (continued)

Byte
Offset

Byte
Length

Data

Description

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0F03

_HID PNP0F03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes

Table 10-6 shows an example device path for a serial mouse that is located on COM 1 behind a PCI
to ISA bridge that is located at PCI device number 0x07 and PCI function 0x00. The PCI to ISA
bridge is directly attached to a PCI root bridge, and the communications parameters for COM 1 are
1200 baud, no parity, 8 data bits, and 1 stop bit. This device path consists of an ACPI Device Path
Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to ISA bridge, an ACPI Device
Path Node for COM 1, a UART Device Path Node for the communications parameters, an ACPI
Device Path Node for the serial mouse, and a Device Path End Structure. The _HID and _UID of
the first ACPI Device Path Node must match the ACPI table description of the PCI Root Bridge.
The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7|0)/ACPI(PNP0501,0)/UART(1200N81)/ACPI(PNP0F01,0)

Table 10-6. Serial Mouse Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

continued

 Protocols — Console Support

Version 1.10 12/01/02 10-53

Table 10-6. Serial Mouse Device Path (continued)

Byte
Offset

Byte
Length

Data

Description

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0501

_HID PNP0501 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0x03 Generic Device Path Header – Messaging Device Path

0x1F 0x01 0x0E Sub type – UART Device Path

0x20 0x02 0x13 Length – 0x13 bytes

0x22 0x04 0x00 Reserved

0x26 0x08 1200 Baud Rate

0x2E 0x01 0x08 Data Bits

0x2F 0x01 0x01 Parity

0x30 0x01 0x01 Stop Bits

0x31 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x32 0x01 0x01 Sub type – ACPI Device Path

0x33 0x02 0x0C Length – 0x0C bytes

0x35 0x04 0x41D0,
0x0F01

_HID PNP0F01 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x39 0x04 0x0000 _UID

0x3D 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x3E 0x01 0xFF Sub type – End of Entire Device Path

0x3F 0x02 0x04 Length – 0x04 bytes

Extensible Firmware Interface Specification

10-54 12/01/02 Version 1.10

Table 10-7 shows an example device path for a USB mouse that is behind a PCI to USB host
controller that is located at PCI device number 0x07 and PCI function 0x02. The PCI to USB host
controller is directly attached to a PCI root bridge. This device path consists of an ACPI Device
Path Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to USB controller, a USB
Device Path Node, and a Device Path End Structure. The _HID and _UID of the first ACPI Device
Path Node must match the ACPI table description of the PCI Root Bridge. The shorthand notation
for this device path is:
ACPI(PNP0A03,0)/PCI(7|2)/USB(0,0)

Table 10-7. USB Mouse Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Messaging Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 USB Port Number

0x17 0x01 0x00 USB Endpoint Number

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

 Protocols — Console Support

Version 1.10 12/01/02 10-55

10.12 Serial I/O Protocol

This section defines the Serial I/O protocol. This protocol is used to abstract byte stream devices.

SERIAL_IO_PROTOCOL

Summary

This protocol is used to communicate with any type of character-based I/O device.

GUID
#define SERIAL_IO_PROTOCOL \

 { BB25CF6F-F1D4-11D2-9A0C-0090273FC1FD }

Revision Number
#define SERIAL_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct {
 UINT32 Revision;
 EFI_SERIAL_RESET Reset;
 EFI_SERIAL_SET_ATTRIBUTES SetAttributes;
 EFI_SERIAL_SET_CONTROL_BITS SetControl;
 EFI_SERIAL_GET_CONTROL_BITS GetControl;
 EFI_SERIAL_WRITE Write;
 EFI_SERIAL_READ Read;
 SERIAL_IO_MODE *Mode;
} SERIAL_IO_INTERFACE;

Parameters

Revision The revision to which the SERIAL_IO_INTERFACE adheres. All
future revisions must be backwards compatible. If a future version is
not back wards compatible, it is not the same GUID.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device. These include
the baud rate, receive FIFO depth, transmit/receive time out, parity,
data bits, and stop bit attributes.

SetControl Sets the control bits on a serial device. These include Request to
Send and Data Terminal Ready.

GetControl Reads the status of the control bits on a serial device. These include
Clear to Send, Data Set Ready, Ring Indicator, and Carrier Detect.

Write Sends a buffer of characters to a serial device.

Read Receives a buffer of characters from a serial device.

Extensible Firmware Interface Specification

10-56 12/01/02 Version 1.10

Mode Pointer to SERIAL_IO_MODE data. Type SERIAL_IO_MODE is
defined in “Related Definitions” below.

Related Definitions

//***
// SERIAL_IO_MODE
//***
typedef struct {

UINT32 ControlMask;

 // current Attributes
 UINT32 Timeout;
 UINT64 BaudRate;
 UINT32 ReceiveFifoDepth;
 UINT32 DataBits;
 UINT32 Parity;
 UINT32 StopBits;
} SERIAL_IO_MODE;

The data values in the SERIAL_IO_MODE are read-only and are updated by the code that
produces the SERIAL_IO_INTERFACE protocol functions:

ControlMask A mask of the Control bits that the device supports. The device must
always support the Input Buffer Empty control bit.

Timeout If applicable, the number of microseconds to wait before timing out a
Read or Write operation.

BaudRate If applicable, the current baud rate setting of the device; otherwise,
baud rate has the value of zero to indicate that device runs at the
device’s designed speed.

ReceiveFifoDepth The number of characters the device will buffer on input.

DataBits The number of data bits in each character.

Parity If applicable, this is the EFI_PARITY_TYPE that is computed or
checked as each character is transmitted or received. If the device
does not support parity the value is the default parity value.

StopBits If applicable, the EFI_STOP_BITS_TYPE number of stop bits per
character. If the device does not support stop bits the value is the
default stop bit value.

 Protocols — Console Support

Version 1.10 12/01/02 10-57

//***
// EFI_PARITY_TYPE
//***
typedef enum {
 DefaultParity,
 NoParity,
 EvenParity,
 OddParity,
 MarkParity,
 SpaceParity
} EFI_PARITY_TYPE;

//***
// EFI_STOP_BITS_TYPE
//***
typedef enum {
 DefaultStopBits,
 OneStopBit, // 1 stop bit
 OneFiveStopBits, // 1.5 stop bits
 TwoStopBits // 2 stop bits
} EFI_STOP_BITS_TYPE;

Description

The Serial I/O protocol is used to communicate with UART-style serial devices. These can be
standard UART serial ports in PC-AT systems, serial ports attached to a USB interface, or
potentially any character-based I/O device.

The Serial I/O protocol can control byte I/O style devices from a generic device to a device with
features such as a UART. As such many of the serial I/O features are optional to allow for the case
of devices that do not have UART controls. Each of these options is called out in the specific serial
I/O functions.

The default attributes for all UART-style serial device interfaces are: 115,200 baud, a 1 byte
receive FIFO, a 1,000,000 microsecond timeout per character, no parity, 8 data bits, and 1 stop bit.
Flow control is the responsibility of the software that uses the protocol. Hardware flow control can
be implemented through the use of the GetControl() and SetControl() functions
(described below) to monitor and assert the flow control signals. The XON/XOFF flow control
algorithm can be implemented in software by inserting XON and XOFF characters into the serial
data stream as required.

Special care must be taken if a significant amount of data is going to be read from a serial device.
Since EFI drivers are polled mode drivers, characters received on a serial device might be missed.
It is the responsibility of the software that uses the protocol to check for new data often enough to
guarantee that no characters will be missed. The required polling frequency depends on the baud
rate of the connection and the depth of the receive FIFO.

Extensible Firmware Interface Specification

10-58 12/01/02 Version 1.10

SERIAL_IO.Reset()

Summary

Resets the serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_RESET) (
 IN SERIAL_IO_INTERFACE *This
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 10.12.

Description

The Reset() function resets the hardware of a serial device.

Status Codes Returned
EFI_SUCCESS The serial device was reset.

EFI_DEVICE_ERROR The serial device could not be reset.

 Protocols — Console Support

Version 1.10 12/01/02 10-59

SERIAL_IO.SetAttributes()

Summary

Sets the baud rate, receive FIFO depth, transmit/receive time out, parity, data bits, and stop bits on a
serial device.

EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_ATTRIBUTES) (
 IN SERIAL_IO_INTERFACE *This,
 IN UINT64 BaudRate,
 IN UINT32 ReceiveFifoDepth,
 IN UINT32 Timeout
 IN EFI_PARITY_TYPE Parity,
 IN UINT8 DataBits,
 IN EFI_STOP_BITS_TYPE StopBits
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 10.12.

BaudRate The requested baud rate. A BaudRate value of 0 will use the
device’s default interface speed.

ReceiveFifoDepth The requested depth of the FIFO on the receive side of the serial
interface. A ReceiveFifoDepth value of 0 will use the
device’s default FIFO depth.

Timeout The requested time out for a single character in microseconds.
This timeout applies to both the transmit and receive side of the
interface. A Timeout value of 0 will use the device’s default
time out value.

Parity The type of parity to use on this serial device. A Parity value
of DefaultParity will use the device’s default parity value.
Type EFI_PARITY_TYPE is defined in “Related Definitions”
in Section 10.12.

DataBits The number of data bits to use on this serial device. A
DataBits value of 0 will use the device’s default data bit
setting.

StopBits The number of stop bits to use on this serial device. A
StopBits value of DefaultStopBits will use the device’s
default number of stop bits. Type EFI_STOP_BITS_TYPE is
defined in “Related Definitions” in Section 10.12.

Extensible Firmware Interface Specification

10-60 12/01/02 Version 1.10

Description

The SetAttributes() function sets the baud rate, receive-FIFO depth, transmit/receive time
out, parity, data bits, and stop bits on a serial device.

The controller for a serial device is programmed with the specified attributes. If the Parity,
DataBits, or StopBits values are not valid, then an error will be returned. If the specified
BaudRate is below the minimum baud rate supported by the serial device, an error will be
returned. The nearest baud rate supported by the serial device will be selected without exceeding
the BaudRate parameter. If the specified ReceiveFifoDepth is below the smallest FIFO size
supported by the serial device, an error will be returned. The nearest FIFO size supported by the
serial device will be selected without exceeding the ReceiveFifoDepth parameter.

Status Codes Returned
EFI_SUCCESS The new attributes were set on the serial device.

EFI_INVALID_PARAMETER One or more of the attributes has an unsupported value.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

 Protocols — Console Support

Version 1.10 12/01/02 10-61

SERIAL_IO.SetControl()

Summary

Sets the control bits on a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_CONTROL) (
 IN SERIAL_IO_INTERFACE *This,
 IN UINT32 Control
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 10.12.

Control Sets the bits of Control that are settable. See “Related
Definitions” below.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Extensible Firmware Interface Specification

10-62 12/01/02 Version 1.10

Description

The SetControl() function is used to assert or deassert the control signals on a serial device.
The following signals are set according their bit settings:

• Request to Send
• Data Terminal Ready

Only the REQUEST_TO_SEND, DATA_TERMINAL_READY, HARDWARE_LOOPBACK_ENABLE,
SOFTWARE_LOOPBACK_ENABLE, and HARDWARE_FLOW_CONTROL_ENABLE bits can be set
with SetControl(). All the bits can be read with GetControl().

Status Codes Returned
EFI_SUCCESS The new control bits were set on the serial device.

EFI_UNSUPPORTED The serial device does not support this operation.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

 Protocols — Console Support

Version 1.10 12/01/02 10-63

SERIAL_IO.GetControl()

Summary

Retrieves the status of the control bits on a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_GET_CONTROL) (
 IN SERIAL_IO_INTERFACE *This,
 OUT UINT32 *Control
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 10.12.

Control A pointer to return the current control signals from the
serial device. See “Related Definitions” below.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Description

The GetControl() function retrieves the status of the control bits on a serial device.

Status Codes Returned
EFI_SUCCESS The control bits were read from the serial device.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

Extensible Firmware Interface Specification

10-64 12/01/02 Version 1.10

SERIAL_IO.Write()

Summary

Writes data to a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_WRITE) (
 IN SERIAL_IO_INTERFACE *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 10.12.

BufferSize On input, the size of the Buffer. On output, the amount of
data actually written.

Buffer The buffer of data to write.

Description

The Write() function writes the specified number of bytes to a serial device. If a time out error
occurs while data is being sent to the serial port, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the serial
device is returned in BufferSize.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.

 Protocols — Console Support

Version 1.10 12/01/02 10-65

SERIAL_IO.Read()

Summary

Reads data from a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_READ) (
 IN SERIAL_IO_INTERFACE *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 10.12.

BufferSize On input, the size of the Buffer. On output, the amount of
data returned in Buffer.

Buffer The buffer to return the data into.

Description

The Read() function reads a specified number of bytes from a serial device. If a time out error or
an overrun error is detected while data is being read from the serial device, then no more characters
will be read, and an error will be returned. In all cases the number of bytes actually read is returned
in BufferSize.

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The serial device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.

Extensible Firmware Interface Specification

10-66 12/01/02 Version 1.10

Version 1.10 12/01/02 11-1

11
Protocols - Bootable Image Support

11.1 LOAD_FILE Protocol

This section defines the Load File protocol. This protocol is designed to allow code running in the
EFI boot services environment to find and load other modules of code.

LOAD_FILE Protocol

Summary

Is used to obtain files from arbitrary devices.

GUID
#define LOAD_FILE_PROTOCOL \
 {56EC3091-954C-11d2-8E3F-00A0C969723B}

Protocol Interface Structure
typedef struct {
 EFI_LOAD_FILE LoadFile;
} EFI_LOAD_FILE_INTERFACE;

Parameters

LoadFile Causes the driver to load the requested file. See the LoadFile()
function description.

Description

The EFI_LOAD_FILE protocol is a simple protocol used to obtain files from arbitrary devices.

When the firmware is attempting to load a file, it first attempts to use the device’s Simple File
System protocol to read the file. If the file system protocol is found, the firmware implements the
policy of interpreting the File Path value of the file being loaded. If the device does not support the
file system protocol, the firmware then attempts to read the file via the EFI_LOAD_FILE protocol
and the LoadFile() function. In this case the LoadFile() function implements the policy of
interpreting the File Path value.

Extensible Firmware Interface Specification

11-2 12/01/02 Version 1.10

LOAD_FILE.LoadFile()

Summary

Causes the driver to load a specified file.

Prototype
EFI_STATUS
(EFIAPI *EFI_LOAD_FILE) (
 IN EFI_LOAD_FILE_INTERFACE *This,
 IN EFI_DEVICE_PATH *FilePath,
 IN BOOLEAN BootPolicy,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer OPTIONAL
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_LOAD_FILE_INTERFACE is defined in Section 11.1.

FilePath The device specific path of the file to load. Type EFI_DEVICE_PATH
is defined in Chapter 8.

BootPolicy If TRUE, indicates that the request originates from the boot manager, and
that the boot manager is attempting to load FilePath as a boot
selection. If FALSE, then FilePath must match an exact file to be
loaded.

BufferSize On input the size of Buffer in bytes. On output with a return code of
EFI_SUCCESS, the amount of data transferred to Buffer.
On output with a return code of EFI_BUFFER_TOO_SMALL, the size
of Buffer required to retrieve the requested file.

Buffer The memory buffer to transfer the file to. If Buffer is NULL, then no
the size of the requested file is returned in BufferSize.

Description

The LoadFile() function interprets the device-specific FilePath parameter, returns the entire
file into Buffer, and sets BufferSize to the amount of data returned. If Buffer is NULL,
then the size of the file is returned in BufferSize. If Buffer is not NULL, and BufferSize
is not large enough to hold the entire file, then EFI_BUFFER_TOO_SMALL is returned, and
BufferSize is updated to indicate the size of the buffer needed to obtain the file. In this case, no
data is returned in Buffer.

If BootPolicy is FALSE the FilePath must match an exact file to be loaded. If no such file
exists, EFI_NOT_FOUND is returned. If BootPolicy is FALSE, and an attempt is being made
to perform a network boot through the PXE Base Code protocol, EFI_UNSUPPORTED is returned.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-3

If BootPolicy is TRUE the firmware’s boot manager is attempting to load an EFI image that is a
boot selection. In this case, FilePath contains the file path value in the boot selection option.
Normally the firmware would implement the policy on how to handle an inexact boot file path;
however, since in this case the firmware cannot interpret the file path, the LoadFile() function
is responsible for implementing the policy. For example, in the case of a network boot through the
PXE Base Code protocol, FilePath merely points to the root of the device, and the firmware
interprets this as wanting to boot from the first valid loader. The following is list of events that
LoadFile() will implement for a PXE boot:

• Perform DHCP.
• Optionally prompt the user with a menu of boot selections.
• Discover the boot server and the boot file.
• Download the boot file into Buffer and update BufferSize with the size of the boot file.

Status Codes Returned
EFI_SUCCESS The file was loaded.

EFI_UNSUPPORTED The device does not support the provided BootPolicy.

EFI_INVALID_PARAMETER FilePath is not a valid device path, or BufferSize
is NULL.

EFI_NO_SUCH_MEDIA No medium was present to load the file.

EFI_DEVICE_ERROR The file was not loaded due to a device error.

EFI_NO_RESPONSE The remote system did not respond.

EFI_NOT_FOUND The file was not found.

EFI_ABORTED The file load process was manually cancelled.

Extensible Firmware Interface Specification

11-4 12/01/02 Version 1.10

11.2 File System Format

The file system supported by the Extensible Firmware Interface is based on the FAT file system.
EFI defines a specific version of FAT that is explicitly documented and testable. Conformance to
the EFI specification and its associate reference documents is the only definition of FAT that needs
to be implemented to support EFI. To differentiate the EFI file system from pure FAT, a new
partition file system type has been defined.

EFI encompasses the use of FAT32 for a system partition, and FAT12 or FAT16 for removable
media. The FAT32 system partition is identified by an OS type value other than that used to
identify previous versions of FAT. This unique partition type distinguishes an EFI defined file
system from a normal FAT file system. The file system supported by EFI includes support for
long file names.

The definition of the EFI file system will be maintained by specification and will not evolve over
time to deal with errata or variant interpretations in OS file system drivers or file system utilities.
Future enhancements and compatibility enhancements to FAT will not be automatically included in
EFI file systems. The EFI file system is a target that is fixed by the EFI specification, and other
specifications explicitly referenced by the EFI specification.

For more information about the EFI file system and file image format, visit the web site from which
this document was obtained.

11.2.1 System Partition
A System Partition is a partition in the conventional sense of a partition on a legacy Intel
architecture system. For a hard disk, a partition is a contiguous grouping of sectors on the disk
where the starting sector and size are defined by the Master Boot Record (MBR), which resides on
the first sector of the hard disk. For a diskette (floppy) drive, a partition is defined to be the entire
media. A System Partition can reside on any media that is supported by EFI Boot Services.

A System Partition supports backward compatibility with legacy Intel architecture systems by
reserving the first block (sector) of the partition for compatibility code. On legacy Intel architecture
systems, the first block (sector) of a partition is loaded into memory and execution is transferred to
this code. EFI firmware does not execute the code in the MBR. The EFI firmware contains
knowledge about the partition structure of various devices, and can understand legacy MBR, EFI
partition record, and “El Torito.”

The System Partition contains directories, data files, and EFI Images. EFI Images can contain an
EFI OS Loader, an EFI Driver to extend platform firmware capability, or an EFI Application that
provides a transient service to the system. EFI Applications could include things such as a utility to
create partitions or extended diagnostics. A System Partition can also support data files, such as
error logs, that can be defined and used by various OS or system firmware software components.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-5

11.2.1.1 File System Format
The first block (sector) of a partition contains a data structure called the BIOS Parameter Block,
BPB, that defines the type and location of FAT file system on the drive. The BPB contains a data
structure that defines the size of the media, the size of reserved space, the number of FAT tables,
and the location and size of the root directory (not used in FAT32). The first block (sector) also
contains code that will be executed as part of the boot process on a legacy Intel architecture system.
This code in the first block (sector) usually contains code that can read a file from the root directory
into memory and transfer control to it. Since EFI firmware contains a file system driver, EFI
firmware can load any file from the file system with out needing to execute any code from
the media.

The EFI firmware must support the FAT32, FAT16, and FAT12 variants of the EFI file system.
What variant of EFI FAT to use is defined by the size of the media. The rules defining the
relationship between media size and FAT variants is defined in the specification for the EFI
file system.

11.2.1.2 File Names
FAT stores file names in two formats. The original FAT format limited file names to eight
characters with three extension characters. This type of file name is called an 8.3, pronounced eight
dot three, file name. FAT was extended to include support for long file names (LFN).

FAT 8.3 file names are always stored as uppercase ASCII characters. LFN can either be stored as
ASCII or Unicode and are stored case sensitive. The string that was used to open or create the file
is stored directly into LFN. FAT defines that all files in a directory must have a unique name, and
unique is defined as a case insensitive match. The following are examples of names that are
considered to be the same and cannot exist in a single directory:

• “ThisIsAnExampleDirectory.Dir”
• “thisisanexamppledirectory.dir”
• THISISANEXAMPLEDIRECTORY.DIR
• ThisIsAnExampleDirectory.DIR

11.2.1.3 Directory Structure
An EFI system partition that is present on a hard disk must contain an EFI defined directory in the
root directory. This directory is named EFI. All OS loaders and applications will be stored in
subdirectories below EFI. Applications that are loaded by other applications or drivers are not
required to be stored in any specific location in the EFI system partition. The choice of the
subdirectory name is up to the vendor, but all vendors must pick names that do not collide with any
other vendor’s subdirectory name. This applies to system manufacturers, operating system
vendors, BIOS vendors, and third party tool vendors, or any other vendor that wishes to install files
on an EFI system partition. There must also only be one executable EFI image for each supported
processor architecture in each vendor subdirectory. This guarantees that there is only one image
that can be loaded from a vendor subdirectory by the EFI Boot Manager. If more than one
executable EFI image is present, then the boot behavior for the system will not be deterministic.
There may also be an optional vendor subdirectory called BOOT.

Extensible Firmware Interface Specification

11-6 12/01/02 Version 1.10

This directory contains EFI images that aide in recovery if the boot selections for the software
installed on the EFI system partition are ever lost. Any additional EFI executables must be in
subdirectories below the vendor subdirectory. The following is a sample directory structure for an
EFI system partition present on a hard disk.

\EFI
 \<OS Vendor 1 Directory>
 <OS Loader Image>
 \<OS Vendor 2 Directory>
 <OS Loader Image>
 . . .
 \<OS Vendor N Directory>
 <OS Loader Image>
 \<OEM Directory>
 <OEM Application Image>
 \<BIOS Vendor Directory>
 <BIOS Vendor Application Image>
 \<Third Party Tool Vendor Directory>
 <Third Party Tool Vendor Application Image>
 \BOOT
 BOOT{machine type short name}.EFI

For removable media devices there must be only one EFI system partition, and that partition must
contain an EFI defined directory in the root directory. The directory will be named EFI. All OS
loaders and applications will be stored in a subdirectory below EFI called BOOT. There must only
be one executable EFI image for each supported processor architecture in the BOOT directory. For
removable media to be bootable under EFI, it must be built in accordance with the rules laid out in
Section 17.4.1.1. This guarantees that there is only one image that can be automatically loaded
from a removable media device by the EFI Boot Manager. Any additional EFI executables must be
in directories other than BOOT. The following is a sample directory structure for an EFI system
partition present on a removable media device.

\EFI
 \BOOT

 BOOT{machine type short name}.EFI

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-7

11.2.2 Partition Discovery
EFI requires the firmware to be able to parse legacy master boot records, the new GUID Partition
Table (GPT), and El Torito logical device volumes. The EFI firmware produces a logical
BLOCK_IO device for each EFI Partition Entry, El Torito logical device volume, and if no EFI
Partition Table is present any partitions found in the partition tables. Logical block address zero of
the BLOCK_IO device will correspond to the first logical block of the partition. See Figure 11-1.

BLOCK_I/O
DISK

Partition Partition

Partition Table

Pointers
to partitions

Partition Table

Pointers
to partitions

Partition Partition

OM13159

Figure 11-1. Nesting of Legacy MBR Partition Records

The following is the order in which a block device must be scanned to determine if it contains
partitions. When a check for a valid partitioning scheme succeeds, the search terminates.

1. Check for GUID Partition Table Headers.
2. Follow ISO-9660 specification to search for ISO-9660 volume structures on the magic LBA.

 Check for an “El Torito” volume extension and follow the “El Torito” CD-ROM
specification.

3. If none of the above, check LBA 0 for a legacy MBR partition table.
4. No partition found on device.

EFI supports the nesting of legacy MBR partitions, by allowing any legacy MBR partition to
contain more legacy MBR partitions. This is accomplished by supporting the same partition
discovery algorithm on every logical block device. It should be noted that the GUID Partition
Table does not allow nesting of GUID Partition Table Headers. Nesting is not needed since a
GUID Partition Table Header can support an arbitrary number of partitions (the addressability
limits of a 64-bit LBA is the limiting factor).

Extensible Firmware Interface Specification

11-8 12/01/02 Version 1.10

11.2.2.1 EFI Partition Header
EFI defines a new partitioning scheme that must be supported by EFI firmware. The following list
outlines the advantages of using the GUID Partition Table over the legacy MBR partition table:

• Logical Block Addressing is 64 bits.
• Supports many partitions.
• Uses a primary and backup table for redundancy.
• Uses version number and size fields for future expansion.
• Uses CRC32 fields for improved data integrity.
• Defines a GUID for uniquely identifying each partition.
• Uses a GUID and attributes to define partition content type.
• Each partition contains a 36 Unicode character human readable name.

The EFI partitioning scheme is depicted in Figure 11-2. The GUID Partition Table Header (see
Table 11-1) starts with a signature and a revision number that specifies which version of the EFI
specification defines the data bytes in the partition header. The GUID Partition Table Header
contains a header size field that is used in calculating the CRC32 that confirms the integrity of the
GUID Partition Table Header. While the GUID Partition Table Header’s size may increase in the
future it cannot span more than one block on the device.

Two GUID Partition Table Header structures are stored on the device: the primary and the backup.
The primary GUID Partition Table Header must be located in block 1 of the logical device, and the
backup GUID Partition Table Header must be located in the last block of the logical device. Within
the GUID Partition Table Header there are the MyLBA and AlternateLBA fields. The MyLBA
field contains the logical block address of the GUID Partition Table Header itself, and the
AlternateLBA field contains the logical block address of the other GUID Partition Table
Header. For example, the primary GUID Partition Table Header’s MyLBA value would be 1 and its
AlternateLBA would be the value for the last block of the logical device. The backup GUID
Partition Table Header’s fields would be reversed.

The GUID Partition Table Header defines the range of logical block addresses that are usable by
Partition Entries. This range is defined to be inclusive of FirstUsableLBA through
LastUsableLBA on the logical device. All data stored on the volume must be stored between
the FirstUsableLBA through LastUsableLBA, and only the data structures defined by EFI
to manage partitions may reside outside of the usable space. The value of DiskGUID is a GUID
that uniquely identifies the entire GUID Partition Table Header and all its associated storage. This
value can be used to uniquely identify the disk. The start of the GUID Partition Entry array is
located at the logical block address PartitionEntryLBA. The size of a GUID Partition Entry
element is defined in the GUID Partition Table Header. There is a 32-bit CRC of the GUID
Partition Entry array that is stored in the GUID Partition Table Header in
PartitionEntryArrayCRC. The size of the GUID Partition Entry array is the
PartitionEntrySize multiplied by NumberOfPartitionEntries. When a GUID
Partition Entry is updated, the PartitionEntryArrayCRC must be updated. When the
PartitionEntryArrayCRC is updated, the GUID Partition Table Header CRC must also be
updated, since the PartitionEntryArrayCRC is stored in the GUID Partition Table Header.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-9

Partition 1

Start partition

OM13160

P
M

B
R

P
artition

T
able H

D
R

LBA0 LBA1

First useable block

P
artition

T
able H

D
R

Last useable block

LBAn

0 1 n

End partition

Primary Partition
Table

Backup Partition
Table

Start partition
End partition

0 1 n

Figure 11-2. GUID Partition Table (GPT) Scheme

The primary GUID Partition Entry array must be located after the primary GUID Partition Table
Header and end before the FirstUsableLBA. The backup GUID Partition Entry array must be
located after the LastUsableLBA and end before the backup GUID Partition Table Header.
Therefore the primary and backup GUID Partition Entry arrays are stored in separate locations on
the disk. GUID Partition Entries define a partition that is contained in a range that is within the
usable space declared by the GUID Partition Table Header. Zero or more GUID Partition Entries
may be in use in the GUID Partition Entry array. Each defined partition must not overlap with any
other defined partition. If all the fields of a GUID Partition Entry are zero, the entry is not in use.
A minimum of 16,384 bytes of space must be reserved for the GUID Partition Entry array.
Typically the first useable block will start at an LBA greater than or equal to 34, assuming the LBA
block size is 512 bytes.

Table 11-1. GUID Partition Table Header

Mnemonic

Byte
Offset

Byte
Length

Description

Signature 0 8 Identifies EFI-compatible partition table header.
This value must contain the string “EFI PART,”
0x5452415020494645.

Revision 8 4 The specification revision number that this header
complies to. For version 1.0 of the specification
the correct value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GUID Partition Table Header.

HeaderCRC32 16 4 CRC32 checksum for the GUID Partition Table
Header structure. The range defined by
HeaderSize is “check-summed.”

Reserved 20 4 Must be zero.

continued

Extensible Firmware Interface Specification

11-10 12/01/02 Version 1.10

Table 11-1. GUID Partition Table Header (continued)

Mnemonic

Byte
Offset

Byte
Length

Description

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GUID Partition Table
Header.

FirstUsableLBA 40 8 The first usable logical block that may be
contained in a GUID Partition Entry.

LastUsableLBA 48 8 The last usable logical block that may be
contained in a GUID Partition Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the
disk.

PartitionEntryLBA 72 8 The starting LBA of the GUID Partition Entry array.

NumberOfPartitionEntries 80 4 The number of Partition Entries in the GUID
Partition Entry array.

SizeOfPartitionEntry 84 4 The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry array.
Must be a multiple of 8.

PartitionEntryArrayCRC32 88 4 The CRC32 of the GUID Partition Entry array.

Starts at Partition Entry LBA and is
NumberOfPartitionEntries *
SizeOfPartitionEntry in byte length.

Reserved 92 BlockSize
– 92

The rest of the block is reserved by EFI and must
be zero.

The following test must be performed to determine if a GUID Partition Table is valid:

• Check the GUID Partition Table Signature
• Check the GUID Partition Table CRC
• Check that the MyLBA entry points to the LBA that contains the GUID Partition Table
• Check the CRC of the GUID Partition Entry Array

If the GUID Partition Table is the primary table, stored at LBA 1:

• Check the AlternateLBA to see if it is a valid GUID Partition Table

If the primary GUID Partition Table is corrupt:

• Check the last LBA of the device to see if it has a valid GUID Partition Table.
• If valid backup GUID Partition Table found, restore primary GUID Partition Table.

Any software that updates the primary GUID Partition Table Header must also update the backup
GUID Partition Table Header. The order of the update of the GUID Partition Table Header and its
associated GUID Partition Entry array is not important, since all the CRCs are stored in the GUID
Partition Table Header. However, the primary GUID Partition Table Header and GUID Partition
Entry array must always be updated before the backup.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-11

If the primary GUID Partition Table is invalid the backup GUID Partition Table is located on the
last logical block on the disk. If the backup GUID Partition Table is valid it must be used to restore
the primary GUID Partition Table. If the primary GUID Partition Table is valid and the backup
GUID Partition Table is invalid software must restore the backup GUID Partition Table. If both the
primary and backup GUID Partition Table is corrupted this block device is defined as not having a
valid GUID Partition Header.

The primary and backup GUID Partition Tables must be valid before an attempt is made to grow
the size of a physical volume. This is due to the GUID Partition Table recovery scheme depending
on locating the backup GUID Partition Table at the end of the physical device. A volume may
grow in size when disks are added to a RAID device. As soon as the volume size is increased the
backup GUID Partition Table must be moved to the end of the volume and the primary and backup
GUID Partition Table Headers must be updated to reflect the new volume size.

Table 11-2. GUID Partition Entry

Mnemonic

Byte
Offset

Byte
Length

Description

Partition Type Guid 0 16 Unique ID that defines the purpose and type of this
Partition. A value of zero defines that this partition
record is not being used.

Unique Partition Guid 16 16 GUID that is unique for every partition record. Every
partition ever created will have a unique GUID. This
GUID must be assigned when the GUID Partition Entry
is created. The GUID Partition Entry is created when
ever the NumberOfPartitionEntries in the

GUID Partition Table Header is increased to include a
larger range of addresses.

StartingLBA 32 8 Starting LBA of the partition defined by this record.

EndingLBA 40 8 Ending LBA of the partition defined by this record.

Attributes 48 8 Attribute bits, all bits reserved by EFI.

Partition Name 56 72 Unicode string.

The SizeOfPartitionEntry variable in the GUID Partition Table Header defines the size of
a GUID Partition Entry. The GUID Partition Entry starts in the first byte of the GUID Partition
Entry and any unused space at the end of the defined partition entry is reserved space and must be
set to zero.

Each partition record contains a Unique Partition GUID variable that uniquely identifies every
partition that will ever be created. Any time a new partition record is created a new GUID must be
generated for that partition, and every partition is guaranteed to have a unique GUID. The partition
record also contains 64-bit logical block addresses for the starting and ending block of the partition.
The partition is defined as all the logical blocks inclusive of the starting and ending usable LBA
defined in the GUID Partition Table Header. The partition record contains a partition type GUID
that identifies the contents of the partition. This GUID is similar to the OS type field in the legacy
MBR. Each file system must publish its unique GUID. The partition record also contains
Attributes that can be used by utilities to make broad inferences about the usage of a partition. A

Extensible Firmware Interface Specification

11-12 12/01/02 Version 1.10

36-character Unicode string is also included, so that a human readable string can be used to
represent what information is stored on the partition. This allows third party utilities to give human
readable names to partitions.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition
using InstallProtocolInterface(). This will allow drivers and applications, including
OS loaders, to easily search for handles that represent EFI System Partitions or vendor specific
partition types.

A utility that makes a binary copy of a disk that is formatted with GPT must generate a new
DiskGUID in the Partition Table Headers. In addition, new UniquePartitionGuids must be
generated for each GUID Partition Entry.

Table 11-3. Defined GUID Partition Entry - Partition Type GUIDs

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000

EFI System Partition C12A7328-F81F-11d2-BA4B-00A0C93EC93B

Partition containing a legacy MBR 024DEE41-33E7-11d3-9D69-0008C781F39F

OS vendors need to generate their own GUIDs to identify their partition types.

Table 11-4. Defined GUID Partition Entry - Attributes

Bits Description

Bit 0 Required for the platform to function. The system cannot function normally if this partition is
removed. This partition should be considered as part of the hardware of the system, and if it is
removed the system may not boot. It may contain diagnostics, recovery tools, or other code or
data that is critical to the functioning of a system independent of any OS.

Bits1-47 Undefined and must be zero. Reserved for expansion by future versions of the EFI
specification.

Bits 48-63 Reserved for GUID specific use. The use of these bits will vary depending on the
PartitionTypeGuid. Only the owner of the PartitionTypeGuid is allowed to

modify these bits. They must be preserved if Bits 0–47 are modified.

11.2.2.2 ISO-9660 and El Torito
IS0-9660 is the industry standard low level format used on CD-ROM and DVD-ROM. CD-ROM
format is completely described by the “El Torito” Bootable CD-ROM Format Specification
Version 1.0. To boot from a CD-ROM or DVD-ROM in the boot services environment, an EFI
System partition is stored in a “no emulation” mode as defined by the “El Torito” specification. A
Platform ID of 0xEF hex indicates an EFI System Partition. The Platform ID is in either the
Section Header Entry or the Validation Entry of the Booting Catalog as defined by the “El Torito”
specification. EFI differs from “El Torito” “no emulation” mode in that it does not load the “no
emulation” image into memory and jump to it. EFI interprets the “no emulation” image as an EFI
system partition. EFI interprets the Sector Count in the Initial/Default Entry or the Section Header
Entry to be the size of the EFI system partition. If the value of Sector Count is set to 0 or 1, EFI
will assume the system partition consumes the space from the beginning of the “no emulation”
image to the end of the CD-ROM.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-13

DVD-ROM images formatted as required by the UDF 2.00 specification (OSTA Universal Disk
Format Specification, Revision 2.00) can be booted by EFI. EFI supports booting from an
ISO-9660 file system that conforms to the “El Torito” Bootable CD-ROM Format Specification on
a DVD-ROM. A DVD-ROM that contains an ISO-9660 file system is defined as a “UDF Bridge”
disk. Booting from CD-ROM and DVD-ROM is accomplished using the same methods.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM it is possible to boot Intel architecture personal computers using an EFI CD-ROM or
DVD-ROM. The inclusion of boot code for Intel architecture personal computers is optional and
not required by EFI.

11.2.2.3 Legacy Master Boot Record
The legacy master boot record is the first block (sector) on the disk media. The boot code on the
MBR is not executed by EFI firmware. The MBR may optionally contain a signature located as
defined in Table 11-5. The MBR signature must be maintained by operating systems, and is never
maintained by EFI firmware. The unique signature in the MBR is only 4 bytes in length, so it is
not a GUID. EFI does not specify the algorithm that is used to generate the unique signature.
The uniqueness of the signature is defined as all disks in a given system having a unique value
in this field.

Table 11-5. Legacy Master Boot Record

Mnemonic

Byte
Offset

Byte
Length

Description

BootCode 0 440 Code used on legacy Intel architecture system to select
a partition record and load the first block (sector) of the
partition pointed to by the partition record. This code is
not executed on EFI systems.

UniqueMBRSignature 440 4 Unique Disk Signature, this is an optional feature and
not on all hard drives. This value is always written by
the OS and is never written by EFI firmware.

Unknown 444 2 Unknown

PartitionRecord 446 16*4 Array of four MBR partition records.

Signature 510 2 Must be 0xaa55.

The MBR contains four partition records that define the beginning and ending LBA addresses that a
partition consumes on a hard disk. The partition record contains a legacy Cylinder Head Sector
(CHS) address that is not used in EFI. EFI utilizes the starting LBA entry to define the starting
LBA of the partition on the disk. The size of the partition is defined by the size in LBA field.

The boot indicator field is not used by EFI firmware. The operating system indicator value of 0xEF
defines a partition that contains an EFI file system. The other values of the system indicator are not
defined by this specification. If an MBR partition has an operating system indicator value of 0xEF,
then the firmware must add the EFI System Partition GUID to the handle for the MBR partition
using InstallProtocolInterface(). This will allow drivers and applications, including
OS loaders, to easily search for handles that represent EFI System Partitions.

Extensible Firmware Interface Specification

11-14 12/01/02 Version 1.10

Table 11-6. Legacy Master Boot Record Partition Record

Mnemonic

Byte
Offset

Byte
Length

Description

Boot Indicator 0 1 Not used by EFI firmware. Set to 0x80 to indicate that this is
the bootable legacy partition.

Start Head 1 1 Start of partition in CHS address, not used by EFI firmware.

Start Sector 2 1 Start of partition in CHS address, not used by EFI firmware.

Start Track 3 1 Start of partition in CHS address, not used by EFI firmware.

OS Type 4 1 OS type. A value of 0xEF defines an EFI system partition.
Other values are reserved for legacy operating systems, and
allocated independently of the EFI specification.

End head 5 1 End of partition in CHS address, not used by EFI firmware.

End Sector 6 1 End of partition in CHS address, not used by EFI firmware.

End Track 7 1 End of partition in CHS address, not used by EFI firmware.

Starting LBA 8 4 Starting LBA address of the partition on the disk. Used by
EFI firmware to define the start of the partition.

Size In LBA 12 4 Size of partition in LBA. Used by EFI firmware to determine
the size of the partition.

EFI defines a valid legacy MBR as follows. The signature at the end of the MBR must be
0xaa55. Each MBR partition record must be checked to make sure that the partition that it
defines physically resides on the disk. Each partition record must be checked to make sure it does
not overlap with other partition records. A partition record that contains an OSIndicator
value of zero or a SizeInLBA value of zero may be ignored. If any of these checks fail, the
MBR is not considered valid.

11.2.2.4 Legacy Master Boot Record and GPT Partitions
The GPT partition structure does not support nesting of partitions. However it is legal to have a
legacy Master Boot Record nested inside a GPT partition.

On all GUID Partition Table disks a Protective MBR (PMBR) in the first LBA of the disk precedes
the GUID Partition Table Header to maintain compatibility with existing tools that do not
understand GPT partition structures. The Protective MBR has the same format as a legacy MBR,
contains one partition entry of OS type 0xEE and reserves the entire space used on the disk by the
GPT partitions, including all headers. The Protective MBR that precedes a GUID Partition Table
Header is shown in Table 11-7. If the GPT partition is larger than a partition that can be
represented by a legacy MBR, values of all Fs must be used to signify that all space that can be
possibly reserved by the MBR is being reserved.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-15

Table 11-7. PMBR Entry to Precede a GUID Partition Table Header

Mnemonic

Byte
Offset

Byte
Length

Description

Boot Indicator 0 1 Must be set to zero to indicate nonbootable partition.
Start Head 1 1
Start Sector 2 1
Start Track 3 1

Set to match the Starting LBA of the EFI Partition
structure. Must be set to 0xFFFFFF if it is not possible
to represent the starting LBA.

OS Type 4 1 Must be 0xEE.
End head 5 1
End Sector 6 1
End Track 7 1

Set to match the Ending LBA of the EFI Partition
structure. Must be set to 0xFFFFFF if it is not possible
to represent the starting LBA.

Starting LBA 8 4 Must be 1 by definition.
Size In LBA 12 4 Length of EFI Partition Head, 0xFFFFFFFF if this value

overflows.

11.2.3 Media Formats
This section describes how booting from different types of removable media is handled. In general
the rules are consistent regardless of a media’s physical type and whether it is removable or not.

11.2.3.1 Removable Media
Removable media may contain a standard FAT12, FAT16, or FAT32 file system. Legacy 1.44 MB
floppy devices typically support a FAT12 file system.

Booting from a removable media device can be accomplished the same way as any other boot. The
boot file path provided to the boot manager can consist of an EFI application image to load, or can
merely be the path to a removable media device. In the first case, the path clearly indicates the
image that is to be loaded. In the later case, the boot manager implements the policy to load the
default application image from the device.

For removable media to be bootable under EFI, it must be built in accordance with the rules laid
out in Section 3.4.1.1.

11.2.3.2 Diskette
EFI bootable diskettes follow the standard formatting conventions used on Intel architecture
personal computers. The diskette contains only a single partition that complies to the EFI file
system type. For diskettes to be bootable under EFI, it must be built in accordance with the rules
laid out in Section 3.4.1.1.

Since the EFI file system definition does not use the code in the first block of the diskette, it is
possible to boot Intel architecture personal computers using a diskette that is also formatted as an
EFI bootable removable media device. The inclusion of boot code for Intel architecture personal
computers is optional and not required by EFI.

Diskettes include the legacy 3.5-inch diskette drives as well as the newer larger capacity removable
media drives such as an Iomega† Zip†, Fujitsu MO, or MKE LS-120/SuperDisk†.

Extensible Firmware Interface Specification

11-16 12/01/02 Version 1.10

11.2.3.3 Hard Drive
Hard drives may contain multiple partitions as defined in Section 11.2.2 on partition discovery.
Any partition on the hard drive may contain a file system that the EFI firmware recognizes.
Images that are to be booted must be stored under the EFI subdirectory as defined in Sections
11.2.1 and 11.2.2.

EFI code does not assume a fixed block size.

Since EFI firmware does not execute the MBR code and does not depend on the bootable flag field
in the partition entry the hard disk can still boot and function normally on an Intel architecture-
based personal computer.

11.2.3.4 CD-ROM and DVD-ROM
A CD-ROM or DVD-ROM may contain multiple partitions as defined Sections 11.2.1 and 11.2.2
and in the “El Torito” specification.

EFI code does not assume a fixed block size.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM, it is possible to boot Intel architecture personal computers using an EFI CD-ROM or
DVD-ROM. The inclusion of boot code for Intel architecture personal computers is optional and
not required by EFI.

11.2.3.5 Network
To boot from a network device, the Boot Manager uses the Load File Protocol to perform a
LoadFile() on the network device. This uses the PXE Base Code Protocol to perform DHCP
and Discovery. This may result in a list of possible boot servers along with the boot files available
on each server. The Load File Protocol for a network boot may then optionally produce a menu
of these selections for the user to choose from. If this menu is presented, it will always have a
timeout, so the Load File Protocol can automatically boot the default boot selection. If there is
only one possible boot file, then the Load File Protocol can automatically attempt to load the
one boot file.

The Load File Protocol will download the boot file using the MTFTP service in the PXE Base Code
Protocol. The downloaded image must be an EFI image that the platform supports.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-17

11.3 File System Protocol

This section defines the File System protocol. This protocol allows code running in the EFI boot
services environment to obtain file based access to a device. The Simple File System protocol is
used to open a device volume and return an EFI_FILE that provides interfaces to access files on a
device volume.

Simple File System Protocol

Summary

Provides a minimal interface for file-type access to a device.

GUID
#define SIMPLE_FILE_SYSTEM_PROTOCOL \
{ 0964e5b22-6459-11d2-8e39-00a0c969723b }

Revision Number
#define EFI_FILE_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_FILE_IO_INTERFACE {
 UINT64 Revision;
 EFI_VOLUME_OPEN OpenVolume;
} EFI_FILE_IO_INTERFACE;

Parameters

Revision The version of the EFI_FILE_IO_INTERFACE. The version
specified by this specification is 0x00010000. All future revisions must
be backwards compatible. If a future version is not backwards
compatible, it is not the same GUID.

OpenVolume Opens the volume for file I/O access. See the OpenVolume() function
description.

Extensible Firmware Interface Specification

11-18 12/01/02 Version 1.10

Description

The Simple File System protocol provides a minimal interface for file-type access to a device. This
protocol is only supported on some devices.

Devices that support the Simple File System protocol return an EFI_FILE_IO_INTERFACE.
The only function of this interface is to open a handle to the root directory of the file system on the
volume. Once opened, all accesses to the volume are performed through the volume’s file handles,
using the EFI_FILE protocol. The volume is closed by closing all the open file handles.

The firmware automatically creates handles for any block device that supports the following file
system formats:

• FAT12
• FAT16
• FAT32

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-19

EFI_FILE_IO_INTERFACE.OpenVolume()

Summary

Opens the root directory on a volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_VOLUME_OPEN) (
 IN EFI_FILE_IO_INTERFACE *This,
 OUT EFI_FILE **Root
);

Parameters

This A pointer to the volume to open the root directory of. See the type
EFI_FILE_IO_INTERFACE description.

Root A pointer to the location to return the opened file handle for the root
directory. See the type EFI_FILE protocol description.

Description

The OpenVolume() function opens a volume, and returns a file handle to the volume’s root
directory. This handle is used to perform all other file I/O operations. The volume remains open
until all the file handles to it are closed.

If the medium is changed while there are open file handles to the volume, all file handles to the
volume will return EFI_MEDIA_CHANGED. To access the files on the new medium, the volume
must be reopened with OpenVolume(). If the new medium is a different file system than the one
supplied in the EFI_HANDLE’s DevicePath for the Simple File System protocol,
OpenVolume() will return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The file volume was opened.

EFI_UNSUPPORTED The volume does not support the requested file system type.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES The file volume was not opened.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported. Any existing file handles for this volume are
no longer valid. To access the files on the new medium, the
volume must be reopened with OpenVolume().

Extensible Firmware Interface Specification

11-20 12/01/02 Version 1.10

11.4 EFI_FILE Protocol

The protocol and functions described in this section support access to EFI-supported file systems.

EFI_FILE Protocol

Summary

Provides file based access to supported file systems.

Revision Number
#define EFI_FILE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_FILE {
 UINT64 Revision;
 EFI_FILE_OPEN Open;
 EFI_FILE_CLOSE Close;
 EFI_FILE_DELETE Delete;
 EFI_FILE_READ Read;
 EFI_FILE_WRITE Write;
 EFI_FILE_GET_POSITION GetPosition;
 EFI_FILE_SET_POSITION SetPosition;
 EFI_FILE_GET_INFO GetInfo;
 EFI_FILE_SET_INFO SetInfo;
 EFI_FILE_FLUSH Flush;
} EFI_FILE;

Parameters

Revision The version of the EFI_FILE interface. The version specified by this
specification is 0x00010000. Future versions are required to be
backward compatible to version 1.0.

Open Opens or creates a new file. See the Open() function description.

Close Closes the current file handle. See the Close() function description.

Delete Deletes a file. See the Delete() function description.

Read Reads bytes from a file. See the Read() function description.

Write Writes bytes to a file. See the Write() function description.

GetPosition Returns the current file position. See the GetPosition() function
description.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-21

SetPosition Sets the current file position. See the SetPosition() function
description.

GetInfo Gets the requested file or volume information. See the GetInfo()
function description.

SetInfo Sets the requested file information. See the SetInfo() function
description.

Flush Flushes all modified data associated with the file to the device. See the
Flush() function description.

Description

The EFI_FILE provides file IO access to supported file systems.

An EFI_FILE provides access to a file’s or directory’s contents, and is also a reference to a
location in the directory tree of the file system in which the file resides. With any given file handle,
other files may be opened relative to this file’s location, yielding new file handles.

On requesting the file system protocol on a device, the caller gets the
EFI_FILE_IO_INTERFACE to the volume. This interface is used to open the root directory of
the file system when needed. The caller must Close() the file handle to the root directory, and
any other opened file handles before exiting. While there are open files on the device, usage of
underlying device protocol(s) that the file system is abstracting must be avoided. For example,
when a file system that is layered on a DISK_IO / BLOCK_IO protocol, direct block access to the
device for the blocks that comprise the file system must be avoided while there are open file
handles to the same device.

A file system driver may cache data relating to an open file. A Flush() function is provided that
flushes all dirty data in the file system, relative to the requested file, to the physical medium. If the
underlying device may cache data, the file system must inform the device to flush as well.

Extensible Firmware Interface Specification

11-22 12/01/02 Version 1.10

EFI_FILE.Open()

Summary

Opens a new file relative to the source file’s location.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_OPEN) (
 IN EFI_FILE *This,
 OUT EFI_FILE **NewHandle,
 IN CHAR16 *FileName,
 IN UINT64 OpenMode,
 IN UINT64 Attributes
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to the source
location. This would typically be an open handle to a directory. See the
type EFI_FILE protocol description.

NewHandle A pointer to the location to return the opened handle for the new file.
See the type EFI_FILE protocol description.

FileName The Null-terminated string of the name of the file to be opened. The file
name may contain the following path modifiers: “\”, “.”, and “..”.

OpenMode The mode to open the file. The only valid combinations that the file may
be opened with are: Read, Read/Write, or Create/Read/Write. See
“Related Definitions” below.

Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these are the
attribute bits for the newly created file. See “Related Definitions” below.

Related Definitions
//***
// Open Modes
//***
#define EFI_FILE_MODE_READ 0x0000000000000001
#define EFI_FILE_MODE_WRITE 0x0000000000000002
#define EFI_FILE_MODE_CREATE 0x8000000000000000

//***
// File Attributes
//***
#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-23

#define EFI_FILE_RESERVED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

Description

The Open()function opens the file or directory referred to by FileName relative to the location
of This and returns a NewHandle. The FileName may include the following path modifiers:

 “\” If the filename starts with a “\” the relative location is the root directory
that This residues on; otherwise “\” separates name components. Each
name component is opened in turn, and the handle to the last file opened
is returned.

 “.” Opens the current location.

 “..” Opens the parent directory for the current location. If the location is the
root directory the request will return an error, as there is no parent
directory for the root directory.

If EFI_FILE_MODE_CREATE is set, then the file is created in the directory. If the final location
of FileName does not refer to a directory, then the operation fails. If the file does not exist in the
directory, then a new file is created. If the file already exists in the directory, then the existing file
is opened.

If the medium of the device changes, all accesses (including the File handle) will result in
EFI_MEDIA_CHANGED. To access the new medium, the volume must be reopened.

Status Codes Returned
EFI_SUCCESS The file was opened.

EFI_NOT_FOUND The specified file could not be found on the device.

EFI_NO_MEDIA The device has no medium.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for write
when the media is write protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.

EFI_VOLUME_FULL The volume is full.

Extensible Firmware Interface Specification

11-24 12/01/02 Version 1.10

EFI_FILE.Close()

Summary

Closes a specified file handle.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_CLOSE) (
 IN EFI_FILE *This
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to close. See
the type EFI_FILE protocol description.

Description

The Close() function closes a specified file handle. All “dirty” cached file data is flushed to the
device, and the file is closed. In all cases the handle is closed.

Status Codes Returned
EFI_SUCCESS The file was closed.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-25

EFI_FILE.Delete()

Summary

Closes and deletes a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_DELETE) (
 IN EFI_FILE *This
);

Parameters

This A pointer to the EFI_FILE instance that is the handle to the file to
delete. See the type EFI_FILE protocol description.

Description

The Delete() function closes and deletes a file. In all cases the file handle is closed. If the file
cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is returned, but the handle is
still closed.

Status Codes Returned
EFI_SUCCESS The file was closed and deleted, and the handle was

closed.

EFI_WARN_DELETE_FAILURE The handle was closed, but the file was not deleted.

Extensible Firmware Interface Specification

11-26 12/01/02 Version 1.10

EFI_FILE.Read()

Summary
Reads data from a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_READ) (
 IN EFI_FILE *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE instance that is the file handle to read data

from. See the type EFI_FILE protocol description.

BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer. In both cases, the size is measured in bytes.

Buffer The buffer into which the data is read.

Description
The Read() function reads data from a file.

If This is not a directory, the function reads the requested number of bytes from the file at the
file’s current position and returns them in Buffer. If the read goes beyond the end of the file, the
read length is truncated to the end of the file. The file’s current position is increased by the number
of bytes returned.

If This is a directory, the function reads the directory entry at the file’s current position and
returns the entry in Buffer. If the Buffer is not large enough to hold the current directory
entry, then EFI_BUFFER_TOO_SMALL is returned and the current file position is not updated.
BufferSize is set to be the size of the buffer needed to read the entry. On success, the current
position is updated to the next directory entry. If there are no more directory entries, the read
returns a zero-length buffer. EFI_FILE_INFO is the structure returned as the directory entry.

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the
current directory entry. BufferSize has been

updated with the size needed to complete the
request.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-27

EFI_FILE.Write()

Summary

Writes data to a file.

EFI_STATUS
(EFIAPI *EFI_FILE_WRITE) (
 IN EFI_FILE *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to write data
to. See the type EFI_FILE protocol description.

BufferSize On input, the size of the Buffer. On output, the amount of data
actually written. In both cases, the size is measured in bytes.

Buffer The buffer of data to write.

Description

The Write() function writes the specified number of bytes to the file at the current file position.
The current file position is advanced the actual number of bytes written, which is returned in
BufferSize. Partial writes only occur when there has been a data error during the write attempt
(such as “file space full”). The file is automatically grown to hold the data if required.

Direct writes to opened directories are not supported.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.

Extensible Firmware Interface Specification

11-28 12/01/02 Version 1.10

EFI_FILE.SetPosition()

Summary

Sets a file’s current position.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_SET_POSITION) (
 IN EFI_FILE *This,
 IN UINT64 Position
);

Parameters

This A pointer to the EFI_FILE instance that is the he file handle to set the
requested position on. See the type EFI_FILE protocol description.

Position The byte position from the start of the file to set.

Description

The SetPosition() function sets the current file position for the handle to the position
supplied. With the exception of seeking to position 0xFFFFFFFFFFFFFFFF, only absolute
positioning is supported, and seeking past the end of the file is allowed (a subsequent write would
grow the file). Seeking to position 0xFFFFFFFFFFFFFFFF causes the current position to be set to
the end of the file.

If This is a directory, the only position that may be set is zero. This has the effect of starting the
read process of the directory entries over.

Status Codes Returned
EFI_SUCCESS The position was set.

EFI_UNSUPPORTED The seek request for nonzero is not valid on open
directories.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-29

EFI_FILE.GetPosition()

Summary

Returns a file’s current position.

Prototype
EFI_STATUS
(EFIAPI *EFI_GET_POSITION) (
 IN EFI_FILE *This,
 OUT UINT64 *Position
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to get the
current position on. See the type EFI_FILE protocol description.

Position The address to return the file’s current position value.

Description

The GetPosition() function returns the current file position for the file handle. For
directories, the current file position has no meaning outside of the file system driver and as such the
operation is not supported. An error is returned if This is a directory.

Status Codes Returned
EFI_SUCCESS The position was returned.

EFI_UNSUPPORTED The request is not valid on open directories.

Extensible Firmware Interface Specification

11-30 12/01/02 Version 1.10

EFI_FILE.GetInfo()

Summary
Returns information about a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_GET_INFO) (
 IN EFI_FILE *This,
 IN EFI_GUID *InformationType,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE instance that is the file handle the requested

information is for. See the type EFI_FILE protocol description.

InformationType The type identifier for the information being requested. Type
EFI_GUID is defined in Chapter 5. See the EFI_FILE_INFO and
EFI_FILE_SYSTEM_INFO descriptions for the related GUID
definitions.

BufferSize On input, the size of Buffer. On output, the amount of data returned in
Buffer. In both cases, the size is measured in bytes.

Buffer A pointer to the data buffer to return. The buffer’s type is indicated by
InformationType.

Description
The GetInfo() function returns information of type InformationType for the requested file.
If the file does not support the requested information type, then EFI_UNSUPPORTED is returned.
If the buffer is not large enough to fit the requested structure, EFI_BUFFER_TOO_SMALL is
returned and the BufferSize is set to the size of buffer that is required to make the request.

The information types defined by this specification are required information types that all file
systems must support.

Status Codes Returned
EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.
BufferSize has been updated with the size needed to complete the

request.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-31

EFI_FILE.SetInfo()

Summary

Sets information about a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_SET_INFO) (
 IN EFI_FILE *This,
 IN EFI_GUID *InformationType,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle the
information is for. See the type EFI_FILE protocol description.

InformationType The type identifier for the information being set. Type EFI_GUID is
defined in Chapter 5. See the EFI_FILE_INFO and
EFI_FILE_SYSTEM_INFO descriptions for the related GUID
definitions.

BufferSize The size, in bytes, of Buffer.

Buffer A pointer to the data buffer to write. The buffer’s type is indicated by
InformationType.

Description

The SetInfo() function sets information of type InformationType on the requested file.

Status Codes Returned
EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type
indicated by InformationType.

Extensible Firmware Interface Specification

11-32 12/01/02 Version 1.10

EFI_FILE.Flush()

Summary

Flushes all modified data associated with a file to a device.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_FLUSH) (
 IN EFI_FILE *This
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to flush. See
the type EFI_FILE protocol description.

Description

The Flush() function flushes all modified data associated with a file to a device.

Status Codes Returned
EFI_SUCCESS The data was flushed.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-33

EFI_FILE_INFO

Summary

Provides a GUID and a data structure that can be used with EFI_FILE.SetInfo() and
EFI_FILE.GetInfo() to set or get generic file information.

GUID
#define EFI_FILE_INFO_ID \
{ 09576e92-6d3f-11d2-8e39-00a0c969723b }

Related Definitions
typedef struct {
 UINT64 Size;
 UINT64 FileSize;
 UINT64 PhysicalSize;
 EFI_TIME CreateTime;
 EFI_TIME LastAccessTime;
 EFI_TIME ModificationTime;
 UINT64 Attribute;
 CHAR16 FileName[];
} EFI_FILE_INFO;

//***
// File Attribute Bits
//***

#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004
#define EFI_FILE_RESERVED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

Extensible Firmware Interface Specification

11-34 12/01/02 Version 1.10

Parameters

Size Size of the EFI_FILE_INFO structure, including the Null-
terminated Unicode FileName string.

FileSize The size of the file in bytes.

PhysicalSize The amount of physical space the file consumes on the file
system volume.

CreateTime The time the file was created.

LastAccessTime The time when the file was last accessed.

ModificationTime The time when the file’s contents were last modified.

Attribute The attribute bits for the file. See “Related Definitions” above.

FileName The Null-terminated Unicode name of the file.

Description

The EFI_FILE_INFO data structure supports GetInfo() and SetInfo() requests. In the
case of SetInfo(), the following additional rules apply:

• On directories, the file size is determined by the contents of the directory and cannot be
changed by setting FileSize. On directories, FileSize is ignored during a SetInfo().

• The PhysicalSize is determined by the FileSize and cannot be changed. This value
is ignored during a SetInfo() request.

• The EFI_FILE_DIRECTORY attribute bit cannot be changed. It must match the file’s
actual type.

• A value of zero in CreateTime, LastAccess, or ModificationTime causes the fields
to be ignored (and not updated).

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-35

EFI_FILE_SYSTEM_INFO

Summary

Provides a GUID and a data structure that can be used with EFI_FILE.GetInfo() to get
information about the system volume, and EFI_FILE.SetInfo() to set the system volume’s
volume label.

GUID
#define EFI_FILE_SYSTEM_INFO_ID \
{ 09576e93-6d3f-11d2-8e39-00a0c969723b }

Related Definitions
typedef struct {
 UINT64 Size;
 BOOLEAN ReadOnly;
 UINT64 VolumeSize;
 UINT64 FreeSpace;
 UINT32 BlockSize;
 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_INFO;

Parameters

Size Size of the EFI_FILE_SYSTEM_INFO structure, including the Null-
terminated Unicode VolumeLabel string.

ReadOnly TRUE if the volume only supports read access.

VolumeSize The number of bytes managed by the file system.

FreeSpace The number of available bytes for use by the file system.

BlockSize The nominal block size by which files are typically grown.

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_INFO data structure is an information structure that can be obtained on
the root directory file handle. The root directory file handle is the file handle first obtained on the
initial call to the HandleProtocol() function to open the file system interface. All of the
fields are read-only except for VolumeLabel. The system volume’s VolumeLabel can be
created or modified by calling EFI_FILE.SetInfo() with an updated VolumeLabel field.

Extensible Firmware Interface Specification

11-36 12/01/02 Version 1.10

EFI_FILE_SYSTEM_VOLUME_LABEL

Summary

Provides a GUID and a data structure that can be used with EFI_FILE.GetInfo() or
EFI_FILE.SetInfo() to get or set information about the system’s volume label.

GUID
#define EFI_FILE_SYSTEM_VOLUME_LABEL_ID \

 { DB47D7D3-FE81-11d3-9A35-0090273FC14D }

Related Definitions
typedef struct {
 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_VOLUME_LABEL;

Parameters

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_VOLUME_LABEL data structure is an information structure that can be
obtained on the root directory file handle. The root directory file handle is the file handle first
obtained on the initial call to the HandleProtocol() function to open the file system interface.
The system volume’s VolumeLabel can be created or modified by calling
EFI_FILE.SetInfo() with an updated VolumeLabel field.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-37

11.5 DISK_IO Protocol

This section defines the Disk I/O protocol. This protocol is used to abstract the block accesses of
the Block I/O protocol to a more general offset-length protocol. The firmware is responsible for
adding this protocol to any Block I/O interface that appears in the system that does not already have
a Disk I/O protocol. File systems and other disk access code utilize the Disk I/O protocol.

DISK_IO Protocol

Summary

This protocol is used to abstract Block I/O interfaces.

GUID
#define DISK_IO_PROTOCOL \
 { CE345171-BA0B-11d2-8e4F-00a0c969723b }

Revision Number
#define EFI_DISK_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_DISK_IO {
 UINT64 Revision;
 EFI_DISK_READ ReadDisk;
 EFI_DISK_WRITE WriteDisk;
} EFI_DISK_IO;

Parameters

Revision The revision to which the disk I/O interface adheres. All future
revisions must be backwards compatible. If a future version is
not backwards compatible, it is not the same GUID.

ReadDisk Reads data from the disk. See the ReadDisk() function
description.

WriteDisk Writes data to the disk. See the WriteDisk() function
description.

Extensible Firmware Interface Specification

11-38 12/01/02 Version 1.10

Description

The EFI_DISK_IO protocol is used to control block I/O interfaces.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block
boundaries or alignment requirements. This is done by copying the data to/from internal buffers as
needed to provide the proper requests to the block I/O device. Outstanding write buffer data is
flushed by using the Flush() function of the EFI_BLOCK_IO protocol on the device handle.

The firmware automatically adds an EFI_DISK_IO interface to any EFI_BLOCK_IO interface
that is produced. It also adds file system, or logical block I/O, interfaces to any EFI_DISK_IO
interface that contains any recognized file system or logical block I/O devices. The firmware must
automatically support the following required formats:

• The EFI FAT12, FAT16, and FAT32 file system type.
• The legacy master boot record partition block. (The presence of this on any block I/O device

is optional, but if it is present the firmware is responsible for allocating a logical device for
each partition).

• The extended partition record partition block.
• The El Torito logical block devices.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-39

EFI_DISK_IO.ReadDisk()

Summary

Reads a specified number of bytes from a device.

Prototype
EFI_STATUS
(EFIAPI *EFI_DISK_READ) (
 IN EFI_DISK_IO *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_DISK_IO is
defined in the DISK_IO protocol description.

MediaId ID of the medium to be read.

Offset The starting byte offset on the logical block I/O device to read from.

BufferSize The size in bytes of Buffer. The number of bytes to read from
the device.

Buffer A pointer to the destination buffer for the data. The caller is responsible
for either having implicit or explicit ownership of the buffer.

Description

The ReadDisk() function reads the number of bytes specified by BufferSize from the
device. All the bytes are read, or an error is returned. If there is no medium in the device, the
function returns EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the
device, the function returns EFI_MEDIA_CHANGED.

Status Codes Returned
EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while performing the read operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not valid for the
device.

Extensible Firmware Interface Specification

11-40 12/01/02 Version 1.10

EFI_DISK_IO.WriteDisk()

Summary

Writes a specified number of bytes to a device.

Prototype
EFI_STATUS
(EFIAPI *EFI_DISK_WRITE) (
 IN EFI_DISK_IO *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN UNITN BufferSize,
 IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_DISK_IO is
defined in the DISK_IO protocol description.

MediaId ID of the medium to be written.

Offset The starting byte offset on the logical block I/O device to write.

BufferSize The size in bytes of Buffer. The number of bytes to write to
the device.

Buffer A pointer to the buffer containing the data to be written.

Description

The WriteDisk() function writes the number of bytes specified by BufferSize to the device.
All bytes are written, or an error is returned. If there is no medium in the device, the function
returns EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the
function returns EFI_MEDIA_CHANGED.

Status Codes Returned
EFI_SUCCESS The data was written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_DEVICE_ERROR The device reported an error while performing the write operation.

EFI_INVALID_PARAMETER The write request contains device addresses that are not valid for
the device.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-41

11.6 BLOCK_IO Protocol

This chapter defines the Block I/O protocol. This protocol is used to abstract mass storage devices
to allow code running in the EFI boot services environment to access them without specific
knowledge of the type of device or controller that manages the device. Functions are defined to
read and write data at a block level from mass storage devices as well as to manage such devices in
the EFI boot services environment.

BLOCK_IO Protocol

Summary

This protocol provides control over block devices.

GUID
#define BLOCK_IO_PROTOCOL \
 { 964e5b21-6459-11d2-8e39-00a0c969723b }

Revision Number
#define EFI_BLOCK_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_BLOCK_IO {
 UINT64 Revision;

 EFI_BLOCK_IO_MEDIA *Media;

 EFI_BLOCK_RESET Reset;
 EFI_BLOCK_READ ReadBlocks;
 EFI_BLOCK_WRITE WriteBlocks;
 EFI_BLOCK_FLUSH FlushBlocks;
} EFI_BLOCK_IO;

Parameters

Revision The revision to which the block IO interface adheres. All future
revisions must be backwards compatible. If a future version is
not back wards compatible it is not the same GUID.

Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device.
Type EFI_BLOCK_IO_MEDIA is defined in “Related
Definitions” below.

Reset Resets the block device hardware. See the Reset() function
description.

ReadBlocks Reads the requested number of blocks from the device. See the
ReadBlocks() function description.

Extensible Firmware Interface Specification

11-42 12/01/02 Version 1.10

WriteBlocks Writes the requested number of blocks to the device. See the
WriteBlocks() function description.

FlushBlocks Flushes and cache blocks. This function is optional and only
needs to be supported on block devices that cache writes. See
the FlushBlocks() function description.

Related Definitions
//***
// EFI_BLOCK_IO_MEDIA
//***

typedef struct {
 UINT32 MediaId;
 BOOLEAN RemovableMedia;
 BOOLEAN MediaPresent;

 BOOLEAN LogicalPartition;
 BOOLEAN ReadOnly;
 BOOLEAN WriteCaching;

 UINT32 BlockSize;
 UINT32 IoAlign;

 EFI_LBA LastBlock;
} EFI_BLOCK_IO_MEDIA;

//***
// EFI_LBA
//***

typedef UINT64 EFI_LBA;

The following data values in EFI_BLOCK_IO_MEDIA are read-only and are updated by the
code that produces the EFI_BLOCK_IO protocol functions:

MediaId The current media ID. If the media changes, this value is
changed.

RemovableMedia TRUE if the media is removable; otherwise, FALSE.

MediaPresent TRUE if there is a media currently present in the device;
otherwise, FALSE. This field shows the media present status as
of the most recent ReadBlocks() or WriteBlocks() call.

LogicalPartition TRUE if LBA 0 is the first block of a partition; otherwise
FALSE. For media with only one partition this would be TRUE.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-43

ReadOnly TRUE if the media is marked read-only otherwise, FALSE. This
field shows the read-only status as of the most recent
WriteBlocks() call.

WriteCaching TRUE if the WriteBlocks() function caches write data.

BlockSize The intrinsic block size of the device. If the media changes, then
this field is updated.

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can
be placed anywhere in memory. Otherwise, IoAlign must be
a power of 2, and the requirement is that the start address of a
buffer must be evenly divisible by IoAlign with no remainder.

LastBlock The last logical block address on the device. If the media
changes, then this field is updated.

Description

The LogicalPartition is TRUE if the device handle is for a partition. For media that have
only one partition, the value will always be TRUE. For media that have multiple partitions, this
value is FALSE for the handle that accesses the entire device. The firmware is responsible for
adding device handles for each partition on such media.

The firmware is responsible for adding an EFI_DISK_IO interface to every EFI_BLOCK_IO
interface in the system. The EFI_DISK_IO interface allows byte-level access to devices.

Extensible Firmware Interface Specification

11-44 12/01/02 Version 1.10

EFI_BLOCK_IO.Reset()

Summary

Resets the block device hardware.

Prototype

EFI_STATUS
(EFIAPI *EFI_BLOCK_RESET) (
 IN EFI_BLOCK_IO *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO is defined in the BLOCK_IO protocol
description.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt
to verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be reset.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-45

EFI_BLOCK_IO.ReadBlocks()

Summary

Reads the requested number of blocks from the device.

Prototype

EFI_STATUS
(EFIAPI *EFI_BLOCK_READ) (
 IN EFI_BLOCK_IO *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_BLOCK_IO is
defined in the BLOCK_IO protocol description.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device. Type
EFI_LBA is defined in the BLOCK_IO protocol description.

BufferSize The size of the Buffer in bytes. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is responsible
for either having implicit or explicit ownership of the buffer.

Description

The ReadBlocks() function reads the requested number of blocks from the device. All the
blocks are read, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.

Extensible Firmware Interface Specification

11-46 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block
size of the device.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
on proper alignment.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-47

EFI_BLOCK_IO.WriteBlocks()

Summary

Writes a specified number of blocks to the device.

Prototype
EFI_STATUS
(EFIAPI *EFI_BLOCK_WRITE) (
 IN EFI_BLOCK_IO *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_BLOCK_IO is
defined in the BLOCK_IO protocol description.

MediaId The media ID that the write request is for.

LBA The starting logical block address to be written. The caller is responsible
for writing to only legitimate locations. Type EFI_LBA is defined in the
BLOCK_IO protocol description.

BufferSize The size in bytes of Buffer. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the source buffer for the data.

Description

The WriteBlocks() function writes the requested number of blocks to the device. All blocks
are written, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.

Extensible Firmware Interface Specification

11-48 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The data were written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the write
operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic
block size of the device.

EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is
not on proper alignment.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-49

EFI_BLOCK_IO.FlushBlocks()

Summary

Flushes all modified data to a physical block device.

Prototype
EFI_STATUS
(EFIAPI *EFI_BLOCK_FLUSH) (
 IN EFI_BLOCK_IO *This
);

Parameters

This Indicates a pointer to the calling context. Type EFI_BLOCK_IO is
defined in the BLOCK_IO protocol description.

Description

The FlushBlocks() function flushes all modified data to the physical block device.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have
cached, and cached data the device may have cached. Even if there were no outstanding data, a
read request to a device with removable media following a flush will always cause a device access.

Status Codes Returned
EFI_SUCCESS All outstanding data were written correctly to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_NO_MEDIA There is no media in the device.

Extensible Firmware Interface Specification

11-50 12/01/02 Version 1.10

11.7 UNICODE_COLLATION Protocol

This section defines the Unicode Collation protocol. This protocol is used to allow code running
in the boot services environment to perform lexical comparison functions on Unicode strings for
given languages.

UNICODE_COLLATION Protocol

Summary

Is used to perform case-insensitive comparisons of Unicode strings.

GUID
#define UNICODE_COLLATION_PROTOCOL \
 { 1d85cd7f-f43d-11d2-9a0c-0090273fc14d }

Protocol Interface Structure
typedef struct {
 EFI_UNICODE_COLLATION_STRICOLL StriColl;
 EFI_UNICODE_COLLATION_METAIMATCH MetaiMatch;

EFI_UNICODE_COLLATION_STRLWR StrLwr;
EFI_UNICODE_COLLATION_STRUPR StrUpr;
EFI_UNICODE_COLLATION_FATTOSTR FatToStr;
EFI_UNICODE_COLLATION_STRTOFAT StrToFat;

 CHAR8 *SupportedLanguages;
} UNICODE_COLLATION_INTERFACE;

Parameters

StriColl Performs a case-insensitive comparison of two Null-terminated
Unicode strings. See the StriColl() function description.

MetaiMatch Performs a case-insensitive comparison between a Null-
terminated Unicode pattern string and a Null-terminated Unicode
string. The pattern string can use the ‘?’ wildcard to match any
character, and the ‘*’ wildcard to match any substring. See the
MetaiMatch() function description.

StrLwr Converts all the Unicode characters in a Null-terminated
Unicode string to lowercase Unicode characters. See the
StrLwr() function description.

StrUpr Converts all the Unicode characters in a Null-terminated
Unicode string to uppercase Unicode characters. See the
StrUpr() function description.

FatToStr Converts an 8.3 FAT file name using an OEM character set to a
Null-terminated Unicode string. See the FatToStr() function
description.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-51

StrToFat Converts a Null-terminated Unicode string to legal characters in
a FAT filename using an OEM character set. See the
StrToFat() function description.

SupportedLanguages A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes.

Description

The UNICODE_COLLATION protocol is used to perform case-insensitive comparisons of Unicode
strings.

One or more of the UNICODE_COLLATION protocols may be present at one time. Each protocol
instance can support one or more language codes. The language codes that are supported in the
UNICODE_COLLATION interface is declared in SupportedLanguages.

The SupportedLanguages field is a list of one or more 3-character language codes in a Null-
terminated ASCII string. These language codes come from the ISO 639-2 Specification. For
example, if the protocol supports English, then the string “eng” would be returned. If it supported
both English and Spanish, then “engspa” would be returned.

The main motivation for this protocol is to help support file names in a file system driver. When a
file is opened, a file name needs to be compared to the file names on the disk. In some cases, this
comparison needs to be performed in a case-insensitive manner. In addition, this protocol can be
used to sort files from a directory or to perform a case-insensitive file search.

Extensible Firmware Interface Specification

11-52 12/01/02 Version 1.10

UNICODE_COLLATION.StriColl()

Summary

Performs a case-insensitive comparison of two Null-terminated Unicode strings.

Prototype
INTN
(EFIAPI *EFI_UNICODE_COLLATION_STRICOLL) (
 IN UNICODE_COLLATION_INTERFACE *This,
 IN CHAR16 *s1,
 IN CHAR16 *s2
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 11.7.

s1 A pointer to a Null-terminated Unicode string.

s2 A pointer to a Null-terminated Unicode string.

Description

The StriColl() function performs a case-insensitive comparison of two Null-terminated
Unicode strings.

This function performs a case-insensitive comparison between the Unicode string s1 and the
Unicode string s2 using the rules for the language codes that this protocol instance supports. If s1
is equivalent to s2, then 0 is returned. If s1 is lexically less than s2, then a negative number will
be returned. If s1 is lexically greater than s2, then a positive number will be returned. This
function allows Unicode strings to be compared and sorted.

Status Codes Returned
0 s1 is equivalent to s2.

> 0 s1 is lexically greater than s2.

< 0 s1 is lexically less than s2.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-53

UNICODE_COLLATION.MetaiMatch()

Summary

Performs a case-insensitive comparison of a Null-terminated Unicode pattern string and a Null-
terminated Unicode string.

Prototype
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_METAIMATCH) (
 IN UNICODE_COLLATION_INTERFACE *This,
 IN CHAR16 *String,

 IN CHAR16 *Pattern
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 11.7.

String A pointer to a Null-terminated Unicode string.

Pattern A pointer to a Null-terminated Unicode pattern string.

Description

The MetaiMatch() function performs a case-insensitive comparison of a Null-terminated
Unicode pattern string and a Null-terminated Unicode string.

This function checks to see if the pattern of characters described by Pattern are found in
String. The pattern check is a case-insensitive comparison using the rules for the language codes
that this protocol instance supports. If the pattern match succeeds, then TRUE is returned.
Otherwise FALSE is returned. The following syntax can be used to build the string Pattern:

* Match 0 or more characters.

? Match any one character.

[<char1><char2>…<charN>] Match any character in the set.

[<char1>-<char2>] Match any character between <char1>
and <char2>.

<char> Match the character <char>.

Extensible Firmware Interface Specification

11-54 12/01/02 Version 1.10

Following is an example pattern for English:

*.FW Matches all strings that end in “.FW” or “.fw”
or “.Fw” or “.fW.”

[a-z] Match any letter in the alphabet.

 [!@#$%^&*()] Match any one of these symbols.

z Match the character “z” or “Z.”

D?.* Match the character “D” or “d” followed by
any character followed by a “.” followed by
any string.

Status Codes Returned
TRUE Pattern was found in String.

FALSE Pattern was not found in String.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-55

UNICODE_COLLATION.StrLwr()

Summary

Converts all the Unicode characters in a Null-terminated Unicode string to lowercase Unicode
characters.

Prototype
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRLWR) (
 IN UNICODE_COLLATION_INTERFACE *This,
 IN OUT CHAR16 *String
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 11.7.

String A pointer to a Null-terminated Unicode string.

Description

This functions walks through all the Unicode characters in String, and converts each one to its
lowercase equivalent if it has one. The converted string is returned in String.

Extensible Firmware Interface Specification

11-56 12/01/02 Version 1.10

UNICODE_COLLATION.StrUpr()

Summary

Converts all the Unicode characters in a Null-terminated Unicode string to uppercase Unicode
characters.

Prototype
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRUPR) (
 IN UNICODE_COLLATION_INTERFACE *This,
 IN OUT CHAR16 *String
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 11.7.

String A pointer to a Null-terminated Unicode string.

Description

This functions walks through all the Unicode characters in String, and converts each one to its
uppercase equivalent if it has one. The converted string is returned in String.

 Protocols — Bootable Image Support

Version 1.10 12/01/02 11-57

UNICODE_COLLATION.FatToStr()

Summary

Converts an 8.3 FAT file name in an OEM character set to a Null-terminated Unicode string.

Prototype
VOID
(EFIAPI *EFI_UNICODE_COLLATION_FATTOSTR) (
 IN UNICODE_COLLATION_INTERFACE *This,
 IN UINTN FatSize,
 IN CHAR8 *Fat,
 OUT CHAR16 *String
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 11.7.

FatSize The size of the string Fat in bytes.

Fat A pointer to a Null-terminated string that contains an 8.3 file
name using an OEM character set.

String A pointer to a Null-terminated Unicode string. The string must
be preallocated to hold FatSize Unicode characters.

Description

This function converts the string specified by Fat with length FatSize to the Null-terminated
Unicode string specified by String. The characters in Fat are from an OEM character set.

Extensible Firmware Interface Specification

11-58 12/01/02 Version 1.10

UNICODE_COLLATION.StrToFat()

Summary

Converts a Null-terminated Unicode string to legal characters in a FAT filename using an OEM
character set.

Prototype
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_STRTOFAT) (

IN UNICODE_COLLATION_INTERFACE *This,
IN CHAR16 *String,
IN UINTN FatSize,
OUT CHAR8 *Fat
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 11.7.

String A pointer to a Null-terminated Unicode string.

FatSize The size of the string Fat in bytes.

Fat A pointer to a string that contains an 8.3 file name using an
OEM character set.

Description

This function converts the first FatSize Unicode characters of String to the legal FAT
characters in an OEM character set and stores then in the string Fat. The Unicode characters ‘.’
(period) and ‘ ’ (space) are ignored for this conversion. If no valid mapping from the Unicode
character to a FAT character is available, then it is substituted with an ‘_’. This function returns
FALSE if the return string Fat is an 8.3 file name. This function returns TRUE if the return string
Fat is a Long File Name.

Status Codes Returned
TRUE Fat is a Long File Name.

FALSE Fat is an 8.3 file name.

Version 1.10 12/01/02 12-1

12
 Protocols - PCI Bus Support

12.1 PCI Root Bridge I/O Support

These sections (Sections 12.1 and 12.2) describe the PCI Root Bridge I/O Protocol. This protocol
provides an I/O abstraction for a PCI Root Bridge that is produced by a PCI Host Bus Controller.
A PCI Host Bus Controller is a hardware component that allows access to a group of PCI devices
that share a common pool of PCI I/O and PCI Memory resources. This protocol is used by a PCI
Bus Driver to perform PCI Memory, PCI I/O, and PCI Configuration cycles on a PCI Bus. It also
provides services to perform different types of bus mastering DMA on a PCI bus. PCI device
drivers will not directly use this protocol. Instead, they will use the I/O abstraction produced by the
PCI Bus Driver. Only drivers that require direct access to the entire PCI bus should use this
protocol. In particular, functions for managing PCI buses are defined here although other bus types
may be supported in a similar fashion as extensions to this specification.

All the services described in this chapter that generate PCI transactions follow the ordering rules
defined in the PCI Specification. If the processor is performing a combination of PCI transactions
and system memory transactions, then there is no guarantee that the system memory transactions
will be strongly ordered with respect to the PCI transactions. If strong ordering is required, then
processor-specific mechanisms may be required to guarantee strong ordering. For example,
Itanium-based systems may require the use of memory fences to guarantee ordering.

12.1.1 PCI Root Bridge I/O Overview
The interfaces provided in the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL are for performing
basic operations to memory, I/O, and PCI configuration space. The system provides abstracted
access to basic system resources to allow a driver to have a programmatic method to access these
basic system resources.

The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL allows for future innovation of the platform. It
abstracts device-specific code from the system memory map. This allows system designers to make
changes to the system memory map without impacting platform independent code that is
consuming basic system resources.

Extensible Firmware Interface Specification

12-2 12/01/02 Version 1.10

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 12-1 shows a platform with n processors (CPUs in the
figure), and a set of core chipset components that produce m host bridges.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1

Figure 12-1. Host Bus Controllers

Simple systems with one PCI Host Bus Controller will contain a single instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. More complex system may contain multiple
instances of this protocol. It is important to note that there is no relationship between the number of
chipset components in a platform and the number of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
instances. This protocol abstracts access to a PCI Root Bridge from a software point of view, and it
is attached to a device handle that represents a PCI Root Bridge. A PCI Root Bridge is a chipset
component(s) that produces a physical PCI Bus. It is also the parent to a set of PCI devices that
share common PCI I/O, PCI Memory, and PCI Prefetchable Memory regions. A PCI Host Bus
Controller is composed of one or more PCI Root Bridges.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-3

A PCI Host Bridge and PCI Root Bridge are different than a PCI Segment. A PCI Segment is a
collection of up to 256 PCI busses that share the same PCI Configuration Space. Depending on
the chipset, a single EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL may abstract a portion of a PCI
Segment, or an entire PCI Segment. A PCI Host Bridge may produce one or more PCI Root
Bridges. When a PCI Host Bridge produces multiple PCI Root Bridges, it is possible to have
more than one PCI Segment.

PCI Root Bridge I/O Protocol instances are either produced by the system firmware or by an EFI
driver. When a PCI Root Bridge I/O Protocol is produced, it is placed on a device handle along
with an EFI Device Path Protocol instance. Figure 12-2 shows a sample device handle for a PCI
Root Bridge Controller that includes an instance of the EFI_DEVICE_PATH_PROTOCOL and the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Section 12.2 describes the PCI Root Bridge I/O
Protocol in detail, and Section 12.2.1 describes how to build device paths for PCI Root Bridges.
The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL does not abstract access to the chipset-specific
registers that are used to manage a PCI Root Bridge. This functionality is hidden within the system
firmware or the EFI driver that produces the handles that represent the PCI Root Bridges.

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

Figure 12-2. Device Handle for a PCI Root Bridge Controller

Extensible Firmware Interface Specification

12-4 12/01/02 Version 1.10

12.1.1.1 Sample PCI Architectures
The PCI Root Bridge I/O Protocol is designed to provide a software abstraction for a wide variety
of PCI architectures including the ones described in this section. This section is not intended to be
an exhaustive list of the PCI architectures that the PCI Root Bridge I/O Protocol can support.
Instead, it is intended to show the flexibility of this protocol to adapt to current and future platform
designs.

Figure 12-3 shows an example of a PCI Host Bus with one PCI Root Bridge. This PCI Root Bridge
produces one PCI Local Bus that can contain PCI Devices on the motherboard and/or PCI slots.
This would be typical of a desktop system. A higher end desktop system might contain a second
PCI Root Bridge for AGP devices. The firmware for this platform would produce one instance of
the PCI Root Bridge I/O Protocol.

OM13161

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge

Figure 12-3. Desktop System with One PCI Root Bridge

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-5

Figure 12-4 shows an example of a larger server with one PCI Host Bus and four PCI Root Bridges.
The PCI devices attached to the PCI Root Bridges are all part of the same coherency domain. This
means they share a common PCI I/O Space, a common PCI Memory Space, and a common PCI
Prefetchable Memory Space. Each PCI Root Bridge produces one PCI Local Bus that can contain
PCI Devices on the motherboard or PCI slots. The firmware for this platform would produce four
instances of the PCI Root Bridge I/O Protocol.

OM13162

Core Chipset Components

PCI RB PCI RB PCI RB PCI RB

PCI Host Bus

PCI Bus PCI Bus PCI Bus PCI Bus

Figure 12-4. Server System with Four PCI Root Bridges

Extensible Firmware Interface Specification

12-6 12/01/02 Version 1.10

Figure 12-5 shows an example of a server with one PCI Host Bus and two PCI Root Bridges. Each
of these PCI Root Bridges is a different PCI Segment which allows the system to have up to
512 PCI Buses. A single PCI Segment is limited to 256 PCI Buses. These two segments do not
share the same PCI Configuration Space, but they do share the same PCI I/O, PCI Memory, and
PCI Prefetchable Memory Space. This is why it can be described by a single PCI Host Bus. The
firmware for this platform would produce two instances of the PCI Root Bridge I/O Protocol.

OM13163

PCI Segment 0

Core Chipset Components

PCI Host Bus

PCI RB

PCI Segment 1

PCI RB

Figure 12-5. Server System with Two PCI Segments

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-7

Figure 12-6 shows a server system with two PCI Host Buses and one PCI Root Bridge per PCI Host
Bus. This system supports up to 512 PCI Buses, but the PCI I/O, PCI Memory Space, and PCI
Prefetchable Memory Space are not shared between the two PCI Root Bridges. The firmware for
this platform would produce two instances of the PCI Root Bridge I/O Protocol.

OM13164

PCI Segment 0

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 1

PCI RB

PCI Host Bus 1

Figure 12-6. Server System with Two PCI Host Buses

Extensible Firmware Interface Specification

12-8 12/01/02 Version 1.10

12.2 PCI Root Bridge I/O Protocol

This section provides detailed information on the PCI Root Bridge I/O Protocol and its functions.

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Summary

Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that are used to abstract
accesses to PCI controllers behind a PCI Root Bridge Controller.

GUID
#define EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID \
{0x2F707EBB,0x4A1A,0x11d4,0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Protocol Interface Structure
typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL {
 EFI_HANDLE ParentHandle;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollMem;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollIo;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Mem;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Io;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Pci;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM CopyMem;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP Map;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP Unmap;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH Flush;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES GetAttributes;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES SetAttributes;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION Configuration;
 UINT32 SegmentNumber;
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL;

Parameters
ParentHandle The EFI_HANDLE of the PCI Host Bridge of which this PCI Root

Bridge is a member.

PollMem Polls an address in memory mapped I/O space until an exit
condition is met, or a timeout occurs. See the PollMem()
function description.

PollIo Polls an address in I/O space until an exit condition is met, or a
timeout occurs. See the PollIo() function description.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-9

Mem.Read Allows reads from memory mapped I/O space. See the
Mem.Read() function description.

Mem.Write Allows writes to memory mapped I/O space. See the
Mem.Write() function description.

Io.Read Allows reads from I/O space. See the Io.Read() function
description.

Io.Write Allows writes to I/O space. See the Io.Write() function
description.

Pci.Read Allows reads from PCI configuration space. See the
Pci.Read() function description.

Pci.Write Allows writes to PCI configuration space. See the
Pci.Write() function description.

CopyMem Allows one region of PCI root bridge memory space to be copied
to another region of PCI root bridge memory space. See the
CopyMem() function description.

Map Provides the PCI controller–specific addresses needed to access
system memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap()
function description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping.
See the AllocateBuffer() function description.

FreeBuffer Free pages that were allocated with AllocateBuffer(). See
the FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See
the Flush() function description.

GetAttributes Gets the attributes that a PCI root bridge supports setting with
SetAttributes(), and the attributes that a PCI root bridge is
currently using. See the GetAttributes() function
description.

SetAttributes Sets attributes for a resource range on a PCI root bridge. See the
SetAttributes() function description.

Configuration Gets the current resource settings for this PCI root bridge. See the
Configuration() function description.

SegmentNumber The segment number that this PCI root bridge resides.

Extensible Firmware Interface Specification

12-10 12/01/02 Version 1.10

Related Definitions
//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH
//***
typedef enum {
 EfiPciWidthUint8,
 EfiPciWidthUint16,
 EfiPciWidthUint32,
 EfiPciWidthUint64,
 EfiPciWidthFifoUint8,
 EfiPciWidthFifoUint16,
 EfiPciWidthFifoUint32,
 EfiPciWidthFifoUint64,
 EfiPciWidthFillUint8,
 EfiPciWidthFillUint16,
 EfiPciWidthFillUint32,
 EfiPciWidthFillUint64,
 EfiPciWidthMaximum
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH;

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-11

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS
//***
typedef struct {
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Read;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Write;
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS;

//***
// EFI PCI Root Bridge I/O Protocol Attribute bits
//***
#define EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001
#define EFI_PCI_ATTRIBUTE_ISA_IO 0x0002
#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO 0x0004
#define EFI_PCI_ATTRIBUTE_VGA_MEMORY 0x0008
#define EFI_PCI_ATTRIBUTE_VGA_IO 0x0010
#define EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO 0x0020
#define EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO 0x0040
#define EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080
#define EFI_PCI_ATTRIBUTE_MEMORY_CACHED 0x0800
#define EFI_PCI_ATTRIBUTE_MEMORY_DISABLE 0x1000
#define EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000

EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO

 If this bit is set, then the PCI I/O cycles between 0x00000000 and 0x000000FF are
forwarded onto a PCI root bridge. This bit is used to forward I/O cycles for ISA
motherboard devices onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_ISA_IO

 If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded onto a
PCI root bridge using a 10-bit address decoder on address bits 0..9. Address bits 10..15
are not decoded, and address bits 16..31 must be zero. This bit is used to forward I/O
cycles for legacy ISA devices onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded onto a PCI root bridge using a 10 bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O write cycles to the VGA palette registers onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_MEMORY

If this bit is set, then the PCI memory cycles between 0xA0000 and 0xBFFFF are
forwarded onto a PCI root bridge. This bit is used to forward memory cycles for a VGA
frame buffer onto a PCI root bridge.

Extensible Firmware Interface Specification

12-12 12/01/02 Version 1.10

EFI_PCI_ATTRIBUTE_VGA_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-0x3BB and 0x3C0-0x3DF
are forwarded onto a PCI root bridge using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and the address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a VGA controller onto a PCI root bridge. Since
EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO also includes the I/O range described by
EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO, the
EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO bit is ignored if
EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO is set.

EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7 are
forwarded onto a PCI root bridge using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Primary IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377 are
forwarded onto a PCI root bridge using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Secondary IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a write combining mode. By default, PCI
memory ranges are not accessed in a write combining mode.

EFI_PCI_ATTRIBUTE_MEMORY_CACHED

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a cached mode. By default, PCI memory
ranges are accessed noncached.

EFI_PCI_ATTRIBUTE_MEMORY_DISABLE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is disabled, and can no longer be accessed. By default,
all PCI memory ranges are enabled.

EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE

This bit may only be used in the Attributes parameter to AllocateBuffer(). If
this bit is set, then the PCI controller that is requesting a buffer through
AllocateBuffer() is capable of producing PCI Dual Address Cycles, so it is able to
access a 64-bit address space. If this bit is not set, then the PCI controller that is
requesting a buffer through AllocateBuffer() is not capable of producing PCI Dual
Address Cycles, so it is only able to access a 32-bit address space.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-13

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION
//***
typedef enum {
 EfiPciOperationBusMasterRead,
 EfiPciOperationBusMasterWrite,
 EfiPciOperationBusMasterCommonBuffer,
 EfiPciOperationBusMasterRead64,
 EfiPciOperationBusMasterWrite64,
 EfiPciOperationBusMasterCommonBuffer64,
 EfiPciOperationMaximum
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION;

EfiPciOperationBusMasterRead

A read operation from system memory by a bus master that is not capable of producing
PCI dual address cycles.

EfiPciOperationBusMasterWrite

A write operation to system memory by a bus master that is not capable of producing PCI
dual address cycles.

EfiPciOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both the processor and a bus
master that is not capable of producing PCI dual address cycles. The buffer is coherent
from both the processor’s and the bus master’s point of view.

EfiPciOperationBusMasterRead64

A read operation from system memory by a bus master that is capable of producing PCI
dual address cycles.

EfiPciOperationBusMasterWrite64

A write operation to system memory by a bus master that is capable of producing PCI
dual address cycles.

EfiPciOperationBusMasterCommonBuffer64

Provides both read and write access to system memory by both the processor and a bus
master that is capable of producing PCI dual address cycles. The buffer is coherent from
both the processor’s and the bus master’s point of view.

Extensible Firmware Interface Specification

12-14 12/01/02 Version 1.10

Description

The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL provides the basic Memory, I/O, PCI
configuration, and DMA interfaces that are used to abstract accesses to PCI controllers. There is
one EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance for each PCI root bridge in a system.
Embedded systems, desktops, and workstations will typically only have one PCI root bridge. High-
end servers may have multiple PCI root bridges. A device driver that wishes to manage a PCI bus
in a system will have to retrieve the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance that is
associated with the PCI bus to be managed. A device handle for a PCI Root Bridge will minimally
contain an EFI_DEVICE_PATH instance and an EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
instance. The PCI bus driver can look at the EFI_DEVICE_PATH instances to determine which
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to use.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three
basic types of bus mastering DMA that is supported by this protocol. These are DMA reads by a
bus master, DMA writes by a bus master, and common buffer DMA. The DMA read and write
operations may need to be broken into smaller chunks. The caller of Map() must pay attention to
the number of bytes that were mapped, and if required, loop until the entire buffer has been
transferred. The following is a list of the different bus mastering DMA operations that are
supported, and the sequence of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL APIs that are used
for each DMA operation type. See “Related Definitions” above for the definition of the different
DMA operation types.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-15

DMA Bus Master Read Operation

• Call Map() for EfiPciOperationBusMasterRead or
EfiPciOperationBusMasterRead64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the read operation.
• Call Unmap().

DMA Bus Master Write Operation

• Call Map() for EfiPciOperationBusMasterWrite or
EfiPciOperationBusMasterRead64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the write operation.
• Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI

Specification Section 3.2.5.2) .
• Call Flush().

• Call Unmap().

DMA Bus Master Common Buffer Operation

• Call AllocateBuffer() to allocate a common buffer.
• Call Map() for EfiPciOperationBusMasterCommonBuffer or

EfiPciOperationBusMasterCommonBuffer64.
• Program the DMA Bus Master with the DeviceAddress returned by Map().
• The common buffer can now be accessed equally by the processor and the DMA bus master.
• Call Unmap().
• Call FreeBuffer().

Extensible Firmware Interface Specification

12-16 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()

Summary

Reads from the memory space of a PCI Root Bridge. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined
in Section 12.2.

Address The base address of the memory operations. The caller is
responsible for aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the memory address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-17

Description

This function provides a standard way to poll a PCI memory location. A PCI memory read
operation is performed at the PCI memory address specified by Address for the width specified
by Width. The result of this PCI memory read operation is stored in Result. This PCI memory
read operation is repeated until either a timeout of Delay 100 ns units has expired, or (Result &
Mask) is equal to Value.

This function will always perform at least one PCI memory read access no matter how small
Delay may be. If Delay is zero, then Result will be returned with a status of EFI_SUCCESS
even if Result does not match the exit criteria. If Delay expires, then EFI_TIMEOUT
is returned.

If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI Root Bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 are not supported.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. However, if the memory mapped I/O region being accessed by this function has
the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-18 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()

Summary

Reads from the I/O space of a PCI Root Bridge. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Width Signifies the width of the I/O operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined
in Section 12.2.

Address The base address of the I/O operations. The caller is responsible
for aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the I/O address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-19

Description

This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is
performed at the PCI I/O address specified by Address for the width specified by Width.
The result of this PCI I/O read operation is stored in Result. This PCI I/O read operation is
repeated until either a timeout of Delay 100 ns units has expired, or (Result & Mask) is equal
to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If
Delay is zero, then Result will be returned with a status of EFI_SUCCESS even if Result
does not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any
alignment and I/O width restrictions that the PCI Root Bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-20 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()

Summary

Enables a PCI driver to access PCI controller registers in the PCI root bridge memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Width Signifies the width of the memory operation. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined
in Section 12.2.

Address The base address of the memory operation. The caller is
responsible for aligning the Address if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-21

Description

The Mem.Read(), and Mem.Write() functions enable a driver to access PCI controller
registers in the PCI root bridge memory space.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI Root Bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI read transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-22 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()

Summary

Enables a PCI driver to access PCI controller registers in the PCI root bridge I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined
in Section 12.2.

Address The base address of the I/O operation. The caller is responsible for
aligning the Address if required.

Count The number of I/O operations to perform. Bytes moved is Width
size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-23

Description

The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in
the PCI root bridge I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and I/O width restrictions that a PCI root bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-24 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()

Summary

Enables a PCI driver to access PCI controller registers in a PCI root bridge’s configuration space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined
in Section 12.2.

Address The address within the PCI configuration space for the PCI
controller. See Table 12-1 for the format of Address.

Count The number of PCI configuration operations to perform. Bytes
moved is Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-25

Description

The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration
registers for a PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for
any alignment and PCI configuration width issues that a PCI Root Bridge on a platform might
require. For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Table 12-1. PCI Configuration Address

Mnemonic

Byte
Offset

Byte
Length

Description

Register 0 1 The register number on the PCI Function.

Function 1 1 The PCI Function number on the PCI Device.

Device 2 1 The PCI Device number on the PCI Bus.

Bus 3 1 The PCI Bus number.

ExtendedRegister 4 4 The register number on the PCI Function. If this field is zero,
then the Register field is used for the register number. If this
field is nonzero, then the Register field is ignored, and the
ExtendedRegister field is used for the register number.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-26 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()

Summary

Enables a PCI driver to copy one region of PCI root bridge memory space to another region of PCI
root bridge memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 DestAddress,
 IN UINT64 SrcAddress,
 IN UINTN Count
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
instance. Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is
defined in Section 12.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined
in Section 12.2.

DestAddress The destination address of the memory operation. The caller is
responsible for aligning the DestAddress if required.

SrcAddress The source address of the memory operation. The caller is
responsible for aligning the SrcAddress if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at DestAddress and
SrcAddress.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-27

Description

The CopyMem() function enables a PCI driver to copy one region of PCI root bridge memory
space to another region of PCI root bridge memory space. This is especially useful for video scroll
operation on a memory mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI root bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then Count read/write transactions are performed to move the contents
of the SrcAddress buffer to the DestAddress buffer. The implementation must be reentrant,
and it must handle overlapping SrcAddress and DestAddress buffers. This means that the
implementation of CopyMem() must choose the correct direction of the copy operation based on
the type of overlap that exists between the SrcAddress and DestAddress buffers. If either
the SrcAddress buffer or the DestAddress buffer crosses the top of the processor’s address
space, then the result of the copy operation is unpredictable.

The contents of the DestAddress buffer on exit from this service must match the contents of the
SrcAddress buffer on entry to this service. Due to potential overlaps, the contents of the
SrcAddress buffer may be modified by this service. The following rules can be used to
guarantee the correct behavior:

1. If DestAddress > SrcAddress and DestAddress < (SrcAddress + Width size *
Count), then the data should be copied from the SrcAddress buffer to the DestAddress
buffer starting from the end of buffers and working toward the beginning of the buffers.

2. Otherwise, the data should be copied from the SrcAddress buffer to the DestAddress
buffer starting from the beginning of the buffers and working toward the end of the buffers.

All the PCI transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The data was copied from one memory region to another memory region.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-28 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()

Summary

Provides the PCI controller–specific addresses required to access system memory from a
DMA bus master.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
 IN VOID *HostAddress,
 IN OUT UINTN *NumberOfBytes,
 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
 OUT VOID **Mapping
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Operation Indicates if the bus master is going to read or write to system
memory. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION is
defined in Section 12.2.

HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of
bytes that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to use
to access the system memory’s HostAddress. Type
EFI_PHYSICAL_ADDRESS is defined in Chapter 5. This
address cannot be used by the processor to access the contents of
the buffer specified by HostAddress.

Mapping The value to pass to Unmap() when the bus master DMA
operation is complete.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-29

Description

The Map() function provides the PCI controller specific addresses needed to access system
memory. This function is used to map system memory for PCI bus master DMA accesses.

All PCI bus master accesses must be performed through their mapped addresses and such
mappings must be freed with Unmap() when complete. If the bus master access is a single read
or single write data transfer, then EfiPciOperationBusMasterRead,
EfiPciOperationBusMasterRead64, EfiPciOperationBusMasterWrite, or
EfiPciOperationBusMasterWrite64 is used and the range is unmapped to complete the
operation. If performing an EfiPciOperationBusMasterRead or
EfiPciOperationBusMasterRead64 operation, all the data must be present in system
memory before Map() is performed. Similarly, if performing an EfiPciOperation-
BusMasterWrite or EfiPciOperationBusMasterWrite64 the data cannot be
properly accessed in system memory until Unmap() is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciOperation-
BusMasterCommonBuffer or EfiPciOperationBusMasterCommonBuffer64.
However, only memory allocated via the AllocateBuffer() interface can be mapped for
this type of operation.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the
requested amount. In this case, the DMA operation will have to be broken up into smaller
chunks. The Map() function will map as much of the DMA operation as it can at one time. The
caller may have to loop on Map() and Unmap() in order to complete a large DMA transfer.

Status Codes Returned
EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-30 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN VOID *Mapping
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EfiPciOperationBusMasterWrite or
EfiPciOperationBusMasterWrite64, the data is committed to the target system memory.
Any resources used for the mapping are freed.

Status Codes Returned
EFI_SUCCESS The range was unmapped.

EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().

EFI_DEVICE_ERROR The data was not committed to the target system memory.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-31

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()

Summary

Allocates pages that are suitable for an EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64 mapping.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_ALLOCATE_TYPE Type,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT VOID **HostAddress,
 IN UINT64 Attributes
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.1.

Type This parameter is not used and must be ignored.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is
defined in Chapter 5.

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

Extensible Firmware Interface Specification

12-32 12/01/02 Version 1.10

Attributes The requested bit mask of attributes for the allocated range. Only
the attributes
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE may be used
with this function. If any other bits are set, then
EFI_UNSUPPORTED is returned. This function may choose to
ignore this bit mask. The
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes provide a
hint to the implementation that may improve the performance of
the calling driver. The implementation may choose any default for
the memory attributes including write combining, cached, both, or
neither as long as the allocated buffer can be seen equally by both
the processor and the PCI bus master.

Description

The AllocateBuffer() function allocates pages that are suitable for an
EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64 mapping. This means that the buffer
allocated by this function must support simultaneous access by both the processor and a PCI Bus
Master. The device address that the PCI Bus Master uses to access the buffer can be retrieved with
a call to Map().

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is set, then when
the buffer allocated by this function is mapped with a call to Map(), the device address that is
returned by Map() must be within the 64-bit device address space of the PCI Bus Master.

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is clear, then
when the buffer allocated by this function is mapped with a call to Map(), the device address that
is returned by Map() must be within the 32-bit device address space of the PCI Bus Master.

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
DUAL_ADDRESS_CYCLE.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-33

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()

Summary

Frees memory that was allocated with AllocateBuffer().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN UINTN Pages,
 IN VOID *HostAddress
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description

The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages
was not allocated with AllocateBuffer().

Extensible Firmware Interface Specification

12-34 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()

Summary

Flushes all PCI posted write transactions from a PCI host bridge to system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.1.

Description

The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller
specific action must be taken to guarantee that the posted write transactions have been flushed from
the PCI controller and from all the PCI bridges into the PCI host bridge. This is typically done with
a PCI read transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the
processor’s view of system memory are guaranteed to be coherent. If the PCI posted write
transactions cannot be flushed from the PCI host bridge, then the PCI bus master and processor are
not guaranteed to have a coherent view of system memory, and EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host

bridge to system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI
host bridge due to a hardware error.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-35

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()

Summary

Gets the attributes that a PCI root bridge supports setting with SetAttributes(), and the
attributes that a PCI root bridge is currently using.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 OUT UINT64 *Supports OPTIONAL,
 OUT UINT64 *Attributes OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Supports A pointer to the mask of attributes that this PCI root bridge
supports setting with SetAttributes(). The available
attributes are listed in Section 12.2. This is an optional parameter
that may be NULL.

Attributes A pointer to the mask of attributes that this PCI root bridge is
currently using. The available attributes are listed in Section 12.2.
This is an optional parameter that may be NULL.

Description

The GetAttributes() function returns the mask of attributes that this PCI root bridge supports
and the mask of attributes that the PCI root bridge is currently using. If Supports is not NULL,
then Supports is set to the mask of attributes that the PCI root bridge supports. If Attributes
is not NULL, then Attributes is set to the mask of attributes that the PCI root bridge is currently
using. If both Supports and Attributes are NULL, then EFI_INVALID_PARAMETER is
returned. Otherwise, EFI_SUCCESS is returned.

If a bit is set in Supports, then the PCI root bridge supports this attribute type, and a call can be
made to SetAttributes() using that attribute type. If a bit is set in Attributes, then the
PCI root bridge is currently using that attribute type. Since a PCI host bus may be composed of
more than one PCI root bridge, different Attributes values may be returned by different PCI
root bridges.

Extensible Firmware Interface Specification

12-36 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI root

bridge supports is returned in Supports. If Attributes is
not NULL, then the attributes that the PCI root bridge is currently
using is returned in Attributes.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-37

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()

Summary

Sets attributes for a resource range on a PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN UINT64 Attributes,
 IN OUT UINT64 *ResourceBase OPTIONAL,
 IN OUT UINT64 *ResourceLength OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Attributes The mask of attributes to set. If the attribute bit
MEMORY_WRITE_COMBINE, MEMORY_CACHED, or
MEMORY_DISABLE is set, then the resource range is specified by
ResourceBase and ResourceLength. If
MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
MEMORY_DISABLE are not set, then ResourceBase and
ResourceLength are ignored, and may be NULL. The
available attributes are listed in Section 12.2.

ResourceBase A pointer to the base address of the resource range to be modified
by the attributes specified by Attributes. On return,
*ResourceBase will be set the actual base address of the
resource range. Not all resources can be set to a byte boundary, so
the actual base address may differ from the one passed in by the
caller. This parameter is only used if the
MEMORY_WRITE_COMBINE bit, the MEMORY_CACHED bit, or
the MEMORY_DISABLE bit of Attributes is set. Otherwise, it
is ignored, and may be NULL.

Extensible Firmware Interface Specification

12-38 12/01/02 Version 1.10

ResourceLength A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return,
*ResourceLength will be set the actual length of the resource
range. Not all resources can be set to a byte boundary, so the
actual length may differ from the one passed in by the caller. This
parameter is only used if the MEMORY_WRITE_COMBINE bit, the
MEMORY_CACHED bit, or the MEMORY_DISABLE bit of
Attributes is set. Otherwise, it is ignored, and may be NULL.

Description

The SetAttributes() function sets the attributes specified in Attributes for the PCI root
bridge on the resource range specified by ResourceBase and ResourceLength. Since the
granularity of setting these attributes may vary from resource type to resource type, and from
platform to platform, the actual resource range and the one passed in by the caller may differ. As a
result, this function may set the attributes specified by Attributes on a larger resource range
than the caller requested. The actual range is returned in ResourceBase and
ResourceLength. The caller is responsible for verifying that the actual range for which the
attributes were set is acceptable.

If the attributes are set on the PCI root bridge, then the actual resource range is returned in
ResourceBase and ResourceLength, and EFI_SUCCESS is returned.

If the attributes specified by Attributes are not supported by the PCI root bridge, then
EFI_UNSUPPORTED is returned. The set of supported attributes for a PCI root bridge can be
found by calling GetAttributes().

If either ResourceBase or ResourceLength are NULL, and a resource range is required for
the attributes specified in Attributes, then EFI_INVALID_PARAMETER is returned.

If more than one resource range is required for the set of attributes specified by Attributes,
then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES
is returned.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-39

Status Codes Returned
EFI_SUCCESS The set of attributes specified by Attributes for the resource

range specified by ResourceBase and ResourceLength

were set on the PCI root bridge, and the actual resource range is
returned in ResuourceBase and ResourceLength.

EFI_UNSUPPORTED A bit is set in Attributes that is not supported by the PCI Root
Bridge. The supported attribute bits are reported by
GetAttributes().

EFI_INVALID_PARAMETER More than one attribute bit is set in Attributes that requires a

resource range.

EFI_INVALID_PARAMETER A resource range is required, and ResourceBase is NULL.

EFI_INVALID_PARAMETER A resource range is required, and ResourceLength is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the
resource range specified by BaseAddress and Length.

Extensible Firmware Interface Specification

12-40 12/01/02 Version 1.10

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

Summary

Retrieves the current resource settings of this PCI root bridge in the form of a set of ACPI 2.0
resource descriptors.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 OUT VOID **Resources
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 12.2.

Resources A pointer to the ACPI 2.0 resource descriptors that describe the
current configuration of this PCI root bridge. The storage for the
ACPI 2.0 resource descriptors is allocated by this function. The
caller must treat the return buffer as read-only data, and the buffer
must not be freed by the caller. See “Related Definitions” for the
ACPI 2.0 resource descriptors that may be used.

Related Definitions

There are only two resource descriptor types from the ACPI Specification that may be used to
describe the current resources allocated to a PCI root bridge. These are the QWORD Address
Space Descriptor (ACPI 2.0 Section 6.4.3.5.1), and the End Tag (ACPI 2.0 Section 6.4.2.8). The
QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for dynamic
or fixed resources. The configuration of a PCI root bridge is described with one or more QWORD
Address Space Descriptors followed by an End Tag. Table 12-2 and Table 12-3 contains these two
descriptor types. Please see the ACPI Specification for details on the field values.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-41

Table 12-2. ACPI 2.0 QWORD Address Space Descriptor

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type

 0 – Memory Range

 1 – I/O Range

 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags

0x06 0x08 Address Space Granularity

0x0E 0x08 Address Range Minimum

0x16 0x08 Address Range Maximum

0x1E 0x08 Address Translation Offset

0x26 0x08 Address Length

Table 12-3. ACPI 2.0 End Tag

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.

Description

The Configuration() function retrieves a set of ACPI 2.0 resource descriptors that contains
the current configuration of this PCI root bridge. If the current configuration can be retrieved, then
it is returned in Resources and EFI_SUCCESS is returned. See “Related Definitions” below for
the resource descriptor types that are supported by this function. If the current configuration cannot
be retrieved, then EFI_UNSUPPORTED is returned.

Status Codes Returned
EFI_SUCCESS The current configuration of this PCI root bridge was returned in

Resources.

EFI_UNSUPPORTED The current configuration of this PCI root bridge could not be
retrieved.

Extensible Firmware Interface Specification

12-42 12/01/02 Version 1.10

12.2.1 PCI Root Bridge Device Paths
An EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must be installed on a handle for its services to
be available to EFI drivers. In addition to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL, an
EFI_DEVICE_PATH must also be installed on the same handle. See Chapter 5 for a detailed
description of the EFI_DEVICE_PATH.

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the
bus hierarchy in the system, additional device path nodes may precede this ACPI Device Path
Node. A desktop system will typically contain only one PCI Root Bridge, so there would be one
handle with a EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an EFI_DEVICE_PATH. A
server system may contain multiple PCI Root Bridges, so it would contain a handle for each PCI
Root Bridge present, and on each of those handles would be an
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an EFI_DEVICE_PATH. In all cases, the
contents of the ACPI Device Path Nodes for PCI Root Bridges must match the information present
in the ACPI tables for that system.

Table 12-4 shows an example device path for a PCI Root Bridge in a desktop system. Today, a
desktop system typically contains one PCI Root Bridge. This device path consists of an ACPI
Device Path Node, and a Device Path End Structure. The _HID and _UID must match the ACPI
table description of the PCI Root Bridge. For a system with only one PCI Root Bridge, the _UID
value is usually 0x0000. The shorthand notation for this device path is ACPI(PNP0A03,0).

Table 12-4. PCI Root Bridge Device Path for a Desktop System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-43

Table 12-5 through Table 12-8 show example device paths for the PCI Root Bridges in a server
system with four PCI Root Bridges. Each of these device paths consists of an ACPI Device Path
Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table
description of the PCI Root Bridges. The only difference between each of these device paths is the
_UID field. The shorthand notation for these four device paths is ACPI(PNP0A03,0),
ACPI(PNP0A03,1), ACPI(PNP0A03,2), and ACPI(PNP0A03,3).

Table 12-5. PCI Root Bridge Device Path for Bridge #0 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Table 12-6. PCI Root Bridge Device Path for Bridge #1 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0001 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Extensible Firmware Interface Specification

12-44 12/01/02 Version 1.10

Table 12-7. PCI Root Bridge Device Path for Bridge #2 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0002 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Table 12-8. PCI Root Bridge Device Path for Bridge #3 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0003 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-45

Table 12-9 shows an example device path for a PCI Root Bridge using an Expanded ACPI Device
Path. This device path consists of an Expanded ACPI Device Path Node, and a Device Path End
Structure. The _UID and _CID fields must match the ACPI table description of the PCI Root
Bridge. For a system with only one PCI Root Bridge, the _UID value is usually 0x0000. The
shorthand notation for this device path is ACPI(12345678,0,PNP0A03).

Table 12-9. PCI Root Bridge Device Path Using Expanded ACPI Device Path

Byte
Offset

Byte
Length

Data

Description

0x00� 0x01� 0x02� (FOFSJD�%FWJDF�1BUI�)FBEFS�– Type ACPI Device Path�

0x01� 0x01� 0x02� Sub type – Expanded ACPI Device Path�

0x02� 0x02� 0x10� Length – 0x10 bytes�

0x04� 0x04� �Y����
�

�Y�����

_HID-device specific

�

0x08� 0x04� 0x0000� _UID

�Y�$� �Y��� 0x41D0,

0x0A03�

_CID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is
in the low order bytes.

0x10� 0x01� 0xFF� (FOFSJD�%FWJDF�1BUI�)FBEFS�– Type End of Hardware Device Path�

0x11� 0x01� 0xFF� Sub type – End of Entire Device Path�

0x12� 0x02� 0x04� Length – 0x04 bytes�

Extensible Firmware Interface Specification

12-46 12/01/02 Version 1.10

12.3 PCI Driver Model

These sections (Sections 12.3 and 12.4) describe the PCI Driver Model. This includes the behavior
of PCI Bus Drivers, the behavior of a PCI Device Drivers, and a detailed description of the PCI I/O
Protocol. The PCI Bus Driver manages PCI buses present in a system, and PCI Device Drivers
manage PCI controllers present on PCI buses. The PCI Device Drivers produce an I/O abstraction
that can be used to boot an EFI compliant operating system.

This document provides enough material to implement a PCI Bus Driver, and the tools required to
design and implement a PCI Device Drivers. It does not provide any information on specific PCI
devices.

The material contained in this document is designed to extend the EFI Specification and the EFI
Driver Model Specification in a way that supports PCI device drivers and PCI bus drivers. These
extensions are provided in the form of PCI-specific protocols. This document provides the
information required to implement a PCI Bus Driver in system firmware. The document also
contains the information required by driver writers to design and implement PCI Device Drivers
that a platform may need to boot an EFI compliant OS.

A full understanding of the EFI Specification, the EFI Driver Model Specification, and the PCI
Specification is assumed throughout this document. The PCI Driver Model described here is
intended to be a foundation on which a PCI Bus Driver and a wide variety of PCI Device Drivers
can be created.

12.3.1 PCI Driver Initialization
There are very few differences between a PCI Bus Driver and PCI Device Driver in the entry point
of the driver. The file for a driver image must be loaded from some type of media. This could
include ROM, FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once
a driver image has been found, it can be loaded into system memory with the Boot Service
LoadImage(). LoadImage() loads a PE/COFF formatted image into system memory. A
handle is created for the driver, and a Loaded Image Protocol instance is placed on that handle. A
handle that contains a Loaded Image Protocol instance is called an Image Handle. At this point, the
driver has not been started. It is just sitting in memory waiting to be started. Figure 12-7 shows the
state of an image handle for a driver after LoadImage() has been called.

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

OM13148

Figure 12-7. Image Handle

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-47

After a driver has been loaded with the Boot Service LoadImage(), it must be started with the
Boot Service StartImage(). This is true of all types of EFI Applications and EFI Drivers that
can be loaded and started on an EFI compliant system. The entry point for a driver that follows the
EFI Driver Model must follow some strict rules. First, it is not allowed to touch any hardware.
Instead, it is only allowed to install protocol instances onto its own Image Handle. A driver that
follows the EFI Driver Model is required to install an instance of the Driver Binding Protocol onto
its own Image Handle. It may optionally install the Driver Configuration Protocol, the Driver
Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver wishes to be
unloadable it may optionally update the Loaded Image Protocol to provide its own Unload()
function. Finally, if a driver needs to perform any special operations when the Boot Service
ExitBootServices() is called, it may optionally create an event with a notification function
that is triggered when the Boot Service ExitBootServices() is called. An Image Handle that
contains a Driver Binding Protocol instance is known as a Driver Image Handle. Figure 12-8
shows a possible configuration for the Image Handle from Figure 12-7 after the Boot Service
StartImage() has been called.

OM13149

Image Handle

Optional

Optional

Optional

EFI_LOADED_IMAGE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_CONFIGURATION_PROTOCOL

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

EFI_COMPONENT_NAME_PROTOCOL

Figure 12-8. PCI Driver Image Handle

Extensible Firmware Interface Specification

12-48 12/01/02 Version 1.10

12.3.1.1 Driver Configuration Protocol
If a PCI Bus Driver or a PCI Device Driver requires configuration options, then an
EFI_DRIVER_CONFIGURATION_PROTOCOL must be installed on the image handle in the entry
point for the driver. This protocol contains functions set the configuration information for a
controller, validate the current configuration data, and force the configuration data to its default
settings. The EFI_DRIVER_CONFIGURATION_PROTOCOL must use the standard console
devices from the EFI_SYSTEM_TABLE to interact with the user. The functions of this protocol
will be invoked by a platform management utility. Please see the EFI Driver Model Specification
for details on the EFI_DRIVER_CONFIGURATION_PROTOCOL. Neither this specification, nor
the EFI Driver Model Specification specifies where configuration data is stored. It is up to the
driver writer to decide the appropriate location for configuration data. Some possible locations
include a FLASH device or EEPROM device that is attached to the PCI controller, or environment
variables accessed through the Runtime Services GetVariable() and SetVariable().

12.3.1.2 Driver Diagnostics Protocol
If a PCI Bus Driver or a PCI Device Driver requires diagnostics, then an
EFI_DRIVER_DIAGNOSTICS_PROTOCOL must be installed on the image handle in the entry
point for the driver. This protocol contains functions to perform diagnostics on a controller. The
EFI_DRIVER_DIAGNOSTICS_PROTOCOL is not allowed to interact with the user. Instead, it
must return status information through a buffer. The functions of this protocol will be invoked by a
platform management utility. Please see the EFI Driver Model Specification for details on the
EFI_DRIVER_DIAGNOSTICS_PROTOCOL.

12.3.1.3 Component Name Protocol
Both a PCI Bus Driver and a PCI Device Driver are able to produce user readable names for the
PCI drivers and/or the set of PCI controllers that the PCI drivers are managing. This is
accomplished by installing an instance of the EFI_COMPONENT_NAME_PROTOCOL on the image
handle of the driver. This protocol can produce driver and controller names in the form of a
Unicode string in one of several languages. This protocol can be used by a platform management
utility to display user readable names for the drivers and controllers present in a system. Please see
the EFI Driver Model Specification for details on the EFI_COMPONENT_NAME_PROTOCOL.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-49

12.3.2 PCI Bus Drivers
A PCI Bus Driver manages PCI Host Bus Controllers that can contain one or more PCI Root
Bridges. Figure 12-9 shows an example of a desktop system that has one PCI Host Bus Controller
with one PCI Root Bridge.

OM13165

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge

Figure 12-9. PCI Host Bus Controller

The PCI Host Bus Controller in Figure 12-9 is abstracted in software with the PCI Root Bridge I/O
Protocol. A PCI Bus Driver will manage handles that contain this protocol. Figure 12-10 shows an
example device handle for a PCI Host Bus Controller. It contains a Device Path Protocol instance
and a PCI Root Bridge I/O Protocol Instance.

OM15221

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Figure 12-10. Device Handle for a PCI Host Bus Controller

Extensible Firmware Interface Specification

12-50 12/01/02 Version 1.10

12.3.2.1 Driver Binding Protocol for PCI Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the PCI Bus Driver can manage a device handle. A PCI
Bus Driver can only manage device handles that contain the Device Path Protocol and the PCI Root
Bridge I/O Protocol, so a PCI Bus Driver must look for these two protocols on the device handle
that is being tested.

The Start() function tells the PCI Bus Driver to start managing a device handle. The device
handle should support the protocols shown in Figure 12-10. The PCI Root Bridge I/O Protocols
provides access to the PCI I/O, PCI Memory, PCI Prefetchable Memory, and PCI DMA functions.
The PCI Controllers behind a PCI Root Bridge may exist on one or more PCI Buses. The standard
mechanism for expanding the number of PCI Buses on a single PCI Root Bridge is to use PCI to
PCI Bridges. Once a PCI Enumerator configures these bridges, they are invisible to software. As a
result, the PCI Bus Driver flattens the PCI Bus hierarchy when it starts managing a device handle
that represents a PCI Host Controller. Figure 12-11 shows the physical tree structure for a set of
PCI Device denoted by A, B, C, D, and E. Device A and C are PCI to PCI Bridges.

OM13166

PCI Bus 1

PCI ROOT BRIDGE

A - PPB B C - PPB

D

PCI Bus 2

E

Figure 12-11. Physical PCI Bus Structure

Figure 12-12 shows the tree structure generated by a PCI Bus Driver before and after Start() is
called. This is a logical view of set of PCI controller, and not a physical view. The physical tree is
flattened, so any PCI to PCI bridge devices are invisible. In this example, the PCI Bus Driver finds
the five child PCI Controllers on the PCI Bus from Figure 12-11. A device handle is created for
every PCI Controller including all the PCI to PCI Bridges. The arrow with the dashed line coming
into the PCI Host Bus Controller represents a link to the PCI Host Bus Controller’s parent. If the
PCI Host Bus Controller is a Root Bus Controller, then it will not have a parent. The PCI Driver
Model does not require that a PCI Host Bus Controller be a Root Bus Controller. A PCI Host Bus

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-51

Controller can be present at any location in the tree, and the PCI Bus Driver should be able to
manage the PCI Host Bus Controller.

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E

Figure 12-12. Connecting a PCI Bus Driver

The PCI Bus Driver has the option of creating all of its children in one call to Start(), or
spreading it across several calls to Start(). In general, if it is possible to design a bus driver to
create one child at a time, it should do so to support the rapid boot capability in the EFI Driver
Model. Each of the child device handles created in Start() must contain a Device Path Protocol
instance, a PCI I/O protocol instance, and optionally a Bus Specific Driver Override Protocol
instance. The PCI I/O Protocol is described in Section 12.4. The format of device paths for PCI
Controllers is described in Section 2.6, and details on the Bus Specific Driver Override Protocol
can be found in the EFI Driver Model Specification. Figure 12-13 shows an example child device
handle that is created by a PCI Bus Driver for a PCI Controller.

OM13167

PCI Controller Device Handle

Optional

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Figure 12-13. Child Handle Created by a PCI Bus Driver

Extensible Firmware Interface Specification

12-52 12/01/02 Version 1.10

A PCI Bus Driver must perform several steps to manage a PCI Host Bus Controller, as follows:

• Initialize the PCI Host Bus Controller.
• If the PCI buses have not been initialized by a previous agent, perform PCI Enumeration on all

the PCI Root Bridges that the PCI Host Bus Controller contains. This involves assigning a PCI
bus number, allocating PCI I/O resources, PCI Memory resources, and PCI Prefetchable
Memory resources.

• Discover all the PCI Controllers on all the PCI Root Bridges. If a PCI Controller is a PCI to
PCI Bridge, then the I/O, Memory, and Bus Master bits in the Control register of the PCI
Configuration Header should be placed in the enabled state. The PCI Bus Driver should not
modify the contents of the Control register for any other PCI Controllers. It is a PCI Device
Driver’s responsibility to enable the I/O, Memory, and Bus Master bits of the Control register
as required with a call to the Attributes() service when the PCI Device Driver is started.
A similar call to the Attributes() service should be made when the PCI Device Driver is
stopped to disable the I/O, Memory, and Bus Master bits of the Control register.

• Create a device handle for each PCI Controller found. If a request is being made to start only
one PCI Controller, then only create one device handle.

• Install a Device Path Protocol instance and a PCI I/O Protocol instance on the device handle
created for each PCI Controller.

• If the PCI Controller has a PCI Option ROM, then allocate a memory buffer that is the same
size as the PCI Option ROM, and copy the PCI Option ROM contents to the memory buffer.

• If the PCI Option ROM contains any EFI Drivers, then attach a Bus Specific Driver Override
Protocol to the device handle of the PCI Controller that is associated with the PCI Option
ROM.

The Stop() function tells the PCI Bus Driver to stop managing a PCI Host Bus Controller. The
Stop() function can destroy one or more of the device handles that were created on a previous
call to Start(). If all of the child device handles have been destroyed, then Stop() will place
the PCI Host Bus Controller in a quiescent state. The functionality of Stop() mirrors Start(),
as follows:

1. Complete all outstanding transactions to the PCI Host Bus Controller.
2. If the PCI Host Bus Controller is being stopped, then place it in a quiescent state.
3. If one or more child handles are being destroyed, then:

a. Uninstall all the protocols from the device handles for the PCI Controllers found
in Start().

b. Free any memory buffers allocated for PCI Option ROMs.
c. Destroy the device handles for the PCI controllers created in Start().

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-53

12.3.2.2 PCI Enumeration
The PCI Enumeration process is a platform-specific operation that depends on the properties of the
chipset that produces the PCI bus. As a result, details on PCI Enumeration are outside the scope of
this document. A PCI Bus Driver requires that PCI Enumeration has been performed, so it either
needs to have been done prior to the PCI Bus Driver starting, or it must be part of the PCI Bus
Driver’s implementation.

12.3.3 PCI Device Drivers
PCI Device Drivers manage PCI Controllers. Device handles for PCI Controllers are created by
PCI Bus Drivers. A PCI Device Driver is not allowed to create any new device handles. Instead, it
attaches protocol instance to the device handle of the PCI Controller. These protocol instances are
I/O abstractions that allow the PCI Controller to be used in the preboot environment. The most
common I/O abstractions are used to boot an EFI compliant OS.

12.3.3.1 Driver Binding Protocol for PCI Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the PCI Device Driver can manage a device handle. A
PCI Device Driver can only manage device handles that contain the Device Path Protocol and the
PCI I//O Protocol, so a PCI Device Driver must look for these two protocols on the device handle
that is being tested. In addition, it needs to check to see if the device handle represents a PCI
Controller that the PCI Device Driver knows how to manage. This is typically done by using the
services of the PCI I/O Protocol to read the PCI Configuration Header for the PCI Controller, and
looking at the VendorId, DeviceId, and SubsystemId fields.

The Start() function tells the PCI Device Driver to start managing a PCI Controller. A PCI
Device Driver is not allowed to create any new device handles. Instead, it installs one or more
addition protocol instances on the device handle for the PCI Controller. A PCI Device Driver is not
allowed to modify the resources allocated to a PCI Controller. These resource allocations are
owned by the PCI Bus Driver or some other firmware component that initialized the PCI Bus prior
to the execution of the PCI Bus Driver. This means that the PCI BARs (Base Address Registers)
and the configuration of any PCI to PCI bridge controllers must not be modified by a PCI Device
Driver. A PCI Bus Driver will leave a PCI Device in a disabled state. It is a PCI Device Driver’s
responsibility to call Attributes() to enable the I/O, Memory, and Bus Master decodes.

Extensible Firmware Interface Specification

12-54 12/01/02 Version 1.10

The Stop() function mirrors the Start() function, so the Stop() function completes any
outstanding transactions to the PCI Controller and removes the protocol interfaces that were
installed in Start(). Figure 12-14 shows the device handle for a PCI Controller before and after
Start() is called. In this example, a PCI Device Driver is adding the Block I/O Protocol to the
device handle for the PCI Controller. It is also a PCI Device Driver’s responsibility to disable the
I/O, Memory, and Bus Master decodes by calling Attributes().

OM13168

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

Stop() : Closes PCI I/O

Start() : Opens PCI I/O

Installed by Start()
Uninstalled by Stop()

Figure 12-14. Connecting a PCI Device Driver

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-55

12.4 EFI PCI I/O Protocol

This section provides a detailed description of the EFI_PCI_IO_PROTOCOL. This protocol is
used by code, typically drivers, running in the EFI boot services environment to access memory and
I/O on a PCI controller. In particular, functions for managing devices on PCI buses are defined
here.

The interfaces provided in the EFI_PCI_IO_PROTOCOL are for performing basic operations to
memory, I/O, and PCI configuration space. The system provides abstracted access to basic system
resources to allow a driver to have a programmatic method to access these basic system resources.
The main goal of this protocol is to provide an abstraction that simplifies the writing of device
drivers for PCI devices. This goal is accomplished by providing the following features:

• A driver model that does not require the driver to search the PCI busses for devices to manage.
Instead, drivers are provided the location of the device to manage or have the capability to be
notified when a PCI controller is discovered.

• A device driver model that abstracts the I/O addresses, Memory addresses, and PCI
Configuration addresses from the PCI device driver. Instead, BAR (Base Address Register)
relative addressing is used for I/O and Memory accesses, and device relative addressing is used
for PCI Configuration accesses. The BAR relative addressing is specified in the PCI I/O
services as a BAR index. A PCI controller may contain a combination of 32-bit and 64-bit
BARs. The BAR index represents the logical BAR number in the standard PCI configuration
header starting from the first BAR. The BAR index does not represent an offset into the
standard PCI Configuration Header because those offsets will vary depending on the
combination and order of 32-bit and 64-bit BARs.

• The Device Path for the PCI device can be obtained from the same device handle that the
EFI_PCI_IO_PROTOCOL resides.

• The PCI Segment, PCI Bus Number, PCI Device Number, and PCI Function Number of the
PCI device if they are required. The general idea is to abstract these details away from the PCI
device driver. However, if these details are required, then they are available.

• Details on any nonstandard address decoding that is not covered by the PCI device’s Base
Address Registers.

• Access to the PCI Root Bridge I/O Protocol for the PCI Host Bus for which the PCI device is a
member.

• A copy of the PCI Option ROM if it is present in system memory.
• Functions to perform bus mastering DMA. This includes both packet based DMA and common

buffer DMA.

Extensible Firmware Interface Specification

12-56 12/01/02 Version 1.10

EFI_PCI_IO_PROTOCOL

Summary

Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that a driver uses to access
its PCI controller.

GUID
#define EFI_PCI_IO_PROTOCOL_GUID \

{0x4cf5b200,0x68b8,0x4ca5,0x9e,0xec,0xb2,0x3e,0x3f,0x50,0x2,0x9a}

Protocol Interface Structure
typedef struct _EFI_PCI_IO_PROTOCOL {
 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem;
 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo;
 EFI_PCI_IO_PROTOCOL_ACCESS Mem;
 EFI_PCI_IO_PROTOCOL_ACCESS Io;
 EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci;
 EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem;
 EFI_PCI_IO_PROTOCOL_MAP Map;
 EFI_PCI_IO_PROTOCOL_UNMAP Unmap;
 EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
 EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
 EFI_PCI_IO_PROTOCOL_FLUSH Flush;
 EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation;
 EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes;
 EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes;
 EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes;
 UINT64 RomSize;
 VOID *RomImage;
} EFI_PCI_IO_PROTOCOL;

Parameters
PollMem Polls an address in PCI memory space until an exit condition is

met, or a timeout occurs. See the PollMem() function
description.

PollIo Polls an address in PCI I/O space until an exit condition is met, or
a timeout occurs. See the PollIo() function description.

Mem.Read Allows BAR relative reads to PCI memory space. See the
Mem.Read() function description.

Mem.Write Allows BAR relative writes to PCI memory space. See the
Mem.Write() function description.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-57

Io.Read Allows BAR relative reads to PCI I/O space. See the
Io.Read() function description.

Io.Write Allows BAR relative writes to PCI I/O space. See the
Io.Write() function description.

Pci.Read Allows PCI controller relative reads to PCI configuration space.
See the Pci.Read() function description.

Pci.Write Allows PCI controller relative writes to PCI configuration space.
See the Pci.Write() function description.

CopyMem Allows one region of PCI memory space to be copied to another
region of PCI memory space. See the CopyMem() function
description.

Map Provides the PCI controller–specific address needed to access
system memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap()
function description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping.
See the AllocateBuffer() function description.

FreeBuffer Frees pages that were allocated with AllocateBuffer(). See
the FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See
the Flush() function description.

GetLocation Retrieves this PCI controller’s current PCI bus number, device
number, and function number. See the GetLocation()
function description.

Attributes Performs an operation on the attributes that this PCI controller
supports. The operations include getting the set of supported
attributes, retrieving the current attributes, setting the current
attributes, enabling attributes, and disabling attributes. See the
Attributes() function description.

GetBarAttributes Gets the attributes that this PCI controller supports setting on a
BAR using SetBarAttributes(), and retrieves the list of
resource descriptors for a BAR. See the
GetBarAttributes() function description.

SetBarAttributes Sets the attributes for a range of a BAR on a PCI controller. See
the SetBarAttributes() function description.

RomSize The size, in bytes, of the ROM image.

Extensible Firmware Interface Specification

12-58 12/01/02 Version 1.10

RomImage A pointer to the in memory copy of the ROM image. The PCI Bus
Driver is responsible for allocating memory for the ROM image,
and copying the contents of the ROM to memory. The contents of
this buffer are either from the PCI option ROM that can be
accessed through the ROM BAR of the PCI controller, or it is from
a platform-specific location. The Attributes() function can
be used to determine from which of these two sources the
RomImage buffer was initialized.

Related Definitions
//***
// EFI_PCI_IO_PROTOCOL_WIDTH
//***
typedef enum {
 EfiPciIoWidthUint8,
 EfiPciIoWidthUint16,
 EfiPciIoWidthUint32,
 EfiPciIoWidthUint64,
 EfiPciIoWidthFifoUint8,
 EfiPciIoWidthFifoUint16,
 EfiPciIoWidthFifoUint32,
 EfiPciIoWidthFifoUint64,
 EfiPciIoWidthFillUint8,
 EfiPciIoWidthFillUint16,
 EfiPciIoWidthFillUint32,
 EfiPciIoWidthFillUint64,
 EfiPciIoWidthMaximum
} EFI_PCI_IO_PROTOCOL_WIDTH;

#define EFI_PCI_IO_PASS_THROUGH_BAR 0xff

//***
// EFI_PCI_IO_PROTOCOL_POLL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-59

//***
// EFI_PCI_IO_PROTOCOL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

//***
// EFI_PCI_IO_PROTOCOL_ACCESS
//***
typedef struct {
 EFI_PCI_IO_PROTOCOL_IO_MEM Read;
 EFI_PCI_IO_PROTOCOL_IO_MEM Write;
} EFI_PCI_IO_PROTOCOL_ACCESS;

//***
// EFI_PCI_IO_PROTOCOL_CONFIG
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT32 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

//***
// EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS
//***
typedef struct {
 EFI_PCI_IO_PROTOCOL_CONFIG Read;
 EFI_PCI_IO_PROTOCOL_CONFIG Write;
} EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS;

Extensible Firmware Interface Specification

12-60 12/01/02 Version 1.10

//***
// EFI PCI I/O Protocol Attribute bits, EFI PCI I/O Protocol
//***
#define EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001
#define EFI_PCI_IO_ATTRIBUTE_ISA_IO 0x0002
#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO 0x0004
#define EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY 0x0008
#define EFI_PCI_IO_ATTRIBUTE_VGA_IO 0x0010
#define EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO 0x0020
#define EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO 0x0040
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080
#define EFI_PCI_IO_ATTRIBUTE_IO 0x0100
#define EFI_PCI_IO_ATTRIBUTE_MEMORY 0x0200
#define EFI_PCI_IO_ATTRIBUTE_BUS_MASTER 0x0400
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED 0x0800
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE 0x1000
#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE 0x2000
#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM 0x4000
#define EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000

EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO

If this bit is set, then the PCI I/O cycles between 0x00000000 and 0x000000FF are
forwarded to the PCI controller. This bit is used to forward I/O cycles for ISA
motherboard devices. If this bit is set, then the PCI Host Bus Controller and all the PCI
to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_ISA_IO

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to the
PCI controller using a 10-bit address decoder on address bits 0..9. Address bits 10..15 are
not decoded, and address bits 16..31 must be zero. This bit is used to forward I/O cycles
for legacy ISA devices. If this bit is set, then the PCI Host Bus Controller and all the PCI
to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O write cycles to the VGA palette registers on a PCI controller. If
this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between
the PCI Host Bus Controller and the PCI Controller are configured to forward these
PCI I/O cycles.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-61

EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY

If this bit is set, then the PCI memory cycles between 0xA0000 and 0xBFFFF are
forwarded to the PCI controller. This bit is used to forward memory cycles for a VGA
frame buffer on a PCI controller. If this bit is set, then the PCI Host Bus Controller and
all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller
are configured to forward these PCI Memory cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-0x3BB and 0x3C0-0x3DF
are forwarded to the PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and the address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a VGA controller to a PCI controller. If this bit is set, then
the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI Host Bus
Controller and the PCI Controller are configured to forward these PCI I/O cycles. Since
EFI_PCI_IO_ATTRIBUTE_VGA_IO also includes the I/O range described by
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_ IO, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO is set.

EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7 are
forwarded to a PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Primary IDE controller to a PCI controller. If this bit is
set, then the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI
Host Bus Controller and the PCI Controller are configured to forward these PCI I/O
cycles.

EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377 are
forwarded to a PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Secondary IDE controller to a PCI controller. If this bit
is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI
Host Bus Controller and the PCI Controller are configured to forward these PCI I/O
cycles.

EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a write combining mode. This bit is used
to improve the write performance to a memory buffer on a PCI controller. By default,
PCI memory ranges are not accessed in a write combining mode.

Extensible Firmware Interface Specification

12-62 12/01/02 Version 1.10

EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a cached mode. By default, PCI memory
ranges are accessed noncached.

EFI_PCI_IO_ATTRIBUTE_IO

If this bit is set, then the PCI device will decode the PCI I/O cycles that the device is
configured to decode.

EFI_PCI_IO_ATTRIBUTE_MEMORY

If this bit is set, then the PCI device will decode the PCI Memory cycles that the device is
configured to decode.

EFI_PCI_IO_ATTRIBUTE_BUS_MASTER

If this bit is set, then the PCI device is allowed to act as a bus master on the PCI bus.

EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is disabled, and can no longer be accessed. By default, all
PCI memory ranges are enabled.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE

If this bit is set, then the PCI controller is an embedded device that is typically a
component on the system board. If this bit is clear, then this PCI controller is part of an
adapter that is populating one of the systems PCI slots.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM

If this bit is set, then the PCI option ROM described by the RomImage and RomSize
fields is not from ROM BAR of the PCI controller. If this bit is clear, then the
RomImage and RomSize fields were initialized based on the PCI option ROM found
through the ROM BAR of the PCI controller.

EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE

If this bit is set, then the PCI controller is capable of producing PCI Dual Address Cycles,
so it is able to access a 64-bit address space. If this bit is not set, then the PCI controller is
not capable of producing PCI Dual Address Cycles, so it is only able to access a 32-bit
address space.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-63

//***
// EFI_PCI_IO_PROTOCOL_OPERATION
//***
typedef enum {
 EfiPciIoOperationBusMasterRead,
 EfiPciIoOperationBusMasterWrite,
 EfiPciIoOperationBusMasterCommonBuffer,
 EfiPciIoOperationMaximum
} EFI_PCI_IO_PROTOCOL_OPERATION;

EfiPciIoOperationBusMasterRead

 A read operation from system memory by a bus master.

EfiPciIoOperationBusMasterWrite

 A write operation to system memory by a bus master.

EfiPciIoOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both
the processor and a bus master. The buffer is coherent from both
the processor’s and the bus master’s point of view.

Description

The EFI_PCI_IO_PROTOCOL provides the basic Memory, I/O, PCI configuration, and DMA
interfaces that are used to abstract accesses to PCI controllers. There is one
EFI_PCI_IO_PROTOCOL instance for each PCI controller on a PCI bus. A device driver that
wishes to manage a PCI controller in a system will have to retrieve the EFI_PCI_IO_PROTOCOL
instance that is associated with the PCI controller. A device handle for a PCI controller will
minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_PCI_IO_PROTOCOL instance.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three
basic types of bus mastering DMA that is supported by this protocol. These are DMA reads by a
bus master, DMA writes by a bus master, and common buffer DMA. The DMA read and write
operations may need to be broken into smaller chunks. The caller of Map() must pay attention to
the number of bytes that were mapped, and if required, loop until the entire buffer has been
transferred. The following is a list of the different bus mastering DMA operations that are
supported, and the sequence of EFI_PCI_IO_PROTOCOL interfaces that are used for each DMA
operation type.

Extensible Firmware Interface Specification

12-64 12/01/02 Version 1.10

DMA Bus Master Read Operation

• Call Map() for EfiPciIoOperationBusMasterRead.
• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the read operation.
• Call Unmap().

DMA Bus Master Write Operation

• Call Map() for EfiPciOperationBusMasterWrite.
• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the write operation.
• Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI

Specification Section 3.2.5.2) .
• Call Flush().
• Call Unmap().

DMA Bus Master Common Buffer Operation

• Call AllocateBuffer() to allocate a common buffer.
• Call Map() for EfiPciIoOperationBusMasterCommonBuffer.
• Program the DMA Bus Master with the DeviceAddress returned by Map().
• The common buffer can now be accessed equally by the processor and the DMA bus master.
• Call Unmap().
• Call FreeBuffer().

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-65

EFI_PCI_IO_PROTOCOL.PollMem()

Summary

Reads from the memory space of a PCI controller. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 12.4.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the memory operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass the
BAR relative addressing and pass Offset to the PCI Root Bridge
I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 12.4.

Offset The offset within the selected BAR to start the memory operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the memory address.

Extensible Firmware Interface Specification

12-66 12/01/02 Version 1.10

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.

Description

This function provides a standard way to poll a PCI memory location. A PCI memory read
operation is performed at the PCI memory address specified by BarIndex and Offset for the
width specified by Width. The result of this PCI memory read operation is stored in Result.
This PCI memory read operation is repeated until either a timeout of Delay 100 ns units has
expired, or (Result & Mask) is equal to Value.

This function will always perform at least one memory access no matter how small Delay may be.
If Delay is 0, then Result will be returned with a status of EFI_SUCCESS even if Result
does not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16,
EfiPciIoWidthUint32, or EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER
is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. However, if the memory mapped I/O region being accessed by this function has
the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the BarIndex of this PCI controller.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-67

EFI_PCI_IO_PROTOCOL.PollIo()

Summary

Reads from the I/O space of a PCI controller. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Width Signifies the width of the I/O operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 12.4.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the I/O operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass the
BAR relative addressing and pass Offset to the PCI Root Bridge
I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 12.4.

Offset The offset within the selected BAR to start the I/O operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the I/O address.

Extensible Firmware Interface Specification

12-68 12/01/02 Version 1.10

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.

Description

This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is
performed at the PCI I/O address specified by BarIndex and Offset for the width specified by
Width. The result of this PCI I/O read operation is stored in Result. This PCI I/O read
operation is repeated until either a timeout of Delay 100 ns units has expired, or (Result &
Mask) is equal to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If
Delay is 0, then Result will be returned with a status of EFI_SUCCESS even if Result does
not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16,
EfiPciIoWidthUint32, or EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER
is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any
alignment and I/O width restrictions that the PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the PCI BAR specified by BarIndex.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-69

EFI_PCI_IO_PROTOCOL.Mem.Read()
EFI_PCI_IO_PROTOCOL.Mem.Write()

Summary

Enable a PCI driver to access PCI controller registers in the PCI memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 12.4.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the memory operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass the
BAR relative addressing and pass Offset to the PCI Root Bridge
I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 12.4.

Offset The offset within the selected BAR to start the memory operation.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Extensible Firmware Interface Specification

12-70 12/01/02 Version 1.10

Description

The Mem.Read(), and Mem.Write() functions enable a driver to access controller registers in
the PCI memory space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address
is incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-71

EFI_PCI_IO_PROTOCOL.Io.Read()
EFI_PCI_IO_PROTOCOL.Io.Write()

Summary

Enable a PCI driver to access PCI controller registers in the PCI I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 12.4.

BarIndex The BAR index in the standard PCI Configuration header to use as
the base address for the I/O operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass the
BAR relative addressing and pass Offset to the PCI Root Bridge
I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 12.4.

Offset The offset within the selected BAR to start the I/O operation.

Count The number of I/O operations to perform. Bytes moved is Width
size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Extensible Firmware Interface Specification

12-72 12/01/02 Version 1.10

Description

The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in
PCI I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-73

EFI_PCI_IO_PROTOCOL.Pci.Read()
EFI_PCI_IO_PROTOCOL.Pci.Write()

Summary

Enable a PCI driver to access PCI controller registers in PCI configuration space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT32 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 12.4.

Offset The offset within the PCI configuration space for the PCI
controller.

Count The number of PCI configuration operations to perform. Bytes
moved is Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For
write operations, the source buffer to write data from.

Extensible Firmware Interface Specification

12-74 12/01/02 Version 1.10

Description

The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration
registers for the PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for
any alignment and I/O width issues which the bus, device, platform, or type of I/O might require.
For example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI configuration header of the PCI controller.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-75

EFI_PCI_IO_PROTOCOL.CopyMem()

Summary

Enables a PCI driver to copy one region of PCI memory space to another region of PCI
memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_COPY_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 DestBarIndex,
 IN UINT64 DestOffset,
 IN UINT8 SrcBarIndex,
 IN UINT64 SrcOffset,
 IN UINTN Count
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 12.4.

DestBarIndex The BAR index in the standard PCI Configuration header to use as
the base address for the memory operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass the
BAR relative addressing and pass Offset to the PCI Root Bridge
I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 12.4.

DestOffset The destination offset within the BAR specified by
DestBarIndex to start the memory writes for the copy
operation. The caller is responsible for aligning the DestOffset
if required.

Extensible Firmware Interface Specification

12-76 12/01/02 Version 1.10

SrcBarIndex The BAR index in the standard PCI Configuration header to use as
the base address for the memory operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for this
field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass the
BAR relative addressing and pass Offset to the PCI Root Bridge
I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 12.4.

SrcOffset The source offset within the BAR specified by SrcBarIndex to
start the memory reads for the copy operation. The caller is
responsible for aligning the SrcOffset if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at DestOffset and
SrcOffset.

Description

The CopyMem() function enables a PCI driver to copy one region of PCI memory space to
another region of PCI memory space on a PCI controller. This is especially useful for video scroll
operations on a memory mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then Count read/write transactions are performed to move the contents
of the SrcOffset buffer to the DestOffset buffer. The implementation must be reentrant,
and it must handle overlapping SrcOffset and DestOffset buffers. This means that the
implementation of CopyMem() must choose the correct direction of the copy operation based on
the type of overlap that exists between the SrcOffset and DestOffset buffers. If either the
SrcOffset buffer or the DestOffset buffer crosses the top of the processor’s address space,
then the result of the copy operation is unpredictable.

The contents of the DestOffset buffer on exit from this service must match the contents of the
SrcOffset buffer on entry to this service. Due to potential overlaps, the contents of the
SrcOffset buffer may be modified by this service. The following rules can be used to guarantee
the correct behavior:

1. If DestOffset > SrcOffset and DestOffset < (SrcOffset + Width size *
Count), then the data should be copied from the SrcOffset buffer to the DestOffset
buffer starting from the end of buffers and working toward the beginning of the buffers.

2. Otherwise, the data should be copied from the SrcOffset buffer to the DestOffset buffer
starting from the beginning of the buffers and working toward the end of the buffers.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-77

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. All the PCI write transactions generated by this function will follow the write
ordering and completion rules defined in the PCI Specification. However, if the memory-mapped
I/O region being accessed by this function has the EFI_PCI_ATTRIBUTE_MEMORY_CACHED
attribute set, then the transactions will follow the ordering rules defined by the processor
architecture.

Status Codes Returned
EFI_SUCCESS The data was copied from one memory region to another memory region.

EFI_INVALID_PARAMETER Width is invalid.

EFI_UNSUPPORTED DestBarIndex not valid for this PCI controller.

EFI_UNSUPPORTED SrcBarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by DestOffset, Width, and Count
is not valid for the PCI BAR specified by DestBarIndex.

EFI_UNSUPPORTED The address range specified by SrcOffset, Width, and Count is
not valid for the PCI BAR specified by SrcBarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-78 12/01/02 Version 1.10

EFI_PCI_IO_PROTOCOL.Map()

Summary

Provides the PCI controller–specific addresses needed to access system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MAP) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_OPERATION Operation,
 IN VOID *HostAddress,
 IN OUT UINTN *NumberOfBytes,
 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
 OUT VOID **Mapping
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Operation Indicates if the bus master is going to read or write to system
memory. Type EFI_PCI_IO_PROTOCOL_OPERATION is
defined in Section 12.4.

HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of
bytes that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to use
to access the hosts HostAddress. Type
EFI_PHYSICAL_ADDRESS is defined in Chapter 5. This
address cannot be used by the processor to access the contents of
the buffer specified by HostAddress.

Mapping A resulting value to pass to Unmap().

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-79

Description

The Map() function provides the PCI controller–specific addresses needed to access system
memory. This function is used to map system memory for PCI bus master DMA accesses.

All PCI bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or write data
transfer, then EfiPciIoOperationBusMasterRead or EfiPciIoOperation-
BusMasterWrite is used and the range is unmapped to complete the operation. If performing
an EfiPciIoOperationBusMasterRead operation, all the data must be present in system
memory before the Map() is performed. Similarly, if performing an EfiPciIoOperation-
BusMasterWrite, the data cannot be properly accessed in system memory until Unmap()
is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciIoOperation-
BusMasterCommonBuffer. However, only memory allocated via the AllocateBuffer()
interface can be mapped for this operation type.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the
requested amount. In this case, the DMA operation will have to be broken up into smaller chunks.
The Map() function will map as much of the DMA operation as it can at one time. The caller may
have to loop on Map() and Unmap() in order to complete a large DMA transfer.

Status Codes Returned
EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

12-80 12/01/02 Version 1.10

EFI_PCI_IO_PROTOCOL.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_UNMAP) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN VOID *Mapping
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EfiPciIoOperationBusMasterWrite, the data is committed to the
target system memory. Any resources used for the mapping are freed.

Status Codes Returned
EFI_SUCCESS The range was unmapped.

EFI_INVALID_PARAMETER HostAddress is not a value that was returned by Map().

EFI_DEVICE_ERROR The data was not committed to the target system memory.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-81

EFI_PCI_IO_PROTOCOL.AllocateBuffer()

Summary

Allocates pages that are suitable for an EfiPciIoOperationBusMasterCommonBuffer
mapping.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_ALLOCATE_TYPE Type,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT VOID **HostAddress,
 IN UINT64 Attributes
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Type This parameter is not used and must be ignored.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is
defined in Chapter 5.

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

Attributes The requested bit mask of attributes for the allocated range. Only
the attributes
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED may be used with
this function. If any other bits are set, then EFI_UNSUPPORTED
is returned. This function may choose to ignore this bit mask. The
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes provide a
hint to the implementation that may improve the performance of
the calling driver. The implementation may choose any default for
the memory attributes including write combining, cached, both, or
neither as long as the allocated buffer can be seen equally by both
the processor and the PCI bus master.

Extensible Firmware Interface Specification

12-82 12/01/02 Version 1.10

Description

The AllocateBuffer() function allocates pages that are suitable for an
EfiPciIoOperationBusMasterCommonBuffer mapping. This means that the buffer
allocated by this function must support simultaneous access by both the processor and a PCI Bus
Master. The device address that the PCI Bus Master uses to access the buffer can be retrieved with
a call to Map().

If the current attributes of the PCI controller has the EFI_PCI_IO_ATTRIBUTE_DUAL_
ADDRESS_CYCLE bit set, then when the buffer allocated by this function is mapped with a call to
Map(), the device address that is returned by Map() must be within the 64-bit device address
space of the PCI Bus Master. The attributes for a PCI controller can be managed by calling
Attributes().

If the current attributes for the PCI controller has the EFI_PCI_IO_ATTRIBUTE_DUAL_
ADDRESS_CYCLE bit clear, then when the buffer allocated by this function is mapped with a call
to Map(), the device address that is returned by Map() must be within the 32-bit device address
space of the PCI Bus Master. The attributes for a PCI controller can be managed by calling
Attributes().

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE and MEMORY_CACHED.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-83

EFI_PCI_IO_PROTOCOL.FreeBuffer()

Summary

Frees memory that was allocated with AllocateBuffer().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_FREE_BUFFER) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINTN Pages,
 IN VOID *HostAddress
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description

The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages
was not allocated with AllocateBuffer().

Extensible Firmware Interface Specification

12-84 12/01/02 Version 1.10

EFI_PCI_IO_PROTOCOL.Flush()

Summary

Flushes all PCI posted write transactions from a PCI host bridge to system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_FLUSH) (
 IN EFI_PCI_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Description

The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller
specific action must be taken to guarantee that the posted write transactions have been flushed from
the PCI controller and from all the PCI bridges into the PCI host bridge. This is typically done with
a PCI read transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the
processor’s view of system memory are guaranteed to be coherent. If the PCI posted write
transactions cannot be flushed from the PCI host bridge, then the PCI bus master and processor are
not guaranteed to have a coherent view of system memory, and EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host

bridge to system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI
host bridge due to a hardware error.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-85

EFI_PCI_IO_PROTOCOL.GetLocation()

Summary

Retrieves this PCI controller’s current PCI bus number, device number, and function number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_LOCATION) (
 IN EFI_PCI_IO_PROTOCOL *This,
 OUT UINTN *SegmentNumber,
 OUT UINTN *BusNumber,
 OUT UINTN *DeviceNumber,
 OUT UINTN *FunctionNumber
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

SegmentNumber The PCI controller’s current PCI segment number.

BusNumber The PCI controller’s current PCI bus number.

DeviceNumber The PCI controller’s current PCI device number.

FunctionNumber The PCI controller’s current PCI function number.

Description

The GetLocation() function retrieves a PCI controller’s current location on a PCI Host Bridge.
This is specified by a PCI segment number, PCI bus number, PCI device number, and PCI function
number. These values can be used with the PCI Root Bridge I/O Protocol to perform PCI
configuration cycles on the PCI controller, or any of its peer PCI controller’s on the same PCI Host
Bridge.

Status Codes Returned
EFI_SUCCESS The PCI controller location was returned.

EFI_INVALID_PARAMETER SegmentNumber is NULL.

EFI_INVALID_PARAMETER BusNumber is NULL.

EFI_INVALID_PARAMETER DeviceNumber is NULL.

EFI_INVALID_PARAMETER FunctionNumber is NULL.

Extensible Firmware Interface Specification

12-86 12/01/02 Version 1.10

EFI_PCI_IO_PROTOCOL.Attributes()

Summary

Performs an operation on the attributes that this PCI controller supports. The operations include
getting the set of supported attributes, retrieving the current attributes, setting the current
attributes, enabling attributes, and disabling attributes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION Operation,
 IN UINT64 Attributes,
 OUT UINT64 *Result OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Operation The operation to perform on the attributes for this PCI controller.
Type EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION is
defined in “Related Definitions” below.

Attributes The mask of attributes that are used for Set, Enable, and
Disable operations. The available attributes are listed in
Section 12.4.

Result A pointer to the result mask of attributes that are returned for the
Get and Supported operations. This is an optional parameter
that may be NULL for the Set, Enable, and Disable
operations. The available attributes are listed in Section 12.4.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-87

Related Definitions
//***
// EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION
//***
typedef enum {
 EfiPciIoAttributeOperationGet,
 EfiPciIoAttributeOperationSet,
 EfiPciIoAttributeOperationEnable,
 EfiPciIoAttributeOperationDisable,
 EfiPciIoAttributeOperationSupported,
 EfiPciIoAttributeOperationMaximum
} EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION;

EfiPciIoAttributeOperationGet

Retrieve the PCI controller’s current attributes, and return them in Result. If Result
is NULL, then EFI_INVALID_PARAMER is returned. For this operation,
Attributes is ignored.

EfiPciIoAttributeOperationSet

Set the PCI controller’s current attributes to Attributes. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationEnable

Enable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationDisable

Disable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationSupported

Retrieve the PCI controller's supported attributes, and return them in Result. If
Result is NULL, then EFI_INVALID_PARAMER is returned. For this operation,
Attributes is ignored.

Extensible Firmware Interface Specification

12-88 12/01/02 Version 1.10

Description

The Attributes() function performs an operation on the attributes associated with this PCI
controller. If Operation is greater than or equal to the maximum operation value, then
EFI_INVALID_PARAMETER is returned. If Operation is Get or Supported, and Result
is NULL, then EFI_INVALID_PARAMETER is returned. If Operation is Set, Enable, or
Disable for an attribute that is not supported by the PCI controller, then EFI_UNSUPPORTED is
returned. Otherwise, the operation is performed as described in “Related Definitions” and
EFI_SUCCESS is returned. It is possible for this function to return EFI_UNSUPPORTED even if
the PCI controller supports the attribute. This can occur when the PCI root bridge does not support
the attribute. For example, if VGA I/O and VGA Memory transactions cannot be forwarded onto
PCI root bridge #2, then a request by a PCI VGA driver to enable the VGA_IO and VGA_MEMORY
bits will fail even though a PCI VGA controller behind PCI root bridge #2 is able to decode these
transactions.

This function will also return EFI_UNSUPPORTED if more than one PCI controller on the same
PCI root bridge has already successfully requested one of the ISA addressing attributes. For
example, if one PCI VGA controller had already requested the VGA_IO and VGA_MEMORY
attributes, then a second PCI VGA controller on the same root bridge cannot succeed in requesting
those same attributes. This restriction applies to the ISA-, VGA-, and IDE-related attributes.

Status Codes Returned
EFI_SUCCESS The operation on the PCI controller’s attributes was completed. If

the operation was Get or Supported, then the attribute mask
is returned in Result.

EFI_INVALID_PARAMETER Operation is greater than or equal to
EfiPciIoAttributeOperationMaximum.

EFI_INVALID_PARAMETER Operation is Get and Result is NULL.

EFI_INVALID_PARAMETER Operation is Supported and Result is NULL.

EFI_UNSUPPORTED Operation is Set, and one or more of the bits set in
Attributes are not supported by this PCI controller or one of

its parent bridges.

EFI_UNSUPPORTED Operation is Enable, and one or more of the bits set in
Attributes are not supported by this PCI controller or one of

its parent bridges.

EFI_UNSUPPORTED Operation is Disable, and one or more of the bits set in
Attributes are not supported by this PCI controller or one of

its parent bridges.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-89

EFI_PCI_IO_PROTOCOL.GetBarAttributes()

Summary

Gets the attributes that this PCI controller supports setting on a BAR using
SetBarAttributes(), and retrieves the list of resource descriptors for a BAR.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINT8 BarIndex,
 OUT UINT64 *Supports OPTIONAL,
 OUT VOID **Resources OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for resource range. The legal range for this field
is 0..5.

Supports A pointer to the mask of attributes that this PCI controller supports
setting for this BAR with SetBarAttributes(). The list of
attributes is listed in Section 12.4. This is an optional parameter
that may be NULL.

Resources A pointer to the ACPI 2.0 resource descriptors that describe the
current configuration of this BAR of the PCI controller. This
buffer is allocated for the caller with the Boot Service
AllocatePool(). It is the caller’s responsibility to free the
buffer with the Boot Service FreePool(). See “Related
Definitions” below for the ACPI 2.0 resource descriptors that may
be used. This is an optional parameter that may be NULL.

Extensible Firmware Interface Specification

12-90 12/01/02 Version 1.10

Related Definitions

There are only two resource descriptor types from the ACPI Specification that may be used to
describe the current resources allocated to BAR of a PCI Controller. These are the QWORD
Address Space Descriptor (ACPI 2.0 Section 6.4.3.5.1), and the End Tag (ACPI 2.0
Section 6.4.2.8). The QWORD Address Space Descriptor can describe memory, I/O, and bus
number ranges for dynamic or fixed resources. The configuration of a BAR of a PCI Controller is
described with one or more QWORD Address Space Descriptors followed by an End Tag. Table
12-10 and Table 12-11 contain these two descriptor types. Please see the ACPI Specification for
details on the field values.

Table 12-10. ACPI 2.0 QWORD Address Space Descriptor

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type

 0 – Memory Range

 1 – I/O Range

 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags

0x06 0x08 Address Space Granularity

0x0E 0x08 Address Range Minimum

0x16 0x08 Address Range Maximum

0x1E 0x08 Address Translation Offset

0x26 0x08 Address Length

Table 12-11. ACPI 2.0 End Tag

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-91

Description

The GetBarAttributes() function returns in Supports the mask of attributes that the PCI
controller supports setting for the BAR specified by BarIndex. It also returns in Resources a
list of ACPI 2.0 resource descriptors for the BAR specified by BarIndex. Both Supports and
Resources are optional parameters. If both Supports and Resources are NULL, then
EFI_INVALID_PARAMETER is returned. It is the caller’s responsibility to free Resources
with the Boot Service FreePool() when the caller is done with the contents of Resources. If
there are not enough resources to allocate Resources, then EFI_OUT_OF_RESOURCES is
returned.

If a bit is set in Supports, then the PCI controller supports this attribute type for the BAR
specified by BarIndex, and a call can be made to SetBarAttributes() using that
attribute type.

Status Codes Returned
EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI

controller supports are returned in Supports. If Resources
is not NULL, then the ACPI 2.0 resource descriptors that the PCI
controller is currently using are returned in Resources.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate
Resources.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.

Extensible Firmware Interface Specification

12-92 12/01/02 Version 1.10

EFI_PCI_IO_PROTOCOL.SetBarAttributes()

Summary

Sets the attributes for a range of a BAR on a PCI controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINT64 Attributes,
 IN UINT8 BarIndex,
 IN OUT UINT64 *Offset,
 IN OUT UINT64 *Length
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 12.4.

Attributes The mask of attributes to set for the resource range specified by
BarIndex, Offset, and Length.

BarIndex The BAR index of the standard PCI Configuration header to use as
the base address for the resource range. The legal range for this
field is 0..5.

Offset A pointer to the BAR relative base address of the resource range to
be modified by the attributes specified by Attributes. On
return, *Offset will be set to the actual base address of the
resource range. Not all resources can be set to a byte boundary, so
the actual base address may differ from the one passed in by the
caller.

Length A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return, *Length will
be set to the actual length of the resource range. Not all resources
can be set to a byte boundary, so the actual length may differ from
the one passed in by the caller.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-93

Description

The SetBarAttributes() function sets the attributes specified in Attributes for the PCI
controller on the resource range specified by BarIndex, Offset, and Length. Since the
granularity of setting these attributes may vary from resource type to resource type, and from
platform to platform, the actual resource range and the one passed in by the caller may differ. As a
result, this function may set the attributes specified by Attributes on a larger resource range
than the caller requested. The actual range is returned in Offset and Length. The caller is
responsible for verifying that the actual range for which the attributes were set is acceptable.

If the attributes are set on the PCI controller, then the actual resource range is returned in Offset
and Length, and EFI_SUCCESS is returned. Many of the attribute types also require that the
state of the PCI Host Bus Controller and the state of any PCI to PCI bridges between the PCI Host
Bus Controller and the PCI Controller to be modified. This function will only return
EFI_SUCCESS is all of these state changes are made. The PCI Controller may support a
combination of attributes, but unless the PCI Host Bus Controller and the PCI to PCI bridges also
support that same combination of attributes, then this call will return an error.

If the attributes specified by Attributes, or the resource range specified by BarIndex,
Offset, and Length are not supported by the PCI controller, then EFI_UNSUPPORTED is
returned. The set of supported attributes for the PCI controller can be found by calling
GetBarAttributes().

If either Offset or Length is NULL then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned
EFI_SUCCESS The set of attributes specified by Attributes for the resource

range specified by BarIndex, Offset, and Length were

set on the PCI controller, and the actual resource range is returned
in Offset and Length.

EFI_UNSUPPORTED The set of attributes specified by Attributes is not supported

by the PCI controller for the resource range specified by
BarIndex, Offset, and Length.

EFI_INVALID_PARAMETER Offset is NULL.

EFI_INVALID_PARAMETER Length is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the
resource range specified by BarIndex, Offset, and
Length.

Extensible Firmware Interface Specification

12-94 12/01/02 Version 1.10

12.4.1 PCI Device Paths
An EFI_PCI_IO_PROTOCOL must be installed on a handle for its services to be available to PCI
device drivers. In addition to the EFI_PCI_IO_PROTOCOL, an EFI_DEVICE_PATH must also
be installed on the same handle. See Chapter 5 for a detailed description of the
EFI_DEVICE_PATH.

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the
bus hierarchy in the system, additional device path nodes may precede this ACPI Device Path
Node. A PCI device path is described with PCI Device Path Nodes. There will be one PCI Device
Path node for the PCI controller itself, and one PCI Device Path Node for each PCI to PCI Bridge
that is between the PCI controller and the PCI Root Bridge.

Table 12-12 shows an example device path for a PCI controller that is located at PCI device
number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. This device path
consists of an ACPI Device Path Node, a PCI Device Path Node, and a Device Path End Structure.
The _HID and _UID must match the ACPI table description of the PCI Root Bridge. The
shorthand notation for this device path is:

 ACPI(PNP0A03,0)/PCI(7|0).

Table 12-12. PCI Device 7, Function 0 on PCI Root Bridge 0

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-95

Table 12-13 shows an example device path for a PCI controller that is located behind a PCI to PCI
bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI bridge is directly
attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI function 0x00. This
device path consists of an ACPI Device Path Node, two PCI Device Path Nodes, and a Device Path
End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0).

Table 12-13. PCI Device 7, Function 0 behind PCI to PCI bridge

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

Extensible Firmware Interface Specification

12-96 12/01/02 Version 1.10

12.4.2 PCI Option ROMs
EFI takes advantage of both the PCI Specification and the PE/COFF Specification to store EFI
images in a PCI Option ROM. There are several rules that must be followed when constructing a
PCI Option ROM

• A PCI Option ROM can be no larger than 16 MB.
• A PCI Option ROM may contain one or more images.
• Each image must being on a 512-byte boundary.
• Each image must be an even multiple of 512 bytes in length. This means that images that are

not an even multiple of 512 bytes in length must be padded to the next 512-byte boundary.
• Legacy Option ROM images begin with a Standard PCI Expansion ROM Header

(Table 12-14).
• EFI Option ROM images begin with an EFI PCI Expansion ROM Header (Table 12-17).
• Each image must contain a PCIR data structure in the first 64 KB of the image (Table 12-15).
• The image data for an EFI Option ROM image must begin in the first 64 KB of the image.
• The image data for an EFI Option ROM image must be a PE/COFF image or a compressed

PE/COFF image following the EFI 1.10 Compression Algorithm Specification.
• The PCIR data structure must being in a 4-byte boundary.
• If the PCI Option ROM contains a Legacy Option ROM image, it must be the first image.
• The images are placed in the PCI Option ROM is order from highest to lowest priority. This

priority is used to build the ordered list of Driver Image Handles that are produced by the Bus
Specific Driver Override Protocol for a PCI Controller.

There are several options available when building a PCI option ROM for a PCI adapter. A PCI
Option ROM can choose to support only a legacy PC-AT platform, only an EFI compliant
platform, or both. This flexibility allows a migration path from adapters that support only legacy
PC-AT platforms, to adapters that support both PC-AT platforms and EFI compliant platforms, to
adapters that support only EFI compliant platforms. The following is a list of the image
combinations that may be placed in a PCI option ROM. This is not an exhaustive list. Instead, it
provides what will likely be the most common PCI option ROM layouts. EFI complaint system
firmware must work with all of these PCI option ROM layouts, plus any other layouts that are
possible within the PCI Specification. The format of a Legacy Option ROM image is defined in the
PCI Specification.

• Legacy Option ROM image
• Legacy Option ROM image + IA-32 EFI Driver
• Legacy Option ROM image + Itanium Processor Family EFI Driver
• Legacy Option ROM image + IA-32 EFI Driver + Itanium Processor Family EFI Driver
• Legacy Option ROM image + EBC Driver
• IA-32 EFI Driver
• Itanium Processor Family EFI Driver
• IA-32 EFI Driver + Itanium Processor Family EFI Driver
• EBC Driver

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-97

It is also possible to place an EFI Application in a PCI Option ROM. However, the PCI Bus Driver
will ignore these images. The exact mechanism by which EFI Applications can be loaded and
executed from a PCI Option ROM is outside the scope of this document.

Table 12-14. Standard PCI Expansion ROM Header

Offset Byte Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02-0x17 22 XX Reserved per processor architecture unique data

0x18-0x19 2 XX Pointer to PCIR Data Structure

Table 12-15. PCIR Data Structure

Offset Byte Length Description

0x00 4 Signature, the string ‘PCIR’

0x04 2 Vendor Identification

0x06 2 Device Identification

0x08 2 Pointer to Vital Product Data

0x0a 2 PCIR Data Structure Length

0x0c 1 PCIR Data Structure Revision

0x0d 3 Class Code

0x10 2 Image Length

0x12 2 Revision Level of Code/Data

0x14 1 Code Type

0x15 1 Indicator. Used to identify if this is the last image in the ROM

0x16 2 Reserved

Table 12-16. PCI Expansion ROM Code Types

Code Type Description

0x00 Intel® IA-32, PC-AT compatible

0x01 Open Firmware standard for PCI

0x02 Hewlett-Packard PA RISC

0x03 EFI Image

0x04-0xFF Reserved

Extensible Firmware Interface Specification

12-98 12/01/02 Version 1.10

Table 12-17. EFI PCI Expansion ROM Header

Offset
Byte
Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size
includes this header.

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX Subsystem value for EFI image header

0x0a 2 XX Machine type from EFI image header

0x0c 2 XX Compression type

0x0000 - The image is uncompressed

0x0001 - The image is compressed. See the
EFI 1.1 Compression Algorithm Specification.

0x0002 - 0xFFFF - Reserved

0x0e 8 0x00 Reserved

0x16 2 XX Offset to EFI Image

0x18 2 XX Offset to PCIR Data Structure

12.4.2.1 PCI Bus Driver Responsibilities
A PCI Bus Driver must scan a PCI Option ROM for PCI Device Drivers. If a PCI Option ROM is
found during PCI Enumeration, then a copy of the PCI Option ROM is placed in a memory buffer.
The PCI Bus Driver will use the memory copy of the PCI Option ROM to search for EFI Drivers
after PCI Enumeration. The PCI Bus Driver will search the list of images in a PCI Option ROM for
the ones that have a Code Type of 0x03 in the PCIR Data Structure, and a Signature of 0xEF1 in
the EFI PCI Expansion ROM Header. Then, it will examine the Subsystem Type of the EFI PCI
Expansion ROM Header. If the Subsystem Type is IMAGE_SUBSYSTEM_EFI_BOOT_
SERVICE_DRIVER(11) or IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER(12), then the PCI
Bus Driver can load the PCI Device Driver from the PCI Option ROM. The Offset to EFI Image
Header field of the EFI PCI Expansion ROM Header is used to get a pointer to the beginning of the
PE/COFF image in the PCI Option ROM. The PE/COFF image may have been compressed using
the EFI 1.10 Compression Algorithm. If it has been compressed, then the PCI Bus Driver must
decompress the driver to a memory buffer. The Boot Service LoadImage() can then be used to
load the EFI Driver. If the platform does not support the Machine Type of the EFI Driver, then
LoadImage() may fail. For example, an EFI Driver with an Itanium processor of type of 0x200
would fail to load on an IA-32 platform. If LoadImage() succeeds, then the Boot Service
StartImage() can be called to start the PCI Device Driver. The Image Length field of the
PCIR Data Structure can be used to get to the next image in the PCI Option ROM. The PCI Option
ROM search is completed when an image is found whose Indicator field of the PCIR Data Structure
has bit 7 set.

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-99

It is the PCI Bus Driver’s responsibility to verify that the Expansion ROM Header and PCIR Data
Structure are valid. It is the responsibly of the Boot Service LoadImage() to verify that the
PE/COFF image is valid. The Boot Service LoadImage() may fail for several reasons including
a corrupt PE/COFF image or an unsupported Machine Type.

The PCI Option ROM search may produce one or more Driver Image Handles for the PCI
Controller that is associated with the PCI Option ROM. The PCI Bus Driver is responsible for
producing a Bus Specific Driver Override Protocol instance for every PCI Controller has a PCI
Option ROM that contains one or more EFI Drivers. The Bus Specific Driver Override Protocol
produces an ordered list of Driver Image Handles. The order that the EFI Drivers are placed in the
PCI Option ROM is the order of Driver Image Handles that must be returned by the Bus Specific
Driver Override Protocol. This gives the party that builds the PCI Option ROM control over the
order that the EFI Drivers are used in the Boot Service ConnectController().

12.4.2.2 PCI Device Driver Responsibilities
A PCI Device Driver should not be designed to care where it is stored. It can reside in a PCI
Option ROM, the system’s motherboard ROM, a hard drive, a CD-ROM drive, etc. All PCI Device
Drivers are compiled and linked to generate a PE/COFF image. When a PE/COFF image is placed
in a PCI Option ROM, it must follow the rules outlined in Section 2.7. The recommended image
layout is to insert an EFI PCI Expansion ROM Header and a PCIR Data Structure in front of the
PE/COFF image, and pad the entire image up to the next 512-byte boundary. Figure 12-15 shows
the format of a single PCI Device Driver that can be added to a PCI Option ROM.

OM13169

PCI Device Driver Image

EFI PCI Expansion ROM Header

Two (2) Bytes of Padding

PCIR Data Structure

PE/COFF Image of PCI Device Driver

Padding to next 512-byte boundary

Figure 12-15. Recommended PCI Driver Image Layout

Extensible Firmware Interface Specification

12-100 12/01/02 Version 1.10

The field values for the EFI PCI Expansion ROM Header and the PCIR Data Structure would be as
follows in this recommended PCI Driver image layout. An image must start at a 512-byte
boundary, and the end of the image must be padded to the next 512-byte boundary.

Table 12-18. Recommended PCI Device Driver Layout

Offset
Byte
Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size
includes this header

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX
0x0B
0x0C

Subsystem Value from the PCI Driver's PE/COFF Image Header
Subsystem Value for an EFI Boot Service Driver
Subsystem Value for an EFI Runtime Driver

0x0a 2 XX
0x014C
0x0200
0x0EBC

Machine type from the PCI Driver's PE/COFF Image Header
IA-32 Machine Type
Itanium processor type
EFI Byte Code (EBC) Machine Type

0x0C 2 XXXX
0x0000
0x0001

Compression Type
Uncompressed
Compressed following the EFI 1.10 Compression Algorithm
Specification

0x0E 8 0x00 Reserved

0x16 2 0x0034 Offset to EFI Image

0x18 2 0x001C Offset to PCIR Data Structure

0x1A 2 0x0000 Padding to align PCIR Data Structure on a 4 byte boundary

0x1C 4 'PCIR' PCIR Data Structure Signature

0x20 2 XXXX Vendor ID from the PCI Controller's Configuration Header

0x22 2 XXXX Device ID from the PCI Controller's Configuration Header

0x24 2 0x0000 Reserved

0x26 2 0x0018 The length if the PCIR Data Structure in bytes

0x28 1 0x00 PCIR Data Structure Revision. Value for PCI 2.2 Option ROM

0x29 3 XXXX Class Code from the PCI Controller's Configuration Header

0x2C 2 XXXX Code Image Length in units of 512 bytes. Same as Initialization Size

0x2E 2 XXXX Revision Level of the Code/Data. This field is ignored

continued

 Protocols — PCI Bus Support

Version 1.10 12/01/02 12-101

Table 12-18. Recommended PCI Device Driver Layout (continued)

Offset

Byte
Length

Value

Description

0x30 1 0x03 Code Type

0x31 1 XX Indicator. Bit 7 clear means another image follows. Bit 7 set means
that this image is the last image in the PCI Option ROM. Bits 0–6 are
reserved.

 0x00
0x80

Additional images follow this image in the PCI Option ROM
This image is the last image in the PCI Option ROM

0x32 2 0x0000 Reserved

0x34 X XXXX The beginning of the PCI Device Driver's PE/COFF Image

12.4.3 Nonvolatile Storage
A PCI adapter may contain some form of nonvolatile storage. Since there are no standard access
mechanisms for nonvolatile storage on PCI adapters, the PCI I/O Protocol does not provide any
services for nonvolatile storage. However, a PCI Device Driver may choose to implement its own
access mechanisms. If there is a private channel between a PCI Controller and a nonvolatile
storage device, a PCI Device Driver can use it for configuration options or vital product data.

NOTE

The fields RomImage and RomSize in the PCI I/O Protocol do not provide direct access to the
PCI Option ROM on a PCI adapter. Instead, they provide access to a copy of the PCI Option ROM
in memory. If the contents of the RomImage are modified, only the memory copy is updated. If a
vendor wishes to update the contents of a PCI Option ROM, they must provide their own utility or
driver to perform this task. There is no guarantee that the BAR for the PCI Option ROM is valid at
the time that the utility or driver may execute, so the utility or driver must provide the code
required to gain write access to the PCI Option ROM contents. The algorithm for gaining write
access to a PCI Option ROM is both platform specific and adapter specific, so it is outside the
scope of this document.

Extensible Firmware Interface Specification

12-102 12/01/02 Version 1.10

12.4.4 PCI Hot-Plug Events
It is possible to design a PCI Bus Driver to work with PCI Bus that conforms to the PCI Hot-Plug
Specification. There are two levels of functionality that could be provided in the preboot
environment. The first is to initialize the PCI Hot-Plug capable bus so it can be used by an
operating system that also conforms to the PCI Hot-Plug Specification. This only affects the PCI
Enumeration that is performed in either the PCI Bus Driver’s initialization, or a firmware
component that executes prior to the PCI Bus Driver’s initialization. None of the PCI Device
Drivers need to be aware of the fact that a PCI Controller may exist in a slot that is capable of a hot-
plug event. Also, the addition, removal, and replacement of PCI adapters in the preboot
environment would not be allowed.

The second level of functionality is to actually implement the full hot-plug capability in the PCI
Bus Driver. This is not recommended because it adds a great deal of complexity to the PCI Bus
Driver design with very little added value. However, there is nothing about the PCI Driver Model
that would preclude this implementation. It would have to use an event based periodic timer to
monitor the hot-plug capable slots, and take advantage of the ConnectController() and
DisconnectController() Boot Services to dynamically start and stop the drivers that
manage the PCI controller that is being added, removed, or replaced.

Version 1.10 12/01/02 1

13
Protocols - SCSI Bus Support

The intent of this chapter is to specify a method of providing direct access to SCSI devices. This
protocol provides services that allow a generic driver to produce the Block I/O protocol for SCSI
disk devices, and allows an EFI utility to issue commands to any SCSI device. The main reason to
provide such an access is to enable S.M.A.R.T. functionality during POST (i.e., issuing Mode
Sense, Mode Select, and Log Sense to SCSI devices). This is accomplished by using a generic API
such as SCSI Pass Thru. The use of this method will enable additional functionality in the future
without modifying the EFI SCSI Pass Thru driver. SCSI Pass Thru is not limited to SCSI channels.
It is applicable to all channel technologies that utilize SCSI commands such as SCSI, ATAPI, and
Fiber Channel.

13.1 SCSI Pass Thru Protocol

This section defines the SCSI Pass Thru Protocol. This protocol allows information about a SCSI
channel to be collected, and allows SCSI Request Packets to be sent to any SCSI devices on a SCSI
channel even if those devices are not boot devices. This protocol is attached to the device handle of
each SCSI channel in a system that the protocol supports, and can be used for diagnostics. It may
also be used to build a Block I/O driver for SCSI hard drives and SCSI CD-ROM or DVD drives to
allow those devices to become boot devices.

EFI_SCSI_PASS_THRU Protocol

This section provides a detailed description of the EFI_SCSI_PASS_THRU_PROTOCOL.

Summary

Provides services that allow SCSI Pass Thru commands to be sent to SCSI devices attached to a
SCSI channel.

GUID
#define EFI_SCSI_PASS_THRU_PROTOCOL_GUID \
{ 0xa59e8fcf,0xbda0,0x43bb,0x90,0xb1,0xd3,0x73,0x2e,0xca,0xa8,0x77 }

Extensible Firmware Interface Specification

13-2 12/01/02 Version 1.10

Protocol Interface Structure
typedef struct _EFI_SCSI_PASS_THRU_PROTOCOL {
 EFI_SCSI_PASS_THRU_MODE *Mode;
 EFI_SCSI_PASS_THRU_PASSTHRU PassThru;
 EFI_SCSI_PASS_THRU_GET_NEXT_DEVICE GetNextDevice;
 EFI_SCSI_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;
 EFI_SCSI_PASS_THRU_GET_TARGET_LUN GetTargetLun;
 EFI_SCSI_PASS_THRU_RESET_CHANNEL ResetChannel;
 EFI_SCSI_PASS_THRU_RESET_TARGET ResetTarget;
} EFI_SCSI_PASS_THRU_PROTOCOL;

Parameters

Mode A pointer to the EFI_SCSI_PASS_THRU_MODE data for this
SCSI channel. Type EFI_SCSI_PASS_THRU_MODE is
defined in “Related Definitions” below.

PassThru Sends a SCSI Request Packet to a SCSI device that is connected
to the SCSI channel. See the PassThru() function
description.

GetNextDevice Used to retrieve the list of legal Target IDs and LUNs for the
SCSI devices on a SCSI channel. See the GetNextDevice()
function description.

BuildDevicePath Used to allocate and build a device path node for a SCSI device
on a SCSI channel. See the BuildDevicePath() function
description.

GetTargetLun Used to translate a device path node to a Target ID and LUN.
See the GetTargetLun() function description.

ResetChannel Resets the SCSI channel. This operation resets all the SCSI
devices connected to the SCSI channel. See the
ResetChannel() function description.

ResetTarget Resets a SCSI device that is connected to the SCSI channel. See
the ResetTarget() function description.

The following data values in the EFI_SCSI_PASS_THRU_MODE interface are read-only.

ControllerName A Null-terminated Unicode string that represents the printable
name of the SCSI controller.

ChannelName A Null-terminated Unicode string that represents the printable
name of the SCSI channel.

AdapterId The Target ID of the host adapter on the SCSI channel.

Attributes Additional information on the attributes of the SCSI channel.
See “Related Definitions” below for the list of possible
attributes.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-3

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can
be placed anywhere in memory. Otherwise, IoAlign must be
a power of 2, and the requirement is that the start address of a
buffer must be evenly divisible by IoAlign with no remainder.

Related Definitions
typedef struct {
 CHAR16 *ControllerName;
 CHAR16 *ChannelName;
 UINT32 AdapterId;
 UINT32 Attributes;
 UINT32 IoAlign;
} EFI_SCSI_PASS_THRU_MODE;

#define EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL 0x0001
#define EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL 0x0002
#define EFI_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004

EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_SCSI_PASS_THRU_PROTOCOL interface is for physical
devices on the SCSI channel.

EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_SCSI_PASS_THRU_PROTOCOL interface is for logical
devices on the SCSI channel.

EFI_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_SCSI_PASS_THRU_PROTOCOL interface supports non
blocking I/O. Every EFI_SCSI_PASS_THRU_PROTOCOL must support blocking I/O.
The support of nonblocking I/O is optional.

Extensible Firmware Interface Specification

13-4 12/01/02 Version 1.10

Description

The EFI_SCSI_PASS_THRU_PROTOCOL provides information about a SCSI channel and
the ability to send SCI Request Packets to any SCSI device attached to that SCSI channel. The
information includes the Target ID of the host controller on the SCSI channel, the attributes of
the SCSI channel, the printable name for the SCSI controller, and the printable name of the
SCSI channel.

The Attributes field of the EFI_SCSI_PASS_THRU_PROTOCOL interface tells if the
interface is for physical SCSI devices or logical SCSI devices. Drivers for non-RAID SCSI
controllers will set both the EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL, and the
EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bits. Drivers for RAID controllers that
allow access to the physical devices and logical devices will produce two
EFI_SCSI_PASS_THRU_PROTOCOL interfaces. One with the just the
EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used to access
the physical devices attached to the RAID controller, and the other can be used to access the logical
devices attached to the RAID controller for its current configuration. Drivers for RAID controllers
that do not allow access to the physical devices will produce one
EFI_SCSI_PASS_THROUGH_PROTOCOL interface with just the
EFI_SCSI_PASS_THRU_LOGICAL bit set. The interface for logical devices can also be used by
a file system driver to mount the RAID volumes. An EFI_SCSI_PASS_THRU_PROTOCOL with
neither EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

The Attributes field also contains the EFI_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO
bit. All EFI_SCSI_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit is
set, then the interface support both blocking I/O and nonblocking I/O.

Each EFI_SCSI_PASS_THRU_PROTOCOL instance must have an associated device path.
Typically this will have an ACPI device path node and a PCI device path node, although variations
will exist. For a SCSI controller that supports only one channel per PCI bus/device/function, it is
recommended, but not required, that an additional Controller device path node (for controller 0) be
appended to the device path. For a SCSI controller that supports multiple channels per PCI
bus/device/function, it is required that a Controller device path node be appended for each channel.

Additional information about the SCSI channel can be obtained from protocols attached to the
same handle as the EFI_SCSI_PASS_THRU_PROTOCOL, or one of its parent handles. This
would include the device I/O abstraction used to access the internal registers and functions of the
SCSI controller.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-5

EFI_SCSI_PASS_THRU_PROTOCOL.PassThru()

Summary

Sends a SCSI Request Packet to a SCSI device that is attached to the SCSI channel. This function
supports both blocking I/O and nonblocking I/O. The blocking I/O functionality is required, and
the nonblocking I/O functionality is optional.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_PASS_THRU_PASSTHRU) (
 IN EFI_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT32 Target,
 IN UINT64 Lun,
 IN OUT EFI_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet,
 IN EFI_EVENT Event OPTIONAL
);

Parameters

This A pointer to the EFI_SCSI_PASS_THRU_PROTOCOL
instance. Type EFI_SCSI_PASS_THRU_PROTOCOL is
defined in Section 13.1.

Target The Target ID of the SCSI device to send the SCSI Request
Packet.

Lun The LUN of the SCSI device to send the SCSI Request Packet.

Packet A pointer to the SCSI Request Packet to send to the SCSI device
specified by Target and Lun. See “Related Definitions”
below for a description of
EFI_SCSI_PASS_THRU_SCSI_REQUEST_
PACKET.

Event If nonblocking I/O is not supported then Event is ignored, and
blocking I/O is performed. If Event is NULL, then blocking
I/O is performed. If Event is not NULL and non blocking I/O is
supported, then nonblocking I/O is performed, and Event will
be signaled when the SCSI Request Packet completes.

Extensible Firmware Interface Specification

13-6 12/01/02 Version 1.10

Related Definitions
typedef struct {
 UINT64 Timeout;
 VOID *DataBuffer;
 VOID *SenseData;
 VOID *Cdb;
 UINT32 TransferLength;
 UINT8 CdbLength;
 UINT8 DataDirection;
 UINT8 HostAdapterStatus;
 UINT8 TargetStatus;
 UINT8 SenseDataLength;
} EFI_SCSI_PASS_THRU_SCSI_REQUEST_PACKET;

Timeout The timeout, in 100 ns units, to use for the execution of this
SCSI Request Packet. A Timeout value of 0 means that this
function will wait indefinitely for the SCSI Request Packet to
execute. If Timeout is greater than zero, then this function will
return EFI_TIMEOUT if the time required to execute the SCSI
Request Packet is greater than Timeout.

DataBuffer A pointer to the data buffer to transfer between the SCSI
controller and the SCSI device. Must be aligned to the boundary
specified in the IoAlign field of the
EFI_SCSI_PASS_THRU_MODE structure.

SenseData A pointer to the sense data that was generated by the execution
of the SCSI Request Packet. Must be aligned to the boundary
specified in the IoAlign field of the
EFI_SCSI_PASS_THRU_MODE structure.

Cdb A pointer to buffer that contains the Command Data Block to
send to the SCSI device specified by Target and Lun.

TransferLength On input, the size, in bytes, of DataBuffer. On output, the
number of bytes transferred between the SCSI controller and the
SCSI device. If TransferLength is larger than the SCSI
controller can handle, no data will be transferred,
TransferLength will be updated to contain the number of
bytes that the SCSI controller is able to transfer, and
EFI_BAD_BUFFER_SIZE will be returned.

CdbLength The length, in bytes, of the buffer Cdb. The standard values are
6, 10, 12, and 16, but other values are possible if a variable
length CDB is used.

DataDirection The direction of the data transfer. 0 for reads, 1 for writes. All
other values are reserved, and must not be used.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-7

HostAdapterStatus The status of the host adapter specified by This when the SCSI
Request Packet was executed on the target device. See the
possible values listed below. If bit 7 of this field is set, then
HostAdapterStatus is a vendor defined error code.

TargetStatus The status returned by the device specified by Target and Lun
when the SCSI Request Packet was executed. See the possible
values listed below.

SenseDataLength On input, the length in bytes of the SenseData buffer. On
output, the number of bytes written to the SenseData buffer.

//
// HostAdapterStatus
//
#define EFI_SCSI_STATUS_HOST_ADAPTER_OK 0x00
#define EFI_SCSI_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND 0x09
#define EFI_SCSI_STATUS_HOST_ADAPTER_TIMEOUT 0x0b
#define EFI_SCSI_STATUS_HOST_ADAPTER_MESSAGE_REJECT 0x0d
#define EFI_SCSI_STATUS_HOST_ADAPTER_BUS_RESET 0x0e
#define EFI_SCSI_STATUS_HOST_ADAPTER_PARITY_ERROR 0x0f
#define EFI_SCSI_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED 0x10
#define EFI_SCSI_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT 0x11
#define EFI_SCSI_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN 0x12
#define EFI_SCSI_STATUS_HOST_ADAPTER_BUS_FREE 0x13
#define EFI_SCSI_STATUS_HOST_ADAPTER_PHASE_ERROR 0x14
#define EFI_SCSI_STATUS_HOST_ADAPTER_OTHER 0x7f

//
// TargetStatus
//
#define EFI_SCSI_STATUS_TARGET_GOOD 0x00
#define EFI_SCSI_STATUS_TARGET_CHECK_CONDITION 0x02
#define EFI_SCSI_STATUS_TARGET_CONDITION_MET 0x04
#define EFI_SCSI_STATUS_TARGET_BUSY 0x08
#define EFI_SCSI_STATUS_TARGET_INTERMEDIATE 0x10
#define EFI_SCSI_STATUS_TARGET_INTERMEDIATE_CONDITION_MET 0x14
#define EFI_SCSI_STATUS_TARGET_RESERVATION_CONFLICT 0x18
#define EFI_SCSI_STATUS_TARGET_COMMAND_TERMINATED 0x22
#define EFI_SCSI_STATUS_TARGET_QUEUE_FULL 0x28

Extensible Firmware Interface Specification

13-8 12/01/02 Version 1.10

Description

The EFI_SCSI_PASS_THRU_PROTOCOL.PassThru() function sends the SCSI Request
Packet specified by Packet to the SCSI device specified by Target and Lun. If the driver
supports nonblocking I/O and Event is not NULL, then the driver will return immediately after the
command is sent to the selected device, and will later signal Event when the command has
completed. If the driver supports nonblocking I/O and Event is NULL, then the driver will send
the command to the selected device and block until it is complete. If the driver does not support
nonblocking I/O, the Event parameter is ignored, and the driver will send the command to the
selected device and block until it is complete.

If Packet is successfully sent to the SCSI device, then EFI_SUCCESS is returned.

If Packet cannot be sent because there are too many packets already queued up, then
EFI_NOT_READY is returned. The caller may retry Packet at a later time.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If Target or Lun are not in a valid range for the SCSI channel, then
EFI_INVALID_PARAMETER is returned. If DataBuffer or SenseData do not meet the
alignment requirement specified by the IoAlign field of the EFI_SCSI_PASS_THRU_MODE
structure, then EFI_INVALID_PARAMETER is returned. If any of the other fields of Packet are
invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by DataBuffer and TransferLength is too big to be transferred
in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is returned. The
number of bytes that can be transferred in a single command are returned in TransferLength.

If the command described in Packet is not supported by the host adapter, then
EFI_UNSUPPORTED is returned.

If EFI_SUCCESS, EFI_WARN_BUFFER_TOO_SMALL, EFI_DEVICE_ERROR, or
EFI_TIMEOUT is returned, then the caller must examine the status fields in Packet in the
following precedence order: HostAdapterStatus followed by TargetStatus followed by
SenseDataLength, followed by SenseData. If nonblocking I/O is being used, then the status
fields in Packet will not be valid until the Event associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then
Packet was never sent, so the status fields in Packet are not valid. If nonblocking I/O is being
used, the Event associated with Packet will not be signaled.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-9

Status Codes Returned
EFI_SUCCESS The SCSI Request Packet was sent by the host, and

TransferLength bytes were transferred to/from
DataBuffer. See HostAdapterStatus,
TargetStatus, SenseDataLength, and SenseData
in that order for additional status information.

EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. The number of bytes
that could be transferred is returned in TransferLength. See
HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for

additional status information.

EFI_NOT_READY The SCSI Request Packet could not be sent because there are too
many SCSI Request Packets already queued. The caller may retry
again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI Request
Packet. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for

additional status information.

EFI_INVALID_PARAMETER Target, Lun, or the contents of ScsiRequestPacket are

invalid. The SCSI Request Packet was not sent, so no additional
status information is available.

EFI_UNSUPPORTED The command described by the SCSI Request Packet is not
supported by the host adapter. The SCSI Request Packet was not
sent, so no additional status information is available.

EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to
execute. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for

additional status information.

Extensible Firmware Interface Specification

13-10 12/01/02 Version 1.10

EFI_SCSI_PASS_THRU_PROTOCOL.GetNextDevice()

Summary

Used to retrieve the list of legal Target IDs and LUNs for SCSI devices on a SCSI channel. These
can either be the list SCSI devices that are actually present on the SCSI channel, or the list of legal
Target Ids and LUNs for the SCSI channel. Regardless, the caller of this function must probe the
Target ID and LUN returned to see if a SCSI device is actually present at that location on the SCSI
channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_PASS_THRU_GET_NEXT_DEVICE) (
 IN EFI_SCSI_PASS_THRU_PROTOCOL *This,
 IN OUT UINT32 *Target,
 IN OUT UINT64 *Lun
);

Parameters

This A pointer to the EFI_SCSI_PASS_THRU_PROTOCOL
instance. Type EFI_SCSI_PASS_THRU_PROTOCOL is
defined in Section 13.1.

Target On input, a pointer to the Target ID of a SCSI device present on
the SCSI channel. On output, a pointer to the Target ID of the
next SCSI device present on a SCSI channel. An input value of
0xFFFFFFFF retrieves the Target ID of the first SCSI device
present on a SCSI channel.

Lun On input, a pointer to the LUN of a SCSI device present on the
SCSI channel. On output, a pointer to the LUN of the next SCSI
device present on a SCSI channel.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-11

Description

The EFI_SCSI_PASS_THRU_PROTOCOL.GetNextDevice() function retrieves the Target
ID and LUN of a SCSI device present on a SCSI channel. If Target is 0xFFFFFFFF, then the
Target ID and LUN of the first SCSI device is returned in Target and Lun and EFI_SUCCESS
is returned. If Target and Lun is a Target ID and LUN value that was returned on a previous call
to GetNextDevice(), then the Target ID and LUN of the next SCSI device on the SCSI
channel is returned in Target and Lun, and EFI_SUCCESS is returned. If Target is not
0xFFFFFFFF, and Target and Lun were not returned on a previous call to
GetNextDevice(), then EFI_INVALID_PARAMETER is returned. If Target and Lun
are the Target ID and LUN of the last SCSI device on the SCSI channel, then EFI_NOT_FOUND
is returned.

Status Codes Returned
EFI_SUCCESS The Target ID and LUN of the next SCSI device on the SCSI

channel was returned in Target and Lun.

EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.

EFI_INVALID_PARAMETER Target is not 0xFFFFFFFF, and Target and Lun were not
returned on a previous call to GetNextDevice().

Extensible Firmware Interface Specification

13-12 12/01/02 Version 1.10

EFI_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary

Used to allocate and build a device path node for a SCSI device on a SCSI channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_PASS_THRU_BUILD_DEVICE_PATH) (
 IN EFI_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT32 Target,
 IN UINT64 Lun
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters

This A pointer to the EFI_SCSI_PASS_THRU_PROTOCOL
instance. Type EFI_SCSI_PASS_THRU_PROTOCOL is
defined in Section 13.1.

Target The Target ID of the SCSI device for which a device path node
is to be allocated and built.

Lun The LUN of the SCSI device for which a device path node is to
be allocated and built.

DevicePath A pointer to a single device path node that describes the SCSI
device specified by Target and Lun. This function is
responsible for allocating the buffer DevicePath with the boot
service AllocatePool(). It is the caller’s responsibility to
free DevicePath when the caller is finished with
DevicePath.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-13

Description

The EFI_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() function allocates and
builds a single device path node for the SCSI device specified by Target and Lun. If the SCSI
device specified by Target and Lun are not present on the SCSI channel, then
EFI_NOT_FOUND is returned. If DevicePath is NULL, then EFI_INVALID_PARAMETER is
returned. If there are not enough resources to allocate the device path node, then
EFI_OUT_OF_RESOURCES is returned. Otherwise, DevicePath is allocated with the boot
service AllocatePool(), the contents of DevicePath are initialized to describe the SCSI
device specified by Target and Lun, and EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The device path node that describes the SCSI device specified by

Target and Lun was allocated and returned in DevicePath.

EFI_NOT_FOUND The SCSI devices specified by Target and Lun does not exist

on the SCSI channel.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath.

Extensible Firmware Interface Specification

13-14 12/01/02 Version 1.10

EFI_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()

Summary

Used to translate a device path node to a Target ID and LUN.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_PASS_THRU_GET_TARGET_LUN) (
 IN EFI_SCSI_PASS_THRU_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
 OUT UINT32 *Target,
 OUT UINT64 *Lun
);

Parameters

This A pointer to the EFI_SCSI_PASS_THRU_PROTOCOL
instance. Type EFI_SCSI_PASS_THRU_PROTOCOL is
defined in Section 13.1.

DevicePath A pointer to the device path node that describes a SCSI device
on the SCSI channel.

Target A pointer to the Target ID of a SCSI device on the SCSI channel.

Lun A pointer to the LUN of a SCSI device on the SCSI channel.

Description

The EFI_SCSI_PASS_THRU_PROTOCOL.GetTargetLun() function determines the Target
ID and LUN associated with the SCSI device described by DevicePath. If DevicePath is a
device path node type that the SCSI Pass Thru driver supports, then the SCSI Pass Thru driver will
attempt to translate the contents DevicePath into a Target ID and LUN. If this translation is
successful, then that Target ID and LUN are returned in Target and Lun, and EFI_SUCCESS is
returned.

If DevicePath, Target, or Lun are NULL, then EFI_INVALID_PARAMETER is returned.

If DevicePath is not a device path node type that the SCSI Pass Thru driver supports, then
EFI_UNSUPPORTED is returned.

If DevicePath is a device path node type that the SCSI Pass Thru driver supports, but there
is not a valid translation from DevicePath to a Target ID and LUN, then EFI_NOT_FOUND
is returned.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-15

Status Codes Returned
EFI_SUCCESS DevicePath was successfully translated to a Target ID and

LUN, and they were returned in Target and Lun.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER Target is NULL.

EFI_INVALID_PARAMETER Lun is NULL.

EFI_UNSUPPORTED This driver does not support the device path node type in
DevicePath.

EFI_NOT_FOUND A valid translation from DevicePath to a Target ID and LUN

does not exist.

Extensible Firmware Interface Specification

13-16 12/01/02 Version 1.10

EFI_SCSI_PASS_THRU_PROTOCOL.ResetChannel()

Summary

Resets a SCSI channel. This operation resets all the SCSI devices connected to the SCSI channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_PASS_THRU_RESET_CHANNEL) (
 IN EFI_SCSI_PASS_THRU_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SCSI_PASS_THRU_PROTOCOL
instance. Type EFI_SCSI_PASS_THRU_PROTOCOL is
defined in Section 13.1.

Description

The EFI_SCSI_PASS_THRU_PROTOCOL.ResetChannel() function resets a SCSI channel.
This operation resets all the SCSI devices connected to the SCSI channel. If this SCSI channel
does not support a reset operation, then EFI_UNSUPPORTED is returned. If a device error occurs
while executing that channel reset operation, then EFI_DEVICE_ERROR is returned. If a timeout
occurs during the execution of the channel reset operation, then EFI_TIMEOUT is returned. If the
channel reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The SCSI channel was reset.

EFI_UNSUPPORTED The SCSI channel does not support a channel reset operation.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI channel.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI channel.

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-17

EFI_SCSI_PASS_THRU_PROTOCOL.ResetTarget()

Summary

Resets a SCSI device that is connected to a SCSI channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_PASS_THRU_RESET_TARGET) (
 IN EFI_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT32 Target,
 IN UINT64 Lun
);

Parameters

This A pointer to the EFI_SCSI_PASS_THRU_PROTOCOL
instance. Type EFI_SCSI_PASS_THRU_PROTOCOL is
defined in Section 13.1.

Target The Target ID of the SCSI device to reset.

Lun The LUN of the SCSI device to reset.

 Description

The EFI_SCSI_PASS_THRU_PROTOCOL.ResetTarget() function resets the SCSI device
specified by Target and Lun. If this SCSI channel does not support a target reset operation, then
EFI_UNSUPPORTED is returned. If Target or Lun are not in a valid range for this SCSI
channel, then EFI_INVALID_PARAMETER is returned. If a device error occurs while executing
that target reset operation, then EFI_DEVICE_ERROR is returned. If a timeout occurs during the
execution of the target reset operation, then EFI_TIMEOUT is returned. If the target reset
operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The SCSI device specified by Target and Lun was reset.

EFI_UNSUPPORTED The SCSI channel does not support a target reset operation.

EFI_INVALID_PARAMETER Target or Lun are invalid.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI device
specified by Target and Lun.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI device
specified by Target and Lun.

Extensible Firmware Interface Specification

13-18 12/01/02 Version 1.10

13.2 SCSI Pass Thru Device Paths

An EFI_SCSI_PASS_THRU_PROTOCOL must be installed on a handle for its services to be
available to EFI Drivers and EFI Applications. In addition to the
EFI_SCSI_PASS_THRU_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be
installed on the same handle. See Chapter 8 for a detailed description of the
EFI_DEVICE_PATH_PROTOCOL.

A device path describes the location of a hardware component in a system from the processor’s
point of view. This includes the list of busses that lie between the processor and the SCSI
controller. The EFI Specification takes advantage of the ACPI Specification to name system
components. For the following set of examples, a PCI SCSI controller is assumed. The examples
will show a SCSI controller on the root PCI bus, and a SCSI controller behind a PCI-PCI bridge. In
addition, an example of a multichannel SCSI controller will be shown.

Table 13-1 shows an example device path for a single channel PCI SCSI controller that is located at
PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. This
device path consists of an ACPI Device Path Node, a PCI Device Path Node, and a Device Path
End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. The shorthand notation for this device path is:

 ACPI(PNP0A03,0)/PCI(7|0).

Table 13-1. Single Channel PCI SCSI Controller

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes

 Protocols — SCSI Bus Support

Version 1.10 12/01/02 13-19

Table 13-2 shows an example device path for a single channel PCI SCSI controller that is located
behind a PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI
bridge is directly attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI
function 0x00. This device path consists of an ACPI Device Path Node, two PCI Device Path
Nodes, and a Device Path End Structure. The _HID and _UID must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0).

Table 13-2. Single Channel PCI SCSI Controller behind a PCI Bridge

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

Extensible Firmware Interface Specification

13-20 12/01/02 Version 1.10

Table 13-3 shows an example device path for channel #3 of a four channel PCI SCSI controller that
is located behind a PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI
to PCI bridge is directly attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI
function 0x00. This device path consists of an ACPI Device Path Node, two PCI Device Path
Nodes, a Controller Node, and a Device Path End Structure. The _HID and _UID must match the
ACPI table description of the PCI Root Bridge. The shorthand notation of the device paths for all
four of the SCSI channels are listed below. Table 2-3 shows the last device path listed.

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(0).

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(1).

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(2).

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(3).

Table 13-3. Channel #3 of a PCI SCSI Controller behind a PCI Bridge

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x19 0x01 0x05 Sub type – Controller

0x1A 0x02 0x08 Length – 0x08 bytes

0x1C 0x04 0x0003 Controller Number

0x20 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x21 0x01 0xFF Sub type – End of Entire Device Path

0x22 0x02 0x04 Length – 0x04 bytes

Version 1.10 12/01/02 14-1

14
Protocols - USB Support

14.1 USB Host Controller Protocol

These sections (Sections 14.1 and below) describe the USB Host Controller Protocol. This protocol
provides an I/O abstraction for a USB Host Controller. A USB Host Controller is a hardware
component that interfaces to a Universal Serial Bus (USB). It moves data between system memory
and devices on the USB by processing data structures and generating transactions on the USB.
This protocol is used by a USB Bus Driver to perform all data transaction over the Universal Serial
Bus. It also provides services to manage the USB root hub that is integrated into the USB Host
Controller. USB device drivers do not use this protocol directly. Instead, they use the I/O
abstraction produced by the USB Bus Driver. This protocol should only be used by drivers that
require direct access to the USB bus.

14.1.1 USB Host Controller Protocol Overview
The USB Host Controller Protocol is used by code, typically USB bus drivers, running in the EFI
boot services environment, to perform data transactions over a USB bus. In addition, it provides an
abstraction for the root hub of the USB bus.

The interfaces provided in the EFI_USB_HC_PROTOCOL are used to manage data transactions on
a USB bus. It also provides control methods for the USB root hub. The
EFI_USB_HC_PROTOCOL is designed to support USB 1.1–compliant host controllers.

The EFI_USB_HC_PROTOCOL abstracts basic functionality that is designed to operate with both
the UHCI and OHCI standards. By using this protocol, a single USB bus driver can be
implemented without knowing if the underlying USB host controller conforms to the OHCI or the
UHCI standards.

Each instance of the EFI_USB_HC_PROTOCOL corresponds to a USB host controller in a
platform. The protocol is attached to the device handle of a USB host controller that is created by a
device driver for the USB host controller’s parent bus type. For example, a USB host controller
that is implemented as a PCI device would require a PCI device driver to produce an instance of the
EFI_USB_HC_PROTOCOL.

Extensible Firmware Interface Specification

14-2 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL

Summary

Provides basic USB host controller management, basic data transactions over USB bus, and USB
root hub access.

GUID
#define EFI_USB_HC_PROTOCOL_GUID \
 {0xF5089266,0x1AA0,0x4953,0x97,0xD8,0x56,0x2F,0x8A,0x73,0xB5,0x19}

Protocol Interface Structure
typedef struct _EFI_USB_HC_PROTOCOL {
 EFI_USB_HC_PROTOCOL_RESET Reset;
 EFI_USB_HC_PROTOCOL_GET_STATE GetState;
 EFI_USB_HC_PROTOCOL_SET_STATE SetState;
 EFI_USB_HC_PROTOCOL_CONTROL_TRANSFER ControlTransfer;
 EFI_USB_HC_PROTOCOL_BULK_TRANSFER BulkTransfer;
 EFI_USB_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER
 AsyncInterruptTransfer;
 EFI_USB_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER
 SyncInterruptTransfer;
 EFI_USB_HC_PROTOCOL_ISOCHRONOUS_TRANSFER
 IsochronousTransfer;
 EFI_USB_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER
 AsyncIsochronousTransfer;
 EFI_USB_HC_PROTOCOL_GET_ROOTHUB_PORT_NUMBER
 GetRootHubPortNumber;
 EFI_USB_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS
 GetRootHubPortStatus;
 EFI_USB_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE
 SetRootHubPortFeature;
 EFI_USB_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE
 ClearRootHubPortFeature;
 UINT16 MajorRevision;
 UINT16 MinorRevision;
} EFI_USB_HC_PROTOCOL;

Parameters
Reset Software reset of USB. See the Reset() function description.

GetState Retrieves the current state of the USB host controller. See the
GetState() function description.

SetState Sets the USB host controller to a specific state. See the
SetState() function description.

ControlTransfer Submits a control transfer to a target USB device. See the
ControlTransfer() function description.

 Protocols — USB Support

Version 1.10 12/01/02 14-3

BulkTransfer Submits a bulk transfer to a bulk endpoint of a USB device. See
the BulkTransfer() function description.

AsyncInterruptTransfer
Submits an asynchronous interrupt transfer to an interrupt endpoint
of a USB device. See the AsyncInterruptTransfer()
function description.

SyncInterruptTransfer
Submits a synchronous interrupt transfer to an interrupt endpoint
of a USB device. See the SyncInterruptTransfer()
function description.

IsochronousTransfer Submits isochronous transfer to an isochronous endpoint of a USB
device. See the IsochronousTransfer() function
description.

AsyncIsochronousTransfer
Submits nonblocking USB isochronous transfer. See the
AsyncIsochronousTransfer() function description.

GetRootHubPortNumber Retrieves the number of root hub ports that are produced by the
USB host controller. See the GetRootHubPortNumber()
function description.

GetRootHubPortStatus Retrieves the status of the specified root hub port. See the
GetRootHubPortStatus() function description.

SetRootHubPortFeature
Sets the feature for the specified root hub port. See the
SetRootHubPortFeature() function description.

ClearRootHubPortFeature
Clears the feature for the specified root hub port. See the
ClearRootHubPortFeature() function description.

MajorRevision The major revision number of the USB host controller. The
revision information indicates the release of the Universal Serial
Bus Specification with which the host controller is compliant.

MinorRevision The minor revision number of the USB host controller. The
revision information indicates the release of the Universal Serial
Bus Specification with which the host controller is compliant.

Description

The EFI_USB_HC_PROTOCOL provides USB host controller management, basic data transactions
over a USB bus, and USB root hub access. A device driver that wishes to manage a USB bus in a
system retrieves the EFI_USB_HC_PROTOCOL instance that is associated with the USB bus to be
managed. A device handle for a USB host controller will minimally contain an
EFI_DEVICE_PATH_PROTOCOL instance, and an EFI_USB_HC_PROTOCOL instance.

Extensible Firmware Interface Specification

14-4 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.Reset()

Summary

Provides software reset for the USB host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_RESET) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT16 Attributes
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

Attributes A bit mask of the reset operation to perform. See “Related
Definitions” below for a list of the supported bit mask values.

Related Definitions
#define EFI_USB_HC_RESET_GLOBAL 0x0001
#define EFI_USB_HC_RESET_HOST_CONTROLLER 0x0002

EFI_USB_HC_RESET_GLOBAL
If this bit is set, a global reset signal will be sent to the USB bus.
This resets all of the USB bus logic, including the USB host
controller hardware and all the devices attached on the USB bus.

EFI_USB_HC_RESET_HOST_CONTROLLER
If this bit is set, the USB host controller hardware will be reset.
No reset signal will be sent to the USB bus.

Description

This function provides a software mechanism to reset a USB host controller. The type of reset is
specified by the Attributes parameter. If the type of reset specified by Attributes is not
valid, then EFI_INVALID_PARAMETER is returned. If the reset operation is completed, then
EFI_SUCCESS is returned. If the type of reset specified by Attributes is not currently
supported by the host controller hardware, EFI_UNSUPPORTD is returned. If a device error
occurs during the reset operation, then EFI_DEVICE_ERROR is returned.

 Protocols — USB Support

Version 1.10 12/01/02 14-5

Status Codes Returned
EFI_SUCCESS The reset operation succeeded.

EFI_INVALID_PARAMETER Attributes is not valid.

EFI_UNSUPPORTED The type of reset specified by Attributes is not currently supported

by the host controller hardware.

EFI_DEVICE_ERROR An error was encountered while attempting to perform the reset operation.

Extensible Firmware Interface Specification

14-6 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.GetState()

Summary

Retrieves current state of the USB host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_GET_STATE) (
 IN EFI_USB_HC_PROTOCOL *This,
 OUT EFI_USB_HC_STATE *State
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

State A pointer to the EFI_USB_HC_STATE data structure that
indicates current state of the USB host controller. Type
EFI_USB_HC_STATE is defined in “Related Definitions.”

Related Definitions
typedef enum {
 EfiUsbHcStateHalt,
 EfiUsbHcStateOperational,
 EfiUsbHcStateSuspend,
 EfiUsbHcStateMaximum
} EFI_USB_HC_STATE;

EfiUsbHcStateHalt

The host controller is in halt state. No USB transactions can occur while in this state.
The host controller can enter this state for three reasons:

1. After host controller hardware reset.

2. Explicitly set by software.

3. Triggered by a fatal error such as consistency check failure.

EfiUsbHcStateOperational

The host controller is in an operational state. When in this state, the host controller can
execute bus traffic. This state must be explicitly set to enable the USB bus traffic.

EfiUsbHcStateSuspend

The host controller is in the suspend state. No USB transactions can occur while in this
state. The host controller enters this state for the following reasons:

1. Explicitly set by software.

2. Triggered when there is no bus traffic for 3 microseconds.

 Protocols — USB Support

Version 1.10 12/01/02 14-7

Description

This function is used to retrieve the USB host controller’s current state. The USB Host Controller
Protocol publishes three states for USB host controller, as defined in “Related Definitions” below.
If State is NULL, then EFI_INVALID_PARAMETER is returned. If a device error occurs while
attempting to retrieve the USB host controllers current state, then EFI_DEVICE_ERROR is
returned. Otherwise, the USB host controller’s current state is returned in State, and
EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The state information of the host controller was returned in State.

EFI_INVALID_PARAMETER State is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the host controller’s
current state.

Extensible Firmware Interface Specification

14-8 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.SetState()

Summary

Sets the USB host controller to a specific state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_SET_STATE) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN EFI_USB_HC_STATE State
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

State Indicates the state of the host controller that will be set. See the
definition and description of the type EFI_USB_HC_STATE in
the GetState() function description.

Description

This function is used to explicitly set a USB host controller’s state. There are three states defined
for the USB host controller. These are the halt state, the operational state and the suspend state.
Figure 14-1 illustrates the possible state transitions:

OM13170

Halt State Suspend State

Operational State

Figure 14-1. Software Triggered State Transitions of a USB Host Controller

If the state specified by State is not valid, then EFI_INVALID_PARAMETER is returned. If a
device error occurs while attempting to place the USB host controller into the state specified by
State, then EFI_DEVICE_ERROR is returned. If the USB host controller is successfully placed
in the state specified by State, then EFI_SUCCESS is returned.

 Protocols — USB Support

Version 1.10 12/01/02 14-9

Status Codes Returned
EFI_SUCCESS The USB host controller was successfully placed in the state specified by

State.

EFI_INVALID_PARAMETER State is invalid.

EFI_DEVICE_ERROR Failed to set the state specified by State due to device error.

Extensible Firmware Interface Specification

14-10 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.ControlTransfer()

Summary

Submits control transfer to a target USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_CONTROL_TRANSFER) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN BOOLEAN IsSlowDevice,
 IN UINT8 MaximumPacketLength,
 IN EFI_USB_DEVICE_REQUEST *Request,
 IN EFI_USB_DATA_DIRECTION TransferDirection,
 IN OUT VOID *Data OPTIONAL,
 IN OUT UINTN *DataLength OPTIONAL,
 IN UINTN TimeOut,
 OUT UINT32 *TransferResult
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

IsSlowDevice Indicates whether the target device is slow device or full-speed
device.

MaximumPacketLength Indicates the maximum packet size that the default control
transfer endpoint is capable of sending or receiving.

Request A pointer to the USB device request that will be sent to the USB
device. Refer to Section 2.5.1 of EFI 1.1 USB Driver Model,
version 0.7.

TransferDirection Specifies the data direction for the transfer. There are three
values available, EfiUsbDataIn, EfiUsbDataOut and
EfiUsbNoData. Refer to Section 2.5.1 of EFI1.1 USB Driver
Model, version 0.7.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, indicates the size, in bytes, of the data buffer specified
by Data. On output, indicates the amount of data actually
transferred.

 Protocols — USB Support

Version 1.10 12/01/02 14-11

TimeOut Indicates the maximum time, in milliseconds, which the transfer
is allowed to complete.

TransferResult A pointer to the detailed result information generated by this
control transfer. Refer to Section 2.5.1 of EFI1.1 USB Driver
Model, version 0.7.

Description

This function is used to submit a control transfer to a target USB device specified by
DeviceAddress. Control transfers are intended to support configuration/command/status type
communication flows between host and USB device.

There are three control transfer types according to the data phase. If the TransferDirection
parameter is EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase is
present in the control transfer. If the TransferDirection parameter is EfiUsbDataOut,
then Data specifies the data to be transmitted to the device, and DataLength specifies the
number of bytes to transfer to the device. In this case, there is an OUT DATA stage followed by a
SETUP stage. If the TransferDirection parameter is EfiUsbDataIn, then Data specifies
the data to be received from the device, and DataLength specifies the number of bytes to receive
from the device. In this case there is an IN DATA stage followed by a SETUP stage.

If the control transfer has completed successfully, then EFI_SUCCESS is returned. If the transfer
cannot be completed within the timeout specified by TimeOut, then EFI_TIMEOUT is returned.
If an error other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is
returned and the detailed error code will be returned in the TransferResult parameter.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. TransferDirection is invalid.
2. TransferDirection, Data, and DataLength do not match one of the three control

transfer types described above.
3. Request pointer is NULL.
4. MaximumPacketLength is not valid. If IsSlowDevice is TRUE, then

MaximumPacketLength must be 8. If IsSlowDevice is FALSE, then
MaximumPacketLength must be 8, 16, 32, or 64.

5. TransferResult pointer is NULL.

Extensible Firmware Interface Specification

14-12 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The control transfer was completed successfully.

EFI_OUT_OF_RESOURCES The control transfer could not be completed due to a lack of resources.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The control transfer failed due to timeout.

EFI_DEVICE_ERROR The control transfer failed due to host controller or device error. Caller
should check TransferResult for detailed error information.

 Protocols — USB Support

Version 1.10 12/01/02 14-13

EFI_USB_HC_PROTOCOL.BulkTransfer()

Summary

Submits bulk transfer to a bulk endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_BULK_TRANSFER) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 MaximumPacketLength,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN OUT UINT8 *DataToggle,
 IN UINTN TimeOut,
 OUT UINT32 *TransferResult
);

Parameters
This A pointer to the EFI_USB_HC_PROTOCOL instance. Type

EFI_USB_HC_PROTOCOL is defined in Section 14.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control
endpoint (whose default endpoint address is 0). It is the caller’s
responsibility to make sure that the EndPointAddress
represents a bulk endpoint.

MaximumPacketLength Indicates the maximum packet size the target endpoint is capable
of sending or receiving.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength When input, indicates the size, in bytes, of the data buffer
specified by Data. When output, indicates the actually
transferred data size.

DataToggle A pointer to the data toggle value. On input, it indicates the
initial data toggle value the bulk transfer should adopt; on
output, it is updated to indicate the data toggle value of the
subsequent bulk transfer.

Extensible Firmware Interface Specification

14-14 12/01/02 Version 1.10

TimeOut Indicates the maximum time, in milliseconds, which the transfer
is allowed to complete.

TransferResult A pointer to the detailed result information of the bulk transfer.
Refer to Section 2.5.1 of EFI1.1 USB Driver Model, version 0.7.

Description

This function is used to submit bulk transfer to a target endpoint of a USB device. The target
endpoint is specified by DeviceAddress and EndpointAddress. Bulk transfers are
designed to support devices that need to communicate relatively large amounts of data at highly
variable times where the transfer can use any available bandwidth. Bulk transfers can be used only
by full-speed devices.

The data transfer direction is determined by the endpoint direction that is encoded in the
EndPointAddress parameter. Please refer to USB Specification, Revision 1.1 on the Endpoint
Address encoding.

The DataToggle parameter is used to track target endpoint’s data sequence toggle bits. The
USB provides a mechanism to guarantee data packet synchronization between data transmitter and
receiver across multiple transactions. The data packet synchronization is achieved with the data
sequence toggle bits and the DATA0/DATA1 PIDs. A bulk endpoint’s toggle sequence is
initialized to DATA0 when the endpoint experiences a configuration event. It toggles between
DATA0 and DATA1 in each successive data transfer. It is host’s responsibility to track the bulk
endpoint’s data toggle sequence and set the correct value for each data packet. The input
DataToggle value points to the data toggle value for the first data packet of this bulk transfer;
the output DataToggle value points to the data toggle value for the last successfully transferred
data packet of this bulk transfer. The caller should record the data toggle value for use in
subsequent bulk transfers to the same endpoint.

If the bulk transfer is successful, then EFI_SUCCESS is returned. If USB transfer cannot be
completed within the timeout specified by Timeout, then EFI_TIMEOUT is returned. If an error
other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is returned and the
detailed status code is returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data is NULL.
2. DataLength is 0.
3. MaximumPacketLength is not valid. The legal value of this parameter is 8, 16, 32, or 64.
4. DataToggle points to a value other than 0 and 1.
5. TransferResult is NULL.

 Protocols — USB Support

Version 1.10 12/01/02 14-15

Status Codes Returned
EFI_SUCCESS The bulk transfer was completed successfully.

EFI_OUT_OF_RESOURCES The bulk transfer could not be submitted due to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The bulk transfer failed due to timeout.

EFI_DEVICE_ERROR The bulk transfer failed due to host controller or device error. Caller
should check TransferResult for detailed error information.

Extensible Firmware Interface Specification

14-16 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.AsyncInterruptTransfer()

Summary

Submits an asynchronous interrupt transfer to an interrupt endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN BOOLEAN IsSlowDevice,
 IN UINT8 MaximumPacketLength,
 IN BOOLEAN IsNewTransfer,
 IN OUT UINT8 *DataToggle,
 IN UINTN PollingInterval OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK CallBackFunction OPTIONAL,
 IN VOID *Context OPTIONAL
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control
endpoint (whose default endpoint address is zero). It is the
caller’s responsibility to make sure that the
EndPointAddress represents an interrupt endpoint.

IsSlowDevice Indicates whether the target device is slow device or full-speed
device.

MaximumPacketLength Indicates the maximum packet size the target endpoint is capable
of sending or receiving.

IsNewTransfer If TRUE, an asynchronous interrupt pipe is built between the host
and the target interrupt endpoint. If FALSE, the specified
asynchronous interrupt pipe is canceled.

 Protocols — USB Support

Version 1.10 12/01/02 14-17

DataToggle A pointer to the data toggle value. On input, it is valid when
IsNewTransfer is TRUE, and it indicates the initial data
toggle value the asynchronous interrupt transfer should adopt.
On output, it is valid when IsNewTransfer is FALSE, and it
is updated to indicate the data toggle value of the subsequent
asynchronous interrupt transfer.

PollingInterval Indicates the interval, in milliseconds, that the asynchronous
interrupt transfer is polled. This parameter is required when
IsNewTransfer is TRUE.

DataLength Indicates the length of data to be received at the rate specified by
PollingInterval from the target asynchronous interrupt
endpoint. This parameter is only required when
IsNewTransfer is TRUE.

CallBackFunction The Callback function. This function is called at the rate
specified by PollingInterval. This parameter is only
required when IsNewTransfer is TRUE. Refer to
Section 2.5.3 of EFI1.1 USB Driver Model, version 0.7, for the
definition of this type.

Context The context that is passed to the CallBackFunction. This is
an optional parameter and may be NULL.

Description

This function is used to submit asynchronous interrupt transfer to a target endpoint of a USB
device. The target endpoint is specified by DeviceAddress and EndpointAddress. In the
USB Specification, Revision 1.1, interrupt transfer is one of the four USB transfer types. In the
EFI_USB_HC_PROTOCOL, interrupt transfer is divided further into synchronous interrupt transfer
and asynchronous interrupt transfer.

An asynchronous interrupt transfer is typically used to query a device’s status at a fixed rate. For
example, keyboard, mouse, and hub devices use this type of transfer to query their interrupt
endpoints at a fixed rate. The asynchronous interrupt transfer is intended to support the interrupt
transfer type of “submit once, execute periodically.” Unless an explicit request is made, the
asychronous transfer will never retire.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is
specified by PollingInterval, the size of the receive buffer is specified by DataLength,
and the callback function is specified by CallBackFunction. Context specifies an optional
context that is passed to the CallBackFunction each time it is called. The
CallBackFunction is intended to provide a means for the host to periodically process interrupt
transfer data.

Extensible Firmware Interface Specification

14-18 12/01/02 Version 1.10

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data transfer direction indicated by EndPointAddress is other than EfiUsbDataIn.
2. IsNewTransfer is TRUE and DataLength is 0.
3. IsNewTransfer is TRUE and DataToggle points to a value other than 0 and 1.
4. IsNewTransfer is TRUE and PollingInterval is not in the range 1..255.

Status Codes Returned
EFI_SUCCESS The asynchronous interrupt transfer request has been successfully

submitted or canceled.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 Protocols — USB Support

Version 1.10 12/01/02 14-19

EFI_USB_HC_PROTOCOL.SyncInterruptTransfer()

Summary

Submits synchronous interrupt transfer to an interrupt endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN BOOLEAN IsSlowDevice,
 IN UINT8 MaximumPacketLength,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN OUT UINT8 *DataToggle,
 IN UINTN TimeOut,
 OUT UINT32 *TransferResult
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control
endpoint (whose default endpoint address is zero). It is the
caller’s responsibility to make sure that the
EndPointAddress represents an interrupt endpoint.

IsSlowDevice Indicates whether the target device is slow device or full-speed
device.

MaximumPacketLength Indicates the maximum packet size the target endpoint is capable
of sending or receiving.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data.
On output, the number of bytes transferred.

Extensible Firmware Interface Specification

14-20 12/01/02 Version 1.10

DataToggle A pointer to the data toggle value. On input, it indicates the
initial data toggle value the synchronous interrupt transfer should
adopt; on output, it is updated to indicate the data toggle value of
the subsequent synchronous interrupt transfer.

TimeOut Indicates the maximum time, in milliseconds, which the transfer
is allowed to complete.

TransferResult A pointer to the detailed result information from the synchronous
interrupt transfer. Refer to Section 2.5.1 of EFI1.1 USB Driver
Model, version 0.7.

Description

This function is used to submit a synchronous interrupt transfer to a target endpoint of a USB
device. The target endpoint is specified by DeviceAddress and EndpointAddress. In the
USB Specification, Revision 1.1, interrupt transfer is one of the four USB transfer types. In the
EFI_USB_HC_PROTOCOL, interrupt transfer is divided further into synchronous interrupt transfer
and asynchronous interrupt transfer.

The synchronous interrupt transfer is designed to retrieve small amounts of data from a USB device
through an interrupt endpoint. A synchronous interrupt transfer is only executed once for each
request. This is the most significant difference from the asynchronous interrupt transfer.

If the synchronous interrupt transfer is successful, then EFI_SUCCESS is returned. If the USB
transfer cannot be completed within the timeout specified by Timeout, then EFI_TIMEOUT is
returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code is returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data transfer direction indicated by EndPointAddress is not EfiUsbDataIn.
2. Data is NULL.
3. DataLength is 0.
4. MaximumPacketLength is not valid. The legal value of this parameter is for the full-speed

device, it should be 8, 16, 32, or 64; for the slow device, it is limited to 8.
5. DataToggle points to a value other than 0 and 1.
6. TransferResult is NULL.

Status Codes Returned
EFI_SUCCESS The synchronous interrupt transfer was completed successfully.

EFI_OUT_OF_RESOURCES The synchronous interrupt transfer could not be submitted due to lack of
resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The synchronous interrupt transfer failed due to timeout.

EFI_DEVICE_ERROR The synchronous interrupt transfer failed due to host controller or device
error. Caller should check TransferResult for detailed error

information.

 Protocols — USB Support

Version 1.10 12/01/02 14-21

EFI_USB_HC_PROTOCOL.IsochronousTransfer()

Summary

Submits isochronous transfer to an isochronous endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 MaximumPacketLength,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 OUT UINT32 *TransferResult
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control
endpoint (whose default endpoint address is 0). It is the caller’s
responsibility to make sure that the EndPointAddress
represents an isochronous endpoint.

MaximumPacketLength Indicates the maximum packet size the target endpoint is capable
of sending or receiving. For isochronous endpoints, this value is
used to reserve the bus time in the schedule, required for the per-
frame data payloads. The pipe may, on an ongoing basis,
actually use less bandwidth than that reserved.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

TransferResult A pointer to the detail result information of the isochronous
transfer. Refer to Section 2.5.1 of EFI1.1 USB Driver Model,
version 0.7.

Extensible Firmware Interface Specification

14-22 12/01/02 Version 1.10

Description

This function is used to submit isochronous transfer to a target endpoint of a USB device. The
target endpoint is specified by DeviceAddress and EndpointAddress. Isochronous
transfers are used when working with isochronous date. It provides periodic, continuous
communication between the host and a device.

If the isochronous transfer is successful, then EFI_SUCCESS is returned. The isochronous
transfer is designed to be completed within one USB frame time, if it cannot be completed,
EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code will be returned in
TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data is NULL.
2. DataLength is 0.
3. MaximumPacketLength is larger than 1023.
4. TransferResult is NULL.

Status Codes Returned
EFI_SUCCESS The isochronous transfer was completed successfully.

EFI_OUT_OF_RESOURCES The isochronous transfer could not be submitted due to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The isochronous transfer cannot be completed within the one USB
frame time.

EFI_DEVICE_ERROR The isochronous transfer failed due to host controller or device error.
Caller should check TransferResult for detailed error information.

 Protocols — USB Support

Version 1.10 12/01/02 14-23

EFI_USB_HC_PROTOCOL.AsyncIsochronousTransfer()

Summary

Submits nonblocking isochronous transfer to an isochronous endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USB_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 MaximumPacketLength,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,
 IN VOID *Context OPTIONAL
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control
endpoint (whose default endpoint address is zero). It is the
caller’s responsibility to make sure that the
EndPointAddress represents an isochronous endpoint.

MaximumPacketLength Indicates the maximum packet size the target endpoint is capable
of sending or receiving. For isochronous endpoints, this value is
used to reserve the bus time in the schedule, required for the per-
frame data payloads. The pipe may, on an ongoing basis,
actually use less bandwidth than that reserved.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Extensible Firmware Interface Specification

14-24 12/01/02 Version 1.10

IsochronousCallback The Callback function. This function is called if the requested
isochronous transfer is completed. Refer to Section 2.5.3 of
EFI1.1 USB Driver Model, version 0.7.

Context Data passed to the IsochronousCallback function. This is
an optional parameter and may be NULL.

Description

This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous
transfer request through this function, this function will return immediately. When the isochronous
transfer completes, the IsochronousCallback function will be triggered, the caller can know
the transfer results. If the transfer is successful, the caller can get the data received or sent in this
callback function.

The target endpoint is specified by DeviceAddress and EndpointAddress. Isochronous
transfers are used when working with isochronous date. It provides periodic, continuous
communication between the host and a device.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data is NULL.
2. DataLength is 0.
3. MaximumPacketLength is larger than 1023.

Status Codes Returned
EFI_SUCCESS The asynchronous isochronous transfer was completed successfully.

EFI_OUT_OF_RESOURCES The asynchronous isochronous transfer could not be submitted due to
lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

 Protocols — USB Support

Version 1.10 12/01/02 14-25

EFI_USB_HC_PROTOCOL.GetRootHubPortNumber()

Summary

Retrieves the number of root hub ports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_GET_ROOTHUB_PORT_NUMBER) (
 IN EFI_USB_HC_PROTOCOL *This,
 OUT UINT8 *PortNumber
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

PortNumber A pointer to the number of the root hub ports.

Description

This function is used to retrieve the number of root hub ports. The number of root hub ports is
required by the USB bus driver to perform bus enumeration.

Status Codes Returned
EFI_SUCCESS The port number was retrieved successfully.

EFI_INVALID_PARAMETER PortNumber is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the port number.

Extensible Firmware Interface Specification

14-26 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.GetRootHubPortStatus()

Summary

Retrieves the current status of a USB root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 PortNumber,
 OUT EFI_USB_PORT_STATUS *PortStatus
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

PortNumber Specifies the root hub port from which the status is to be retrieved.
This value is zero based. For example, if a root hub has two ports,
then the first port is numbered 0, and the second port is
numbered 1.

PortStatus A pointer to the current port status bits and port status change bits.
The type EFI_USB_PORT_STATUS is defined in “Related
Definitions” below.

Related Definitions
typedef struct{
 UINT16 PortStatus;
 UINT16 PortChangeStatus;
} EFI_USB_PORT_STATUS;

//**
// EFI_USB_PORT_STATUS.PortStatus bit definition
//**
#define USB_PORT_STAT_CONNECTION 0x0001
#define USB_PORT_STAT_ENABLE 0x0002
#define USB_PORT_STAT_SUSPEND 0x0004
#define USB_PORT_STAT_OVERCURRENT 0x0008
#define USB_PORT_STAT_RESET 0x0010
#define USB_PORT_STAT_POWER 0x0100
#define USB_PORT_STAT_LOW_SPEED 0x0200

 Protocols — USB Support

Version 1.10 12/01/02 14-27

//**
// EFI_USB_PORT_STATUS.PortChangeStatus bit definition
//**
#define USB_PORT_STAT_C_CONNECTION 0x0001
#define USB_PORT_STAT_C_ENABLE 0x0002
#define USB_PORT_STAT_C_SUSPEND 0x0004
#define USB_PORT_STAT_C_OVERCURRENT 0x0008
#define USB_PORT_STAT_C_RESET 0x0010

PortStatus Contains current port status bitmap. The root hub port status
bitmap is unified with the USB hub port status bitmap. See
Table 14-1 for a reference, which is borrowed from Chapter 11,
Hub Specification, of USB Specification, Revision 1.1.

PortChangeStatus Contains current port status change bitmap. The root hub port
change status bitmap is unified with the USB hub port status
bitmap. See Table 14-2 for a reference, which is borrowed from
Chapter 11, Hub Specification, of USB Specification, Revision 1.1.

Table 14-1. USB Hub Port Status Bitmap

Bit Description

0 Current Connect Status: (USB_PORT_STAT_CONNECTION) This field reflects whether or not a
device is currently connected to this port.

 0 = No device is present

 1 = A device is present on this port

1 Port Enable / Disabled: (USB_PORT_STAT_ENABLE) Ports can be enabled by software only.
Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by
software.

 0 = Port is disabled

 1 = Port is enabled

2 Suspend: (USB_PORT_STAT_SUSPEND) This field indicates whether or not the device on this
port is suspended.

 0 = Not suspended

 1 = Suspended

3 Over-current Indicator: (USB_PORT_STAT_OVERCURRENT) This field is used to indicate that
the current drain on the port exceeds the specified maximum.

 0 = All no over-current condition exists on this port

 1 = An over-current condition exists on this port

4 Reset: (USB_PORT_STAT_RESET) Indicates whether port is in reset state.

 0 = Port is not in reset state

 1 = Port is in reset state

continued

Extensible Firmware Interface Specification

14-28 12/01/02 Version 1.10

Table 14-1. USB Hub Port Status Bitmap (continued)

Bit Description

5-7 Reserved

These bits return 0 when read.

8 Port Power: (USB_PORT_STAT_POWER) This field reflects a port’s logical, power control state.

 0 = This port is in the Powered-off state

 1 = This port is not in the Powered-off state

9 Low Speed Device Attached: (USB_PORT_STAT_LOW_SPEED) This is relevant only if a
device is attached.

 0 = Full-speed device attached to this port

 1 = Low-speed device attached to this port

10-15 Reserved

These bits return 0 when read.

Table 14-2. Hub Port Change Status Bitmap

Bit Description

0 Connect Status Change: (USB_PORT_STAT_C_CONNECTION) Indicates a change has
occurred in the port’s Current Connect Status.

 0 = No change has occurred to Current Connect status

 1 = Current Connect status has changed

1 Port Enable /Disable Change: (USB_PORT_STAT_C _ENABLE)

 0 = No change

 1 = Port enabled/disabled status has changed

2 Suspend Change: (USB_PORT_STAT_C _SUSPEND) This field indicates a change in the host-
visible suspend state of the attached device.

 0 = No change

 1 = Resume complete

3 Over-Current Indicator Change: (USB_PORT_STAT_C_OVERCURRENT)

 0 = No change has occurred to Over-Current Indicator

 1 = Over-Current Indicator has changed

4 Reset Change: (USB_PORT_STAT_C_RESET) This field is set when reset processing on this
port is complete.

 0 = No change

 1 = Reset complete

5-15 Reserved.

These bits return 0 when read.

 Protocols — USB Support

Version 1.10 12/01/02 14-29

Description

This function is used to retrieve the status of the root hub port specified by PortNumber.

EFI_USB_PORT_STATUS describes the port status of a specified USB port. This data structure is
designed to be common to both a USB root hub port and a USB hub port.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortNumber(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. Otherwise, the status of the USB root hub port is returned in PortStatus, and
EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The status of the USB root hub port specified by PortNumber

was returned in PortStatus.

EFI_INVALID_PARAMETER PortNumber is invalid.

Extensible Firmware Interface Specification

14-30 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.SetRootHubPortFeature()

Summary

Sets a feature for the specified root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE) (
 IN EFI_USB_HC_PROTOCOL *This,
 IN UINT8 PortNumber,
 IN EFI_USB_PORT_FEATURE PortFeature
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

PortNumber Specifies the root hub port whose feature is requested to be set.
This value is zero based. For example, if a root hub has two ports,
then the first port is number 0, and the second port is numbered 1.

PortFeature Indicates the feature selector associated with the feature set
request. The port feature indicator is defined in “Related
Definitions” and Table 14-3 below.

Related Definitions
typedef enum {
 EfiUsbPortEnable = 1,
 EfiUsbPortSuspend = 2,
 EfiUsbPortReset = 4,
 EfiUsbPortPower = 8,
 EfiUsbPortConnectChange = 16,
 EfiUsbPortEnableChange = 17,
 EfiUsbPortSuspendChange = 18,
 EfiUsbPortOverCurrentChange = 19,
 EfiUsbPortResetChange = 20
} EFI_USB_PORT_FEATURE;

 Protocols — USB Support

Version 1.10 12/01/02 14-31

The feature values specified in the enumeration variable have special meaning. Each value
indicates its bit index in the port status and status change bitmaps, if combines these two bitmaps
into a 32-bit bitmap. The meaning of each port feature is listed in Table 14-3.

Table 14-3. USB Port Feature

Port Feature

For
SetRootHubPortFeature

For ClearRootHubPortFeature

EfiUsbPortEnable Enable the given port of the
root hub.

Disable the given port of the root hub.

EfiUsbPortSuspend Put the given port into
suspend state.

Restore the given port from the previous
suspend state.

EfiUsbPortReset Reset the given port of the
root hub.

Clear the RESET signal for the given
port of the root hub.

EfiUsbPortPower Power the given port. Shutdown the power from the given port.

EfiUsbPortConnectChange N/A. Clear
USB_PORT_STAT_C_CONNECTION
bit of the given port of the root hub.

EfiUsbPortEnableChange N/A. Clear USB_PORT_STAT_C_ENABLE bit
of the given port of the root hub.

EfiUsbPortSuspendChange N/A. Clear USB_PORT_STAT_C_SUSPEND
bit of the given port of the root hub.

EfiUsbPortOverCurrentChange N/A. Clear
USB_PORT_STAT_C_OVERCURRENT
bit of the given port of the root hub.

EfiUsbPortResetChange N/A. Clear USB_PORT_STAT_C_RESET bit
of the given port of the root hub.

Description

This function sets the feature specified by PortFeature for the USB root hub port specified by
PortNumber. Setting a feature enables that feature or starts a process associated with that
feature. For the meanings about the defined features, please refer to Table 14-1 and Table 14-2.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortNumber(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. If PortFeature is not EfiUsbPortEnable, EfiUsbPortSuspend,
EfiUsbPortReset nor EfiUsbPortPower, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS The feature specified by PortFeature was set for the USB

root hub port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid for this

function.

Extensible Firmware Interface Specification

14-32 12/01/02 Version 1.10

EFI_USB_HC_PROTOCOL.ClearRootHubPortFeature()

Summary

Clears a feature for the specified root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE) (
 IN EFI_USB_HC_PROTOCOL *This
 IN UINT8 PortNumber,
 IN EFI_USB_PORT_FEATURE PortFeature
);

Parameters

This A pointer to the EFI_USB_HC_PROTOCOL instance. Type
EFI_USB_HC_PROTOCOL is defined in Section 14.1.

PortNumber Specifies the root hub port whose feature is requested to be
cleared. This value is zero-based. For example, if a root hub has
two ports, then the first port is number 0, and the second port is
numbered 1.

PortFeature Indicates the feature selector associated with the feature clear
request. The port feature indicator (EFI_USB_PORT_FEATURE)
is defined in the “Related Definitions” section of the
SetRootHubPortFeature() function description and in
Table 14-3.

Description

This function clears the feature specified by PortFeature for the USB root hub port specified
by PortNumber. Clearing a feature disables that feature or stops a process associated with that
feature. For the meanings about the defined features, refer to Table 14-1 and Table 14-2.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortNumber(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. If PortFeature is not EfiUsbPortEnable, EfiUsbPortSuspend,
EfiUsbPortPower, EfiUsbPortConnectChange, EfiUsbPortResetChange,
EfiUsbPortEnableChange, EfiUsbPortSuspendChange, or
EfiUsbPortOverCurrentChange, then EFI_INVALID_PARAMETER is returned.

 Protocols — USB Support

Version 1.10 12/01/02 14-33

Status Codes Returned
EFI_SUCCESS The feature specified by PortFeature was cleared for the

USB root hub port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid.

Extensible Firmware Interface Specification

14-34 12/01/02 Version 1.10

14.2 USB Driver Model

14.2.1 Scope
These sections (Sections 14.2 and below) describe the USB Driver Model. This includes the
behavior of USB Bus Drivers, the behavior of a USB Device Drivers, and a detailed description of
the EFI USB I/O Protocol. This document provides enough material to implement a USB Bus
Driver, and the tools required to design and implement USB Device Drivers. It does not provide
any information on specific USB devices.

The material contained in this document is designed to extend the EFI Specification and the EFI
Driver Model Specification in a way that supports USB device drivers and USB bus drivers. These
extensions are provided in the form of USB specific protocols. This document provides the
information required to implement a USB Bus Driver in system firmware. The document also
contains the information required by driver writers to design and implement USB Device Drivers
that a platform may need to boot an EFI compliant OS.

A full understanding of the EFI Specification, the EFI Driver Model Specification, and the USB
Specification is assumed throughout this document. The USB Driver Model described here is
intended to be a foundation on which a USB Bus Driver and a wide variety of USB Device Drivers
can be created. The current version of USB Driver Model is designed for USB 1.1; it may not be
compatible newer revisions of USB.

14.2.2 USB Driver Model Overview
The EFI USB Driver Stack includes the USB Bus Driver, USB Host Controller Driver, and
individual USB device drivers.

OM13171

USB Bus Controller Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_USB_HC_PROTOCOL

Figure 14-2. USB Bus Controller Handle

 Protocols — USB Support

Version 1.10 12/01/02 14-35

In the USB Bus Driver Design, the USB Bus Controller is managed by two drivers. One is USB
Host Controller Driver, which consumes its parent bus EFI_XYZ_IO_PROTOCOL, and produces
EFI_USB_HC_PROTOCOL and attaches it to the Bus Controller Handle. The other one is USB
Bus Driver, which consumes EFI_USB_HC_PROTOCOL, and performs bus enumeration.
Figure 14-2 shows protocols that are attached to the USB Bus Controller Handle. Detailed
descriptions are presented in the following sections.

14.2.3 USB Bus Driver
USB Bus Driver performs periodic Enumeration on the USB Bus. In USB bus enumeration, when
a new USB controller is found, the bus driver does some standard configuration for that new
controller, and creates a device handle for it. The EFI_USB_IO_PROTOCOL and the
EFI_DEVICE_PATH are attached to the device handle so that the USB controller can be accessed.
The USB Bus Driver is also responsible for connecting USB device drivers to USB controllers.
When a USB device is detached from a USB bus, the USB bus driver will stop that USB controller,
and uninstall the EFI_USB_IO_PROTOCOL and the EFI_DEVICE_PATH from that handle. A
detailed description is given in Section 14.2.3.3.

14.2.3.1 USB Bus Driver Entry Point
Like all other device drivers, the entry point for a USB Bus Driver attaches the
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Bus Driver.

14.2.3.2 Driver Binding Protocol for USB Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the USB Bus Driver can manage a device handle. A USB
Bus Driver can only manage a device handle that contains EFI_USB_HC_PROTOCOL.

The general idea is that the USB Bus Driver is a generic driver. Since there are several types of
USB Host Controllers, an EFI_USB_HC_PROTOCOL is used to abstract the host controller
interface. Actually, a USB Bus Driver only requires an EFI_USB_HC_PROTOCOL.

The Start() function tells the USB Bus Driver to start managing the USB Bus. In this function,
the USB Bus Driver creates a device handle for the root hub, and creates a timer to monitor root
hub connection changes.

The Stop() function tells the USB Bus Driver to stop managing a USB Host Bus Controller. The
Stop() function simply deconfigures the devices attached to the root hub. The deconfiguration is
a recursive process. If the device to be deconfigured is a USB hub, then all USB devices attached
to its downstream ports will be deconfigured first, then itself. If all of the child devices handles
have been destroyed then the EFI_USB_HC_PROTOCOL is closed. Finally, the Stop()unction
will then place the USB Host Bus Controller in a quiescent state.

Extensible Firmware Interface Specification

14-36 12/01/02 Version 1.10

14.2.3.3 USB Hot-Plug Event
Hot-Plug is one of the most important features provided by USB. A USB bus driver implements
this feature through two methods. There are two types of hubs defined in the USB specification.
One is the USB root hub, which is implemented in the USB Host controller. A timer event
is created for the root hub. The other one is a USB Hub. An event is created for each hub that
is correctly configured. All these events are associated with the same trigger which is USB
bus numerator.

When USB bus enumeration is triggered, the USB Bus Driver checks the source of the event.
This is required because the root hub differs from standard USB hub in checking the hub status.
The status of a root hub is retrieved through the EFI_USB_HC_PROTOCOL, and that status of
a standard USB hub is retrieved through a USB control transfer. A detailed description of the
enumeration process is presented in the next section.

14.2.3.4 USB Bus Enumeration
When the periodic timer or the hubs notify event is signaled, the USB Bus Driver will perform
bus numeration.

1. Determine if the event is from the root hub or a standard USB hub.
2. Determine the port on which the connection change event occurred.
3. Determine if it is a connection change or a disconnection change.
4. If a connect change is detected, then a new device has been attached. Perform the following:

a. Reset and enable that port.
b. Configure the new device.
c. Parse the device configuration descriptors; get all of its interface descriptors (i.e. all USB

controllers), and configure each interface.
d. Create a new handle for each interface (USB Controller) within the USB device. Attach

the EFI_DEVICE_PATH, and the EFI_USB_IO_PROTOCOL to each handle.
e. Connect the USB Controller to a USB device driver with the Boot Service

ConnectController() if applicable.
f. If the USB Controller is a USB hub, create a Hub notify event which is associated with the

USB Bus Enumerator, and submit an Asynchronous Interrupt Transfer Request (See
Section 14.2.5).

5. If a disconnect change, then a device has been detached from the USB Bus. Perform the
following:
a. If the device is not a USB Hub, then find and deconfigure the USB Controllers within the

device. Then, stop each USB controller with DisconnectController(), and
uninstall the EFI_DEVICE_PATH and the EFI_USB_IO_PROTOCOL from the
controller’s handle.

b. If the USB controller is USB hub controller, first find and deconfigure all its downstream
USB devices (this is a recursive process, since there may be additional USB hub controllers
on the downstream ports), then deconfigure USB hub controller itself.

 Protocols — USB Support

Version 1.10 12/01/02 14-37

14.2.4 USB Device Driver
A USB Device Driver manages a USB Controller and produces a device abstraction for use by a
preboot application.

14.2.4.1 USB Device Driver Entry Point
Like all other device drivers, the entry point for a USB Device Driver attaches
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Device Driver.

14.2.4.2 Driver Binding Protocol for USB Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(),
and Stop().

The Supported() tests to see if the USB Device Driver can manage a device handle. This
function checks to see if a controller can be managed by the USB Device Driver. This is done by
opening the EFI_USB_IO_PROTOCOL bus abstraction on the USB Controller handle, and using
the EFI_USB_IO_PROTOCOL services to determine if this USB Controller matches the profile
that the USB Device Driver is capable of managing.

The Start() function tells the USB Device Driver to start managing a USB Controller. It opens
the EFI_USB_IO_PROTOCOL instance from the handle for the USB Controller. This protocol
instance is used to perform USB packet transmission over the USB bus. For example, if the USB
controller is USB keyboard, then the USB keyboard driver would produce and install the
SIMPLE_INPUT to the USB controller handle.

The Stop() function tells the USB Device Driver to stop managing a USB Controller. It removes
the I/O abstraction protocol instance previously installed in Start() from the USB controller
handle. It then closes the EFI_USB_IO_PROTOCOL.

14.2.5 EFI USB I/O Protocol Overview
This section provides a detailed description of the EFI_USB_IO_PROTOCOL. This protocol is
used by code, typically drivers, running in the EFI boot services environment to access USB
devices like USB keyboards, mice and mass storage devices. In particular, functions for managing
devices on USB buses are defined here.

The interfaces provided in the EFI_USB_IO_PROTOCOL are for performing basic operations
to access USB devices. Typically, USB devices are accessed through the four different transfers
types:

• Controller Transfer: Typically used to configure the USB device into an operation mode.
• Interrupt Transfer: Typically used to get periodic small amount of data, like USB

keyboard and mouse.
• Bulk Transfer: Typically used to transfer large amounts of data like reading blocks

from USB mass storage devices.
• Isochronous Transfer: Typically used to transfer data at a fixed rate like voice data.

This protocol also provides mechanisms to manage and configure USB devices and controllers.

Extensible Firmware Interface Specification

14-38 12/01/02 Version 1.10

EFI_USB_IO Protocol
Summary

Provides services to manage and communicate with USB devices.

GUID
#define EFI_USB_IO_PROTOCOL_GUID \
 {0x2B2F68D6,0x0CD2,0x44cf,0x8E,0x8B,0xBB,0xA2,0x0B,0x1B,0x5B,0x75}

Protocol Interface Structure
typedef struct _EFI_USB_IO_PROTOCOL {
 EFI_USB_IO_CONTROL_TRANSFER UsbControlTransfer;
 EFI_USB_IO_BULK_TRANSFER UsbBulkTransfer;
 EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER
 UsbAsyncInterruptTransfer;
 EFI_USB_IO_SYNC_INTERRPUT_TRANSFER UsbSyncInterruptTransfer
 EFI_USB_IO_ISOCHRONOUS_TRANSFER UsbIsochronousTransfer;
 EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER
 UsbAsyncIsochronousTransfer;
 EFI_USB_IO_GET_DEVICE_DESCRIPTOR UsbGetDeviceDescriptor;
 EFI_USB_IO_GET_CONFIG_DESCRIPTOR UsbGetConfigDescriptor;
 EFI_USB_IO_GET_INTERFACE_DESCRIPTOR
 UsbGetInterfaceDescriptor;
 EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR UsbGetEndpointDescriptor;
 EFI_USB_IO_GET_STRING_DESCRIPTOR UsbGetStringDescriptor;
 EFI_USB_IO_GET_SUPPORTED_LANGUAGES UsbGetSupportedLanguages;
 EFI_USB_IO_PORT_RESET UsbPortReset;
} EFI_USB_IO_PROTOCOL;

Parameters

UsbControlTransfer Accesses the USB Device through USB Control
Transfer Pipe. See the UsbControlTransfer()
function description.

UsbBulkTransfer Accesses the USB Device through USB Bulk Transfer
Pipe. See the UsbBulkTransfer() function
description.

UsbAsyncInterruptTransfer Nonblock USB interrupt transfer. See the
UsbAsyncInterruptTransfer() function
description.

UsbSyncInterruptTransfer Accesses the USB Device through USB Synchronous
Interrupt Transfer Pipe. See the
UsbSyncInterruptTransfer() function
description.

 Protocols — USB Support

Version 1.10 12/01/02 14-39

UsbIsochronousTransfer Accesses the USB Device through USB Isochronous
Transfer Pipe. See the
UsbIsochronousTransfer() function
description.

UsbAsyncIsochronousTransfer Nonblock USB isochronous transfer. See the
UsbAsyncIsochronousTransfer() function
description.

UsbGetDeviceDescriptor Retrieves the device descriptor of a USB device. See
the UsbGetDeviceDescriptor() function
description.

UsbGetConfigDescriptor Retrieves the activated configuration descriptor of a
USB device. See the
UsbGetConfigDescriptor() function
description.

UsbGetInterfaceDescriptor Retrieves the interface descriptor of a USB Controller.
See the UsbGetInterfaceDescriptor()
function description.

UsbGetEndpointDescriptor Retrieves the endpoint descriptor of a USB Controller.
See the UsbGetEndpointDescriptor()
function description.

UsbGetStringDescriptor Retrieves the string descriptor inside a USB Device.
See the UsbGetStringDescriptor() function
description.

UsbGetSupportedLanguages Retrieves the array of languages that the USB device
supports. See the
UsbGetSupportedLanguages() function
description.

UsbPortReset Resets and reconfigures the USB controller. See the
UsbPortReset() function description.

Description

The EFI_USB_IO_PROTOCOL provides four basic transfers types described in the USB 1.1
Specification. These include control transfer, interrupt transfer, bulk transfer and isochronous
transfer. The EFI_USB_IO_PROTOCOL also provides some basic USB device/controller
management and configuration interfaces. A USB device driver uses the services of this protocol to
manage USB devices.

Extensible Firmware Interface Specification

14-40 12/01/02 Version 1.10

EFI_USB_IO_PROTOCOL.UsbControlTransfer()

Summary

This function is used to manage a USB device with a control transfer pipe. A control transfer is
typically used to perform device initialization and configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_CONTROL_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN EFI_USB_DEVICE_REQUEST *Request,
 IN EFI_USB_DATA_DIRECTION Direction,
 IN UINT32 Timeout,
 IN OUT VOID *Data OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

Request A pointer to the USB device request that will be sent to the USB
device. See “Related Definitions” below.

Direction Indicates the data direction. See “Related Definitions” below for
this type.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller
must wait for the function to be completed until EFI_SUCCESS
or EFI_DEVICE_ERROR is returned.

DataLength The size, in bytes, of the data buffer specified by Data.

Status A pointer to the result of the USB transfer.

 Protocols — USB Support

Version 1.10 12/01/02 14-41

Related Definitions
typedef enum {
 EfiUsbDataIn,
 EfiUsbDataOut,
 EfiUsbNoData
} EFI_USB_DATA_DIRECTION;

//
// Error code for USB Transfer Results
//
#define EFI_USB_NOERROR 0x0000
#define EFI_USB_ERR_NOTEXECUTE 0x0001
#define EFI_USB_ERR_STALL 0x0002
#define EFI_USB_ERR_BUFFER 0x0004
#define EFI_USB_ERR_BABBLE 0x0008
#define EFI_USB_ERR_NAK 0x0010
#define EFI_USB_ERR_CRC 0x0020
#define EFI_USB_ERR_TIMEOUT 0x0040
#define EFI_USB_ERR_BITSTUFF 0x0080
#define EFI_USB_ERR_SYSTEM 0x0100

typedef struct {
 UINT8 RequestType;
 UINT8 Request;
 UINT16 Value;
 UINT16 Index;
 UINT16 Length;
} EFI_USB_DEVICE_REQUEST;

RequestType The field identifies the characteristics of the specific request.

Request This field specifies the particular request.

Value This field is used to pass a parameter to USB device that is specific
to the request.

Index This field is also used to pass a parameter to USB device that is
specific to the request.

Length This field specifies the length of the data transferred during the
second phase of the control transfer. If it is 0, then there is no data
phase in this transfer.

Extensible Firmware Interface Specification

14-42 12/01/02 Version 1.10

Description

This function allows a USB device driver to communicate with the USB device through a Control
Transfer. There are three control transfer types according to the data phase. If the Direction
parameter is EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase exists
for the control transfer. If the Direction parameter is EfiUsbDataOut, then Data specifies
the data to be transmitted to the device, and DataLength specifies the number of bytes to transfer
to the device. In this case there is an OUT DATA stage followed by a SETUP stage. If the
Direction parameter is EfiUsbDataIn, then Data specifies the data that is received from the
device, and DataLength specifies the number of bytes to receive from the device. In this case
there is an IN DATA stage followed by a SETUP stage. After the USB transfer has completed
successfully, EFI_SUCCESS is returned. If the transfer cannot be completed due to timeout, then
EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code is returned in Status.

Status Code Returned
EFI_SUCCESS The control transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter Direction is not valid.

EFI_INVALID_PARAMETER Request is NULL.

EFI-INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The control transfer fails due to timeout.

EFI_DEVICE_ERROR The transfer failed. The transfer status is returned in Status.

 Protocols — USB Support

Version 1.10 12/01/02 14-43

EFI_USB_IO_PROTOCOL.UsbBulkTransfer()

Summary

This function is used to manage a USB device with the bulk transfer pipe. Bulk Transfers are
typically used to transfer large amounts of data to/from USB devices.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_BULK_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN UINTN Timeout,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not a
BULK endpoint, EFI_INVALID_PARAMETER is returned. The
MSB of this parameter indicates the endpoint direction. The
number “1” stands for an IN endpoint, and “0” stands for an OUT
endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data.
On output, the number of bytes that were actually transferred.

Timeout Indicating the transfer should be completed within this time frame.
The units are in milliseconds. If Timeout is 0, then the caller
must wait for the function to be completed until EFI_SUCCESS
or EFI_DEVICE_ERROR is returned.

Status This parameter indicates the USB transfer status.

Extensible Firmware Interface Specification

14-44 12/01/02 Version 1.10

Description

This function allows a USB device driver to communicate with the USB device through Bulk
Transfer. The transfer direction is determined by the endpoint direction. If the USB transfer is
successful, then EFI_SUCCESS is returned. If USB transfer cannot be completed within the
Timeout frame, EFI_TIMEOUT is returned. If an error other than timeout occurs during the
USB transfer, then EFI_DEVICE_ERROR is returned and the detailed status code will be returned
in the Status parameter.

Status Code Returned
EFI_SUCCESS The bulk transfer has been successfully executed.

EFI_INVALID_PARAMETER If DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The bulk transfer cannot be completed within Timeout timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is returned
in Status.

 Protocols — USB Support

Version 1.10 12/01/02 14-45

EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()

Summary

This function is used to manage a USB device with an interrupt transfer pipe. An Asynchronous
Interrupt Transfer is typically used to query a device’s status at a fixed rate. For example,
keyboard, mouse, and hub devices use this type of transfer to query their interrupt endpoints at
a fixed rate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN BOOLEAN IsNewTransfer,
 IN UINTN PollingInterval OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK InterruptCallBack OPTIONAL,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an INTERRUPT endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

IsNewTransfer If TRUE, a new transfer will be submitted to USB controller. If
FALSE, the interrupt transfer is deleted from the device’s interrupt
transfer queue.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to be
executed. This parameter is required when IsNewTransfer is
TRUE. The value must be between 1 to 255, otherwise
EFI_INVALID_PARAMETER is returned. The units are in
milliseconds.

DataLength Specifies the length, in bytes, of the data to be received from the
USB device. This parameter is only required when
IsNewTransfer is TRUE.

Context Data passed to the InterruptCallback function. This is an
optional parameter and may be NULL.

Extensible Firmware Interface Specification

14-46 12/01/02 Version 1.10

InterruptCallback The Callback function. This function is called if the asynchronous
interrupt transfer is completed. This parameter is required when
IsNewTransfer is TRUE. See “Related Definitions” for the
definition of this type.

Related Definitions
typedef
EFI_STATUS
(EFIAPI * EFI_ASYNC_USB_TRANSFER_CALLBACK) (
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context,
 IN UINT32 Status
);

Data Data received or sent via the USB Asynchronous Transfer, if the
transfer completed successfully.

DataLength The length of Data received or sent via the Asynchronous
Transfer, if transfer successfully completes.

Context Data passed from UsbAsyncInterruptTransfer() request.

Status Indicates the result of the asynchronous transfer.

Description

This function allows a USB device driver to communicate with a USB device with an Interrupt
Transfer. Asynchronous Interrupt transfer is different than the other four transfer types because it is
a nonblocking transfer. The interrupt endpoint is queried at a fixed rate, and the data transfer
direction is always in the direction from the USB device towards the system.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is
specified by PollingInterval, the size of the receive buffer is specified by DataLength,
and the callback function is specified by InterruptCallback.

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

Status Code Returned
EFI_SUCCESS The asynchronous USB transfer request has been successfully executed.

EFI_DEVICE_ERROR The asynchronous USB transfer request failed.

 Protocols — USB Support

Version 1.10 12/01/02 14-47

Examples

Below is an example of how an asynchronous interrupt transfer is used. The example shows how a
USB Keyboard Device Driver can periodically receive data from interrupt endpoint.
EFI_USB_IO_PROTOCOL *UsbIo;
EFI_STATUS Status;
USB_KEYBOARD_DEV *UsbKeyboardDevice;
EFI_USB_INTERRUPT_CALLBACK KeyboardHandle;

. . .
Status = UsbIo->UsbAsyncInterruptTransfer(
 UsbIo,
 UsbKeyboardDevice->IntEndpointAddress,
 TRUE,
 UsbKeyboardDevice->IntPollingInterval,
 8,
 KeyboardHandler,
 UsbKeyboardDevice
);
. . .

//
// The following is the InterruptCallback function. If there is any results got
// from Asynchoronous Interrupt Transfer, this function will be called.
//
EFI_STATUS
KeyboardHandler(
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context,
 IN UINT32 Result
)
{
 USB_KEYBOARD_DEV *UsbKeyboardDevice;
 UINTN I;

 if(EFI_ERROR(Result))
 {
 //
 // Something error during this transfer, just to some recovery work
 //
 . . .
 . . .
 return EFI_DEVICE_ERROR;
 }

 UsbKeyboardDevice = (USB_KEYBOARD_DEV *)Context;

 for(I = 0; I < DataLength; I++)
 {
 ParsedData(Data[I]);
 . . .

}

return EFI_SUCCESS;

}

Extensible Firmware Interface Specification

14-48 12/01/02 Version 1.10

EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()

Summary

This function is used to manage a USB device with an interrupt transfer pipe. The difference
between UsbAsyncInterruptTransfer() and UsbSyncInterruptTransfer() is that
the Synchronous interrupt transfer will only be executed one time. Once it returns, regardless of its
status, the interrupt request will be deleted in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_SYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN UINTN Timeout,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an INTERRUPT endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, then size, in bytes, of the buffer Data. On output, the
amount of data actually transferred.

Timeout The time out, in seconds, for this transfer. If Timeout is 0, then
the caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned. If the
transfer is not completed in this time frame, then EFI_TIMEOUT
is returned.

Status This parameter indicates the USB transfer status.

 Protocols — USB Support

Version 1.10 12/01/02 14-49

Description

This function allows a USB device driver to communicate with a USB device through a
synchronous interrupt transfer. The UsbSyncInterruptTransfer() differs from
UsbAsyncInterruptTransfer() described in the previous section in that it is a blocking
transfer request. The caller must wait for the function return, either successfully or unsuccessfully.

Status Code Returned
EFI_SUCCESS The sync interrupt transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within Timeout timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is returned
in Status.

Extensible Firmware Interface Specification

14-50 12/01/02 Version 1.10

EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()

Summary

This function is used to manage a USB device with an isochronous transfer pipe. An Isochronous
transfer is typically used to transfer streaming data.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USB_IO_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an ISOCHRONOUS endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength The size, in bytes, of the data buffer specified by Data.

Status This parameter indicates the USB transfer status.

 Protocols — USB Support

Version 1.10 12/01/02 14-51

Description

This function allows a USB device driver to communicate with a USB device with an Isochronous
Transfer. The type of transfer is different than the other types because the USB Bus Driver will not
attempt to perform error recovery if transfer fails. If the USB transfer is completed successfully,
then EFI_SUCCESS is returned. The isochronous transfer is designed to be completed within 1
USB frame time, if it cannot be completed, EFI_TIMEOUT is returned. If the transfer fails due to
other reasons, then EFI_DEVICE_ERROR is returned and the detailed error status is returned in
Status. If the data length exceeds the maximum payload per USB frame time, then it is this
function’s responsibility to divide the data into a set of smaller packets that fit into a USB frame
time. If all the packets are transferred successfully, then EFI_SUCCESS is returned.

Status Code Returned
EFI_SUCCESS The isochronous transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within the 1 USB frame time.

EFI_DEVICE_ERROR The transfer failed due to the reason other than timeout, The error status
is returned in Status.

Extensible Firmware Interface Specification

14-52 12/01/02 Version 1.10

EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()

Summary

This function is used to manage a USB device with an isochronous transfer pipe. An asynchronous
Isochronous transfer is a nonblocking USB isochronous transfer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,
 IN VOID *Context OPTIONAL

);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an ISOCHRONOUS endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Context Data passed to the IsochronousCallback() function. This
is an optional parameter and may be NULL.

IsochronousCallback The IsochronousCallback() function. This function is
called if the requested isochronous transfer is completed. See the
“Related Definitions” section of the
UsbAsyncInterruptTransfer() function description.

 Protocols — USB Support

Version 1.10 12/01/02 14-53

Description

This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous
transfer request through this function, this function will return immediately. When the isochronous
transfer completes, the IsochronousCallback() function will be triggered, the caller can
know the transfer results. If the transfer is successful, the caller can get the data received or sent in
this callback function.

Status Code Returned
EFI_SUCCESS The asynchronous isochronous transfer has been successfully submitted

to the system.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be submitted due to a lack of resources.

Extensible Firmware Interface Specification

14-54 12/01/02 Version 1.10

EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()

Summary

Retrieves the USB Device Descriptor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_DEVICE_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_DEVICE_DESCRIPTOR *DeviceDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

DeviceDescriptor A pointer to the caller allocated USB Device Descriptor. See
“Related Definitions” for a detailed description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT16 BcdUSB;
 UINT8 DeviceClass;
 UINT8 DeviceSubClass;
 UINT8 DeviceProtocol;
 UINT8 MaxPacketSize0;
 UINT16 IdVendor;
 UINT16 IdProduct;
 UINT16 BcdDevice;
 UINT8 StrManufacturer;
 UINT8 StrProduct;
 UINT8 StrSerialNumber;
 UINT8 NumConfigurations;
} EFI_USB_DEVICE_DESCRIPTOR;

 Protocols — USB Support

Version 1.10 12/01/02 14-55

Description

This function is used to retrieve information about USB devices. This information includes the
device class, subclass, and the number of configurations the USB device supports. If
DeviceDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB
device descriptor is not found, then EFI_NOT_FOUND is returned. Otherwise, the device
descriptor is returned in DeviceDescriptor, and EFI_SUCCESS is returned.

Status Code Returned
EFI_SUCCESS The device descriptor was retrieved successfully.

EFI_INVALID_PARAMETER DeviceDescriptor is NULL.

EFI_NOT_FOUND The device descriptor was not found. The device may not be configured.

Extensible Firmware Interface Specification

14-56 12/01/02 Version 1.10

EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()

Summary

Retrieves the USB Device Configuration Descriptor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_CONFIG_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_CONFIG_DESCRIPTOR *ConfigurationDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

ConfigurationDescriptor A pointer to the caller allocated USB Active Configuration
Descriptor. See “Related Definitions” for a detailed
description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT16 TotalLength;
 UINT8 NumInterfaces;
 UINT8 ConfigurationValue;
 UINT8 Configuration;
 UINT8 Attributes;
 UINT8 MaxPower;
} EFI_USB_CONFIG_DESCRIPTOR;

Description

This function is used to retrieve the active configuration that the USB device is currently using. If
ConfigurationDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the
USB controller does not contain an active configuration, then EFI_NOT_FOUND is returned.
Otherwise, the active configuration is returned in ConfigurationDescriptor, and
EFI_SUCCESS is returned.

Status Code Returned
EFI_SUCCESS The active configuration descriptor was retrieved successfully.
EFI_INVALID_PARAMETER ConfigurationDescriptor is NULL.

EFI_NOT_FOUND An active configuration descriptor cannot be found. The device may not
be configured.

 Protocols — USB Support

Version 1.10 12/01/02 14-57

EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()

Summary

Retrieves the Interface Descriptor for a USB Device Controller. As stated earlier, an interface
within a USB device is equivalently to a USB Controller within the current configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_INTERFACE_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_INTERFACE_DESCRIPTOR *InterfaceDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

InterfaceDescriptor A pointer to the caller allocated USB Interface Descriptor within
the configuration setting. See “Related Definitions” for a
detailed description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT8 InterfaceNumber;
 UINT8 AlternateSetting;
 UINT8 NumEndpoints;
 UINT8 InterfaceClass;
 UINT8 InterfaceSubClass;
 UINT8 InterfaceProtocol;
 UINT8 Interface;
} EFI_USB_INTERFACE_DESCRIPTOR;

Extensible Firmware Interface Specification

14-58 12/01/02 Version 1.10

Description

This function is used to retrieve the interface descriptor for the USB controller. If
InterfaceDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB
controller does not contain an interface descriptor, then EFI_NOT_FOUND is returned. Otherwise,
the interface descriptor is returned in InterfaceDescriptor, and EFI_SUCCESS is returned.

Status Code Returned
EFI_SUCCESS The interface descriptor retrieved successfully.
EFI_INVALID_PARAMETER InterfaceDescriptor is NULL.

EFI_NOT_FOUND The interface descriptor cannot be found. The device may not be
correctly configured.

 Protocols — USB Support

Version 1.10 12/01/02 14-59

EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()

Summary

Retrieves an Endpoint Descriptor within a USB Controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 OUT EFI_USB_ENDPOINT_DESCRIPTOR *EndpointDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

EndpointIndex Indicates which endpoint descriptor to retrieve. The valid
range is 0..15.

EndpointDescriptor A pointer to the caller allocated USB Endpoint Descriptor of
a USB controller. See “Related Definitions” for a detailed
description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT8 EndpointAddress;
 UINT8 Attributes;
 UINT16 MaxPacketSize;
 UINT8 Interval;
} EFI_USB_ENDPOINT_DESCRIPTOR;

Description

This function is used to retrieve an endpoint descriptor within a USB controller. If
EndpointIndex is not in the range 0..15, then EFI_INVALID_PARAMETER is returned. If
EndpointDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the
endpoint specified by EndpointIndex does not exist within the USB controller, then
EFI_NOT_FOUND is returned. Otherwise, the endpoint descriptor is returned in
EndpointDescriptor, and EFI_SUCCESS is returned.

Extensible Firmware Interface Specification

14-60 12/01/02 Version 1.10

Status Code Returned
EFI_SUCCESS The endpoint descriptor was retrieved successfully.

EFI_INVALID_PARAMETER EndpointIndex is not valid.

EFI_INVALID_PARAMETER EndpointDescriptor is NULL.

EFI_NOT_FOUND The endpoint descriptor cannot be found. The device may not be
correctly configured.

Examples

The following code fragment shows how to retrieve all the endpoint descriptors from a
USB controller.
EFI_USB_IO_PROTOCOL *UsbIo;
EFI_USB_INTERFACE_DESCRIPTOR InterfaceDesc;
EFI_USB_ENDPOINT_DESCRIPTOR EndpointDesc;
UINTN Index;

Status = UsbIo->GetInterfaceDescriptor (
 UsbIo,
 &InterfaceDesc
);
. . .
for(Index = 0; Index < InterfaceDesc.NumEndpoints; Index++) {
 Status = UsbIo->GetEndpointDescriptor(
 UsbIo,
 Index,
 &EndpointDesc
);
. . .
}

Protocols — USB Support

Version 1.10 12/01/02 14-61

EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()

Summary

Retrieves a Unicode string stored in a USB Device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_STRING_DESCRIPTOR) (

IN EFI_USB_IO_PROTOCOL *This,
IN UINT16 LangID,
IN UINT8 StringID,
OUT CHAR16 **String
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

LangID The Language ID for the string being retrieved. See the
UsbGetSupportedLanguages() function description for a
more detailed description.

StringID The ID of the string being retrieved.

String A pointer to a buffer allocated by this function with
AllocatePool() to store the string. If this function returns
EFI_SUCCESS, it stores the string the caller wants to get. The
caller should release the string buffer with FreePool() after the
string is not used any more.

Description

This function is used to retrieve strings stored in a USB device. Strings are stored in a Unicode
format. The string to retrieve is identified by a language and an identifier. The language is
specified by LangID, and the identifier is specified by StringID. If the string is found, it is
returned in String, and EFI_SUCCESS is returned. If the string cannot be found, then
EFI_NOT_FOUND is returned. The string buffer is allocated by this function with
AllocatePool(). The caller is responsible for calling FreePool() for String when it is
no longer required.

Status Code Returned
EFI_SUCCESS The string was retrieved successfully.

EFI_NOT_FOUND The string specified by LangID and StringID was not found.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate the return buffer String.

Extensible Firmware Interface Specification

14-62 12/01/02 Version 1.10

EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()

Summary

Retrieves all the language ID codes that the USB device supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_SUPPORTED_LANGUAGES) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT UINT16 **LangIDTable,
 OUT UINT16 *TableSize
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

LangIDTable Language ID for the string the caller wants to get. This is a 16-bit
ID defined by Microsoft. This buffer pointer is allocated and
maintained by the USB Bus Driver, the caller should not modify
its contents.

TableSize The size, in bytes, of the table LangIDTable.

Description

Retrieves all the language ID codes that the USB device supports.

Status Code Returned
EFI_SUCCESS The support languages were retrieved successfully.

 Protocols — USB Support

Version 1.10 12/01/02 14-63

EFI_USB_IO_PROTOCOL.UsbPortReset()

Summary

Resets and reconfigures the USB controller. This function will work for all USB devices except
USB Hub Controllers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_PORT_RESET) (
 IN EFI_USB_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 14.2.5.

Description

This function provides a reset mechanism by sending a RESET signal from the parent hub port. A
reconfiguration process will happen (that includes setting the address and setting the configuration).
This reset function does not change the bus topology. A USB hub controller cannot be reset using
this function, because it would impact the downstream USB devices. So if the controller is a USB
hub controller, then EFI_INVALID_PARAMETER is returned.

Status Code Returned
EFI_SUCCESS The USB controller was reset.

EFI_INVALID_PARAMETER If the controller specified by This is a USB hub.

EFI_DEVICE_ERROR An error occurred during the reconfiguration process.

Extensible Firmware Interface Specification

14-64 12/01/02 Version 1.10

14.2.6 USB Device Paths
An EFI_USB_IO_PROTOCOL must be installed on a handle for its services to be available to
USB device drivers. In addition to the EFI_USB_IO_PROTOCOL, an EFI_DEVICE_PATH must
also be installed on the same handle. See Chapter 5 for a detailed description of the
EFI_DEVICE_PATH.

14.2.6.1 USB Device Path Node
Below is the definition for USB Device Path Node.
#define MESSAGING_DEVICE_PATH 0x03
#define MSG_USB_DP 0x05
typedef struct _USB_DEVICE_PATH {
 EFI_DEVICE_PATH Header;
 UINT8 ParentPortNumber;
 UINT8 InterfaceNumber;
} USB_DEVICE_PATH;

Parameters
Header Device Path Header for USB Device Path Node.

ParentPortNumber The parent USB hub port which this controller is connected to.

InterfaceNumber The USB Controller identifier within a USB device. Some USB
device may have several interfaces (i.e. USB Controllers). The
Interface Number is the identifier for the USB Controller.

 Protocols — USB Support

Version 1.10 12/01/02 14-65

14.2.6.2 USB Device Path Example
Table 14-4 shows an example device path for a USB controller on a desktop platform. This USB
Controller is connected to the port 0 of the root hub, and its interface number is 0. The USB Host
Controller is a PCI device whose PCI device number 0x1F and PCI function 0x02. So, the whole
device path for this USB Controller consists an ACPI Device Path Node, a PCI Device Path Node,
a USB Device Path Node and a Device Path End Structure. The _HID and _UID must match the
ACPI table description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(1F|2)/USB(0,0).

Table 14-4. USB Device Path Examples

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x1F PCI Function

0x11 0x01 0x02 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 Parent Hub Port Number.

0x17 0x01 0x00 Controller Interface Number.

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

Extensible Firmware Interface Specification

14-66 12/01/02 Version 1.10

Another example is a USB Controller (interface number 0) that is connected to port 3 of a USB
Hub Controller (interface number 0), and this USB Hub Controller is connected to the port 1 of the
root hub. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(1F|2)/USB(1,0)/USB(3,0).

Table 14-5 shows the device path for this USB Controller.

Table 14-5. Another USB Device Path Example

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x1F PCI Function

0x11 0x01 0x02 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x01 Parent Hub Port Number.

0x17 0x01 0x00 Controller Interface Number.

0x18 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x19 0x01 0x05 Sub type – USB

0x1A 0x02 0x06 Length – 0x06 bytes

0x1C 0x01 0x03 Parent Hub Port Number.

0x1D 0x01 0x00 Controller Interface Number.

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes

Version 1.10 12/01/02 15-1

15
Protocols - Network Support

15.1 EFI_SIMPLE_NETWORK Protocol

This section defines the Simple Network Protocol. This protocol provides a packet level interface
to a network adapter.

EFI_SIMPLE_NETWORK Protocol

Summary

The EFI_SIMPLE_NETWORK protocol provides services to initialize a network interface, transmit
packets, receive packets, and close a network interface.

GUID
#define EFI_SIMPLE_NETWORK_PROTOCOL \

{ A19832B9-AC25-11D3-9A2D-0090273fc14d }

Revision Number
#define EFI_SIMPLE_NETWORK_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_SIMPLE_NETWORK_ {
 UINT64 Revision;
 EFI_SIMPLE_NETWORK_START Start;
 EFI_SIMPLE_NETWORK_STOP Stop;
 EFI_SIMPLE_NETWORK_INITIALIZE Initialize;
 EFI_SIMPLE_NETWORK_RESET Reset;
 EFI_SIMPLE_NETWORK_SHUTDOWN Shutdown;
 EFI_SIMPLE_NETWORK_RECEIVE_FILTERS ReceiveFilters;
 EFI_SIMPLE_NETWORK_STATION_ADDRESS StationAddress;
 EFI_SIMPLE_NETWORK_STATISTICS Statistics;
 EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC MCastIpToMac;
 EFI_SIMPLE_NETWORK_NVDATA NvData;
 EFI_SIMPLE_NETWORK_GET_STATUS GetStatus;
 EFI_SIMPLE_NETWORK_TRANSMIT Transmit;
 EFI_SIMPLE_NETWORK_RECEIVE Receive;
 EFI_EVENT WaitForPacket;
 EFI_SIMPLE_NETWORK_MODE *Mode;
} EFI_SIMPLE_NETWORK;

Extensible Firmware Interface Specification

15-2 12/01/02 Version 1.10

Parameters
Revision Revision of the EFI_SIMPLE_NETWORK Protocol. All future revisions

must be backwards compatible. If a future version is not backwards
compatible it is not the same GUID.

Start Prepares the network interface for further command operations. No
other EFI_SIMPLE_NETWORK interface functions will operate until
this call is made. See the Start() function description.

Stop Stops further network interface command processing. No other
EFI_SIMPLE_NETWORK interface functions will operate after this call
is made until another Start() call is made. See the Stop() function
description.

Initialize Resets the network adapter and allocates the transmit and receive buffers.
See the Initialize() function description.

Reset Resets the network adapter and reinitializes it with the parameters
provided in the previous call to Initialize(). See the Reset()
function description.

Shutdown Resets the network adapter and leaves it in a state that is safe for another
driver to initialize. The memory buffers assigned in the
Initialize() call are released. After this call, only the
Initialize() or Stop() calls may be used. See the
Shutdown() function description.

ReceiveFilters Enables and disables the receive filters for the network interface and, if
supported, manages the filtered multicast HW MAC (Hardware Media
Access Control) address list. See the ReceiveFilters() function
description.

StationAddress Modifies or resets the current station address, if supported. See the
StationAddress() function description.

Statistics Collects statistics from the network interface and allows the statistics to
be reset. See the Statistics() function description.

MCastIpToMac Maps a multicast IP address to a multicast HW MAC address. See the
MCastIpToMac() function description.

NvData Reads and writes the contents of the NVRAM devices attached to the
network interface. See the NvData() function description.

GetStatus Reads the current interrupt status and the list of recycled transmit buffers
from the network interface. See the GetStatus() function
description.

Transmit Places a packet in the transmit queue. See the Transmit() function
description.

 Protocols — Network Support

Version 1.10 12/01/02 15-3

Receive Retrieves a packet from the receive queue, along with the status flags
that describe the packet type. See the Receive() function description.

WaitForPacket Event used with WaitForEvent() to wait for a packet to be received.

Mode Pointer to the EFI_SIMPLE_NETWORK_MODE data for the device. See
“Related Definitions” below.

Related Definitions

//***
// EFI_SIMPLE_NETWORK_MODE
//
// Note that the fields in this data structure are read-only and
// are updated by the code that produces the EFI_SIMPLE_NETWORK
// protocol functions. All these fields must be discovered
// during driver initialization.
//***
typedef struct {

UINT32 State;
UINT32 HwAddressSize;
UINT32 MediaHeaderSize;
UINT32 MaxPacketSize;
UINT32 NvRamSize;
UINT32 NvRamAccessSize;
UINT32 ReceiveFilterMask;
UINT32 ReceiveFilterSetting;
UINT32 MaxMCastFilterCount;
UINT32 MCastFilterCount;
EFI_MAC_ADDRESS MCastFilter[MAX_MCAST_FILTER_CNT];
EFI_MAC_ADDRESS CurrentAddress;
EFI_MAC_ADDRESS BroadcastAddress;
EFI_MAC_ADDRESS PermanentAddress;
UINT8 IfType;
BOOLEAN MacAddressChangeable;
BOOLEAN MultipleTxSupported;
BOOLEAN MediaPresentSupported;
BOOLEAN MediaPresent;

} EFI_SIMPLE_NETWORK_MODE;

State Reports the current state of the network interface (see
EFI_SIMPLE_NETWORK_STATE below). When an
EFI_SIMPLE_NETWORK driver has initialized a network
interface, it is left in the EfiSimpleNetworkStopped state.

HwAddressSize The size, in bytes, of the network interface’s HW address.

MediaHeaderSize The size, in bytes, of the network interface’s media header.

Extensible Firmware Interface Specification

15-4 12/01/02 Version 1.10

MaxPacketSize The maximum size, in bytes, of the packets supported by the
network interface.

NvRamSize The size, in bytes, of the NVRAM device attached to the
network interface. If an NVRAM device is not attached to the
network interface, then this field will be zero. This value must
be a multiple of NvramAccessSize.

NvRamAccessSize The size that must be used for all NVRAM accesses. This
means that the start address for NVRAM read and write
operations, and the total length of those operations, must be a
multiple of this value. The legal values for this field are 0, 1, 2,
4, 8. If the value is zero, then no NVRAM devices are attached
to the network interface.

ReceiveFilterMask The multicast receive filter settings supported by the network
interface.

ReceiveFilterSetting The current multicast receive filter settings. See “Bit Mask
Values for ReceiveFilterSetting” below.

MaxMCastFilterCount The maximum number of multicast address receive filters
supported by the driver. If this value is zero, then the multicast
address receive filters cannot be modified with ReceiveFilters().
This field may be less than MAX_MCAST_FILTER_CNT (see
below).

MCastFilterCount The current number of multicast address receive filters.

MCastFilter Array containing the addresses of the current multicast address
receive filters.

CurrentAddress The current HW MAC address for the network interface.

BroadcastAddress The current HW MAC address for broadcast packets.

PermanentAddress The permanent HW MAC address for the network interface.

IfType The interface type of the network interface. See RFC 1700,
section “Number Hardware Type.”

MacAddressChangeable TRUE if the HW MAC address can be changed.

MultipleTxSupported TRUE if the network interface can transmit more than one packet
at a time.

MediaPresentSupported TRUE if the presence of media can be determined; otherwise
FALSE. If FALSE, MediaPresent cannot be used.

MediaPresent TRUE if media are connected to the network interface; otherwise
FALSE. This field is only valid immediately after calling
Initialize().

 Protocols — Network Support

Version 1.10 12/01/02 15-5

//***
// EFI_SIMPLE_NETWORK_STATE
//***
typedef enum {

EfiSimpleNetworkStopped,
EfiSimpleNetworkStarted,
EfiSimpleNetworkInitialized,
EfiSimpleNetworkMaxState

} EFI_SIMPLE_NETWORK_STATE;

//***
// MAX_MCAST_FILTER_CNT
//***
#define MAX_MCAST_FILTER_CNT 16

//***
// Bit Mask Values for ReceiveFilterSetting. bit mask values
//
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_UNICAST 0x01
#define EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST 0x02
#define EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST 0x04
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS 0x08
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST 0x10

Description

The EFI_SIMPLE_NETWORK protocol is used to initialize access to a network adapter. Once the
network adapter has been initialized, the EFI_SIMPLE_NETWORK protocol provides services that
allow packets to be transmitted and received. This provides a packet level interface that can then be
used by higher level drivers to produce boot services like DHCP, TFTP, and MTFTP. In addition,
this protocol can be used as a building block in a full UDP and TCP/IP implementation that can
produce a wide variety of application level network interfaces. See the Preboot Execution
Environment (PXE) Specification for more information.

Implementation Note

The underlying network hardware may only be able to access 4 GB (32-bits) of system memory.
Any requests to transfer data to/from memory above 4 GB with 32-bit network hardware will be
double-buffered (using intermediate buffers below 4 GB) and will reduce performance.

Extensible Firmware Interface Specification

15-6 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.Start()

Summary

Changes the state of a network interface from “stopped” to “started.”

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_START) (
 IN EFI_SIMPLE_NETWORK *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Description

This function starts a network interface. If the network interface was successfully started, then
EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was started.

EFI_ALREADY_STARTED The network interface is already in the started state.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

 Protocols — Network Support

Version 1.10 12/01/02 15-7

EFI_SIMPLE_NETWORK.Stop()

Summary

Changes the state of a network interface from “started” to “stopped.”

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STOP) (
 IN EFI_SIMPLE_NETWORK *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Description

This function stops an network interface. This call is only valid if the network interface is in
the started state. If the network interface was successfully stopped, then EFI_SUCCESS will
be returned.

Status Codes Returned
EFI_SUCCESS The network interface was stopped.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-8 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.Initialize()

Summary

Resets a network adapter and allocates the transmit and receive buffers required by the network
interface; optionally, also requests allocation of additional transmit and receive buffers.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_INITIALIZE) (
 IN EFI_SIMPLE_NETWORK *This,
 IN UINTN ExtraRxBufferSize OPTIONAL,
 IN UINTN ExtraTxBufferSize OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

ExtraRxBufferSize The size, in bytes, of the extra receive buffer space that the
driver should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

ExtraTxBufferSize The size, in bytes, of the extra transmit buffer space that the
driver should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

Description

This function allocates the transmit and receive buffers required by the network interface. If this
allocation fails, then EFI_OUT_OF_RESOURCES is returned. If the allocation succeeds and the
network interface is successfully initialized, then EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was initialized.

EFI_NOT_STARTED The network interface has not been started.

EFI_OUT_OF_RESOURCES There was not enough memory for the transmit and receive buffers.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

 Protocols — Network Support

Version 1.10 12/01/02 15-9

EFI_SIMPLE_NETWORK.Reset()

Summary

Resets a network adapter and reinitializes it with the parameters that were provided in the previous
call to Initialize().

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RESET) (
 IN EFI_SIMPLE_NETWORK *This,
 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

This function resets a network adapter and reinitializes it with the parameters that were provided in
the previous call to Initialize(). The transmit and receive queues are emptied and all
pending interrupts are cleared. Receive filters, the station address, the statistics, and the multicast-
IP-to-HW MAC addresses are not reset by this call. If the network interface was successfully reset,
then EFI_SUCCESS will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR
will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was reset.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-10 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.Shutdown()

Summary

Resets a network adapter and leaves it in a state that is safe for another driver to initialize.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_SHUTDOWN) (
 IN EFI_SIMPLE_NETWORK *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Description

This function releases the memory buffers assigned in the Initialize() call. Pending
transmits and receives are lost, and interrupts are cleared and disabled. After this call, only the
Initialize() and Stop() calls may be used. If the network interface was successfully
shutdown, then EFI_SUCCESS will be returned. If the driver has not been initialized,
EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was shutdown.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

 Protocols — Network Support

Version 1.10 12/01/02 15-11

EFI_SIMPLE_NETWORK.ReceiveFilters()

Summary
Manages the multicast receive filters of a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE_FILTERS) (
 IN EFI_SIMPLE_NETWORK *This,
 IN UINT32 Enable,
 IN UINT32 Disable,
 IN BOOLEAN ResetMCastFilter,
 IN UINTN MCastFilterCnt OPTIONAL,
 IN EFI_MAC_ADDRESS *MCastFilter OPTIONAL,
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Enable A bit mask of receive filters to enable on the network interface.

Disable A bit mask of receive filters to disable on the network interface.

ResetMCastFilter Set to TRUE to reset the contents of the multicast receive filters
on the network interface to their default values.

MCastFilterCnt Number of multicast HW MAC addresses in the new
MCastFilter list. This value must be less than or equal to the
MCastFilterCnt field of EFI_SIMPLE_NETWORK_MODE.
This field is optional if ResetMCastFilter is TRUE.

MCastFilter A pointer to a list of new multicast receive filter HW MAC
addresses. This list will replace any existing multicast HW
MAC address list. This field is optional if
ResetMCastFilter is TRUE.

Description

This function modifies the current receive filter mask on a network interface. The bits set in
Enable are set on the current receive filter mask. The bits set in Disable are cleared from the
current receive filter mask. If the same bit is set in both Enable and Disable, then the bit will
be disabled. The receive filter mask is updated on the network interface, and the new receive filter
mask can be read from the ReceiveFilterSetting field of
EFI_SIMPLE_NETWORK_MODE. If an attempt is made to enable a bit that is not supported on the
network interface, then EFI_INVALID_PARAMETER will be returned. The
ReceiveFilterMask field of EFI_SIMPLE_NETWORK_MODE specifies the supported receive
filters settings. See “Bit Mask Values for ReceiveFilterSetting” in “Related Definitions”
in Section 15.1 for the list of the supported receive filter bit mask values.

Extensible Firmware Interface Specification

15-12 12/01/02 Version 1.10

If ResetMCastFilter is TRUE, then the multicast receive filter list on the network interface
will be reset to the default multicast receive filter list. If ResetMCastFilter is FALSE, and
this network interface allows the multicast receive filter list to be modified, then the
MCastFilterCnt and MCastFilter are used to update the current multicast receive filter list.
The modified receive filter list settings can be found in the MCastFilter field of
EFI_SIMPLE_NETWORK_MODE. If the network interface does not allow the multicast receive
filter list to be modified, then EFI_INVALID_PARAMETER will be returned. If the driver has not
been initialized, EFI_DEVICE_ERROR will be returned.

If the receive filter mask and multicast receive filter list have been successfully updated on the
network interface, EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The multicast receive filter list was updated.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

 Protocols — Network Support

Version 1.10 12/01/02 15-13

EFI_SIMPLE_NETWORK.StationAddress()

Summary

Modifies or resets the current station address, if supported.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATION_ADDRESS) (
 IN EFI_SIMPLE_NETWORK *This,
 IN BOOLEAN Reset,
 IN EFI_MAC_ADDRESS *New OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Reset Flag used to reset the station address to the network interface’s
permanent address.

New New station address to be used for the network interface.

Description

This function modifies or resets the current station address of a network interface, if supported. If
Reset is TRUE, then the current station address is set to the network interface’s permanent
address. If Reset is FALSE, and the network interface allows its station address to be modified,
then the current station address is changed to the address specified by New. If the network interface
does not allow its station address to be modified, then EFI_INVALID_PARAMETER will be
returned. If the station address is successfully updated on the network interface, EFI_SUCCESS
will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The network interface’s station address was updated.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-14 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.Statistics()

Summary

Resets or collects the statistics on a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATISTICS) (
 IN EFI_SIMPLE_NETWORK *This,
 IN BOOLEAN Reset,
 IN OUT UINTN *StatisticsSize OPTIONAL,
 OUT EFI_NETWORK_STATISTICS *StatisticsTable OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Reset Set to TRUE to reset the statistics for the network interface.

StatisticsSize On input the size, in bytes, of StatisticsTable. On output
the size, in bytes, of the resulting table of statistics.

StatisticsTable A pointer to the EFI_NETWORK_STATISTICS structure that
contains the statistics. Type EFI_NETWORK_STATISTICS is
defined in “Related Definitions” below.

Related Definitions

//***
// EFI_NETWORK_STATISTICS
//
// Any statistic value that is –1 is not available
// on the device and is to be ignored.
//***
typedef struct {
 UINT64 RxTotalFrames;
 UINT64 RxGoodFrames;
 UINT64 RxUndersizeFrames;
 UINT64 RxOversizeFrames;

UINT64 RxDroppedFrames;
UINT64 RxUnicastFrames;

 UINT64 RxBroadcastFrames;
 UINT64 RxMulticastFrames;

UINT64 RxCrcErrorFrames;
UINT64 RxTotalBytes;

 UINT64 TxTotalFrames;

 Protocols — Network Support

Version 1.10 12/01/02 15-15

 UINT64 TxGoodFrames;
 UINT64 TxUndersizeFrames;
 UINT64 TxOversizeFrames;
 UINT64 TxDroppedFrames;
 UINT64 TxUnicastFrames;
 UINT64 TxBroadcastFrames;
 UINT64 TxMulticastFrames;
 UINT64 TxCrcErrorFrames;
 UINT64 TxTotalBytes;
 UINT64 Collisions;
 UINT64 UnsupportedProtocol;
} EFI_NETWORK_STATISTICS;

RxTotalFrames Total number of frames received. Includes frames with errors
and dropped frames.

RxGoodFrames Number of valid frames received and copied into receive buffers.

RxUndersizeFrames Number of frames below the minimum length for the media.
This would be less than 64 for Ethernet.

RxOversizeFrames Number of frames longer than the maximum length for the
media. This would be greater than 1500 for Ethernet.

RxDroppedFrames Valid frames that were dropped because receive buffers
were full.

RxUnicastFrames Number of valid unicast frames received and not dropped.

RxBroadcastFrames Number of valid broadcast frames received and not dropped.

RxMulticastFrames Number of valid multicast frames received and not dropped.

RxCrcErrorFrames Number of frames with CRC or alignment errors.

RxTotalBytes Total number of bytes received. Includes frames with errors and
dropped frames.

TxTotalFrames Total number of frames transmitted. Includes frames with errors
and dropped frames.

TxGoodFrames Number of valid frames transmitted and copied into receive
buffers.

TxUndersizeFrames Number of frames below the minimum length for the media.
This would be less than 64 for Ethernet.

TxOversizeFrames Number of frames longer than the maximum length for the
media. This would be greater than 1500 for Ethernet.

TxDroppedFrames Valid frames that were dropped because receive buffers
were full.

TxUnicastFrames Number of valid unicast frames transmitted and not dropped.

TxBroadcastFrames Number of valid broadcast frames transmitted and not dropped.

Extensible Firmware Interface Specification

15-16 12/01/02 Version 1.10

TxMulticastFrames Number of valid multicast frames transmitted and not dropped.

TxCrcErrorFrames Number of frames with CRC or alignment errors.

TxTotalBytes Total number of bytes transmitted. Includes frames with errors
and dropped frames.

Collisions Number of collisions detected on this subnet.

UnsupportedProtocol Number of frames destined for unsupported protocol.

Description

This function resets or collects the statistics on a network interface. If the size of the statistics table
specified by StatisticsSize is not big enough for all the statistics that are collected by the
network interface, then a partial buffer of statistics is returned in StatisticsTable,
StatisticsSize is set to the size required to collect all the available statistics, and
EFI_BUFFER_TOO_SMALL is returned.

If StatisticsSize is big enough for all the statistics, then StatisticsTable will be filled,
StatisticsSize will be set to the size of the returned StatisticsTable structure, and
EFI_SUCCESS is returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be
returned.

If Reset is FALSE, and both StatisticsSize and StatisticsTable are NULL, then no
operations will be performed, and EFI_SUCCESS will be returned.

If Reset is TRUE, then all of the supported statistics counters on this network interface will be
reset to zero.

Status Codes Returned
EFI_SUCCESS The statistics were collected from the network interface.

EFI_NOT_STARTED The network interface has not been started.

EFI_BUFFER_TOO_SMALL The Statistics buffer was too small. The current buffer size
needed to hold the statistics is returned in StatisticsSize.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

 Protocols — Network Support

Version 1.10 12/01/02 15-17

EFI_SIMPLE_NETWORK.MCastIPtoMAC()

Summary

Converts a multicast IP address to a multicast HW MAC address.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC) (
 IN EFI_SIMPLE_NETWORK *This,
 IN BOOLEAN IPv6,
 IN EFI_IP_ADDRESS *IP,
 OUT EFI_MAC_ADDRESS *MAC
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

IPv6 Set to TRUE if the multicast IP address is IPv6 [RFC 2460]. Set
to FALSE if the multicast IP address is IPv4 [RFC 791].

IP The multicast IP address that is to be converted to a multicast
HW MAC address.

MAC The multicast HW MAC address that is to be generated from IP.

Description

This function converts a multicast IP address to a multicast HW MAC address for all packet
transactions. If the mapping is accepted, then EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The multicast IP address was mapped to the multicast HW MAC

address.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-18 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.NvData()

Summary

Performs read and write operations on the NVRAM device attached to a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_NVDATA) (
 IN EFI_SIMPLE_NETWORK *This
 IN BOOLEAN ReadWrite,
 IN UINTN Offset,
 IN UINTN BufferSize,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

ReadWrite TRUE for read operations, FALSE for write operations.

Offset Byte offset in the NVRAM device at which to start the read or
write operation. This must be a multiple of
NvRamAccessSize and less than NvRamSize. (See
EFI_SIMPLE_NETWORK_MODE)

BufferSize The number of bytes to read or write from the NVRAM device.
This must also be a multiple of NvramAccessSize.

Buffer A pointer to the data buffer.

Description

This function performs read and write operations on the NVRAM device attached to a network
interface. If ReadWrite is TRUE, a read operation is performed. If ReadWrite is FALSE, a
write operation is performed.

Offset specifies the byte offset at which to start either operation. Offset must be a multiple of
NvRamAccessSize , and it must have a value between zero and NvRamSize.

BufferSize specifies the length of the read or write operation. BufferSize must also be a
multiple of NvRamAccessSize, and Offset + BufferSize must not exceed NvRamSize.

If any of the above conditions is not met, then EFI_INVALID_PARAMETER will be returned.

If all the conditions are met and the operation is “read,” the NVRAM device attached to the
network interface will be read into Buffer and EFI_SUCCESS will be returned. If this is a write
operation, the contents of Buffer will be used to update the contents of the NVRAM device
attached to the network interface and EFI_SUCCESS will be returned.

 Protocols — Network Support

Version 1.10 12/01/02 15-19

Status Codes Returned
EFI_SUCCESS The NVRAM access was performed.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-20 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.GetStatus()

Summary

Reads the current interrupt status and recycled transmit buffer status from a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_GET_STATUS) (
 IN EFI_SIMPLE_NETWORK *This,
 OUT UINT32 *InterruptStatus OPTIONAL,
 OUT VOID **TxBuf OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

InterruptStatus A pointer to the bit mask of the currently active interrupts (see
“Related Definitions”). If this is NULL, the interrupt status will
not be read from the device. If this is not NULL, the interrupt
status will be read from the device. When the interrupt status is
read, it will also be cleared. Clearing the transmit interrupt does
not empty the recycled transmit buffer array.

TxBuf Recycled transmit buffer address. The network interface will not
transmit if its internal recycled transmit buffer array is full.
Reading the transmit buffer does not clear the transmit interrupt.
If this is NULL, then the transmit buffer status will not be read.
If there are no transmit buffers to recycle and TxBuf is not
NULL, * TxBuf will be set to NULL.

Related Definitions
//***
// Interrupt Bit Mask Settings for InterruptStatus.
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_INTERRUPT 0x01
#define EFI_SIMPLE_NETWORK_TRANSMIT_INTERRUPT 0x02
#define EFI_SIMPLE_NETWORK_COMMAND_INTERRUPT 0x04
#define EFI_SIMPLE_NETWORK_SOFTWARE_INTERRUPT 0x08

 Protocols — Network Support

Version 1.10 12/01/02 15-21

Description

This function gets the current interrupt and recycled transmit buffer status from the network
interface. The interrupt status is returned as a bit mask in InterruptStatus. If
InterruptStatus is NULL, the interrupt status will not be read. If TxBuf is not NULL, a
recycled transmit buffer address will be retrieved. If a recycled transmit buffer address is returned
in TxBuf, then the buffer has been successfully transmitted, and the status for that buffer is
cleared. If the status of the network interface is successfully collected, EFI_SUCCESS will be
returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The status of the network interface was retrieved.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-22 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.Transmit()

Summary

Places a packet in the transmit queue of a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_TRANSMIT) (
 IN EFI_SIMPLE_NETWORK *This
 IN UINTN HeaderSize,

IN UINTN BufferSize,
 IN VOID *Buffer,
 IN EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
 IN EFI_MAC_ADDRESS *DestAddr OPTIONAL,
 IN UINT16 *Protocol OPTIONAL,
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

HeaderSize The size, in bytes, of the media header to be filled in by the
Transmit() function. If HeaderSize is nonzero, then it
must be equal to This->Mode->MediaHeaderSize and
the DestAddr and Protocol parameters must not be NULL.

BufferSize The size, in bytes, of the entire packet (media header and data) to
be transmitted through the network interface.

Buffer A pointer to the packet (media header followed by data) to be
transmitted. This parameter cannot be NULL. If HeaderSize
is zero, then the media header in Buffer must already be filled
in by the caller. If HeaderSize is nonzero, then the media
header will be filled in by the Transmit() function.

SrcAddr The source HW MAC address. If HeaderSize is zero, then
this parameter is ignored. If HeaderSize is nonzero and
SrcAddr is NULL, then This->Mode->CurrentAddress
is used for the source HW MAC address.

DestAddr The destination HW MAC address. If HeaderSize is zero,
then this parameter is ignored.

Protocol The type of header to build. If HeaderSize is zero, then this
parameter is ignored. See RFC 1700, section “Ether Types,”
for examples.

 Protocols — Network Support

Version 1.10 12/01/02 15-23

Description

This function places the packet specified by Header and Buffer on the transmit queue. If
HeaderSize is nonzero and HeaderSize is not equal to
This->Mode->MediaHeaderSize, then EFI_INVALID_PARAMETER will be returned. If
BufferSize is less than This->Mode->MediaHeaderSize, then
EFI_BUFFER_TOO_SMALL will be returned. If Buffer is NULL, then
EFI_INVALID_PARAMETER will be returned. If HeaderSize is nonzero and DestAddr or
Protocol is NULL, then EFI_INVALID_PARAMETER will be returned. If the transmit engine
of the network interface is busy, then EFI_NOT_READY will be returned. If this packet can be
accepted by the transmit engine of the network interface, the packet contents specified by Buffer
will be placed on the transmit queue of the network interface, and EFI_SUCCESS will be returned.
GetStatus() can be used to determine when the packet has actually been transmitted. The
contents of the Buffer must not be modified until the packet has actually been transmitted.

The Transmit() function performs nonblocking I/O. A caller who wants to perform blocking
I/O, should call Transmit(), and then GetStatus() until the transmitted buffer shows up in
the recycled transmit buffer.

If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The packet was placed on the transmit queue.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY The network interface is too busy to accept this transmit request.

EFI_BUFFER_TOO_SMALL The BufferSize parameter is too small.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-24 12/01/02 Version 1.10

EFI_SIMPLE_NETWORK.Receive()

Summary

Receives a packet from a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE) (
 IN EFI_SIMPLE_NETWORK *This
 OUT UINTN *HeaderSize OPTIONAL,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer,
 OUT EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
 OUT EFI_MAC_ADDRESS *DestAddr OPTIONAL,
 OUT UINT16 *Protocol OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

HeaderSize The size, in bytes, of the media header received on the network
interface. If this parameter is NULL, then the media header size
will not be returned.

BufferSize On entry, the size, in bytes, of Buffer. On exit, the size, in
bytes, of the packet that was received on the network interface.

Buffer A pointer to the data buffer to receive both the media header and
the data.

SrcAddr The source HW MAC address. If this parameter is NULL, the
HW MAC source address will not be extracted from the media
header.

DestAddr The destination HW MAC address. If this parameter is NULL,
the HW MAC destination address will not be extracted from the
media header.

Protocol The media header type. If this parameter is NULL, then the
protocol will not be extracted from the media header. See
RFC 1700 section “Ether Types” for examples.

 Protocols — Network Support

Version 1.10 12/01/02 15-25

Description

This function retrieves one packet from the receive queue of a network interface. If there are no
packets on the receive queue, then EFI_NOT_READY will be returned. If there is a packet on the
receive queue, and the size of the packet is smaller than BufferSize, then the contents of the
packet will be placed in Buffer, and BufferSize will be updated with the actual size of the
packet. In addition, if SrcAddr, DestAddr, and Protocol are not NULL, then these values
will be extracted from the media header and returned. EFI_SUCCESS will be returned if a packet
was successfully received. If BufferSize is smaller than the received packet, then the size of
the receive packet will be placed in BufferSize and EFI_BUFFER_TOO_SMALL will be
returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The received data was stored in Buffer, and BufferSize

has been updated to the number of bytes received.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY No packets have been received on the network interface.

EFI_BUFFER_TOO_SMALL BufferSize is too small for the received packets.
BufferSize has been updated to the required size.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

15-26 12/01/02 Version 1.10

15.2 NETWORK_INTERFACE_IDENTIFIER Protocol

This is an optional protocol that is used to describe details about the software layer that is used to
produce the Simple Network Protocol. This protocol is only required if the underlying network
interface is 16-bit UNDI, 32/64-bit S/W UNDI, or H/W UNDI. It is used to obtain type and
revision information about the underlying network interface.

An instance of the Network Interface Identifier protocol must be created for each physical external
network interface that is controlled by the !PXE structure. The !PXE structure is defined in the
32/64-bit UNDI Specification in Appendix E.

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

Summary

An optional protocol that is used to describe details about the software layer that is used to produce
the Simple Network Protocol.

GUID
#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL \

{ E18541CD-F755-4f73-928D-643C8A79B229 }

Revision Number
#define EFI_NETWORK_INTERFACE_IDENTIFIER_INTERFACE_REVISION \

0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
UINT64 Id;
UINT64 ImageAddr;
UINT32 ImageSize;
CHAR8 StringId[4];
UINT8 Type;
UINT8 MajorVer;
UINT8 MinorVer;
BOOLEAN Ipv6Supported;
UINT8 IfNum;

} EFI_NETWORK_INTERFACE_IDENTIFIER_INTERFACE;

 Protocols — Network Support

Version 1.10 12/01/02 15-27

Parameters
Revision The revision of the EFI_NETWORK_INTERFACE_IDENTIFIER

protocol.

Id Address of the first byte of the identifying structure for this network
interface. This is only valid when the network interface is started (see
EFI_SIMPLE_NETWORK_PROTOCOL.Start()). When the network
interface is not started, this field is set to zero.

16-bit UNDI and 32/64-bit S/W UNDI:

Id contains the address of the first byte of the copy of the !PXE
structure in the relocated UNDI code segment. See the Preboot
Execution Environment (PXE) Specification and Appendix E.

H/W UNDI:

Id contains the address of the !PXE structure.

ImageAddr Address of the unrelocated network interface image.

16-bit UNDI:

ImageAddr is the address of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageAddr is the address of the unrelocated S/W UNDI image.

H/W UNDI:

 ImageAddr contains zero.

ImageSize Size of unrelocated network interface image.

16-bit UNDI:

ImageSize is the size of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageSize is the size of the unrelocated S/W UNDI image.

H/W UNDI:

ImageSize contains zero.

StringId A four-character ASCII string that is sent in the class identifier field of
option 60 in DHCP. For a Type of EfiNetworkInterfaceUndi,
this field is “UNDI.”

Extensible Firmware Interface Specification

15-28 12/01/02 Version 1.10

Type Network interface type. This will be set to one of the values in
EFI_NETWORK_INTERFACE_TYPE (see “Related Definitions”
below).

MajorVer Major version number.

16-bit UNDI:

MajorVer comes from the third byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MajorVer comes from the Major field in the !PXE structure. See
Appendix E.

MinorVer Minor version number.

16-bit UNDI:

MinorVer comes from the second byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MinorVer comes from the Minor field in the !PXE structure. See
Appendix E.

Ipv6Supported TRUE if the network interface supports IPv6; otherwise FALSE.

IfNum The network interface number that is being identified by this Network
Interface Identifier Protocol. This field must be less than or equal to the
IFcnt field in the !PXE structure.

Related Definitions

//***
// EFI_NETWORK_INTERFACE_TYPE
//***
typedef enum {

EfiNetworkInterfaceUndi = 1
} EFI_NETWORK_INTERFACE_TYPE;

Description

The EFI_NETWORK_INTERFACE_IDENTIFIER Protocol is used by the
EFI_PXE_BASE_CODE Protocol and OS loaders to identify the type of the underlying network
interface and to locate its initial entry point.

 Protocols — Network Support

Version 1.10 12/01/02 15-29

15.3 PXE Base Code Protocol

This section defines the Preboot Execution Environment (PXE) Base Code protocol, which is used
to access PXE-compatible devices for network access and network booting. More information
about PXE can be found in the Preboot Execution Environment (PXE) Specification at:
ftp://download.intel.com/ial/wfm/pxespec.pdf.

EFI_PXE_BASE_CODE Protocol

Summary

The EFI_PXE_BASE_CODE protocol is used to control PXE-compatible devices. The features of
these devices are defined in the Preboot Execution Environment (PXE) Specification. An
EFI_PXE_BASE_CODE protocol will be layered on top of an EFI_SIMPLE_NETWORK protocol
in order to perform packet level transactions. The EFI_PXE_BASE_CODE handle also supports
the LOAD_FILE protocol. This provides a clean way to obtain control from the boot manager if
the boot path is from the remote device.

GUID
#define EFI_PXE_BASE_CODE_PROTOCOL \
 { 03C4E603-AC28-11d3-9A2D-0090273FC14D }

Revision Number
#define EFI_PXE_BASE_CODE_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
EFI_PXE_BASE_CODE_START Start;
EFI_PXE_BASE_CODE_STOP Stop;
EFI_PXE_BASE_CODE_DHCP Dhcp;
EFI_PXE_BASE_CODE_DISCOVER Discover;
EFI_PXE_BASE_CODE_MTFTP Mtftp;
EFI_PXE_BASE_CODE_UDP_WRITE UdpWrite;
EFI_PXE_BASE_CODE_UDP_READ UdpRead;
EFI_PXE_BASE_CODE_SET_IP_FILTER SetIpFilter;
EFI_PXE_BASE_CODE_ARP Arp;
EFI_PXE_BASE_CODE_SET_PARAMETERS SetParameters;
EFI_PXE_BASE_CODE_SET_STATION_IP SetStationIp;
EFI_PXE_BASE_CODE_SET_PACKETS SetPackets;
EFI_PXE_BASE_CODE_MODE *Mode;

} EFI_PXE_BASE_CODE;

ftp://download.intel.com/ial/wfm/pxespec.pdf

Extensible Firmware Interface Specification

15-30 12/01/02 Version 1.10

Parameters

Revision The revision of the EFI_PXE_BASE_CODE Protocol. All
future revisions must be backwards compatible. If a future
version is not backwards compatible it is not the same GUID.

Start Starts the PXE Base Code Protocol. Mode structure information
is not valid and no other Base Code Protocol functions will
operate until the Base Code is started. See the Start()
function description.

Stop Stops the PXE Base Code Protocol. Mode structure information
is unchanged by this function. No Base Code Protocol functions
will operate until the Base Code is restarted. See the Stop()
function description.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover / offer /
request / acknowledge) or DHCPv6 S.A.R.R (solicit / advertise /
request / reply) sequence. See the Dhcp() function description.

Discover Attempts to complete the PXE Boot Server and/or boot image
discovery sequence. See the Discover() function
description.

Mtftp Performs TFTP and MTFTP services. See the Mtftp()
function description.

UdpWrite Writes a UDP packet to the network interface. See the
UdpWrite() function description.

UdpRead Reads a UDP packet from the network interface. See the
UdpRead() function description.

SetIpFilter Updates the IP receive filters of the network device. See the
SetIpFilter() function description.

Arp Uses the ARP protocol to resolve a MAC address. See the
Arp() function description.

SetParameters Updates the parameters that affect the operation of the PXE Base
Code Protocol. See the SetParameters() function
description.

SetStationIp Updates the station IP address and subnet mask values. See the
SetStationIp() function description.

SetPackets Updates the contents of the cached DHCP and Discover packets.
See the SetPackets() function description.

Mode Pointer to the EFI_PXE_BASE_CODE_MODE data for this
device. The EFI_PXE_BASE_CODE_MODE structure is
defined in “Related Definitions” below.

 Protocols — Network Support

Version 1.10 12/01/02 15-31

Related Definitions

//***
// Maximum ARP and Route Entries
//***
#define EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES 8
#define EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES 8

//***
// EFI_PXE_BASE_CODE_MODE
//
// The data values in this structure are read-only and
// are updated by the code that produces the EFI_PXE_BASE_CODE
// protocol functions.
//***
typedef struct {

BOOLEAN Started;
BOOLEAN Ipv6Available;
BOOLEAN Ipv6Supported;
BOOLEAN UsingIpv6;
BOOLEAN BisSupported;
BOOLEAN BisDetected;
BOOLEAN AutoArp;
BOOLEAN SendGUID;
BOOLEAN DhcpDiscoverValid;
BOOLEAN DhcpAckReceivd;
BOOLEAN ProxyOfferReceived;
BOOLEAN PxeDiscoverValid;
BOOLEAN PxeReplyReceived;
BOOLEAN PxeBisReplyReceived;
BOOLEAN IcmpErrorReceived;
BOOLEAN TftpErrorReceived;
BOOLEAN MakeCallbacks;
UINT8 TTL;
UINT8 ToS;
EFI_IP_ADDRESS StationIp;
EFI_IP_ADDRESS SubnetMask;
EFI_PXE_BASE_CODE_PACKET DhcpDiscover;
EFI_PXE_BASE_CODE_PACKET DhcpAck;
EFI_PXE_BASE_CODE_PACKET ProxyOffer;
EFI_PXE_BASE_CODE_PACKET PxeDiscover;
EFI_PXE_BASE_CODE_PACKET PxeReply;
EFI_PXE_BASE_CODE_PACKET PxeBisReply;

Extensible Firmware Interface Specification

15-32 12/01/02 Version 1.10

EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
UINT32 ArpCacheEntries;
EFI_PXE_BASE_CODE_ARP_ENTRY
 ArpCache[EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES];
UINT32 RouteTableEntries;
EFI_PXE_BASE_CODE_ROUTE_ENTRY

RouteTable[EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES];
EFI_PXE_BASE_CODE_ICMP_ERROR IcmpError;
EFI_PXE_BASE_CODE_TFTP_ERROR TftpError;

} EFI_PXE_BASE_CODE_MODE;

Started TRUE if this device has been started by calling Start(). This
field is set to TRUE by the Start() function and to FALSE by
the Stop() function.

Ipv6Available TRUE if the Simple Network Protocol being used supports IPv6.

Ipv6Supported TRUE if this PXE Base Code Protocol implementation supports
IPv6.

UsingIpv6 TRUE if this device is currently using IPv6. This field is set by
the Start() function.

BisSupported TRUE if this PXE Base Code implementation supports Boot
Integrity Services (BIS). This field is set by the Start()
function.

BisDetected TRUE if this device and the platform support Boot Integrity
Services (BIS). This field is set by the Start() function.

AutoArp TRUE for automatic ARP packet generation; FALSE otherwise.
This field is initialized to TRUE by Start() and can be
modified with the SetParameters() function.

SendGUID This field is used to change the Client Hardware Address
(chaddr) field in the DHCP and Discovery packets. Set to TRUE
to send the SystemGuid (if one is available). Set to FALSE to
send the client NIC MAC address. This field is initialized to
FALSE by Start() and can be modified with the
SetParameters() function.

DhcpDiscoverValid This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpDiscover field is valid. This field can
also be changed by the SetPackets() function.

 Protocols — Network Support

Version 1.10 12/01/02 15-33

DhcpAckReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpAck field is valid. This field can also be
changed by the SetPackets() function.

ProxyOfferReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully
and a proxy DHCP offer packet was received. When TRUE, the
ProxyOffer packet field is valid. This field can also be
changed by the SetPackets() function.

PxeDiscoverValid When TRUE, the PxeDiscover packet field is valid. This
field is set to FALSE by the Start() and Dhcp() functions,
and can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeReplyReceived When TRUE, the PxeReply packet field is valid. This field is
set to FALSE by the Start() and Dhcp() functions, and can
be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeBisReplyReceived When TRUE, the PxeBisReply packet field is valid. This
field is set to FALSE by the Start() and Dhcp() functions,
and can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

IcmpErrorReceived Indicates whether the IcmpError field has been updated. This
field is reset to FALSE by the Start(), Dhcp(),
Discover(), Mtftp(), UdpRead(), UdpWrite() and
Arp() functions. If an ICMP error is received, this field will be
set to TRUE after the IcmpError field is updated.

TftpErrorReceived Indicates whether the TftpError field has been updated. This
field is reset to FALSE by the Start() and Mtftp()
functions. If a TFTP error is received, this field will be set to
TRUE after the TftpError field is updated.

MakeCallbacks When FALSE, callbacks will not be made. When TRUE, make
callbacks to the PXE Base Code Callback Protocol. This field is
reset to FALSE by the Start() function if the PXE Base Code
Callback Protocol is not available. It is reset to TRUE by the
Start() function if the PXE Base Code Callback Protocol is
available.

TTL The “time to live” field of the IP header. This field is initialized
to DEFAULT_TTL (See “Related Definitions”) by the Start()
function and can be modified by the SetParameters()
function.

Extensible Firmware Interface Specification

15-34 12/01/02 Version 1.10

ToS The type of service field of the IP header. This field is initialized
to DEFAULT_ToS (See “Related Definitions”) by Start(),
and can be modified with the SetParameters() function.

StationIp The device’s current IP address. This field is initialized to a zero
address by Start(). This field is set when the Dhcp()
function completes successfully. This field can also be set by the
SetStationIp() function. This field must be set to a valid
IP address by either Dhcp() or SetStationIp() before the
Discover(), Mtftp(), UdpRead(), UdpWrite(), or
Arp() functions are called.

SubnetMask The device’s current subnet mask. This field is initialized to a
zero address by the Start() function. This field is set when
the Dhcp() function completes successfully. This field can
also be set by the SetStationIp() function. This field must
be set to a valid subnet mask by either Dhcp() or
SetStationIp() before the Discover(), Mtftp(),
UdpRead(), UdpWrite(), or Arp() functions are called.

DhcpDiscover Cached DHCP Discover packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can replaced
by the SetPackets() function.

DhcpAck Cached DHCP Ack packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be
replaced by the SetPackets() function.

ProxyOffer Cached Proxy Offer packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be
replaced by the SetPackets() function.

PxeDiscover Cached PXE Discover packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be
replaced by the SetPackets() function.

PxeReply Cached PXE Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be
replaced by the SetPackets() function.

PxeBisReply Cached PXE BIS Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. This field can be replaced by the
SetPackets() function.

 Protocols — Network Support

Version 1.10 12/01/02 15-35

IpFilter The current IP receive filter settings. The receive filter is
disabled and the number of IP receive filters is set to zero by the
Start() function, and is set by the SetIpFilter()
function.

ArpCacheEntries The number of valid entries in the ARP cache. This field is reset
to zero by the Start() function.

ArpCache Array of cached ARP entries.

RouteTableEntries The number of valid entries in the current route table. This field
is reset to zero by the Start() function.

RouteTable Array of route table entries.

IcmpError ICMP error packet. This field is updated when an ICMP error is
received and is undefined until the first ICMP error is received.
This field is zero-filled by the Start() function.

TftpError TFTP error packet. This field is updated when a TFTP error is
received and is undefined until the first TFTP error is received.
This field is zero-filled by the Start() function.

//***
// EFI_PXE_BASE_CODE_UDP_PORT
//***
typedef UINT16 EFI_PXE_BASE_CODE_UDP_PORT;

//***
// EFI_IPv4_ADDRESS and EFI_IPv6_ADDRESS
//***
typedef struct {
 UINT8 Addr[4];
} EFI_IPv4_ADDRESS;

typedef struct {
 UINT8 Addr[16];
} EFI_IPv6_ADDRESS;

//***
// EFI_IP_ADDRESS
//***
typedef union {
 UINT32 Addr[4];
 EFI_IPv4_ADDRESS v4;
 EFI_IPv6_ADDRESS v6;
} EFI_IP_ADDRESS;

Extensible Firmware Interface Specification

15-36 12/01/02 Version 1.10

//***
// EFI_MAC_ADDRESS
//***
typedef struct {
 UINT8 Addr[32];
} EFI_MAC_ADDRESS;

DHCP Packet Data Types

This section defines the data types for DHCP packets, ICMP error packets, and TFTP error packets.
All of these are byte-packed data structures.

NOTE

All the multibyte fields in these structures are stored in network order.

//***
// EFI_PXE_BASE_CODE_DHCPV4_PACKET
//***
typedef struct {

UINT8 BootpOpcode;
UINT8 BootpHwType;
UINT8 BootpHwAddrLen;
UINT8 BootpGateHops;
UINT32 BootpIdent;
UINT16 BootpSeconds;
UINT16 BootpFlags;
UINT8 BootpCiAddr[4];
UINT8 BootpYiAddr[4];
UINT8 BootpSiAddr[4];
UINT8 BootpGiAddr[4];
UINT8 BootpHwAddr[16];
UINT8 BootpSrvName[64];
UINT8 BootpBootFile[128];
UINT32 DhcpMagik;
UINT8 DhcpOptions[56];

} EFI_PXE_BASE_CODE_DHCPV4_PACKET;

// TBD in EFI v1.1
// typedef struct {
// } EFI_PXE_BASE_CODE_DHCPV6_PACKET;

 Protocols — Network Support

Version 1.10 12/01/02 15-37

//***
// EFI_PXE_BASE_CODE_PACKET
//***
typedef union {
 UINT64 Alignment;
 UINT8 Raw[1472];

EFI_PXE_BASE_CODE_DHCPV4_PACKET Dhcpv4;
// EFI_PXE_BASE_CODE_DHCPV6_PACKET Dhcpv6;

} EFI_PXE_BASE_CODE_PACKET;

//***
// EFI_PXE_BASE_CODE_ICMP_ERROR
//***
typedef struct {

UINT8 Type;
UINT8 Code;
UINT16 Checksum;
union {

UINT32 reserved;
UINT32 Mtu;
UINT32 Pointer;
struct {

UINT16 Identifier;
UINT16 Sequence;

} Echo;
} u;

UINT8 Data[494];
} EFI_PXE_BASE_CODE_ICMP_ERROR;

//***
// EFI_PXE_BASE_CODE_TFTP_ERROR
//***
typedef struct {

UINT8 ErrorCode;
CHAR8 ErrorString[127];

} EFI_PXE_BASE_CODE_TFTP_ERROR;

Extensible Firmware Interface Specification

15-38 12/01/02 Version 1.10

IP Receive Filter Settings

This section defines the data types for IP receive filter settings.

#define EFI_PXE_BASE_CODE_MAX_IPCNT 8

//***
// EFI_PXE_BASE_CODE_IP_FILTER
//***
typedef struct {

UINT8 Filters;
UINT8 IpCnt;
UINT16 reserved;
EFI_IP_ADDRESS IpList[EFI_PXE_BASE_CODE_MAX_IPCNT];

} EFI_PXE_BASE_CODE_IP_FILTER;

#define EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP 0x0001
#define EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST 0x0002
#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS 0x0004
#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST 0x0008

ARP Cache Entries

This section defines the data types for ARP cache entries, and route table entries.

//***
// EFI_PXE_BASE_CODE_ARP_ENTRY
//***
typedef struct {

EFI_IP_ADDRESS IpAddr;
EFI_MAC_ADDRESS MacAddr;

} EFI_PXE_BASE_CODE_ARP_ENTRY;

//***
// EFI_PXE_BASE_CODE_ROUTE_ENTRY
//***
typedef struct {

EFI_IP_ADDRESS IpAddr;
EFI_IP_ADDRESS SubnetMask;
EFI_IP_ADDRESS GwAddr;

} EFI_PXE_BASE_CODE_ROUTE_ENTRY;

 Protocols — Network Support

Version 1.10 12/01/02 15-39

Filter Operations for UDP Read/Write Functions

This section defines the types of filter operations that can be used with the UdpRead() and
UdpWrite() functions.

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP 0x0001
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT 0x0002
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_IP 0x0004
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT 0x0008
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_USE_FILTER 0x0010
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT 0x0020
#define DEFAULT_TTL 4
#define DEFAULT_ToS 0

The following table defines values for the PXE DHCP and Bootserver Discover packet tags that are
specific to the EFI environment. Complete definitions of all PXE tags are defined in Table 15-1
“PXE DHCP Options (Full List),” in the PXE Specification.

Table 15-1. PXE Tag Definitions for EFI

Tag Name Tag # Length Data Field

Client Network
Interface
Identifier

94 [0x5E] 3 [0x03] Type (1), MajorVer (1), MinorVer (1)

Type is a one byte field that identifies the network interface that
will be used by the downloaded program. Type is followed by
two one byte version number fields, MajorVer and MinorVer.

Type

UNDI (1) = 0x01

Versions

WfM-1.1a 16-bit UNDI: MajorVer = 0x02. MinorVer = 0x00

PXE-2.0 16-bit UNDI: MajorVer = 0x02, MinorVer = 0x01

32/64-bit UNDI & H/W UNDI: MajorVer = 0x03, MinorVer = 0x00

Client System
Architecture

93 [0x5D] 2 [0x02] Type (2)

Type is a two byte, network order, field that identifies the
processor and programming environment of the client system.

Types

IA x86 PC = 0x00 0x00

Itanium EFI PC = 0x00 0x02

IA-32 EFI PC = 0x00 0x06

continued

Extensible Firmware Interface Specification

15-40 12/01/02 Version 1.10

Table 15-1. PXE Tag Definitions for EFI (continued)

Tag Name Tag # Length Data Field

Class Identifier 60 [0x3C]

32 [0x20] "PXEClient:Arch:xxxxx:UNDI:yyyzzz"

"PXEClient:…" is used to identify communication between PXE
clients and servers. Information from tags 93 & 94 is embedded
in the Class Identifier string. (The strings defined in this tag are
case sensitive and must not be NULL-terminated.)

xxxxx = ASCII representation of Client System Architecture.

yyyzzz = ASCII representation of Client Network Interface
Identifier version numbers MajorVer(yyy) and MinorVer(zzz).

Example

"PXEClient:Arch:00002:UNDI:00300" identifies an IA64 PC w/
32/64-bit UNDI

Description

The basic mechanisms and flow for remote booting in EFI are identical to the remote boot
functionality described in detail in the PXE Specification. However, the actual execution
environment, linkage, and calling conventions are replaced and enhanced for the EFI environment.

The DHCP Option for the Client System Architecture is used to inform the DHCP server if the
client is an EFI environment in an IA-32 or Itanium-based system. The server may use this
information to provide default images if it does not have a specific boot profile for the client.

A handle that supports EFI_PXE_BASE_CODE protocol is required to support the
LOAD_FILE_Protocol protocol. The LOAD_FILE_Protocol protocol function
LoadFile() is used by the firmware to load files from devices that do not support file system
type accesses. Specifically, the firmware’s boot manager invokes LoadFile() with
BootPolicy being TRUE when attempting to boot from the device. The firmware then loads and
transfers control to the downloaded PXE boot image. Once the remote image is successfully
loaded, it may utilize the EFI_PXE_BASE_CODE interfaces, or even the
EFI_SIMPLE_NETWORK interfaces, to continue the remote process.

 Protocols — Network Support

Version 1.10 12/01/02 15-41

EFI_PXE_BASE_CODE.Start()

Summary

Enables the use of the PXE Base Code Protocol functions.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_START) (
 IN EFI_PXE_BASE_CODE *This,
 IN BOOLEAN UseIpv6
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

UseIpv6 Specifies the type of IP addresses that are to be used during the session
that is being started. Set to TRUE for IPv6 addresses, and FALSE for
IPv4 addresses.

Description

This function enables the use of the PXE Base Code Protocol functions. If the Started field of
the EFI_PXE_BASE_CODE_MODE structure is already TRUE, then EFI_ALREADY_STARTED
will be returned. If UseIpv6 is TRUE, then IPv6 formatted addresses will be used in this session.
If UseIpv6 is FALSE, then IPv4 formatted addresses will be used in this session. If UseIpv6 is
TRUE, and the Ipv6Supported field of the EFI_PXE_BASE_CODE_MODE structure is
FALSE, then EFI_UNSUPPORTED will be returned. If there is not enough memory or other
resources to start the PXE Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned.
Otherwise, the PXE Base Code Protocol will be started, and all of the fields of the
EFI_PXE_BASE_CODE_MODE structure will be initialized as follows:

Started Set to TRUE.

Ipv6Supported Unchanged.

Ipv6Available Unchanged.

UsingIpv6 Set to UseIpv6.

BisSupported Unchanged.

BisDetected Unchanged.

AutoArp Set to TRUE.

SendGUID Set to FALSE.

TTL Set to DEFAULT_TTL.

ToS Set to DEFAULT_ToS.

Extensible Firmware Interface Specification

15-42 12/01/02 Version 1.10

DhcpCompleted Set to FALSE.

ProxyOfferReceived Set to FALSE.

StationIp Set to an address of all zeros.

SubnetMask Set to a subnet mask of all zeros.

DhcpDiscover Zero-filled.

DhcpAck Zero-filled.

ProxyOffer Zero-filled.

PxeDiscoverValid Set to FALSE.

PxeDiscover Zero-filled.

PxeReplyValid Set to FALSE.

PxeReply Zero-filled.

PxeBisReplyValid Set to FALSE.

PxeBisReply Zero-filled.

IpFilter Set the Filters field to 0 and the IpCnt field to 0.

ArpCacheEntries Set to 0.

ArpCache Zero-filled.

RouteTableEntries Set to 0.

RouteTable Zero-filled.

IcmpErrorReceived Set to FALSE.

IcmpError Zero-filled.

TftpErroReceived Set to FALSE.

TftpError Zero-filled.

MakeCallbacks Set to TRUE if the PXE Base Code Callback Protocol is
available. Set to FALSE if the PXE Base Code Callback
Protocol is not available.

 Protocols — Network Support

Version 1.10 12/01/02 15-43

Status Codes Returned
EFI_SUCCESS The PXE Base Code Protocol was started.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the
EFI_PXE_BASE_CODE_MODE structure is FALSE.

EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
PXE Base Code Protocol.

Extensible Firmware Interface Specification

15-44 12/01/02 Version 1.10

EFI_PXE_BASE_CODE.Stop()

Summary

Disables the use of the PXE Base Code Protocol functions.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_STOP) (
 IN EFI_PXE_BASE_CODE *This
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Description

This function stops all activity on the network device. All the resources allocated in Start() are
released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is set to FALSE and
EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE
structure is already FALSE, then EFI_NOT_STARTED will be returned.

Status Codes Returned
EFI_SUCCESS The PXE Base Code Protocol was stopped.

EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

 Protocols — Network Support

Version 1.10 12/01/02 15-45

EFI_PXE_BASE_CODE.Dhcp()

Summary

Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
S.A.R.R (solicit / advertise / request / reply) sequence.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DHCP) (
 IN EFI_PXE_BASE_CODE *This,
 IN BOOLEAN SortOffers
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

SortOffers TRUE if the offers received should be sorted. Set to FALSE to try the
offers in the order that they are received.

Description

This function attempts to complete the DHCP sequence. If this sequence is completed, then
EFI_SUCCESS is returned, and the DhcpCompleted, ProxyOfferReceived, StationIp,
SubnetMask, DhcpDiscover, DhcpAck, and ProxyOffer fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in.

If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before they are tried.
If SortOffers is FALSE, then the cached DHCP offer packets will be tried in the order in which
they are received. Please see the Preboot Execution Environment (PXE) Specification for
additional details on the implementation of DHCP.

This function can take at least 31 seconds to timeout and return control to the caller. If the DHCP
sequence does not complete, then EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the DHCP sequence will be
stopped and EFI_ABORTED will be returned.

Extensible Firmware Interface Specification

15-46 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS Valid DHCP has completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.

EFI_ABORTED The callback function aborted the DHCP Protocol.

EFI_TIMEOUT The DHCP Protocol timed out.

EFI_ICMP_ERROR The DHCP Protocol generated an ICMP error.

EFI_NO_RESPONSE Valid PXE offer was not received.

 Protocols — Network Support

Version 1.10 12/01/02 15-47

EFI_PXE_BASE_CODE.Discover()

Summary

Attempts to complete the PXE Boot Server and/or boot image discovery sequence.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DISCOVER) (
 IN EFI_PXE_BASE_CODE *This,

IN UINT16 Type,
IN UINT16 *Layer,
IN BOOLEAN UseBis,
IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Type The type of bootstrap to perform. See “Related Definitions” below.

Layer Pointer to the boot server layer number to discover, which must be
PXE_BOOT_LAYER_INITIAL when a new server type is being
discovered. This is the only layer type that will perform multicast and
broadcast discovery. All other layer types will only perform unicast
discovery. If the boot server changes Layer, then the new Layer will
be returned.

UseBis TRUE if Boot Integrity Services are to be used. False otherwise.

Info Pointer to a data structure that contains additional information on the
type of discovery operation that is to be performed. If this field is NULL,
then the contents of the cached DhcpAck and ProxyOffer packets
will be used.

Related Definitions
//***
// Bootstrap Types
//***
#define EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP 0
#define EFI_PXE_BASE_CODE_BOOT_TYPE_MS_WINNT_RIS 1
#define EFI_PXE_BASE_CODE_BOOT_TYPE_INTEL_LCM 2
#define EFI_PXE_BASE_CODE_BOOT_TYPE_DOSUNDI 3
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NEC_ESMPRO 4
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_WSoD 5
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_LCCM 6
#define EFI_PXE_BASE_CODE_BOOT_TYPE_CA_UNICENTER_TNG 7

Extensible Firmware Interface Specification

15-48 12/01/02 Version 1.10

#define EFI_PXE_BASE_CODE_BOOT_TYPE_HP_OPENVIEW 8
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_9 9
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_10 10
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_11 11
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NOT_USED_12 12
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_INSTALL 13
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_BOOT 14
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REMBO 15
#define EFI_PXE_BASE_CODE_BOOT_TYPE_BEOBOOT 16
//
// Values 17 through 32767 are reserved.
// Values 32768 through 65279 are for vendor use.
// Values 65280 through 65534 are reserved.
//
#define EFI_PXE_BASE_CODE_BOOT_TYPE_PXETEST 65535

#define EFI_PXE_BASE_CODE_BOOT_LAYER_MASK 0x7FFF
#define EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL 0x0000

//***
// EFI_PXE_BASE_CODE_DISCOVER_INFO
//***
typedef struct {

BOOLEAN UseMCast;
BOOLEAN UseBCast;
BOOLEAN UseUCast;
BOOLEAN MustUseList;
EFI_IP_ADDRESS ServerMCastIp;
UINT16 IpCnt;
EFI_PXE_BASE_CODE_SRVLIST SrvList[IpCnt];

} EFI_PXE_BASE_CODE_DISCOVER_INFO;

//***
// EFI_PXE_BASE_CODE_SRVLIST
//***
typedef struct {

UINT16 Type;
BOOLEAN AcceptAnyResponse;
UINT8 reserved;
EFI_IP_ADDRESS IpAddr;

} EFI_PXE_BASE_CODE_SRVLIST;

 Protocols — Network Support

Version 1.10 12/01/02 15-49

Description

This function attempts to complete the PXE Boot Server and/or boot image discovery sequence. If
this sequence is completed, then EFI_SUCCESS is returned, and the PxeDiscoverValid,
PxeDiscover, PxeReplyReceived, and PxeReply fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE
structure will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to
FALSE.

In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[], has two
uses: It is the Boot Server IP address list used for unicast discovery (if the UseUCast field is
TRUE), and it is the list used for Boot Server verification (if the MustUseList field is TRUE).
Also, if the MustUseList field in that structure is TRUE and the AcceptAnyResponse field
in the SrvList[] array is TRUE, any Boot Server reply of that type will be accepted. If the
AcceptAnyResponse field is FALSE, only responses from Boot Servers with matching IP
addresses will be accepted.

This function can take at least 10 seconds to timeout and return control to the caller. If the
Discovery sequence does not complete, then EFI_TIMEOUT will be returned. Please see the
Preboot Execution Environment (PXE) Specification for additional details on the implementation of
the Discovery sequence.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the Discovery sequence is
stopped and EFI_ABORTED will be returned.

Status Codes Returned
EFI_SUCCESS The Discovery sequence has been completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.

EFI_ABORTED The callback function aborted the Discovery sequence.

EFI_TIMEOUT The Discovery sequence timed out.

EFI_ICMP_ERROR The Discovery sequence generated an ICMP error.

Extensible Firmware Interface Specification

15-50 12/01/02 Version 1.10

EFI_PXE_BASE_CODE.Mtftp()

Summary

Used to perform TFTP and MTFTP services.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_MTFTP) (
 IN EFI_PXE_BASE_CODE *This,

IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
IN OUT VOID *BufferPtr, OPTIONAL
IN BOOLEAN Overwrite,
IN OUT UINTN *BufferSize,
IN UINTN *BlockSize, OPTIONAL
IN EFI_IP_ADDRESS *ServerIp,
IN CHAR8 *Filename, OPTIONAL
IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info, OPTIONAL
IN BOOLEAN DontUseBuffer

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Operation The type of operation to perform. See “Related Definitions” below for
the list of operation types.

BufferPtr A pointer to the data buffer. Ignored for read file if DontUseBuffer
is TRUE.

Overwrite Only used on write file operations. TRUE if a file on a remote server can
be overwritten.

BufferSize For get-file-size operations, *BufferSize returns the size of the
requested file. For read-file and write-file operations, this parameter is
set to the size of the buffer specified by the BufferPtr parameter. For
read-file operations, if EFI_BUFFER_TOO_SMALL is returned,
*BufferSize returns the size of the requested file.

BlockSize The requested block size to be used during a TFTP transfer. This must
be at least 512. If this field is NULL, then the largest block size
supported by the implementation will be used.

ServerIp The TFTP / MTFTP server IP address.

Filename A Null-terminated ASCII string that specifies a directory name or a file
name. This is ignored by MTFTP read directory.

 Protocols — Network Support

Version 1.10 12/01/02 15-51

Info Pointer to the MTFTP information. This information is required to start
or join a multicast TFTP session. It is also required to perform the “get
file size” and “read directory” operations of MTFTP. See “Related
Definitions” below for the description of this data structure.

DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation. Setting
this to TRUE will cause TFTP and MTFTP read file operations to
function without a receive buffer, and all of the received packets are
passed to the Callback Protocol which is responsible for storing them.
This field is only used by TFTP and MTFTP read file.

Related Definitions
//***
// EFI_PXE_BASE_CODE_TFTP_OPCODE
//***
typedef enum {

EFI_PXE_BASE_CODE_TFTP_FIRST,
EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE,
EFI_PXE_BASE_CODE_TFTP_READ_FILE,
EFI_PXE_BASE_CODE_TFTP_WRITE_FILE,
EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY,
EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE,
EFI_PXE_BASE_CODE_MTFTP_READ_FILE,
EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY,
EFI_PXE_BASE_CODE_MTFTP_LAST

} EFI_PXE_BASE_CODE_TFTP_OPCODE;

//***
// EFI_PXE_BASE_CODE_MTFTP_INFO
//***
typedef struct {

EFI_IP_ADDRESS MCastIp;
EFI_PXE_BASE_CODE_UDP_PORT CPort;
EFI_PXE_BASE_CODE_UDP_PORT SPort;
UINT16 ListenTimeout;
UINT16 TransmitTimeout;

} EFI_PXE_BASE_CODE_MTFTP_INFO;

MCastIp File multicast IP address. This is the IP address to which the
server will send the requested file.

CPort Client multicast listening port. This is the UDP port to which the
server will send the requested file.

SPort Server multicast listening port. This is the UDP port on which
the server listens for multicast open requests and data acks.

Extensible Firmware Interface Specification

15-52 12/01/02 Version 1.10

ListenTimeout The number of seconds a client should listen for an active
multicast session before requesting a new multicast session.

TransmitTimeout The number of seconds a client should wait for a packet from the
server before retransmitting the previous open request or data
ack packet.

Description

This function is used to perform TFTP and MTFTP services. This includes the TFTP operations to
get the size of a file, read a directory, read a file, and write a file. It also includes the MTFTP
operations to get the size of a file, read a directory, and read a file. The type of operation is
specified by Operation. If the callback function that is invoked during the TFTP/MTFTP
operation does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then
EFI_ABORTED will be returned.

For read operations, the return data will be placed in the buffer specified by BufferPtr. If
BufferSize is too small to contain the entire downloaded file, then
EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero or the size of
the requested file (the size of the requested file is only returned if the TFTP server supports TFTP
options). If BufferSize is large enough for the read operation, then BufferSize will be set to
the size of the downloaded file, and EFI_SUCCESS will be returned. Applications using the
PxeBc.Mtftp() services should use the get-file-size operations to determine the size of the
downloaded file prior to using the read-file operations—especially when downloading large
(greater than 64 MB) files—instead of making two calls to the read-file operation. Following this
recommendation will save time if the file is larger than expected and the TFTP server does not
support TFTP option extensions. Without TFTP option extension support, the client has to
download the entire file, counting and discarding the received packets, to determine the file size.

For write operations, the data to be sent is in the buffer specified by BufferPtr. BufferSize
specifies the number of bytes to send. If the write operation completes successfully, then
EFI_SUCCESS will be returned.

For TFTP “get file size” operations, the size of the requested file or directory is returned in
BufferSize, and EFI_SUCCESS will be returned. If the TFTP server does not support options,
the file will be downloaded into a bit bucket and the length of the downloaded file will be returned.
For MTFTP “get file size” operations, if the MTFTP server does not support the “get file size”
option, EFI_UNSUPPORTED will be returned.

 Protocols — Network Support

Version 1.10 12/01/02 15-53

This function can take up to 10 seconds to timeout and return control to the caller. If the TFTP
sequence does not complete, EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the TFTP sequence is stopped
and EFI_ABORTED will be returned.

The format of the data returned from a TFTP read directory operation is a null-terminated filename
followed by a null-terminated information string, of the form “size year-month-day
hour:minute:second” (i.e. %d %d-%d-%d %d:%d:%f - note that the seconds field can be a decimal
number), where the date and time are UTC. For an MTFTP read directory command, there is
additionally a null-terminated multicast IP address preceding the filename of the form
%d.%d.%d.%d for IP v4 (TBD for IP v6). The final entry is itself null-terminated, so that the final
information string is terminated with two null octets.

Status Codes Returned
EFI_SUCCESS The TFTP/MTFTP operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.

EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.

EFI_TIMEOUT The TFTP/MTFTP operation timed out.

EFI_TFTP_ERROR The TFTP/MTFTP operation generated an error.

Extensible Firmware Interface Specification

15-54 12/01/02 Version 1.10

EFI_PXE_BASE_CODE.UdpWrite()

Summary

Writes a UDP packet to the network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_WRITE) (
 IN EFI_PXE_BASE_CODE *This,

IN UINT16 OpFlags,
IN EFI_IP_ADDRESS *DestIp,
IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
IN EFI_IP_ADDRESS *GatewayIp, OPTIONAL
IN EFI_IP_ADDRESS *SrcIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
IN UINTN *HeaderSize, OPTIONAL
IN VOID *HeaderPtr, OPTIONAL
IN UINTN *BufferSize,
IN VOID *BufferPtr

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

OpFlags The UDP operation flags. If MAY_FRAGMENT is set, then if required,
this UDP write operation may be broken up across multiple packets.

DestIp The destination IP address.

DestPort The destination UDP port number.

GatewayIp The gateway IP address. If DestIp is not in the same subnet as
StationIp, then this gateway IP address will be used. If this field is
NULL, and the DestIp is not in the same subnet as StationIp, then
the RouteTable will be used.

SrcIp The source IP address. If this field is NULL, then StationIp will be
used as the source IP address.

SrcPort The source UDP port number. If OpFlags has ANY_SRC_PORT set
or SrcPort is NULL, then a source UDP port will be automatically
selected. If a source UDP port was automatically selected, and
SrcPort is not NULL, then it will be returned in SrcPort.

HeaderSize An optional field which may be set to the length of a header at
HeaderPtr to be prepended to the data at BufferPtr.

 Protocols — Network Support

Version 1.10 12/01/02 15-55

HeaderPtr If HeaderSize is not NULL, a pointer to a header to be prepended to
the data at BufferPtr.

BufferSize A pointer to the size of the data at BufferPtr.

BufferPtr A pointer to the data to be written.

Description

This function writes a UDP packet specified by the (optional HeaderPtr and) BufferPtr
parameters to the network interface. The UDP header is automatically built by this routine. It uses
the parameters OpFlags, DestIp, DestPort, GatewayIp, SrcIp, and SrcPort to build
this header. If the packet is successfully built and transmitted through the network interface, then
EFI_SUCCESS will be returned. If a timeout occurs during the transmission of the packet, then
EFI_TIMEOUT will be returned. If an ICMP error occurs during the transmission of the packet,
then the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be
returned.

Status Codes Returned
EFI_SUCCESS The UDP Write operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.

EFI_ABORTED The callback function aborted the UDP Write operation.

EFI_TIMEOUT The UDP Write operation timed out.

EFI_ICMP_ERROR The UDP Write operation generated an error.

Extensible Firmware Interface Specification

15-56 12/01/02 Version 1.10

EFI_PXE_BASE_CODE.UdpRead()

Summary

Reads a UDP packet from the network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_READ) (
 IN EFI_PXE_BASE_CODE *This

IN UINT16 OpFlags,
IN OUT EFI_IP_ADDRESS *DestIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort, OPTIONAL
IN OUT EFI_IP_ADDRESS *SrcIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
IN UINTN *HeaderSize, OPTIONAL
IN VOID *HeaderPtr, OPTIONAL
IN OUT UINTN *BufferSize,
IN VOID *BufferPtr

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

OpFlags The UDP operation flags.

DestIp The destination IP address.

DestPort The destination UDP port number.

SrcIp The source IP address.

SrcPort The source UDP port number.

HeaderSize An optional field which may be set to the length of a header to be put in
HeaderPtr.

HeaderPtr If HeaderSize is not NULL, a pointer to a buffer to hold the
HeaderSize bytes which follow the UDP header.

BufferSize On input, a pointer to the size of the buffer at BufferPtr. On output,
the size of the data written to BufferPtr.

BufferPtr A pointer to the data to be read.

 Protocols — Network Support

Version 1.10 12/01/02 15-57

Description

This function reads a UDP packet from a network interface. The data contents are returned in (the
optional HeaderPtr and) BufferPtr, and the size of the buffer received is returned in
BufferSize . If the input BufferSize is smaller than the UDP packet received (less optional
HeaderSize), it will be set to the required size, and EFI_BUFFER_TOO_SMALL will be
returned. In this case, the contents of BufferPtr are undefined, and the packet is lost. If a UDP
packet is successfully received, then EFI_SUCCESS will be returned, and the information from the
UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if they are not
NULL. Depending on the values of OpFlags and the DestIp, DestPort, SrcIp, and
SrcPort input values, different types of UDP packet receive filtering will be performed. The
following tables summarize these receive filter operations.

Table 15-2. Destination IP Filter Operation

OpFlags
USE_FILTER

OpFlags
ANY_DEST_IP

DestIp

Action

0 0 NULL Receive a packet sent to StationIp.

0 1 NULL Receive a packet sent to any IP address.

1 x NULL Receive a packet whose destination IP address passes
the IP filter.

0 0 not NULL Receive a packet whose destination IP address matches
DestIp.

0 1 not NULL Receive a packet sent to any IP address and, return the
destination IP address in DestIp.

1 x not NULL Receive a packet whose destination IP address passes the
IP filter, and return the destination IP address in DestIp.

Table 15-3. Destination UDP Port Filter Operation

OpFlags
ANY_DEST_PORT

DestPort

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent to any UDP port.

0 not NULL Receive a packet whose destination Port matches DestPort.

1 not NULL Receive a packet sent to any UDP port, and return the destination port in
DestPort.

Extensible Firmware Interface Specification

15-58 12/01/02 Version 1.10

Table 15-4. Source IP Filter Operation

OpFlags
ANY_SRC_IP

SrcIp

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any IP address.

0 not NULL Receive a packet whose source IP address matches SrcIp.

1 not NULL Receive a packet sent from any IP address, and return the source IP
address in SrcIp.

Table 15-5. Source UDP Port Filter Operation

OpFlags
ANY_SRC_PORT

SrcPort

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any UDP port.

0 not NULL Receive a packet whose source UDP port matches SrcPort.

1 not NULL Receive a packet sent from any UDP port, and return the source UPD
port in SrcPort.

Status Codes Returned
EFI_SUCCESS The UDP Read operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.

EFI_ABORTED The callback function aborted the UDP Read operation.

EFI_TIMEOUT The UDP Read operation timed out.

EFI_ICMP_ERROR The UDP Read operation generated an error.

Protocols — Network Support

Version 1.10 12/01/02 15-59

EFI_PXE_BASE_CODE.SetIpFilter()

Summary

Updates the IP receive filters of a network device and enables software filtering.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_IP_FILTER) (

IN EFI_PXE_BASE_CODE *This,
IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewFilter Pointer to the new set of IP receive filters.

Description

The NewFilter field is used to modify the network device’s current IP receive filter settings and
to enable a software filter. This function updates the IpFilter field of the
EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter. The software
filter is used when the USE_FILTER in OpFlags is set to UdpRead(). The current hardware
filter remains in effect no matter what the settings of OpFlags are, so that the meaning of
ANY_DEST_IP set in OpFlags to UdpRead() is from those packets whose reception is enabled
in hardware – physical NIC address (unicast), broadcast address, logical address or addresses
(multicast), or all (promiscuous). UdpRead() does not modify the IP filter settings.

Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive filter list
emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. If an
application or driver wishes to preserve the IP receive filter settings, it will have to preserve the IP
receive filter settings before these calls, and use SetIpFilter() to restore them after the calls.
If incompatible filtering is requested (for example, PROMISCUOUS with anything else) or if the
device does not support a requested filter setting and it cannot be accommodated in software (for
example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned. The
IPlist field is used to enable IPs other than the StationIP. They may be multicast or unicast.
If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP, then both the
StationIP and the IPs from the IPlist will be used.

Status Codes Returned
EFI_SUCCESS The IP receive filter settings were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

Extensible Firmware Interface Specification

15-60 12/01/02 Version 1.10

EFI_PXE_BASE_CODE.Arp()

Summary

Uses the ARP protocol to resolve a MAC address.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_ARP) (
 IN EFI_PXE_BASE_CODE *This,

IN EFI_IP_ADDRESS *IpAddr,
IN EFI_MAC_ADDRESS *MacAddr OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

IpAddr Pointer to the IP address that is used to resolve a MAC address. When
the MAC address is resolved, the ArpCacheEntries and ArpCache
fields of the EFI_PXE_BASE_CODE_MODE structure are updated.

MacAddr If not NULL, a pointer to the MAC address that was resolved with the
ARP protocol.

Description
This function uses the ARP protocol to resolve a MAC address. The UsingIpv6 field of the
EFI_PXE_BASE_CODE_MODE structure is used to determine if IPv4 or IPv6 addresses are being
used. The IP address specified by IpAddr is used to resolve a MAC address. If the ARP protocol
succeeds in resolving the specified address, then the ArpCacheEntries and ArpCache fields
of the EFI_PXE_BASE_CODE_MODE structure are updated, and EFI_SUCCESS is returned. If
MacAddr is not NULL, the resolved MAC address is placed there as well.

If the PXE Base Code protocol is in the stopped state, then EFI_NOT_STARTED is returned. If
the ARP protocol encounters a timeout condition while attempting to resolve an address, then
EFI_TIMEOUT is returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED is returned.

Status Codes Returned
EFI_SUCCESS The IP or MAC address was resolved.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_TIMEOUT The ARP Protocol encountered a timeout condition.

EFI_ABORTED The callback function aborted the ARP Protocol.

 Protocols — Network Support

Version 1.10 12/01/02 15-61

EFI_PXE_BASE_CODE.SetParameters()

Summary

Updates the parameters that affect the operation of the PXE Base Code Protocol.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PARAMETERS) (
 IN EFI_PXE_BASE_CODE *This,

IN BOOLEAN *NewAutoArp, OPTIONAL
IN BOOLEAN *NewSendGUID, OPTIONAL
IN UINT8 *NewTTL, OPTIONAL
IN UINT8 *NewToS, OPTIONAL
IN BOOLEAN *NewMakeCallback OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
current value of AutoARP. TRUE for automatic ARP packet generation,
FALSE otherwise. If NULL, this parameter is ignored.

NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
current value of SendGUID. TRUE to send the SystemGUID (if there is
one) as the client hardware address in DHCP; FALSE to send client NIC
MAC address. If NULL, this parameter is ignored. If NewSendGUID is
TRUE and there is no SystemGUID, then EFI_INVALID_PARAMETER
is returned.

NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
the “time to live” field of the IP header. If NULL, this parameter is
ignored.

NewToS If not NULL, a pointer to be used in place of the current value of ToS,
the “type of service” field of the IP header. If NULL, this parameter is
ignored.

NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
current value of the MakeCallback field of the Mode structure. If
NULL, this parameter is ignored. If the Callback Protocol is not available
EFI_INVALID_PARAMETER is returned.

Extensible Firmware Interface Specification

15-62 12/01/02 Version 1.10

Description

This function sets parameters that affect the operation of the PXE Base Code Protocol. The
parameter specified by NewAutoArp is used to control the generation of ARP protocol packets. If
NewAutoArp is TRUE, then ARP Protocol packets will be generated as required by the PXE Base
Code Protocol. If NewAutoArp is FALSE, then no ARP Protocol packets will be generated. In
this case, the only mappings that are available are those stored in the ArpCache of the
EFI_PXE_BASE_CODE_MODE structure. If there are not enough mappings in the ArpCache to
perform a PXE Base Code Protocol service, then the service will fail. This function updates the
AutoArp field of the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.

The EFI_PXE_BASE_CODE.SetParameters() call must be invoked after a Callback
Protocol is installed to enable the use of callbacks.

Status Codes Returned
EFI_SUCCESS The new parameters values were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

 Protocols — Network Support

Version 1.10 12/01/02 15-63

EFI_PXE_BASE_CODE.SetStationIp()

Summary

Updates the station IP address and/or subnet mask values of a network device.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_STATION_IP) (
 IN EFI_PXE_BASE_CODE *This,

IN EFI_IP_ADDRESS *NewStationIp, OPTIONAL
IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewStationIp Pointer to the new IP address to be used by the network device. If this
field is NULL, then the StationIp address will not be modified.

NewSubnetMask Pointer to the new subnet mask to be used by the network device. If this
field is NULL, then the SubnetMask will not be modified.

Description

This function updates the station IP address and/or subnet mask values of a network device.

The NewStationIp field is used to modify the network device’s current IP address. If
NewStationIP is NULL, then the current IP address will not be modified. Otherwise, this
function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure with
NewStationIp.

The NewSubnetMask field is used to modify the network device’s current subnet mask. If
NewSubnetMask is NULL, then the current subnet mask will not be modified. Otherwise, this
function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE structure with
NewSubnetMask.

Status Codes Returned
EFI_SUCCESS The new station IP address and/or subnet mask were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

Extensible Firmware Interface Specification

15-64 12/01/02 Version 1.10

EFI_PXE_BASE_CODE.SetPackets()

Summary

Updates the contents of the cached DHCP and Discover packets.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PACKETS) (
 IN EFI_PXE_BASE_CODE *This,

IN BOOLEAN *NewDhcpDiscoverValid, OPTIONAL
IN BOOLEAN *NewDhcpAckReceived, OPTIONAL
IN BOOLEAN *NewProxyOfferReceived, OPTIONAL
IN BOOLEAN *NewPxeDiscoverValid, OPTIONAL
IN BOOLEAN *NewPxeReplyReceived, OPTIONAL
IN BOOLEAN *NewPxeBisReplyReceived,OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewDhcpDiscoverValid If not NULL, a pointer to a value that specifies whether to
replace the current value of DhcpDiscoverValid field. If
NULL, this parameter is ignored.

NewDhcpAckReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of DhcpAckReceived field. If
NULL, this parameter is ignored.

NewProxyOfferReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of ProxyOfferReceived field.
If NULL, this parameter is ignored.

NewPxeDiscoverValid If not NULL, a pointer to a value that specifies whether to
replace the current value of PxeDiscoverValid field. If
NULL, this parameter is ignored.

NewPxeReplyReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of PxeReplyReceived field. If
NULL, this parameter is ignored.

 Protocols — Network Support

Version 1.10 12/01/02 15-65

NewPxeBisReplyReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of PxeBisReplyReceived field.
If NULL, this parameter is ignored.

NewDhcpDiscover Pointer to the new cached DHCP Discover packet.

NewDhcpAck Pointer to the new cached DHCP Ack packet.

NewProxyOffer Pointer to the new cached Proxy Offer packet.

NewPxeDiscover Pointer to the new cached PXE Discover packet.

NewPxeReply Pointer to the new cached PXE Reply packet.

NewPxeBisReply Pointer to the new cached PXE BIS Reply packet.

Description

The pointers to the new packets are used to update the contents of the cached packets in the
EFI_PXE_BASE_CODE_MODE structure.

Status Codes Returned
EFI_SUCCESS The cached packet contents were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

Extensible Firmware Interface Specification

15-66 12/01/02 Version 1.10

15.4 PXE Base Code Callback Protocol

This protocol is a specific instance of the PXE Base Code Callback Protocol that is invoked
when the PXE Base Code Protocol is about to transmit, has received, or is waiting to receive a
packet. The PXE Base Code Callback Protocol must be on the same handle as the PXE Base
Code Protocol.

EFI_PXE_BASE_CODE_CALLBACK Protocol

Summary

Protocol that is invoked when the PXE Base Code Protocol is about to transmit, has received, or is
waiting to receive a packet.

GUID
#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL \

{ 245DCA21-FB7B-11d3-8F01-00A0C969723B }

Revision Number
#define EFI_PXE_BASE_CODE_CALLBACK_INTERFACE_REVISION \

0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
EFI_PXE_CALLBACK Callback;

} EFI_PXE_BASE_CODE_CALLBACK;

Parameters

Revision The revision of the EFI_PXE_BASE_CODE_CALLBACK protocol. All
future revisions must be backwards compatible. If a future revision is
not backwards compatible, it is not the same GUID.

Callback Callback routine used by the PXE Base Code Dhcp(), Discover(),
Mtftp(), UdpWrite(), and Arp() functions.

 Protocols — Network Support

Version 1.10 12/01/02 15-67

EFI_PXE_BASE_CODE_CALLBACK.Callback()

Summary

Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
received, or is waiting to receive a packet.

Prototype
EFI_PXE_BASE_CODE_CALLBACK_STATUS
(*EFI_PXE_CALLBACK) (
 IN EFI_PXE_BASE_CODE_CALLBACK *This,

IN EFI_PXE_BASE_CODE_FUNCTION Function,
IN BOOLEAN Received,
IN UINT32 PacketLen,
IN EFI_PXE_BASE_CODE_PACKET *Packet OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Function The PXE Base Code Protocol function that is waiting for an event.

Received TRUE if the callback is being invoked due to a receive event. FALSE if
the callback is being invoked due to a transmit event.

PacketLen The length, in bytes, of Packet. This field will have a value of zero if
this is a wait for receive event.

Packet If Received is TRUE, a pointer to the packet that was just received;
otherwise a pointer to the packet that is about to be transmitted. This
field will be NULL if this is not a packet event.

Related Definitions

//***
// EFI_PXE_BASE_CODE_CALLBACK_STATUS
//***
typedef enum {

EFI_PXE_BASE_CODE_CALLBACK_STATUS_FIRST,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_LAST

} EFI_PXE_BASE_CODE_CALLBACK_STATUS;

Extensible Firmware Interface Specification

15-68 12/01/02 Version 1.10

//***
// EFI_PXE_BASE_CODE_FUNCTION
//***
typedef enum {

EFI_PXE_BASE_CODE_FUNCTION_FIRST,
EFI_PXE_BASE_CODE_FUNCTION_DHCP,
EFI_PXE_BASE_CODE_FUNCTION_DISCOVER,
EFI_PXE_BASE_CODE_FUNCTION_MTFTP,
EFI_PXE_BASE_CODE_FUNCTION_UDP_WRITE,
EFI_PXE_BASE_CODE_FUNCTION_UDP_READ,
EFI_PXE_BASE_CODE_FUNCTION_ARP,
EFI_PXE_BASE_CODE_FUNCTION_IGMP,
EFI_PXE_BASE_CODE_PXE_FUNCTION_LAST

} EFI_PXE_BASE_CODE_FUNCTION;

Description

This function is invoked when the PXE Base Code Protocol is about to transmit, has received, or is
waiting to receive a packet. Parameters Function and Received specify the type of event.
Parameters PacketLen and Packet specify the packet that generated the event. If these fields
are zero and NULL respectively, then this is a status update callback. If the operation specified by
Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the
operation specified by Function should be aborted, then CALLBACK_STATUS_ABORT should
be returned. Due to the polling nature of EFI device drivers, a callback function should not execute
for more than 5 ms.

The EFI_PXE_BASE_CODE.SetParameters() function must be called after a Callback
Protocol is installed to enable the use of callbacks.

Protocols — Network Support

Version 1.10 12/01/02 15-69

15.5 Boot Integrity Services Protocol

This chapter defines the Boot Integrity Services (BIS) protocol, which is used to check a digital
signature of a data block against a digital certificate for the purpose of an integrity and
authorization check. BIS is primarily used by the Preboot Execution Environment (PXE) Base
Code protocol EFI_PXE_BASE_CODE_PROTOCOL to check downloaded network boot images
before executing them. BIS is an EFI Boot Services Driver, so its services are also available to EFI
Applications until the time of ExitBootServices(). More information about BIS can be
found in the Boot Integrity Services Application Programming Interface Version 1.0.

This section defines the Boot Integrity Services Protocol. This protocol is used to check a digital
signature of a data block against a digital certificate for the purpose of an integrity and
authorization check.

EFI_BIS_PROTOCOL

Summary

The EFI_BIS_PROTOCOL is used to check a digital signature of a data block against a digital
certificate for the purpose of an integrity and authorization check.

GUID
#define EFI_BIS_PROTOCOL_GUID \
{0x0b64aab0,0x5429,0x11d4,0x98,0x16,0x00,0xa0,0xc9,0x1f,0xad,0xcf}

Protocol Interface Structure
typedef struct _EFI_BIS_PROTOCOL {

EFI_BIS_INITIALIZE Initialize;
EFI_BIS_SHUTDOWN Shutdown;
EFI_BIS_FREE Free;
EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE

GetBootObjectAuthorizationCertificate;
EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG

GetBootObjectAuthorizationCheckFlag;
EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN

GetBootObjectAuthorizationUpdateToken;
EFI_BIS_GET_SIGNATURE_INFO

GetSignatureInfo;
EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION

UpdateBootObjectAuthorization;
EFI_BIS_VERIFY_BOOT_OBJECT

VerifyBootObject;
EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL

VerifyObjectWithCredential;
} EFI_BIS_PROTOCOL;

Extensible Firmware Interface Specification

15-70 12/01/02 Version 1.10

Parameters

Initialize Initializes an application instance of the EFI_BIS protocol, returning a
handle for the application instance. Other functions in the EFI_BIS
protocol require a valid application instance handle obtained from this
function. See the Initialize() function description.

Shutdown Ends the lifetime of an application instance of the EFI_BIS protocol,
invalidating its application instance handle. The application instance
handle may no longer be used in other functions in the EFI_BIS
protocol. See the Shutdown() function description.

Free Frees memory structures allocated and returned by other functions in the
EFI_BIS protocol. See the Free() function description.

GetBootObjectAuthorizationCertificate
Retrieves the current digital certificate (if any) used by the EFI_BIS
protocol as the source of authorization for verifying boot objects and
altering configuration parameters. See the
GetBootObjectAuthorizationCertificate() function
description.

GetBootObjectAuthorizationCheckFlag
Retrieves the current setting of the authorization check flag that indicates
whether or not authorization checks are required for boot objects. See
the GetBootObjectAuthorizationCheckFlag() function
description.

GetBootObjectAuthorizationUpdateToken
Retrieves an uninterpreted token whose value gets included and signed in
a subsequent request to alter the configuration parameters, to protect
against attempts to “replay” such a request. See the
GetBootObjectAuthorizationUpdateToken() function
description.

GetSignatureInfo
Retrieves information about the digital signature algorithms supported
and the identity of the installed authorization certificate, if any. See the
GetSignatureInfo() function description.

UpdateBootObjectAuthorization
Requests that the configuration parameters be altered by installing or
removing an authorization certificate or changing the setting of the check
flag. See the UpdateBootObjectAuthorization() function
description.

 Protocols — Network Support

Version 1.10 12/01/02 15-71

VerifyBootObject
Verifies a boot object according to the supplied digital signature and the
current authorization certificate and check flag setting. See the
VerifyBootObject() function description.

VerifyObjectWithCredential

Verifies a data object according to a supplied digital signature and a
supplied digital certificate. See the
VerifyObjectWithCredential() function description.

Description

The EFI_BIS_PROTOCOL provides a set of functions as defined in this chapter. There is no
physical device associated with these functions, however, in the context of EFI every protocol
operates on a device. Accordingly, BIS installs and operates on a single abstract device that has
only a software representation.

Extensible Firmware Interface Specification

15-72 12/01/02 Version 1.10

EFI_BIS.Initialize()

Summary

Initializes the BIS service, checking that it is compatible with the version requested by the caller.
After this call, other BIS functions may be invoked.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_INITIALIZE)(

IN EFI_BIS_PROTOCOL *This,
OUT BIS_APPLICATION_HANDLE *AppHandle,
IN OUT EFI_BIS_VERSION *InterfaceVersion,
IN EFI_BIS_DATA *TargetAddress
);

Parameters

This A pointer to the EFI_BIS_PROTOCOL object. The protocol
implementation may rely on the actual pointer value and object location,
so the caller must not copy the object to a new location.

AppHandle The function writes the new BIS_APPLICATION_HANDLE if
successful, otherwise it writes NULL. The caller must eventually destroy
this handle by calling Shutdown(). Type
BIS_APPLICATION_HANDLE is defined in “Related Definitions”
below.

InterfaceVersion
On input, the caller supplies the major version number of the interface
version desired. The minor version number supplied on input is ignored
since interface compatibility is determined solely by the major version
number. On output, both the major and minor version numbers are
updated with the major and minor version numbers of the interface (and
underlying implementation). This update is done whether or not the
initialization was successful. Type EFI_BIS_VERSION is defined in
“Related Definitions” below.

TargetAddress Indicates a network or device address of the BIS platform to connect to.
Local-platform BIS implementations require that the caller sets
TargetAddress.Data to NULL, but otherwise ignores this
parameter. BIS implementations that redirect calls to an agent at a
remote address must define their own format and interpretation of this
parameter outside the scope of this document. For all implementations,
if the TargetAddress is an unsupported value, the function fails with
the error EFI_UNSUPPORTED. Type EFI_BIS_DATA is defined in
“Related Definitions” below.

Protocols — Network Support

Version 1.10 12/01/02 15-73

Related Definitions
//***
// BIS_APPLICATION_HANDLE
//***
typedef VOID *BIS_APPLICATION_HANDLE;

This type is an opaque handle representing an initialized instance of the BIS interface. A
BIS_APPLICATION_HANDLE value is returned by the Initialize() function as an “out”
parameter. Other BIS functions take a BIS_APPLICATION_HANDLE as an “in” parameter to
identify the BIS instance.

//***
// EFI_BIS_VERSION
//***
typedef struct _EFI_BIS_VERSION {

UINT32 Major;
UINT32 Minor;

} EFI_BIS_VERSION;

Major This describes the major BIS version number. The major version number defines
version compatibility. That is, when a new version of the BIS interface is created
with new capabilities that are not available in the previous interface version, the
major version number is increased.

Minor This describes a minor BIS version number. This version number is increased
whenever a new BIS implementation is built that is fully interface compatible
with the previous BIS implementation. This number may be reset when the
major version number is increased.

This type represents a version number of the BIS interface. This is used as an “in out” parameter of
the Initialize() function for a simple form of negotiation of the BIS interface version
between the caller and the BIS implementation.

Extensible Firmware Interface Specification

15-74 12/01/02 Version 1.10

//***
// EFI_BIS_VERSION predefined values
// Use these values to initialize EFI_BIS_VERSION.Major
// and to interpret results of Initialize.
//***
#define BIS_CURRENT_VERSION_MAJOR BIS_VERSION_1
#define BIS_VERSION_1 1

These C preprocessor macros supply values for the major version number of an
EFI_BIS_VERSION. At the time of initialization, a caller supplies a value to request a BIS
interface version. On return, the (IN OUT) parameter is over-written with the actual version of the
interface.

//***
// EFI_BIS_DATA
//
// EFI_BIS_DATA instances obtained from BIS must be freed by
// calling Free().
//***
typedef struct _EFI_BIS_DATA {

UINT32 Length;
UINT8 *Data;

} EFI_BIS_DATA;

Length The length of the data buffer in bytes.

Data A pointer to the raw data buffer.

This type defines a structure that describes a buffer. BIS uses this type to pass back and forth most
large objects such as digital certificates, strings, etc.. Several of the BIS functions allocate a
EFI_BIS_DATA* and return it as an “out” parameter. The caller must eventually free any
allocated EFI_BIS_DATA* using the Free() function.

Description

This function must be the first BIS function invoked by an application. It passes back a
BIS_APPLICATION_HANDLE value that must be used in subsequent BIS functions. The handle
must be eventually destroyed by a call to the Shutdown() function, thus ending that handle’s
lifetime. After the handle is destroyed, BIS functions may no longer be called with that handle
value. Thus all other BIS functions may only be called between a pair of Initialize() and
Shutdown() functions.

There is no penalty for calling Initialize() multiple times. Each call passes back a distinct
handle value. Each distinct handle must be destroyed by a distinct call to Shutdown(). The
lifetimes of handles created and destroyed with these functions may be overlapped in any way.

Protocols — Network Support

Version 1.10 12/01/02 15-75

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INCOMPATIBLE_VERSION The InterfaceVersion.Major requested by the
caller was not compatible with the interface version of the
implementation. The InterfaceVersion.Major has

been updated with the current interface version.

EFI_UNSUPPORTED This is a local-platform implementation and
TargetAddress.Data was not NULL, or
TargetAddress.Data was any other value that was not

supported by the implementation.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal failure while
initializing a cryptographic software module, or

No cryptographic software module with compatible version was
found, or
A resource limitation was encountered while using a
cryptographic software module.

EFI_INVALID_PARAMETER The This parameter supplied by the caller is NULL or does
not reference a valid EFI_BIS_PROTOCOL object, or
The AppHandle parameter supplied by the caller is NULL or

an invalid memory reference, or
The InterfaceVersion parameter supplied by the caller
is NULL or an invalid memory reference, or
The TargetAddress parameter supplied by the caller is
NULL or an invalid memory reference.

Extensible Firmware Interface Specification

15-76 12/01/02 Version 1.10

EFI_BIS.Shutdown()

Summary

Shuts down an application’s instance of the BIS service, invalidating the application handle. After
this call, other BIS functions may no longer be invoked using the application handle value.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_SHUTDOWN)(
 IN BIS_APPLICATION_HANDLE AppHandle
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of
initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Description

This function shuts down an application’s instance of the BIS service, invalidating the application
handle. After this call, other BIS functions may no longer be invoked using the application handle
value.

This function must be paired with a preceding successful call to the Initialize() function.
The lifetime of an application handle extends from the time the handle was returned from
Initialize() until the time the handle is passed to Shutdown(). If there are other remaining
handles whose lifetime is still active, they may still be used in calling BIS functions.

The caller must free all memory resources associated with this AppHandle that were allocated
and returned from other BIS functions before calling Shutdown(). Memory resources are freed
using the Free() function. Failure to free such memory resources is a caller error, however, this
function does not return an error code under this circumstance. Further attempts to access the
outstanding memory resources causes unspecified results.

 Protocols — Network Support

Version 1.10 12/01/02 15-77

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_DEVICE_ERROR The function encountered an unexpected internal error while
returning resources associated with a cryptographic software
module, or
The function encountered an internal error while trying to shut down
a cryptographic software module.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

Extensible Firmware Interface Specification

15-78 12/01/02 Version 1.10

EFI_BIS.Free()

Summary

Frees memory structures allocated and returned by other functions in the EFI_BIS protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_FREE)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *ToFree
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

ToFree An EFI_BIS_DATA* and associated memory block to be freed. This
EFI_BIS_DATA* must have been allocated by one of the other BIS
functions. Type EFI_BIS_DATA is defined in the Initialize()
function description.

Description

This function deallocates an EFI_BIS_DATA* and associated memory allocated by one of the
other BIS functions.

Callers of other BIS functions that allocate memory in the form of an EFI_BIS_DATA* must
eventually call this function to deallocate the memory before calling the Shutdown() function for
the application handle under which the memory was allocated. Failure to do so causes unspecified
results, and the continued correct operation of the BIS service cannot be guaranteed.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The ToFree parameter is not or is no longer a memory resource
associated with this AppHandle.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

 Protocols — Network Support

Version 1.10 12/01/02 15-79

EFI_BIS.GetBootObjectAuthorizationCertificate()

Summary

Retrieves the certificate that has been configured as the identity of the organization designated as
the source of authorization for signatures of boot objects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **Certificate
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Certificate The function writes an allocated EFI_BIS_DATA* containing the Boot
Object Authorization Certificate object. The caller must eventually free
the memory allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

Description

This function retrieves the certificate that has been configured as the identity of the organization
designated as the source of authorization for signatures of boot objects.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_NOT_FOUND There is no Boot Object Authorization Certificate currently installed.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The Certificate parameter supplied by the caller is NULL or

an invalid memory reference.

Extensible Firmware Interface Specification

15-80 12/01/02 Version 1.10

EFI_BIS.GetBootObjectAuthorizationCheckFlag()

Summary

Retrieves the current status of the Boot Authorization Check Flag.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT BOOLEAN *CheckIsRequired
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

CheckIsRequired The function writes the value TRUE if a Boot Authorization Check is
currently required on this platform, otherwise the function writes
FALSE.

Description

This function retrieves the current status of the Boot Authorization Check Flag (in other words,
whether or not a Boot Authorization Check is currently required on this platform).

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid
application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The CheckIsRequired parameter supplied by the caller is
NULL or an invalid memory reference.

 Protocols — Network Support

Version 1.10 12/01/02 15-81

EFI_BIS.GetBootObjectAuthorizationUpdateToken()

Summary

Retrieves a unique token value to be included in the request credential for the next update of any
parameter in the Boot Object Authorization set (Boot Object Authorization Certificate and Boot
Authorization Check Flag).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **UpdateToken
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

UpdateToken The function writes an allocated EFI_BIS_DATA* containing the new
unique update token value. The caller must eventually free the memory
allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

Description

This function retrieves a unique token value to be included in the request credential for the next
update of any parameter in the Boot Object Authorization set (Boot Object Authorization
Certificate and Boot Authorization Check Flag). The token value is unique to this platform,
parameter set, and instance of parameter values. In particular, the token changes to a new unique
value whenever any parameter in this set is changed.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module.

EFI_INVALID_PARAMETER The UpdateToken parameter supplied by the caller is NULL or

an invalid memory reference.

Extensible Firmware Interface Specification

15-82 12/01/02 Version 1.10

EFI_BIS.GetSignatureInfo()

Summary

Retrieves a list of digital certificate identifier, digital signature algorithm, hash algorithm, and key-
length combinations that the platform supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_SIGNATURE_INFO)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **SignatureInfo
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

SignatureInfo
The function writes an allocated EFI_BIS_DATA* containing the array
of EFI_BIS_SIGNATURE_INFO structures representing the supported
digital certificate identifier, algorithm, and key length combinations. The
caller must eventually free the memory allocated by this function using
the function Free(). Type EFI_BIS_DATA is defined in the
Initialize() function description. Type
EFI_BIS_SIGNATURE_INFO is defined in “Related Definitions”
below.

Related Definitions
//***
// EFI_BIS_SIGNATURE_INFO
//***
typedef struct _EFI_BIS_SIGNATURE_INFO {
 BIS_CERT_ID CertificateID;
 BIS_ALG_ID AlgorithmID;
 UINT16 KeyLength;
} EFI_BIS_SIGNATURE_INFO;

CertificateID A shortened value identifying the platform’s currently configured Boot
Object Authorization Certificate, if one is currently configured. The
shortened value is derived from the certificate as defined in the Related
Definition for BIS_CERT_ID below. If there is no certificate currently
configured, the value is one of the reserved BIS_CERT_ID_XXX values
defined below. Type BIS_CERT_ID and its predefined reserved values
are defined in “Related Definitions” below.

 Protocols — Network Support

Version 1.10 12/01/02 15-83

AlgorithmID A predefined constant representing a particular digital signature
algorithm. Often this represents a combination of hash algorithm and
encryption algorithm, however, it may also represent a standalone digital
signature algorithm. Type BIS_ALG_ID and its permitted values are
defined in “Related Definitions” below.

KeyLength The length of the public key, in bits, supported by this digital signature
algorithm.

This type defines a digital certificate, digital signature algorithm, and key-length combination that
may be supported by the BIS implementation. This type is returned by
GetSignatureInfo() to describe the combination(s) supported by the implementation.

//***
// BIS_GET_SIGINFO_COUNT macro
// Tells how many EFI_BIS_SIGNATURE_INFO elements are contained
// in a EFI_BIS_DATA struct pointed to by the provided
// EFI_BIS_DATA*.
//***
#define BIS_GET_SIGINFO_COUNT(BisDataPtr) \
 ((BisDataPtr)->Length/sizeof(EFI_BIS_SIGNATURE_INFO))

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The number of EFI_BIS_SIGNATURE_INFO elements contained in
the array.

This macro computes how many EFI_BIS_SIGNATURE_INFO elements are contained in an
EFI_BIS_DATA structure returned from GetSignatureInfo(). The number returned is
the count of items in the list of supported digital certificate, digital signature algorithm, and key-
length combinations.

//***
// BIS_GET_SIGINFO_ARRAY macro
// Produces a EFI_BIS_SIGNATURE_INFO* from a given
// EFI_BIS_DATA*.
//***
#define BIS_GET_SIGINFO_ARRAY(BisDataPtr) \
 ((EFI_BIS_SIGNATURE_INFO*)(BisDataPtr)->Data)

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The pointer to the EFI_BIS_SIGNATURE_INFO array, cast as an
EFI_BIS_SIGNATURE_INFO*.

This macro returns a pointer to the EFI_BIS_SIGNATURE_INFO array contained in an
EFI_BIS_DATA structure returned from GetSignatureInfo() representing the list of
supported digital certificate, digital signature algorithm, and key-length combinations.

Extensible Firmware Interface Specification

15-84 12/01/02 Version 1.10

//***
// BIS_CERT_ID
//***
typedef UINT32 BIS_CERT_ID;

This type represents a shortened value that identifies the platform’s currently configured Boot
Object Authorization Certificate. The value is the first four bytes, in “little-endian” order, of the
SHA-1 hash of the certificate, except that the most-significant bits of the second and third bytes
are reserved, and must be set to zero regardless of the outcome of the hash function. This type is
included in the array of values returned from the GetSignatureInfo() function to indicate
the required source of a signature for a boot object or a configuration update request. There are a
few predefined reserved values with special meanings as described below.

//***
// BIS_CERT_ID predefined values
// Currently defined values for EFI_BIS_SIGNATURE_INFO.
// CertificateId.
//***
#define BIS_CERT_ID_DSA BIS_ALG_DSA //CSSM_ALGID_DSA
#define BIS_CERT_ID_RSA_MD5 BIS_ALG_RSA_MD5 //CSSM_ALGID_MD5_WITH_RSA

These C preprocessor symbols provide values for the BIS_CERT_ID type. These values are
used when the platform has no configured Boot Object Authorization Certificate. They indicate
the signature algorithm that is supported by the platform. Users must be careful to avoid
constructing Boot Object Authorization Certificates that transform to BIS_CERT_ID values that
collide with these predefined values or with the BIS_CERT_ID values of other Boot Object
Authorization Certificates they use.

//***
// BIS_CERT_ID_MASK
// The following is a mask value that gets applied to the
// truncated hash of a platform Boot Object Authorization
// Certificate to create the CertificateId. A CertificateId
// must not have any bits set to the value 1 other than bits in
// this mask.
//***
#define BIS_CERT_ID_MASK (0xFF7F7FFF)

This C preprocessor symbol may be used as a bit-wise “AND” value to transform the first four
bytes (in little-endian order) of a SHA-1 hash of a certificate into a certificate ID with the
“reserved” bits properly set to zero.

 Protocols — Network Support

Version 1.10 12/01/02 15-85

//***
// BIS_ALG_ID
//***
typedef UINT16 BIS_ALG_ID;

This type represents a digital signature algorithm. A digital signature algorithm is often composed
of a particular combination of secure hash algorithm and encryption algorithm. This type also
allows for digital signature algorithms that cannot be decomposed. Predefined values for this
type are as defined below.

//***
// BIS_ALG_ID predefined values
// Currently defined values for EFI_BIS_SIGNATURE_INFO.
// AlgorithmID. The exact numeric values come from “Common
// Data Security Architecture (CDSA) Specification.”
//***
#define BIS_ALG_DSA (41) //CSSM_ALGID_DSA
#define BIS_ALG_RSA_MD5 (42) //CSSM_ALGID_MD5_WITH_RSA

These values represent the two digital signature algorithms predefined for BIS. Each
implementation of BIS must support at least one of these digital signature algorithms. Values for
the digital signature algorithms are chosen by an industry group known as The Open Group.
Developers planning to support additional digital signature algorithms or define new digital
signature algorithms should refer to The Open Group for interoperable values to use.

Description

This function retrieves a list of digital certificate identifier, digital signature algorithm, hash
algorithm, and key-length combinations that the platform supports. The list is an array of
(certificate id, algorithm id, key length) triples, where the certificate id is derived from the
platform’s Boot Object Authorization Certificate as described in the Related Definition for
BIS_CERT_ID above, the algorithm id represents the combination of signature algorithm and
hash algorithm, and the key length is expressed in bits. The number of array elements can be
computed using the Length field of the retrieved EFI_BIS_DATA*.

The retrieved list is in order of preference. A digital signature algorithm for which the platform has
a currently configured Boot Object Authorization Certificate is preferred over any digital signature
algorithm for which there is not a currently configured Boot Object Authorization Certificate. Thus
the first element in the list has a CertificateID representing a Boot Object Authorization
Certificate if the platform has one configured. Otherwise the CertificateID of the first
element in the list is one of the reserved values representing a digital signature algorithm.

Extensible Firmware Interface Specification

15-86 12/01/02 Version 1.10

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module, or
The function encountered an unexpected internal consistency
check failure (possible corruption of stored Boot Object
Authorization Certificate).

EFI_INVALID_PARAMETER The SignatureInfo parameter supplied by the caller is
NULL or an invalid memory reference.

 Protocols — Network Support

Version 1.10 12/01/02 15-87

EFI_BIS.UpdateBootObjectAuthorization()

Summary

Updates one of the configurable parameters of the Boot Object Authorization set (Boot Object
Authorization Certificate or Boot Authorization Check Flag).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *RequestCredential,
 OUT EFI_BIS_DATA **NewUpdateToken
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

RequestCredential
This is a Signed Manifest with embedded attributes that carry the details
of the requested update. The required syntax of the Signed Manifest is
described in the Related Definition for Manifest Syntax below. The key
used to sign the request credential must be the private key corresponding
to the public key in the platform’s configured Boot Object Authorization
Certificate. Authority to update parameters in the Boot Object
Authorization set cannot be delegated.

 If there is no Boot Object Authorization Certificate, the request
credential may be signed with any private key. In this case, this function
interacts with the user in a platform-specific way to determine whether
the operation should succeed. Type EFI_BIS_DATA is defined in the
Initialize() function description.

NewUpdateToken The function writes an allocated EFI_BIS_DATA* containing the new
unique update token value. The caller must eventually free the memory
allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

Extensible Firmware Interface Specification

15-88 12/01/02 Version 1.10

Related Definitions
//**
// Manifest Syntax
//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap
archive as described in [SM spec]: a manifest file, a signer’s information file, and a signature
block file. These three parts, along with examples are described in the following sections. In
these examples, text in parentheses is a description of the text that would appear in the signed
manifest. Text outside of parentheses must appear exactly as shown. Also note that manifest
files and signer’s information files must conform to a 72-byte line-length limit. Continuation
lines (lines beginning with a single “space” character) are used for lines longer than 72 bytes.
The examples given here follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII (not
Unicode) text files. In cases where these files contain a base-64 encoded string, the string is an
ASCII (not Unicode) string before base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the reserved
name as shown in the example below. This data object is a zero-length object whose sole purpose
in the manifest is to serve as a named collection point for the attributes that carry the details of the
requested update. The attributes are also contained in the manifest file. An example manifest file
is shown below.

Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)
X-Intel-BIS-ParameterSet: (base-64 representation of
 BootObjectAuthorizationSetGUID)
X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)
X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)
X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

 Protocols — Network Support

Version 1.10 12/01/02 15-89

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64
encoding is described in [BASE-64].
Name: memory:UpdateRequestParameters

This identifies the manifest section that carries a dummy zero-length data object serving as the
collection point for the attribute values appearing later in this manifest section (lines prefixed
with “X-Intel-BIS-”). The string “memory:UpdateRequestParameters” must
appear exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object.
These are required even though the data object is zero-length. For systems with DSA signing,
SHA-1 hash, and 1024-bit key length, the digest algorithm must be “SHA-1.” For systems with
RSA signing, MD5 hash, and 512-bit key length, the digest algorithm must be “MD5.” Multiple
algorithms can be specified as a whitespace-separated list. For every digest algorithm XXX listed,
there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)

Gives the corresponding digest value for the dummy zero-length data object. The value is base-
64 encoded. Note that for both MD5 and SHA-1, the digest value for a zero-length data object is
not zero.
X-Intel-BIS-ParameterSet: (base-64 representation of
 BootObjectAuthorizationSetGUID)

A named attribute value that distinguishes updates of BIS parameters from updates of other
parameters. The left-hand attribute-name keyword must appear exactly as shown. The GUID
value for the right-hand side is always the same, and can be found under the preprocessor symbol
BOOT_OBJECT_AUTHORIZATION_PARMSET_GUIDVALUE. The representation inserted into
the manifest is base-64 encoded.

Note the “X-Intel-BIS-” prefix on this and the following attributes. The “X-” part of the
prefix was chosen to avoid collisions with future reserved keywords defined by future versions of
the signed manifest specification. The “Intel-BIS-” part of the prefix was chosen to avoid
collisions with other user-defined attribute names within the user-defined attribute name space.
X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)

A named attribute value that makes this update of BIS parameters different from any other on the
same target platform. The left-hand attribute-name keyword must appear exactly as shown. The
value for the right-hand side is generally different for each update-request manifest generated.
The value to be base-64 encoded is retrieved through the functions
GetBootObjectAuthorizationUpdateToken() or
UpdateBootObjectAuthorization().
X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)

Extensible Firmware Interface Specification

15-90 12/01/02 Version 1.10

A named attribute value that indicates which BIS parameter is to be updated. The left-hand
attribute-name keyword must appear exactly as shown. The value for the right-hand side is the
base-64 encoded representation of one of the two strings shown.
X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A named attribute value that indicates the new value to be set for the indicated parameter. The
left-hand attribute-name keyword must appear exactly as shown. The value for the right-hand
side is the appropriate base-64 encoded new value to be set. In the case of the Boot Object
Authorization Certificate, the value is the new digital certificate raw data. A zero-length value
removes the certificate altogether. In the case of the Boot Authorization Check Flag, the value is
a single-byte boolean value, where a nonzero value “turns on” the check and a zero value “turns
off” the check.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file
carries the integrity data for the attributes in the corresponding section in the manifest file. An
example signer’s information file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a unique
 GUID)
SignerInformationName: BIS_UpdateManifestSignerInfoName

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique
 GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every signer’s information file created. The Win32 function UuidCreate() can be used for this
on Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a
simple encoding scheme for representing binary values that uses only printing characters. Base-
64 encoding is described in [BASE-64].
SignerInformationName: BIS_UpdateManifestSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: memory:UpdateRequestParameters

 Protocols — Network Support

Version 1.10 12/01/02 15-91

This identifies the section in the signer’s information file corresponding to the section with the
same name in the manifest file described earlier. The string
“memory:UpdateRequestParameters” must appear exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The
digest algorithms specified here must match those specified in the manifest file. For every digest
algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-
64 encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the
blank line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or
end-of-file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the
signature block file. The base name matches, and the three-character extension is modified to
reflect the signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.
• RSA signature algorithm with MD5 hash: extension is RSA.

Extensible Firmware Interface Specification

15-92 12/01/02 Version 1.10

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

//**
// “X-Intel-BIS-ParameterSet” Attribute value
// Binary Value of “X-Intel-BIS-ParameterSet” Attribute.
// (Value is Base-64 encoded in actual signed manifest).
//**

#define BOOT_OBJECT_AUTHORIZATION_PARMSET_GUID \
 {0xedd35e31,0x7b9,0x11d2,0x83,0xa3,0x0,0xa0,0xc9,0x1f,0xad,0xcf}

This preprocessor symbol gives the value for an attribute inserted in signed manifests to
distinguish updates of BIS parameters from updates of other parameters. The representation
inserted into the manifest is base-64 encoded.

Description

This function updates one of the configurable parameters of the Boot Object Authorization set
(Boot Object Authorization Certificate or Boot Authorization Check Flag). It passes back a new
unique update token that must be included in the request credential for the next update of any
parameter in the Boot Object Authorization set. The token value is unique to this platform,
parameter set, and instance of parameter values. In particular, the token changes to a new unique
value whenever any parameter in this set is changed.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module.

EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter was invalid (could not be parsed),
 or
The signed manifest supplied as the RequestCredential

parameter failed to verify using the installed Boot Object
Authorization Certificate or the signer’s Certificate in
RequestCredential,

 or
Platform-specific authorization failed,
 or

continued

 Protocols — Network Support

Version 1.10 12/01/02 15-93

Status Codes Returned (continued)
EFI_SECURITY_VIOLATION
(continued)

The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-
ParameterSet attribute value,

 or
The X-Intel-BIS-ParameterSet attribute value

supplied did not match the required GUID value,
 or
The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-
ParameterSetToken attribute value,

 or
The X-Intel-BIS-ParameterSetToken attribute value

supplied did not match the platform’s current update-token value,
 or
The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-
ParameterId attribute value,

 or
The X-Intel-BIS-ParameterId attribute value supplied

did not match one of the permitted values,
 or
The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-
ParameterValue attribute value,

 or
Any other required attribute value was missing,
 or
The new certificate supplied was too big to store,
 or
The new certificate supplied was invalid (could not be parsed),
 or
The new certificate supplied had an unsupported combination of
key algorithm and key length,
 or

The new check flag value supplied is the wrong length (1 byte),
 or
The signed manifest supplied as the RequestCredential
parameter did not include a signer certificate,
 or
The signed manifest supplied as the RequestCredential

parameter did not include the manifest section named
“memory:UpdateRequestParameters,”

 or

continued

Extensible Firmware Interface Specification

15-94 12/01/02 Version 1.10

 Status Codes Returned (continued)
EFI_SECURITY_VIOLATION
(continued)

The signed manifest supplied as the RequestCredential

parameter had a signing certificate with an unsupported public-key
algorithm,
 or

The manifest section named
“memory:UpdateRequestParameters” did not include

a digest with a digest algorithm corresponding to the signing
certificate’s public key algorithm,
 or
The zero-length data object referenced by the manifest section
named “memory:UpdateRequestParameters” did not

verify with the digest supplied in that manifest section,
 or
The signed manifest supplied as the RequestCredential

parameter did not include a signer’s information file with the
SignerInformationName identifying attribute value
“BIS_UpdateManifestSignerInfoName,”

 or
There were no signers associated with the identified signer’s
information file,
 or
There was more than one signer associated with the identified
signer’s information file,
 or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while analyzing the new
certificate’s key algorithm,
 or
An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,
 or
An unexpected internal error occurred in a cryptographic software
module.

EFI_INVALID_PARAMETER The RequestCredential parameter supplied by the caller is
NULL or an invalid memory reference,

 or
The RequestCredential.Data parameter supplied by the
caller is NULL or an invalid memory reference,

 or
The NewUpdateToken parameter supplied by the caller is
NULL or an invalid memory reference.

 Protocols — Network Support

Version 1.10 12/01/02 15-95

EFI_BIS.VerifyBootObject()

Summary

Verifies the integrity and authorization of the indicated data object according to the
indicated credentials.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_VERIFY_BOOT_OBJECT)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *Credentials,
 IN EFI_BIS_DATA *DataObject,
 OUT BOOLEAN *IsVerified
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Credentials A Signed Manifest containing verification information for the indicated
data object. The Manifest signature itself must meet the requirements
described below. This parameter is optional if a Boot Authorization
Check is currently not required on this platform (Credentials.Data
may be NULL), otherwise this parameter is required. The required
syntax of the Signed Manifest is described in the Related Definition for
Manifest Syntax below. Type EFI_BIS_DATA is defined in the
Initialize() function description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

IsVerified The function writes TRUE if the verification succeeded, otherwise
FALSE.

Extensible Firmware Interface Specification

15-96 12/01/02 Version 1.10

Related Definitions
//**
// Manifest Syntax
//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap
archive as described in [SM spec]: a manifest file, a signer’s information file, and a signature block
file. These three parts along with examples are described in the following sections. In these
examples, text in parentheses is a description of the text that would appear in the signed manifest.
Text outside of parentheses must appear exactly as shown. Also note that manifest files and
signer’s information files must conform to a 72-byte line-length limit. Continuation lines (lines
beginning with a single “space” character) are used for lines longer than 72 bytes. The examples
given here follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII (not
Unicode) text files. In cases where these files contain a base-64 encoded string, the string is an
ASCII (not Unicode) string before base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the reserved
name as shown in the example below. This data object is the Boot Object to be verified. An
example manifest file is shown below.
Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 boot object)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
 Name: memory:BootObject

 Protocols — Network Support

Version 1.10 12/01/02 15-97

This identifies the section that carries the integrity data for the Boot Object. The string
“memory:BootObject” must appear exactly as shown. Note that the Boot Object cannot be
found directly from this manifest. A caller verifying the Boot Object integrity must load the Boot
Object into memory and specify its memory location explicitly to this verification function through
the DataObject parameter.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be
“SHA-1.” For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm
must be “MD5.” Multiple algorithms can be specified as a whitespace-separated list. For every
digest algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the boot object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries
the integrity data for the corresponding section in the manifest file. An example signer’s
information file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
 unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every signer’s information file created. The Win32 function UuidCreate() can be used for this
on Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64
encoding is described in [BASE-64].
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Extensible Firmware Interface Specification

15-98 12/01/02 Version 1.10

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: memory:BootObject

This identifies the section in the signer’s information file corresponding to the section with the
same name in the manifest file described earlier. The string “memory:BootObject” must
appear exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The
digest algorithms specified here must match those specified in the manifest file. For every digest
algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the
blank line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or
end-of-file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the signature
block file. The base name matches, and the three-character extension is modified to reflect the
signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.
• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

 Protocols — Network Support

Version 1.10 12/01/02 15-99

Description

This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials. The rules for successful verification depend on whether or not a Boot
Authorization Check is currently required on this platform.

If a Boot Authorization Check is not currently required on this platform, no authorization check is
performed. However, the following rules are applied for an integrity check:

• In this case, the credentials are optional. If they are not supplied (Credentials.Data is
NULL), no integrity check is performed, and the function returns immediately with a “success”
indication and IsVerified is TRUE.

• If the credentials are supplied (Credentials.Data is other than NULL), integrity checks
are performed as follows:
 Verify the credentials – The credentials parameter is a valid signed Manifest, with a single

signer. The signer’s identity is included in the credential as a certificate.
 Verify the data object – The Manifest must contain a section named

“memory:BootObject,” with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed
over the specified DataObject data.

 If these checks succeed, the function returns with a “success” indication and
IsVerified is TRUE. Otherwise, IsVerified is FALSE and the function returns
with a “security violation” indication.

If a Boot Authorization Check is currently required on this platform, authorization and integrity
checks are performed. The integrity check is the same as in the case above, except that it is
required. The following rules are applied:

• Verify the credentials – The credentials parameter is required in this case
(Credentials.Data must be other than NULL). The credentials parameter is a valid
Signed Manifest, with a single signer. The signer’s identity is included in the credential as a
certificate.

• Verify the data object – The Manifest must contain a section named
“memory:BootObject,” with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed over
the specified DataObject data.

• Do Authorization check – This happens one of two ways depending on whether or not the
platform currently has a Boot Object Authorization Certificate configured.
 If a Boot Object Authorization Certificate is not currently configured, this function

interacts with the user in a platform-specific way to determine whether the operation
should succeed.

 If a Boot Object Authorization Certificate is currently configured, this function uses the
Boot Object Authorization Certificate to determine whether the operation should succeed.
The public key certified by the signer’s certificate must match the public key in the Boot
Object Authorization Certificate configured for this platform. The match must be direct,
that is, the signature authority cannot be delegated along a certificate chain.

Extensible Firmware Interface Specification

15-100 12/01/02 Version 1.10

 If these checks succeed, the function returns with a “success” indication and
IsVerified is TRUE. Otherwise, IsVerified is FALSE and the function returns
with a “security violation” indication.

Note that if a Boot Authorization Check is currently required on this platform this function always
performs an authorization check, either through platform-specific user interaction or through a
signature generated with the private key corresponding to the public key in the platform’s Boot
Object Authorization Certificate.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The Boot Authorization Check is currently required on this platform
and the Credentials.Data parameter supplied by the caller
is NULL or an invalid memory reference,

 or
The DataObject parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The DataObject.Data parameter supplied by the caller is
NULL or an invalid memory reference,

 or
The IsVerified parameter supplied by the caller is NULL or

an invalid memory reference.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter
was invalid (could not be parsed),
 or
The signed manifest supplied as the Credentials parameter

failed to verify using the installed Boot Object Authorization
Certificate or the signer’s Certificate in Credentials,

 or
Platform-specific authorization failed,
 or
Any other required attribute value was missing,
 or
The signed manifest supplied as the Credentials parameter

did not include a signer certificate,
 or

continued

 Protocols — Network Support

Version 1.10 12/01/02 15-101

Status Codes Returned (continued)
EFI_SECURITY_VIOLATION
(continued)

The signed manifest supplied as the Credentials parameter

did not include the manifest section named
“memory:BootObject,”

 or
The signed manifest supplied as the Credentials parameter
had a signing certificate with an unsupported public-key algorithm,
 or
The manifest section named “memory:BootObject” did not

include a digest with a digest algorithm corresponding to the
signing certificate’s public key algorithm,
 or
The data object supplied as the DataObject parameter and

referenced by the manifest section named
“memory:BootObject” did not verify with the digest supplied

in that manifest section,
 or
The signed manifest supplied as the Credentials parameter

did not include a signer’s information file with the
SignerInformationName identifying attribute value
“BIS_VerifiableObjectSignerInfoName,”

 or
There were no signers associated with the identified signer’s
information file,
 or
There was more than one signer associated with the identified
signer’s information file,
 or
The platform’s check flag is “on” (requiring authorization checks)
but the Credentials.Data supplied by the caller is NULL,

 or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,
 or
An unexpected internal error occurred in a cryptographic software
module.

Extensible Firmware Interface Specification

15-102 12/01/02 Version 1.10

EFI_BIS.VerifyObjectWithCredential()

Summary

Verifies the integrity and authorization of the indicated data object according to the indicated
credentials and authority certificate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *Credentials,
 IN EFI_BIS_DATA *DataObject,
 IN EFI_BIS_DATA *SectionName,
 IN EFI_BIS_DATA *AuthorityCertificate,
 OUT BOOLEAN *IsVerified
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization of
the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Credentials A Signed Manifest containing verification information for the indicated
data object. The Manifest signature itself must meet the requirements
described below. The required syntax of the Signed Manifest is
described in the Related Definition of Manifest Syntax below. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

SectionName An ASCII (not Unicode) string giving the section name in the manifest
holding the verification information (in other words, hash value) that
corresponds to DataObject. Type EFI_BIS_DATA is defined in the
Initialize() function description.

 Protocols — Network Support

Version 1.10 12/01/02 15-103

AuthorityCertificate
A digital certificate whose public key must match the signer’s public key
which is found in the credentials. This parameter is optional
(AuthorityCertificate.Data may be NULL). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

IsVerified The function writes TRUE if the verification was successful. Otherwise,
the function writes FALSE.

Related Definitions
//**
// Manifest Syntax
//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap
archive as described in [SM spec]: a manifest file, a signer’s information file, and a signature block
file. These three parts along with examples are described in the following sections. In these
examples, text in parentheses is a description of the text that would appear in the signed manifest.
Text outside of parentheses must appear exactly as shown. Also note that manifest files and
signer’s information files must conform to a 72-byte line-length limit. Continuation lines (lines
beginning with a single “space” character) are used for lines longer than 72 bytes. The examples
given here follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII (not
Unicode) text files. In cases where these files contain a base-64 encoded string, the string is an
ASCII (not Unicode) string before base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the caller-
chosen name as shown in the example below. This data object is the Data Object to be verified. An
example manifest file is shown below.
Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 data object)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

Extensible Firmware Interface Specification

15-104 12/01/02 Version 1.10

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
Name: (a memory-type data object name)

This identifies the section that carries the integrity data for the target Data Object. The right-hand
string must obey the syntax for memory-type references, that is, it is of the form
“memory:SomeUniqueName.” The “memory:” part of this string must appear exactly. The
“SomeUniqueName” part is chosen by the caller. It must be unique within the section names in
this manifest file. The entire “memory:SomeUniqueName” string must match exactly the
corresponding string in the signer’s information file described below. Furthermore, this entire
string must match the value given for the SectionName parameter to this function. Note that the
target Data Object cannot be found directly from this manifest. A caller verifying the Data Object
integrity must load the Data Object into memory and specify its memory location explicitly to this
verification function through the DataObject parameter.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be
“SHA-1.” For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm
must be “MD5.” Multiple algorithms can be specified as a whitespace-separated list. For every
digest algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the data object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries
the integrity data for the corresponding section in the manifest file. An example signer’s
information file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique GUID)

 Protocols — Network Support

Version 1.10 12/01/02 15-105

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every signer’s information file created. The Win32 function UuidCreate() can be used for this
on Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64
encoding is described in [BASE-64].
SignerInformationName: BIS_VerifiableObjectSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: (a memory-type data object name)

This identifies the section in the signer’s information file corresponding to the section with the
same name in the manifest file described earlier. The right-hand string must match exactly the
corresponding string in the manifest file described above.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The
digest algorithms specified here must match those specified in the manifest file. For every digest
algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the
blank line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or
end-of-file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the signature
block file. The base name matches, and the three-character extension is modified to reflect the
signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.
• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

Extensible Firmware Interface Specification

15-106 12/01/02 Version 1.10

Description

This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials and authority certificate.

Both an integrity check and an authorization check are performed. The rules for a successful
integrity check are:

• Verify the credentials – The credentials parameter is a valid Signed Manifest, with a single
signer. The signer’s identity is included in the credential as a certificate.

• Verify the data object – The Manifest must contain a section with the name as specified by the
SectionName parameter, with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed over
the data specified by the DataObject parameter of this function.

The authorization check is optional. It is performed only if the
AuthorityCertificate.Data parameter is other than NULL. If it is other than NULL, the
rules for a successful authorization check are:

• The AuthorityCertificate parameter is a valid digital certificate. There is no
requirement regarding the signer (issuer) of this certificate.

• The public key certified by the signer’s certificate must match the public key in the
AuthorityCertificate. The match must be direct, that is, the signature authority cannot
be delegated along a certificate chain.

If all of the integrity and authorization check rules are met, the function returns with a “success”
indication and IsVerified is TRUE. Otherwise, it returns with a nonzero specific error code and
IsVerified is FALSE.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid
application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The Credentials.Data parameter supplied by the caller is
NULL or an invalid memory reference,

 or
The Credentials.Length supplied by the caller is zero,

 or
The DataObject parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The DataObject.Data parameter supplied by the caller is
NULL or an invalid memory reference,

 or

continued

 Protocols — Network Support

Version 1.10 12/01/02 15-107

 Status Codes Returned (continued)
EFI_INVALID_PARAMETER
(continued)

The SectionName parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The SectionName.Data parameter supplied by the caller is
NULL or an invalid memory reference,

 or
The SectionName.Length supplied by the caller is zero,

 or
The AuthorityCertificate parameter supplied by the
caller is NULL or an invalid memory reference,

 or
The IsVerified parameter supplied by the caller is NULL or

an invalid memory reference.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_SECURITY_VIOLATION The Credentials.Data supplied by the caller is NULL,

 or
The AuthorityCertificate supplied by the caller was

invalid (could not be parsed),
 or
The signed manifest supplied as Credentials failed to verify
using the AuthorityCertificate supplied by the caller or

the manifest’s signer’s certificate,
 or
Any other required attribute value was missing,
 or
The signed manifest supplied as the Credentials parameter
did not include a signer certificate,
 or
The signed manifest supplied as the Credentials parameter

did not include the manifest section named according to
SectionName,

 or
The signed manifest supplied as the Credentials parameter

had a signing certificate with an unsupported public-key algorithm,
 or
The manifest section named according to SectionName did not

include a digest with a digest algorithm corresponding to the
signing certificate’s public key algorithm,
 or
The data object supplied as the DataObject parameter and

referenced by the manifest section named according to
SectionName did not verify with the digest supplied in that
manifest section,
 or

continued

Extensible Firmware Interface Specification

15-108 12/01/02 Version 1.10

 Status Codes Returned (continued)
EFI_SECURITY_VIOLATION
(continued)

The signed manifest supplied as the Credentials parameter

did not include a signer’s information file with the
SignerInformationName identifying attribute value
“BIS_VerifiableObjectSignerInfoName,”

 or
There were no signers associated with the identified signer’s
information file,
 or
There was more than one signer associated with the identified
signer’s information file,
 or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,
 or
An unexpected internal error occurred in a cryptographic software
module.

Version 1.10 12/01/02 16-1

16
Protocols - Debugger Support

This chapter describes a minimal set of protocols and associated data structures necessary to enable
the creation of source level debuggers for EFI. It does not fully define a debugger design. Using
the services described in this document, it should also be possible to implement a variety of
debugger solutions.

16.1 Overview

Efficient EFI driver and application development requires the availability of source level debugging
facilities. Although completely on-target debuggers are clearly possible, EFI debuggers are
generally expected to be remotely hosted. That is to say, the debugger itself will be split between
two machines, which are the host and target. A majority of debugger code runs on the host that is
typically responsible for disassembly, symbol management, source display, and user interface.
Similarly, a smaller piece of code runs on the target that establishes the communication to the host
and proxies requests from the host. The on-target code is known as the “debug agent.”

The debug agent design is subdivided further into two parts, which are the processor/platform
abstraction and the debugger host specific communication grammar. This specification describes
architectural interfaces for the former only. Specific implementations for various debugger host
communication grammars can be created that make use of the facilities described in this
specification.

The processor/platform abstraction is presented as a pair of protocol interfaces, which are the
Debug Support protocol and the Debug Port protocol.

The Debug Support protocol abstracts the processor’s debugging facilities, namely a mechanism to
manage the processor’s context via caller-installable exception handlers.

The Debug Port protocol abstracts the device that is used for communication between the host and
target. Typically this will be a 16550 serial port, 1394 device, or other device that is nominally a
serial stream.

Furthermore, a table driven, quiescent, memory-only mechanism for determining the base address
of PE32+ images is provided to enable the debugger host to determine where images are located
in memory.

Aside from timing differences that occur because of running code associated with the debug agent
and user initiated changes to the machine context, the operation of the on-target debugger
component must be transparent to the rest of the system. In addition, no portion of the debug agent
that runs in interrupt context may make any calls to EFI services or other protocol interfaces.

The services described in this document do not comprise a complete debugger, rather they provide
a minimal abstraction required to implement a wide variety of debugger solutions.

Extensible Firmware Interface Specification

16-2 12/01/02 Version 1.10

16.2 EFI Debug Support Protocol

This section defines the EFI Debug Support protocol which is used by the debug agent.

16.2.1 EFI Debug Support Protocol Overview
The debug-agent needs to be able to gain control of the machine when certain types of events
occur; i.e. breakpoints, processor exceptions, etc. Additionally, the debug agent must also be able
to periodically gain control during operation of the machine to check for asynchronous commands
from the host. The EFI Debug Support protocol services enable these capabilities.

The EFI Debug Support protocol interfaces produce callback registration mechanisms which are
used by the debug agent to register functions that are invoked either periodically or when specific
processor exceptions. When they are invoked by the Debug Support driver, these callback
functions are passed the current machine context record. The debug agent may modify this context
record to change the machine context which is restored to the machine after the callback function
returns. The debug agent does not run in the same context as the rest of EFI and all modifications
to the machine context are deferred until after the callback function returns.

It is expected that there will typically be two instances of the EFI Debug Support protocol in the
system. On associated with the native processor instruction set (IA-32 or Itanium processor
family), and one for the EFI virtual machine that implements EFI byte code (EBC).

While multiple instances of the EFI Debug Support protocol are expected, there must never be
more than one for any given instruction set.

 Protocols — Debugger Support

Version 1.10 12/01/02 16-3

EFI_DEBUG_SUPPORT_PROTOCOL

Summary

This protocol provides the services to allow the debug agent to register callback functions that are
called either periodically or when specific processor exceptions occur.

GUID
#define EFI_DEBUG_SUPPORT_PROTOCOL_GUID \
{0x2755590C,0x6F3C,0x42FA,0x9E,0xA4,0xA3,0xBA,0x54,0x3C,0xDA,0x25}

Protocol Interface Structure
typedef struct {
 EFI_INSTRUCTION_SET_ARCHITECTURE Isa;
 EFI_GET_MAXIMUM_PROCESSOR_INDEX GetMaximumProcessorIndex;
 EFI_REGISTER_PERIODIC_CALLBACK RegisterPeriodicCallback;
 EFI_REGISTER_EXCEPTION_CALLBACK RegisterExceptionCallback;
 EFI_INVALIDATE_INSTRUCTION_CACHE InvalidateInstructionCache;
} EFI_DEBUG_SUPPORT_PROTOCOL;

Parameters

Isa Declares the processor architecture for this instance of the EFI Debug
Support protocol.

GetMaximumProcessorIndex

 Returns the maximum processor index value that may be used with
RegisterPeriodicCallback() and
RegisterExceptionCallback(). See the
GetMaximumProcessorIndex() function description.

RegisterPeriodicCallback

 Registers a callback function that will be invoked periodically and
asynchronously to the execution of EFI. See the
RegisterPeriodicCallback() function description.

RegisterExceptionCallback

 Registers a callback function that will be called each time the
specified processor exception occurs. See the
RegisterExceptionCallback() function description.

Extensible Firmware Interface Specification

16-4 12/01/02 Version 1.10

InvalidateInstructionCache

Invalidate the instruction cache of the processor. This is required by
processor architectures where instruction and data caches are not
coherent when instructions in the code under debug has been modified
by the debug agent. See the
InvalidateInstructionCache() function description.

Related Definitions

Refer to the Microsoft PE/COFF Specification revision 6.2 or later for IMAGE_FILE_MACHINE
definitions.

NOTE

At the time of publication of this specification, the latest revision of the PE/COFF specification
was 6.2. The definition of IMAGE_FILE_MACHINE_EBC is not included in revision 6.2 of the
PE/COFF specification. It will be added in a future revision of the PE/COFF specification.

typedef enum {
 IsaIa32 = IMAGE_FILE_MACHINE_I386, // 0x014C
 IsaIpf = IMAGE_FILE_MACHINE_IA64, // 0x0200
 IsaEbc = IMAGE_FILE_MACHINE_EBC // 0x0EBC

 } EFI_INSTRUCTION_SET_ARCHITECTURE

Description

The EFI Debug Support protocol provides the interfaces required to register debug agent callback
functions and to manage the processor’s instruction stream as required. Registered callback
functions are invoked in interrupt context when the specified event occurs.

The driver that produces the EFI Debug Support protocol is also responsible for saving the
machine context prior to invoking a registered callback function and restoring it after the callback
function returns prior to returning to the code under debug. If the debug agent has modified the
context record, the modified context must be used in the restore operation.

Furthermore, if the debug agent modifies any of the code under debug (to set a software
breakpoint for example), it must call the InvalidateInstructionCache() function for
the region of memory that has been modified.

 Protocols — Debugger Support

Version 1.10 12/01/02 16-5

EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()

Summary

Returns the maximum value that may be used for the ProcessorIndex parameter in
RegisterPeriodicCallback() and RegisterExceptionCallback().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MAXIMUM_PROCESSOR_INDEX) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 OUT UINTN *MaxProcessorIndex
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.
Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in
Section 16.2.

MaxProcessorIndex Pointer to a caller-allocated UINTN in which the maximum
supported processor index is returned.

Description

The GetMaximumProcessorIndex() function returns the maximum processor index in the
output parameter MaxProcessorIndex. This value is the largest value that may be used in the
ProcessorIndex parameter for both RegisterPeriodicCallback() and
RegisterExceptionCallback(). All values between 0 and MaxProcessorIndex must
be supported by RegisterPeriodicCallback() and
RegisterExceptionCallback().

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by GetMaximumProcessorIndex(). The implementation behavior
when an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

Extensible Firmware Interface Specification

16-6 12/01/02 Version 1.10

EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()

Summary

Registers a function to be called back periodically in interrupt context.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REGISTER_PERIODIC_CALLBACK) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN EFI_PERIODIC_CALLBACK PeriodicCallback
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.
Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 16.2.

ProcessorIndex Specifies which processor the callback function applies to.

PeriodicCallback A pointer to a function of type PERIODIC_CALLBACK that is the
main periodic entry point of the debug agent. It receives as a
parameter a pointer to the full context of the interrupted execution
thread.

Related Definitions
typedef
VOID (*EFI_PERIODIC_CALLBACK) (
 IN OUT EFI_SYSTEM_CONTEXT SystemContext
);

typedef union {
 EFI_SYSTEM_CONTEXT_EBC *SystemContextEbc,
 EFI_SYSTEM_CONTEXT_IA32 *SystemContextIa32,
 EFI_SYSTEM_CONTEXT_IPF *SystemContextIpf
} EFI_SYSTEM_CONTEXT;

// System context for virtual EBC processors
typedef struct {
 UINT64 R0, R1, R2, R3, R4, R5, R6, R7;
 UINT64 Flags;
 UINT64 ControlFlags;
 UINT64 Ip;
} EFI_SYSTEM_CONTEXT_EBC;

 Protocols — Debugger Support

Version 1.10 12/01/02 16-7

NOTE

When the context record field is larger than the register being stored in it, the upper bits of the
context record field are unused and ignored.

// System context for IA-32 processors
typedef struct {
 UINT32 ExceptionData; // ExceptionData is

// additional data pushed
// on the stack by some
// types of IA-32
// exceptions

 EFI_FXSAVE_STATE FxSaveState;
 UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7;
 UINT32 Cr0, Cr1 /* Reserved */, Cr2, Cr3, Cr4;
 UINT32 Eflags;
 UINT32 Ldtr, Tr;
 UINT32 Gdtr[2], Idtr[2];
 UINT32 Eip;
 UINT32 Gs, Fs, Es, Ds, Cs, Ss;
 UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax;
} EFI_SYSTEM_CONTEXT_IA32;

// FXSAVE_STATE - FP / MMX / XMM registers
typedef struct {
 UINT16 Fcw;
 UINT16 Fsw;
 UINT16 Ftw;
 UINT16 Opcode;
 UINT32 Eip;
 UINT16 Cs;
 UINT16 Reserved1;
 UINT32 DataOffset;
 UINT16 Ds;
 UINT8 Reserved2[10];
 UINT8 St0Mm0[10], Reserved3[6];
 UINT8 St0Mm1[10], Reserved4[6];
 UINT8 St0Mm2[10], Reserved5[6];
 UINT8 St0Mm3[10], Reserved6[6];
 UINT8 St0Mm4[10], Reserved7[6];
 UINT8 St0Mm5[10], Reserved8[6];
 UINT8 St0Mm6[10], Reserved9[6];
 UINT8 St0Mm7[10], Reserved10[6];
 UINT8 Reserved11[22 * 16];
} EFI_FXSAVE_STATE;

Extensible Firmware Interface Specification

16-8 12/01/02 Version 1.10

// System context for Itanium processor family
typedef struct {
 UINT64 Reserved;

 UINT64 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,
 R11, R12, R13, R14, R15, R16, R17, R18, R19, R20,
 R21, R22, R23, R24, R25, R26, R27, R28, R29, R30,
 R31;

 UINT64 F2[2], F3[2], F4[2], F5[2], F6[2],
 F7[2], F8[2], F9[2], F10[2], F11[2],
 F12[2], F13[2], F14[2], F15[2], F16[2],
 F17[2], F18[2], F19[2], F20[2], F21[2],
 F22[2], F23[2], F24[2], F25[2], F26[2],
 F27[2], F28[2], F29[2], F30[2], F31[2];

 UINT64 Pr;

 UINT64 B0, B1, B2, B3, B4, B5, B6, B7;

 // application registers
 UINT64 ArRsc, ArBsp, ArBspstore, ArRnat;
 UINT64 ArFcr;
 UINT64 ArEflag, ArCsd, ArSsd, ArCflg;
 UINT64 ArFsr, ArFir, ArFdr;
 UINT64 ArCcv;
 UINT64 ArUnat;
 UINT64 ArFpsr;
 UINT64 ArPfs, ArLc, ArEc;

 // control registers
 UINT64 CrDcr, CrItm, CrIva, CrPta, CrIpsr, CrIsr;
 UINT64 CrIip, CrIfa, CrItir, CrIipa, CrIfs, CrIim;
 UINT64 CrIha;

 // debug registers
 UINT64 Dbr0, Dbr1, Dbr2, Dbr3, Dbr4, Dbr5, Dbr6, Dbr7;
 UINT64 Ibr0, Ibr1, Ibr2, Ibr3, Ibr4, Ibr5, Ibr6, Ibr7;

 // virtual registers
 UINT64 IntNat; // nat bits for R1-R31

} EFI_SYSTEM_CONTEXT_IPF;

 Protocols — Debugger Support

Version 1.10 12/01/02 16-9

Description

The RegisterPeriodicCallback() function registers and enables the on-target debug
agent’s periodic entry point. To unregister and disable calling the debug agent’s periodic entry
point, call RegisterPeriodicCallback() passing a NULL PeriodicCallback
parameter.

The implementation must handle saving and restoring the processor context to/from the system
context record around calls to the registered callback function.

If the interrupt is also used by the firmware for the EFI time base or some other use, two rules must
be observed. First, the registered callback function must be called before any EFI processing takes
place. Second, the Debug Support implementation must perform the necessary steps to pass control
to the firmware’s corresponding interrupt handler in a transparent manner.

There is no quality of service requirement or specification regarding the frequency of calls to the
registered PeriodicCallback function. This allows the implementation to mitigate a potential
adverse impact to EFI timer based services due to the latency induced by the context save/restore
and the associated callback function.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterPeriodicCallback(). The implementation behavior when
an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL PeriodicCallback parameter when a callback

function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.

Extensible Firmware Interface Specification

16-10 12/01/02 Version 1.10

EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()

Summary

Registers a function to be called when a given processor exception occurs.

Prototype
typedef
EFI_STATUS
(EFIAPI *REGISTER_EXCEPTION_CALLBACK) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN EFI_EXCEPTION_CALLBACK ExceptionCallback,
 IN EFI_EXCEPTION_TYPE ExceptionType
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.
Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in
Section 16.2.

ProcessorIndex Specifies which processor the callback function applies to.

ExceptionCallback A pointer to a function of type EXCEPTION_CALLBACK that is
called when the processor exception specified by ExceptionType
occurs. Passing NULL unregisters any previously registered function
associated with ExceptionType.

ExceptionType Specifies which processor exception to hook.

Related Definitions
typedef
VOID (*EFI_EXCEPTION_CALLBACK) (
 IN EFI_EXCEPTION_TYPE ExceptionType,
 IN OUT EFI_SYSTEM_CONTEXT SystemContext
);

typedef INTN EFI_EXCEPTION_TYPE;

// EBC Exception types
#define EXCEPT_EBC_UNDEFINED 0
#define EXCEPT_EBC_DIVIDE_ERROR 1
#define EXCEPT_EBC_DEBUG 2
#define EXCEPT_EBC_BREAKPOINT 3
#define EXCEPT_EBC_OVERFLOW 4
#define EXCEPT_EBC_INVALID_OPCODE 5

 Protocols — Debugger Support

Version 1.10 12/01/02 16-11

#define EXCEPT_EBC_STACK_FAULT 6
#define EXCEPT_EBC_ALIGNMENT_CHECK 7
#define EXCEPT_EBC_INSTRUCTION_ENCODING 8
#define EXCEPT_EBC_BAD_BREAK 9
#define EXCEPT_EBC_SINGLE_STEP 10

// IA-32 Exception types
#define EXCEPT_IA32_DIVIDE_ERROR 0
#define EXCEPT_IA32_DEBUG 1
#define EXCEPT_IA32_NMI 2
#define EXCEPT_IA32_BREAKPOINT 3
#define EXCEPT_IA32_OVERFLOW 4
#define EXCEPT_IA32_BOUND 5
#define EXCEPT_IA32_INVALID_OPCODE 6
#define EXCEPT_IA32_DOUBLE_FAULT 8
#define EXCEPT_IA32_INVALID_TSS 10
#define EXCEPT_IA32_SEG_NOT_PRESENT 11
#define EXCEPT_IA32_STACK_FAULT 12
#define EXCEPT_IA32_GP_FAULT 13
#define EXCEPT_IA32_PAGE_FAULT 14
#define EXCEPT_IA32_FP_ERROR 16
#define EXCEPT_IA32_ALIGNMENT_CHECK 17
#define EXCEPT_IA32_MACHINE_CHECK 18
#define EXCEPT_IA32_SIMD 19

// Itanium Processor Family Exception types
#define EXCEPT_IPF_VHTP_TRANSLATION 0
#define EXCEPT_IPF_INSTRUCTION_TLB 1
#define EXCEPT_IPF_DATA_TLB 2
#define EXCEPT_IPF_ALT_INSTRUCTION_TLB 3
#define EXCEPT_IPF_ALT_DATA_TLB 4
#define EXCEPT_IPF_DATA_NESTED_TLB 5
#define EXCEPT_IPF_INSTRUCTION_KEY_MISSED 6
#define EXCEPT_IPF_DATA_KEY_MISSED 7
#define EXCEPT_IPF_DIRTY_BIT 8
#define EXCEPT_IPF_INSTRUCTION_ACCESS_BIT 9
#define EXCEPT_IPF_DATA_ACCESS_BIT 10
#define EXCEPT_IPF_BREAKPOINT 11
#define EXCEPT_IPF_EXTERNAL_INTERRUPT 12
// 13 - 19 reserved
#define EXCEPT_IPF_PAGE_NOT_PRESENT 20
#define EXCEPT_IPF_KEY_PERMISSION 21
#define EXCEPT_IPF_INSTRUCTION_ACCESS_RIGHTS 22
#define EXCEPT_IPF_DATA_ACCESS_RIGHTS 23
#define EXCEPT_IPF_GENERAL_EXCEPTION 24
#define EXCEPT_IPF_DISABLED_FP_REGISTER 25
#define EXCEPT_IPF_NAT_CONSUMPTION 26
#define EXCEPT_IPF_SPECULATION 27
// 28 reserved

Extensible Firmware Interface Specification

16-12 12/01/02 Version 1.10

#define EXCEPT_IPF_DEBUG 29
#define EXCEPT_IPF_UNALIGNED_REFERENCE 30
#define EXCEPT_IPF_UNSUPPORTED_DATA_REFERENCE 31
#define EXCEPT_IPF_FP_FAULT 32
#define EXCEPT_IPF_FP_TRAP 33
#define EXCEPT_IPF_LOWER_PRIVILEGE_TRANSFER_TRAP 34
#define EXCEPT_IPF_TAKEN_BRANCH 35
#define EXCEPT_IPF_SINGLE_STEP 36
// 37 - 44 reserved
#define EXCEPT_IPF_IA32_EXCEPTION 45
#define EXCEPT_IPF_IA32_INTERCEPT 46
#define EXCEPT_IPF_IA32_INTERRUPT 47

Description

The RegisterExceptionCallback() function registers and enables an exception callback
function for the specified exception. The specified exception must be valid for the instruction set
architecture. To unregister the callback function and stop servicing the exception, call
RegisterExceptionCallback() passing a NULL ExceptionCallback parameter.

The implementation must handle saving and restoring the processor context to/from the system
context record around calls to the registered callback function. No chaining of exception handlers
is allowed.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterExceptionCallback(). The implementation behavior
when an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL ExceptionCallback parameter when a

callback function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.

 Protocols — Debugger Support

Version 1.10 12/01/02 16-13

EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

Summary

Invalidates processor instruction cache for a memory range. Subsequent execution in this range
causes a fresh memory fetch to retrieve code to be executed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INVALIDATE_INSTRUCTION_CACHE) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN VOID *Start,
 IN UINT64 Length
);

Parameters

This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.
Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 16.2.

ProcessorIndex Specifies which processor’s instruction cache is to be invalidated.

Start Specifies the physical base of the memory range to be invalidated.

Length Specifies the minimum number of bytes in the processor’s instruction
cache to invalidate.

Description

Typical operation of a debugger may require modifying the code image that is under debug. This
can occur for many reasons, but is typically done to insert/remove software break instructions.
Some processor architectures do not have coherent instruction and data caches so modifications to
the code image require that the instruction cache be explicitly invalidated in that memory region.

The InvalidateInstructionCache() function abstracts this operation from the debug
agent and provides a general purpose capability to invalidate the processor’s instruction cache.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterExceptionCallback(). The implementation behavior
when an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

Extensible Firmware Interface Specification

16-14 12/01/02 Version 1.10

16.3 EFI Debugport Protocol

This section defines the EFI Debugport protocol. This protocol is used by debug agent to
communicate with the remote debug host.

16.3.1 EFI Debugport Overview
Historically, remote debugging has typically been done using a standard UART serial port to
connect the host and target. This is obviously not possible in a legacy reduced system that does not
have a UART. The Debugport protocol solves this problem by providing an abstraction that can
support many different types of debugport hardware. The debug agent should use this abstraction
to communicate with the host.

The interface is minimal with only reset, read, and write abstractions. Since these functions are
called in interrupt context, none of them may call any EFI services or other protocol interfaces.

Debugport selection and configuration is handled by setting defaults via an environment variable
which contains a full device path to the debug port. This environment variable is used during the
debugport driver’s initialization to configure the debugport correctly. The variable contains a full
device path to the debugport, with the last node (prior to the terminal node) being a debugport
messaging node. See section 16.3.2 for details.

The driver must also produce an instance of the EFI Device Path protocol to indicate what hardware
is being used for the debugport. This may be used by the OS to maintain the debugport across a
call to ExitBootServices().

 Protocols — Debugger Support

Version 1.10 12/01/02 16-15

EFI_DEBUGPORT_PROTOCOL

Summary

This protocol provides the communication link between the debug agent and the remote host.

GUID
#define EFI_DEBUGPORT_PROTOCOL_GUID \
{0xEBA4E8D2,0x3858,0x41EC,0xA2,0x81,0x26,0x47,0xBA,0x96,0x60,0xD0}

Protocol Interface Structure
typedef struct {
 EFI_DEBUGPORT_RESET Reset;
 EFI_DEBUGPORT_WRITE Write;
 EFI_DEBUGPORT_READ Read;
 EFI_DEBUGPORT_POLL Poll;
} EFI_DEBUGPORT_PROTOCOL;

Parameters

Reset Resets the debugport hardware.

Write Send a buffer of characters to the debugport device.

Read Receive a buffer of characters from the debugport device.

Poll Determine if there is any data available to be read from the
debugport device.

Description

The Debugport protocol is used for byte stream communication with a debugport device. The
debugport can be a standard UART Serial port, a USB-based character device, or potentially any
character-based I/O device.

The attributes for all UART-style debugport device interfaces are defined in the DEBUGPORT
variable (see Section 16.3.3).

Extensible Firmware Interface Specification

16-16 12/01/02 Version 1.10

EFI_DEBUGPORT_PROTOCOL.Reset()

Summary

Resets the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_RESET) (
 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 16.3.

Description

The Reset() function resets the debugport device.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Reset(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The debugport device was reset and is in usable state.

EFI_DEVICE_ERROR The debugport device could not be reset and is unusable.

 Protocols — Debugger Support

Version 1.10 12/01/02 16-17

EFI_DEBUGPORT_PROTOCOL.Write()

Summary

Writes data to the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_WRITE) (
 IN EFI_DEBUGPORT_PROTOCOL *This,
 IN UINT32 Timeout,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 16.3.

Timeout The number of microseconds to wait before timing out a write
operation.

BufferSize On input, the requested number of bytes of data to write. On output,
the number of bytes of data actually written.

Buffer A pointer to a buffer containing the data to write.

Description

The Write() function writes the specified number of bytes to a debugport device. If a timeout
error occurs while data is being sent to the debugport, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the debugport
device is returned in BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Write(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.

Extensible Firmware Interface Specification

16-18 12/01/02 Version 1.10

EFI_DEBUGPORT_PROTOCOL.Read()

Summary

Reads data from the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_READ) (
 IN EFI_DEBUGPORT_PROTOCOL *This,
 IN UINT32 Timeout,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 16.3.

Timeout The number of microseconds to wait before timing out a read
operation.

BufferSize A pointer to an integer which, on input contains the requested number
of bytes of data to read, and on output contains the actual number of
bytes of data read and returned in Buffer.

Buffer A pointer to a buffer into which the data read will be saved.

Description

The Read() function reads a specified number of bytes from a debugport. If a timeout error or an
overrun error is detected while data is being read from the debugport, then no more characters will
be read, and EFI_TIMEOUT will be returned. In all cases the number of bytes actually read is
returned in *BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Read(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The debugport device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.

 Protocols — Debugger Support

Version 1.10 12/01/02 16-19

EFI_DEBUGPORT_PROTOCOL.Poll()

Summary

Checks to see if any data is available to be read from the debugport device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_POLL) (
 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters

This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type
EFI_DEBUGPORT_PROTOCOL is defined in Section 16.3.

Description

The Poll() function checks if there is any data available to be read from the debugport device
and returns the result. No data is actually removed from the input stream. This function enables
simpler debugger design since buffering of reads is not necessary by the caller.

Status Codes Returned
EFI_SUCCESS At least one byte of data is available to be read.

EFI_NOT_READY No data is available to be read.

EFI_DEVICE_ERROR The debugport device is not functioning correctly.

Extensible Firmware Interface Specification

16-20 12/01/02 Version 1.10

16.3.2 Debugport Device Path
The debugport driver must establish and maintain an instance of the EFI Device Path protocol for
the debugport. A graceful handoff of debugport ownership between the EFI Debugport driver and
an OS debugport driver requires that the OS debugport driver can determine the type, location, and
configuration of the debugport device.

The Debugport Device Path is a vendor-defined messaging device path with no data, only a GUID.
It is used at the end of a conventional device path to tag the device for use as the debugport. For
example, a typical UART debugport would have the following fully qualified device path:

ACPI(PciRootBridge)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,n,8,1)/DebugPort()

The Vendor_GUID that defines the debugport device path is the same as the debugport protocol
GUID, as defined below.
#define DEVICE_PATH_MESSAGING_DEBUGPORT \

EFI_DEBUGPORT_PROTOCOL_GUID

Table 16-1 shows all fields of the debugport device path.

Table 16-1. Debugport Messaging Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path.

Sub Type 1 1 Sub Type 10 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Vendor_GUID 4 16 DEVICE_PATH_MESSAGING_DEBUGPORT.

 Protocols — Debugger Support

Version 1.10 12/01/02 16-21

16.3.3 EFI Debugport Variable
Even though there may be more than one hardware device that could function as a debugport in a
system, only one debugport may be active at a time. The DEBUGPORT variable is used to declare
which hardware device will act as the debugport, and what communication parameters it should
assume.

Like all EFI variables, the DEBUGPORT variable has both a name and a GUID. The name is
“DEBUGPORT.” The GUID is the same as the EFI_DEBUGPORT_PROTOCOL_GUID:

#define EFI_DEBUGPORT_VARIABLE_NAME L"DEBUGPORT"
#define EFI_DEBUGPORT_VARIABLE_GUID EFI_DEBUGPORT_PROTOCOL_GUID

The data contained by the DEBUGPORT variable is a fully qualified debugport device path (see
Section 16.3.2).

The desired communication parameters for the debugport are declared in the DEBUGPORT
variable. The debugport driver must read this variable during initialization to determine how to
configure the debug port.

To reduce the required complexity of the debugport driver, the debugport driver is not required to
support all possible combinations of communication parameters. What combinations of parameters
are possible is implementation specific.

Additionally debugport drivers implemented for PNP0501 devices, that is debugport devices with a
PNP0501 ACPI node in the device path, must support the following defaults. These defaults must
be used in the absence of a DEBUGPORT variable, or when the communication parameters
specified in the DEBUGPORT variable are not supported by the driver.

• Baud : 115200
• 8 data bits
• No parity
• 1 stop bit
• No flow control (See Appendix A for flow control details)

In the absence of the DEBUGPORT variable, the selection of which port to use as the debug port is
implementation specific.

Future revisions of this specification may define new defaults for other debugport types.

The debugport device path must be constructed to reflect the actual settings for the debugport. Any
code needing to know the state of the debug port must reference the device path rather than the
DEBUGPORT variable, since the debugport may have assumed a default setting in spite of the
existence of the DEBUGPORT variable.

If it is not possible to configure the debug port using either the settings declared in the
DEBUGPORT variable or the default settings for the particular debugport type, the driver
initialization must not install any protocol interfaces and must exit with an error.

Extensible Firmware Interface Specification

16-22 12/01/02 Version 1.10

16.4 EFI Debug Support Table

This chapter defines the EFI Debug Support Table which is used by the debug agent or an external
debugger to determine loaded image information in a quiescent manner.

16.4.1 Overview
Every executable image loaded in EFI is represented by an EFI handle populated with an instance
of the LOADED_IMAGE protocol. This handle is known as an “image handle.” The associated
Loaded Image protocol provides image information that is of interest to a source level debugger.
Normal EFI executables can access this information by using EFI services to locate all instances of
the Loaded Image protocol.

A debugger has two problems with this scenario. First, if it is an external hardware debugger, the
location of the EFI system table is not known. Second, even if the location of the EFI system table
is known, the services contained therein are generally unavailable to a debugger either because it is
an on-target debugger that is running in interrupt context, or in the case of an external hardware
debugger there is no debugger code running on the target at all.

Since a source level debugger must be capable of determining image information for all loaded
images, an alternate mechanism that does not use EFI services must be provided. Two features are
added to the EFI system software to enable this capability.

First, an alternate mechanism of locating the EFI system table is required. A check-summed
structure containing the physical address of the EFI system table is created and located on a 4M
aligned memory address. A hardware debugger can search memory for this structure to determine
the location of the EFI system table.

Second, an EFI_CONFIGURATION_TABLE is published that leads to a database of pointers to all
instances of the Loaded Image protocol. Several layers of indirection are used to allow
dynamically managing the data as images are loaded and unloaded. Once the address of the EFI
system table is known, it is possible to discover a complete and accurate list of EFI images. (Note
that the EFI core itself must be represented by an instance of the Loaded Image protocol.)

 Protocols — Debugger Support

Version 1.10 12/01/02 16-23

Figure 16-1 illustrates the table indirection and pointer usage.

OM13172

EFI_DEBUG_IMAGE_INFO_TABLE

(Efi Debug ImageInfo [n])

EFI_SYSTEM_TABLE_POINTER

(EfiSystem Table)

EFI_SYSTEM_TABLE

(Configuration Table)

EFI_CONFIGURATION_TABLE

(EfiDebug ImageInfo Table Pointer)

EFI_DEBUG_IMAGE_INFO_TABLE_HEADER

(Efi Debug ImageInfo Table)

EFI_DEBUG_IMAGE_INFO_NORMAL

(LoadedImageProtocolInstance)

EFI_LOADED_IMAGE

Figure 16-1. Debug Support Table Indirection and Pointer Usage

Extensible Firmware Interface Specification

16-24 12/01/02 Version 1.10

16.4.2 EFI System Table Location
The EFI system table can be located by an off-target hardware debugger by searching for the
EFI_SYSTEM_TABLE_POINTER structure. The EFI_SYSTEM_TABLE_POINTER structure is
located on a 4M boundary as close to the top of physical memory as feasible. It may be found
searching for the EFI_SYSTEM_TABLE_SIGNATURE on each 4M boundary starting at the top
of memory and scanning down. When the signature is found, the entire structure must verified
using the Crc32 field. The 32-bit CRC of the entire structure is calculated assuming the Crc32
field is zero. This value is then written to the Crc32 field.

typedef struct _EFI_SYSTEM_TABLE_POINTER {
 UINT64 Signature;
 EFI_PHYSICAL_ADDRESS EfiSystemTableBase;
 UINT32 Crc32;
} EFI_SYSTEM_TABLE_POINTER;

Signature A constant UINT64 that has the value
EFI_SYSTEM_TABLE_SIGNATURE (see the EFI 1.0
specification).

EfiSystemTableBase The physical address of the EFI system table.

Crc32 A 32-bit CRC value that is used to verify the
EFI_SYSTEM_TABLE_POINTER structure is valid.

16.4.3 EFI Image Info
The EFI_DEBUG_IMAGE_INFO_TABLE is an array of pointers to EFI_DEBUG_IMAGE_INFO
unions. Each member of an EFI_DEBUG_IMAGE_INFO union is a pointer to a data structure
representing a particular image type. For each image that has been loaded, there is an appropriate
image data structure with a pointer to it stored in the EFI_DEBUG_IMAGE_INFO_TABLE. Data
structures for normal images and SMM images are defined. All other image types are reserved for
future use.

The process of locating the EFI_DEBUG_IMAGE_INFO_TABLE begins with an EFI
configuration table.
//
// EFI_DEBUG_IMAGE_INFO_TABLE configuration table
// GUID declaration - {49152E77-1ADA-4764-B7A2-7AFEFED95E8B}
//
#define EFI_DEBUG_IMAGE_INFO_TABLE_GUID \

 { 0x49152E77,0x1ADA,0x4764,0xB7,0xA2,0x7A,0xFE,0xFE,0xD9,0x5E,0x8B }

The configuration table leads to an EFI_DEBUG_IMAGE_INFO_TABLE_HEADER structure that
contains a pointer to the EFI_DEBUG_IMAGE_INFO_TABLE and some status bits that are used
to control access to the EFI_DEBUG_IMAGE_INFO_TABLE when it is being updated.

 Protocols — Debugger Support

Version 1.10 12/01/02 16-25

//
// UpdateStatus bits
//
#define EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS 0x01
#define EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED 0x02

typedef struct {
 volatile UINT32 UpdateStatus;
 UINT32 TableSize;
 EFI_DEBUG_IMAGE_INFO *EfiDebugImageInfoTable;
} EFI_DEBUG_IMAGE_INFO_TABLE_HEADER;

UpdateStatus UpdateStatus is used by the system to indicate the state of
the debug image info table.

The EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS
bit must be set when the table is being modified. Software
consuming the table must qualify the access to the table with
this bit.

The EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED bit is
always set by software that modifies the table. It may be cleared
by software that consumes the table once the entire table has
been read. It is essentially a sticky version of the
EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS bit
and is intended to provide an efficient mechanism to minimize
the number of times the table must be scanned by the consumer.

TableSize The number of EFI_DEBUG_IMAGE_INFO elements in the
array pointed to by EfiDebugImageInfoTable.

EfiDebugImageInfoTable
A pointer to the first element of an array of
EFI_DEBUG_IMAGE_INFO structures.

#define EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL 0x01

typdef union {
 UINT32 *ImageInfoType;
 EFI_DEBUG_IMAGE_INFO_NORMAL *NormalImage;
} EFI_DEBUG_IMAGE_INFO;

typedef struct {
 UINT32 ImageInfoType;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImageProtocolInstance;
 EFI_HANDLE ImageHandle;
} EFI_DEBUG_IMAGE_INFO_NORMAL;

Extensible Firmware Interface Specification

16-26 12/01/02 Version 1.10

ImageInfoType Indicates the type of image info structure. For PE32 EFI images,
this is set to EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL.

LoadedImageProtocolInstance
 A pointer to an instance of the loaded image protocol for the
associated image.

ImageHandle Indicates the image handle of the associated image.

Version 1.10 12/01/02 17-1

17
Protocols - Compression Algorithm

Specification

In EFI firmware storage, binary codes/data are often compressed to save storage space. These
compressed codes/data are extracted into memory for execution at boot time. This demands an
efficient lossless compression/decompression algorithm. The compressor must produce small
compressed images, and the decompressor must operate fast enough to avoid delays at boot time.

This chapter describes in detail the EFI compression/decompression algorithm, as well as the EFI
Decompress Protocol. The EFI Decompress Protocol provides a standard decompression interface
for use at boot time.

17.1 Algorithm Overview

In this chapter the term “character” denotes a single byte and the term “string” denotes a series of
concatenated characters.

The compression/decompression algorithm used in EFI firmware storage is a combination of the
LZ77 algorithm and Huffman Coding. The LZ77 algorithm replaces a repeated string with a
pointer to the previous occurrence of the string. Huffman Coding encodes symbols in a way that
the more frequently a symbol appears in a text, the shorter the code that is assigned to it.

The compression process contains two steps:

• The first step is to find repeated strings (using LZ77 algorithm) and produce intermediate data.
Beginning with the first character, the compressor scans the source data and determines if the
characters starting at the current position can form a string previously appearing in the text. If
a long enough matching string is found, the compressor will output a pointer to the string. If
the pointer occupies more space than the string itself, the compressor will output the original
character at the current position in the source data. Then the compressor advances to the next
position and repeats the process. To speed up the compression process, the compressor
dynamically maintains a String Info Log to record the positions and lengths of strings
encountered, so that string comparisons are performed quickly by looking up the String
Info Log.
Because a compressor cannot have unlimited resources, as the compression continues the
compressor removes “old” string information. This prevents the String Info Log from
becoming too large. As a result, the algorithm can only look up repeated strings within the
range of a fixed-sized “sliding window” behind the current position.
In this way, a stream of intermediate data is produced which contains two types of symbols:
the Original Characters (to be preserved in the decompressed data), and the Pointers
(representing a previous string). A Pointer consists of two elements: the String Position and
the String Length, representing the location and the length of the target string, respectively.

Extensible Firmware Interface Specification

17-2 12/01/02 Version 1.10

• To improve the compression ratio further, Huffman Coding is utilized as the second step.
The intermediate data (consisting of original characters and pointers) is divided into Blocks so
that the compressor can perform Huffman Coding on a Block immediately after it is generated;
eliminating the need for a second pass from the beginning after the intermediate data has been
generated. Also, since symbol frequency distribution may differ in different parts of the
intermediate data, Huffman Coding can be optimized for each specific Block. The compressor
determines Block Size for each Block according to the specifications defined in section 17.2,
“Data Format.”
In each Block, two symbol sets are defined for Huffman Coding. The Char&Len Set consists
of the Original Characters plus the String Lengths and the Position Set consists of String
Positions (Note that the two elements of a Pointer belong to separate symbol sets). The
Huffman Coding schemes applied on these two symbol sets are independent.
The algorithm uses “canonical” Huffman Coding so a Huffman tree can be represented as an
array of code lengths in the order of the symbols in the symbol set. This code length array
represents the Huffman Coding scheme for the symbol set. Both the Char&Len Set code length
array and the Position Set code length array appear in the Block Header.
Huffman coding is used on the code length array of the Char&Len Set to define a third symbol
set. The Extra Set is defined based on the code length values in the Char&Len Set code length
array. The code length array for the Huffman Coding of Extra Set also appears in the Block
Header together with the other two code length arrays. For exact format of the Block Header,
see section 17.2.3.1, “Block Header.”

The decompression process is straightforward given that the compression process is known. The
decompressor scans the compressed data and decodes the symbols one by one, according to the
Huffman code mapping tables generated from code length arrays. Along the process, if it
encounters an original character, it outputs it; if it encounters a pointer, it looks it up in the already
decompressed data and outputs the associated string.

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-3

17.2 Data Format

This section describes in detail the format of the compressed data produced by the compressor. The
compressed data serves as input to the decompressor and can be fully extracted to the original
source data.

17.2.1 Bit Order
In computer data representation, a byte is the minimum unit and there is no differentiation in the
order of bits within a byte. However, the compressed data is a sequence of bits rather than a
sequence of bytes and as a result the order of bits in a byte needs to be defined. In a compressed
data stream, the higher bits are defined to precede the lower bits in a byte. Figure 17-1 illustrates a
compressed data sequence written as bytes from left to right. For each byte, the bits are written in
an order with bit 7 (the highest bit) at the left and bit 0 (the lowest bit) at the right. Concatenating
the bytes from left to right forms a bit sequence.

OM13173

Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0

Byte 0 Byte 1 Byte N

Overall Bit Sequence of Compressed Data

Figure 17-1. Bit Sequence of Compressed Data

The bits of the compressed data are actually formed by a sequence of data units. These data units
have variable bit lengths. The bits of each data unit are arranged so that the higher bit of the data
unit precedes the lower bit of the data unit.

17.2.2 Overall Structure
The compressed data begins with two 32-bit numerical fields: the compressed size and the original
size. The compressed data following these two fields is composed of one or more Blocks. Each
Block is a unit for Huffman Coding with a coding scheme independent of the other Blocks. Each
Block is composed of a Block Header containing the Huffman code trees for this Block and a Block
Body with the data encoded using the coding scheme defined by the Huffman trees. The
compressed data is terminated by an additional byte of zero.

Extensible Firmware Interface Specification

17-4 12/01/02 Version 1.10

The overall structure of the compressed data is shown in Figure 17-2.

OM13174

Compressed Size

4 Bytes 4 Bytes Terminator
1 Byte

0Block nBlock 1Block 0Original Size

Figure 17-2. Compressed Data Structure

Note the following:

• Blocks are of variable lengths.
• Block lengths are counted by bits and not necessarily divisible by 8. Blocks are tightly packed

(there are no padding bits between blocks). Neither the starting position nor ending position of
a Block is necessarily at a byte boundary. However, if the last Block is not terminated at a byte
boundary, there should be some bits of 0 to fill up the remaining bits of the last byte of the
block, before the terminator byte of 0.

• Compressed Size =
Size in bytes of (Block 0 + Block 1 + … + Block N + Filling Bits (if any) + Terminator).

• Original Size is the size in bytes of original data.
• Both Compressed Size and Original Size are “little endian” (starting from the least

significant byte).

17.2.3 Block Structure
A Block is composed of a Block Header and a Block Body, as shown in Figure 17-3. These two
parts are packed tightly (there are no padding bits between them). The lengths in bits of Block
Header and Block Body are not necessarily divisible by eight.

OM13175

Block Header Block BodyBlock:

Figure 17-3. Block Structure

17.2.3.1 Block Header
The Block Header contains the Huffman encoding information for this block. Since “canonical”
Huffman Coding is being used, a Huffman tree is represented as an array of code lengths in
increasing order of the symbols in the symbol set. Code lengths are limited to be less than or equal
to 16 bits. This requires some extra handling of Huffman codes in the compressor, which is
described in section 17.3, “Compressor Design.”

There are three code length arrays for three different symbol sets in the Block Header: one for the
Extra Set, one for the Char&Len Set, and one for the Position Set.

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-5

The Block Header is composed of the tightly packed (no padding bits) fields described in
Table 17-1.

Table 17-1. Block Header Fields

Field Name Length (bits) Description

Block Size 16 The size of this Block. Block Size is defined as the number of original
characters plus the number of pointers that appear in the Block Body:
Block Size = Number of Original Characters in the Block Body +
Number of Pointers in the Block Body.

Extra Set Code
Length Array
Size

5 The number of code lengths in the Extra Set Code Length Array. The
Extra Set Code Length Array contains code lengths of the Extra Set in
increasing order of the symbols, and if all symbols greater than a
certain symbol have zero code length, the Extra Set Code Length
Array terminates at the last nonzero code length symbol. Since there
are 19 symbols in the Extra Set (see the description of the Char&Len
Set Code Length Array), the maximum Extra Set Code Length Array
Size is 19.

Extra Set Code
Length Array

Variable If Extra Set Code Length Array Size is 0, then this field is a 5-bit value
that represents the only Huffman code used.

If Extra Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.

The concatenation of Code lengths are encoded as follows:

If a code length is less than 7, then it is encoded as a 3-bit value;

If a code length is equal to or greater than 7, then it is encoded as a
series of “1”s followed by a terminating “0.” The number of “1”s =
Code length – 4. For example, code length “ten” is encoded as
“1111110”; code length “seven” is encoded as “1110.”

After the third length of the code length concatenation, a 2-bit value is
used to indicate the number of consecutive zero lengths immediately
after the third length. (Note this 2-bit value only appears once after the
third length, and does NOT appear multiple times after every 3rd
length.) This 2-bit value ranges from 0 to 3. For example, if the 2-bit
value is “00,” then it means there are no zero lengths at the point, and
following encoding starts from the fourth code length; if the 2-bit value
is “10” then it means the fourth and fifth length are zero and following
encoding starts from the sixth code length.

Position Set
Code Length
Array Size

4 The number of code lengths in the Position Set Code Length Array.
The Position Set Code Length Array contains code lengths of Position
Set in increasing order of the symbols in the Position Set, and if all
symbols greater than a certain symbol have zero code length, the
Position Set Code Length Array terminates at the last nonzero code
length symbol. Since there are 14 symbols in the Position Set (see
3.3.2), the maximum Position Set Code Length Array Size is 14.

continued

Extensible Firmware Interface Specification

17-6 12/01/02 Version 1.10

Table 17-1. Block Header Fields (continued)

Field Name Length (bits) Description

Char&Len Set
Code Length
Array

Variable If Char&Len Set Code Length Array Size is 0, then this field is a 9-bit
value that represents the only Huffman code used.

If Char&Len Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.

The concatenation of Code lengths are two-step encoded:

Step 1:

If a code length is not zero, then it is encoded as “code length + 2”;

If a code length is zero, then the number of consecutive zero lengths
starting from this code length is counted -- If the count is equal to or
less than 2, then the code “0” is used for each zero length; if the count
is greater than 2 and less than 19, then the code “1” followed by a 4-bit
value of “count – 3” is used for these consecutive zero lengths; if the
count is equal to 19, then it is treated as “1 + 18,” and a code “0” and a
code “1” followed by a 4-bit value of “15” are used for these
consecutive zero lengths; if the count is greater than 19, then the code
“2” followed by a 9-bit value of “count – 20” is used for these
consecutive zero lengths.

Step 2:

The second step encoding is a Huffman encoding of the codes
produced by first step. (While encoding codes “1” and “2,” their
appended values are not encoded and preserved in the resulting text).
The code lengths of generated Huffman tree are just the contents of
the Extra Set Code Length Array.

Position Set
Code Length
Array Size

4 The number of code lengths in the Position Set Code Length Array.
The Position Set Code Length Array contains code lengths of Position
Set in increasing order of the symbols in the Position Set, and if all
symbols greater than a certain symbol have zero code length, the
Position Set Code Length Array terminates at the last nonzero code
length symbol. Since there are 14 symbols in the Position Set (see
3.3.2), the maximum Position Set Code Length Array Size is 14.

Position Set
Code Length
Array

Variable If Position Set Code Length Array Size is 0, then this field is a 5-bit
value that represents the only Huffman code used.

If Position Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.

The concatenation of Code lengths are encoded as follows:

If a code length is less than 7, then it is encoded as a normal 3-bit
value;

If a code length is equal to or greater than 7, then it is encoded as a
series of “1”s followed by a terminating “0.” The number of “1”s =
Code length – 4. For example, code length “10” is encoded as
“1111110”; code length “7” is encoded as “1110.”

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-7

17.2.3.2 Block Body
The Block Body is simply a mixture of Original Characters and Pointers, while each Pointer has
two elements: String Length preceding String Position. All these data units are tightly packed
together.

OM13176

Orig Char

Pointer

Orig Char StrLen StrPos Orig Char StrLen StrPos

Pointer

StrLen StrPos

Pointer

Figure 17-4. Block Body

The Original Characters, String Lengths and String Positions are all Huffman coded using the
Huffman trees presented in the Block Header, with some additional variations. The exact format is
described below:

An Original Character is a byte in the source data. A String Length is a value that is greater than 3
and less than 257 (this range should be ensured by the compressor). By calculating “(String
Length – 3) | 0x100,” a value set is obtained that ranges from 256 to 509. By combining this value
set with the value set of Original Characters (0 ~ 255), the Char&Len Set (ranging from 0 to 509) is
generated for Huffman Coding.

A String Position is a value that indicates the distance between the current position and the target
string. The String Position value is defined as “Current Position – Starting Position of the target
string - 1.” The String Position value ranges from 0 to 8190 (so 8192 is the “sliding window”
size, and this range should be ensured by the compressor). The lengths of the String Position
values (in binary form) form a value set ranging from 0 to 13 (it is assumed that value 0 has length
of 0). This value set is the Position Set for Huffman Coding. The full representation of a String
Position value is composed of two consecutive parts: one is the Huffman code for the value length;
the other is the actual String Position value of “length - 1” bits (excluding the highest bit since the
highest bit is always “1”). For example, String Position value 18 is represented as: Huffman code
for “5” followed by “0010.” If the value length is 0 or 1, then no value is appended to the
Huffman code. This kind of representation favors small String Position values, which is a hint for
compressor design.

Extensible Firmware Interface Specification

17-8 12/01/02 Version 1.10

17.3 Compressor Design

The compressor takes the source data as input and produces a compressed image. This section
describes the design used in one possible implementation of a compressor that follows the EFI 1.10
Compression Algorithm. The source code that illustrates an implementation of this specific design
is listed in Appendix H.

17.3.1 Overall Process
The compressor scans the source data from the beginning, character by character. As the scanning
proceeds, the compressor generates Original Characters or Pointers and outputs the compressed
data packed in a series of Blocks representing individual Huffman coding units.

The compressor maintains a String Info Log containing data that facilitates string comparison. Old
data items are deleted and new data items are inserted regularly.

The compressor does not output a Pointer immediately after it sees a matching string for the current
position. Instead, it delays its decision until it gets the matching string for the next position. The
compressor has two criteria at hand: one is that the former match length should be no shorter than
three characters; the other is that the former match length should be no shorter than the latter match
length. Only when these two criteria are met does the compressor output a Pointer to the former
matching string.

The overall process of compression can be described by following pseudo code:
Set the Current Position at the beginning of the source data;
Delete the outdated string info from the String Info Log;
Search the String Info Log for matching string;
Add the string info of the current position into the String Info Log;
WHILE not end of source data DO
 Remember the last match;
 Advance the Current Position by 1;
 Delete the outdated String Info from the String Info Log;
 Search the String Info Log for matching string;
 Add the string info of the Current Position into the String Info Log;
 IF the last match is shorter than 3 characters or this match is longer than
 the last match THEN
 Call Output()* to output the character at the previous position as an
 Original Character;
 ELSE
 Call Output()* to output a Pointer to the last matching string;
 WHILE (--last match length) > 0 DO
 Advance the Current Position by 1;
 Delete the outdated piece of string info from the String Info Log;
 Add the string info of the current position into the String Info Log;
 ENDWHILE
 ENDIF
ENDWHILE

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-9

The Output() is the function that is responsible for generating Huffman codes and Blocks. It
accepts an Original Character or a Pointer as input and maintains a Block Buffer to temporarily
store data units that are to be Huffman coded. The following pseudo code describes the function:

FUNCTION NAME: Output
INPUT: an Original Character or a Pointer

Put the Original Character or the Pointer into the Block Buffer;
Advance the Block Buffer position pointer by 1;
IF the Block Buffer is full THEN
 Encode the Char&Len Set in the Block buffer;
 Encode the Position Set in the Block buffer;
 Encode the Extra Set;
 Output the Block Header containing the code length arrays;
 Output the Block Body containing the Huffman encoded Original Characters and
 Pointers;
 Reset the Block Buffer position pointer to point to the beginning of the
 Block buffer;
ENDIF

17.3.2 String Info Log
The provision of the String Info Log is to speed up the process of finding matching strings. The
design of this has significant impact on the overall performance of the compressor. This section
describes in detail how String Info Log is implemented and the typical operations on it.

Extensible Firmware Interface Specification

17-10 12/01/02 Version 1.10

17.3.2.1 Data Structures
The String Info Log is implemented as a set of search trees. These search trees are dynamically
updated as the compression proceeds through the source data. The structure of a typical search tree
is depicted in Figure 17-5.

1 Char: "c"

"a" "m" "q"

2 3 4Level: 3
Pos: 500 Pos: 500 Pos: 600

Pos: 500
Level: 8
Pos: 400

Pos: 400 Pos: 350

5 6

7 8

"x" "k"

"p" "t"

OM13177

Figure 17-5. String Info Log Search Tree

There are three types of nodes in a search tree: the root node, internal nodes, and leaves. The root
node has a “character” attribute, which represents the starting character of a string. Each edge also
has a “character” attribute, which represents the next character in the string. Each internal node has
a “level” attribute, which indicates the character on any edge that leads to its child nodes is the
“level + 1”th character in the string. Each internal node or leaf has a “position” attribute that
indicates the string’s starting position in the source data.

To speed up the tree searching, a hash function is used. Given the parent node and the edge-
character, the hash function will quickly find the expected child node.

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-11

17.3.2.2 Searching the Tree
Traversing the search tree is performed as follows:

The following example uses the search tree shown in Figure 17-5 above. Assume that the current
position in the source data contains the string “camxrsxpj….”

1. The starting character “c” is used to find the root of the tree. The next character “a” is used to
follow the edge from node 1 to node 2. The “position” of node 2 is 500, so a string starting
with “ca” can be found at position 500. The string at the current position is compared with the
string starting at position 500.

2. Node 2 is at Level 3; so at most three characters are compared. Assume that the three-character
comparison passes.

3. The fourth character “x” is used to follow the edge from Node 2 to Node 5. The position value
of node 5 is 400, which means there is a string located in position 400 that starts with “cam”
and the character at position 403 is an “x.”

4. Node 5 is at Level 8, so the fifth to eighth characters of the source data are compared with the
string starting at position 404. Assume the strings match.

5. At this point, the ninth character “p” has been reached. It is used to follow the edge from
Node 5 to Node 7.

6. This process continues until a mismatch occurs, or the length of the matching strings exceeds
the predefined MAX_MATCH_LENGTH. The most recent matching string (which is also the
longest) is the desired matching string.

17.3.2.3 Adding String Info
String info needs to be added to the String Info Log for each position in the source data. Each time
a search for a matching string is performed, the new string info is inserted for the current position.
There are several cases that can be discussed:

1. No root is found for the first character. A new tree is created with the root node labeled with
the starting character and a child leaf node with its edge to the root node labeled with the
second character in the string. The “position” value of the child node is set to the current
position.

2. One root node matches the first character, but the second character does not match any edge
extending from the root node. A new child leaf node is created with its edge labeled with the
second character. The “position” value of the new leaf child node is set to the current position.

3. A string comparison succeeds with an internal node, but a matching edge for the next character
does not exist. This is similar to (2) above. A new child leaf node is created with its edge
labeled with the character that does not exist. The “position” value of the new leaf child node
is set to the current position.

4. A string comparison exceeds MAX_MATCH_LENGTH. Note: This only happens with leaf
nodes. For this case, the “position” value in the leaf node is updated with the current position.

Extensible Firmware Interface Specification

17-12 12/01/02 Version 1.10

5. If a string comparison with an internal node or leaf node fails (mismatch occurs before the
“Level + 1”th character is reached or MAX_MATCH_LENGTH is exceeded), then a “split”
operation is performed as follows:
Suppose a comparison is being performed with a level 9 Node, at position 350, and the current
position is 1005. If the sixth character at position 350 is an “x” and the sixth character at
position 1005 is a “y,” then a mismatch will occur. In this case, a new internal node and a new
child node are inserted into the tree, as depicted in Figure 17-6.

Level: 9
Pos: 350

a) Original State

OM13178

Level: 5
Pos: 1005

Pos: 1005

"x"

Level: 9
Pos: 350

b) Node "Split"

Figure 17-6. Node Split

The b) portion of Figure 17-6 has two new inserted nodes, which reflects the new string
information that was found at the current position. The process splits the old node into two child
nodes, and that is why this operation is called a “split.”

17.3.2.4 Deleting String Info
The String Info Log will grow as more and more string information is logged. The size of the
String Info Log must be limited, so outdated information must be removed on a regular basis.
A sliding window is maintained behind the current position, and the searches are always limited
within the range of the sliding window. Each time the current position is advanced, outdated string
information that falls outside the sliding window should be removed from the tree. The search for
outdated string information is simplified by always updating the nodes’ “position” attribute when
searching for matching strings.

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-13

17.3.3 Huffman Code Generation
Another major component of the compressor design is generation of the Huffman Code.

Huffman Coding is applied to the Char&Len Set, the Position Set, and the Extra Set. The Huffman
Coding used here has the following features:

1. The Huffman tree is represented as an array of code lengths (“canonical” Huffman Coding);
2. The maximum code length is limited to 16 bits.

The Huffman code generation process can be divided into three steps. These are the generation of
Huffman tree, the adjustment of code lengths, and the code generation.

17.3.3.1 Huffman Tree Generation
This process generates a typical Huffman tree. First, the frequency of each symbol is counted, and
a list of nodes is generated with each node containing a symbol and the symbol’s frequency. The
two nodes with the lowest frequency values are merged into a single node. This new node becomes
the parent node of the two nodes that are merged. The frequency value of this new parent node is
the sum of the two child nodes’ frequency values. The node list is updated to include the new
parent node but exclude the two child nodes that are merged. This process is repeated until there is
a single node remaining that is the root of the generated tree.

17.3.3.2 Code Length Adjustment
The leaf nodes of the tree generated by the previous step represent all the symbols that were
generated. Traditionally the code for each symbol is found by traversing the tree from the root
node to the leaf node. Going down a left edge generates a “0,” and going down a right edge
generates a “1.” However, a different approach is used here. The number of codes of each code
length is counted. This generates a 16-element LengthCount array, with LengthCount[i] = Number
Of Codes whose Code Length is i. Since a code length may be longer than 16 bits, the sixteenth
entry of the LengthCount array is set to the Number Of Codes whose Code Length is greater than
or equal to 16.

The LengthCount array goes through further adjustment described by following code:

INT32 i, k;
UINT32 cum;

cum = 0;
for (i = 16; i > 0; i--) {
 cum += LengthCount[i] << (16 - i);
}
while (cum != (1U << 16)) {
 LengthCount[16]--;
 for (i = 15; i > 0; i--) {
 if (LengthCount[i] != 0) {
 LengthCount[i]--;
 LengthCount[i+1] += 2;
 break;
 }
 }
 cum--;
}

Extensible Firmware Interface Specification

17-14 12/01/02 Version 1.10

17.3.3.3 Code Generation
In the previous step, the count of each length was obtained. Now, each symbol is going to be
assigned a code. First, the length of the code for each symbol is determined. Naturally, the code
lengths are assigned in such a way that shorter codes are assigned to more frequently appearing
symbols. A CodeLength array is generated with CodeLength[i] = the code length of symbol i.
Given this array, a code is assigned to each symbol using the algorithm described by the pseudo
code below (the resulting codes are stored in array Code such that Code[i] = the code assigned to
symbol i):

 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;

 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + LengthCount[i]) << 1);
 }

 for (i = 0; i < NumberOfSymbols; i++) {
 Code[i] = Start[CodeLength[i]]++;
 }

The code length adjustment process ensures that no code longer than the designated length will
be generated. As long as the decompressor has the CodeLength array at hand, it can regenerate
the codes.

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-15

17.4 Decompressor Design

The decompressor takes the compressed data as input and produces the original source data. The
main tasks for the decompressor are decoding Huffman codes and restoring Pointers to the strings
to which they point.

The following pseudo code describes the algorithm used in the design of a decompressor. The
source code that illustrates an implementation of this design is listed in Appendix I.

WHILE not end of data DO
 IF at block boundary THEN
 Read in the Extra Set Code Length Array;
 Generate the Huffman code mapping table for the Extra Set;
 Read in and decode the Char&Len Set Code Length Array;
 Generate the Huffman code mapping table for the Char&Len Set;
 Read in the Position Set Code Length Array;
 Generate the Huffman code mapping table for the Position Set;
 ENDIF
 Get next code;
 Look the code up in the Char&Len Set code mapping table.
 Store the result as C;
 IF C < 256 (it represents an Original Character) THEN
 Output this character;
 ELSE (it represents a String Length)
 Transform C to be the actual String Length value;
 Get next code and look it up in the Position Set code mapping table, and
 with some additional transformation, store the result as P;
 Output C characters starting from the position “Current Position – P”;
 ENDIF
ENDWHILE

Extensible Firmware Interface Specification

17-16 12/01/02 Version 1.10

17.5 Decompress Protocol

This section provides a detailed description of the EFI_DECOMPRESS_PROTOCOL.

EFI_DECOMPRESS_PROTOCOL

Summary

Provides a decompression service.

GUID
#define EFI_DECOMPRESS_PROTOCOL_GUID \
 {0xd8117cfe,0x94a6,0x11d4,0x9a,0x3a,0x0,0x90,0x27,0x3f,0xc1,0x4d}

Protocol Interface Structure
typedef struct _EFI_DECOMPRESS_PROTOCOL {
 EFI_DECOMPRESS_GET_INFO GetInfo;
 EFI_DECOMPRESS_DECOMPRESS Decompress;
} EFI_DECOMPRESS_PROTOCOL;

Parameters

GetInfo Given the compressed source buffer, this function retrieves the size of
the uncompressed destination buffer and the size of the scratch buffer
required to perform the decompression. It is the caller’s responsibility to
allocate the destination buffer and the scratch buffer prior to calling
Decompress(). See the GetInfo() function description.

Decompress Decompresses a compressed source buffer into an uncompressed
destination buffer. It is the caller’s responsibility to allocate the
destination buffer and a scratch buffer prior to making this call. See the
Decompress() function description.

Description

The EFI_DECOMPRESS_PROTOCOL provides a decompression service that allows a compressed
source buffer in memory to be decompressed into a destination buffer in memory. It also requires a
temporary scratch buffer to perform the decompression. The GetInfo() function retrieves the
size of the destination buffer and the size of the scratch buffer that the caller is required to allocate.
The Decompress() function performs the decompression. The scratch buffer can be freed after
the decompression is complete.

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-17

EFI_DECOMPRESS_PROTOCOL.GetInfo()

Summary

Given a compressed source buffer, this function retrieves the size of the uncompressed buffer and
the size of the scratch buffer required to decompress the compressed source buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DECOMPRESS_GET_INFO) (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SourceSize,
 OUT UINT32 *DestinationSize,
 OUT UINT32 *ScratchSize
);

Parameters

This A pointer to the EFI_DECOMPRESS_PROTOCOL instance.
Type EFI_DECOMPRESS_PROTOCOL is defined in
Section 17.5.

Source The source buffer containing the compressed data.

SourceSize The size, in bytes, of the source buffer.

DestinationSize A pointer to the size, in bytes, of the uncompressed buffer that
will be generated when the compressed buffer specified by
Source and SourceSize is decompressed.

ScratchSize A pointer to the size, in bytes, of the scratch buffer that is
required to decompress the compressed buffer specified by
Source and SourceSize.

Extensible Firmware Interface Specification

17-18 12/01/02 Version 1.10

Description

The GetInfo() function retrieves the size of the uncompressed buffer and the temporary scratch
buffer required to decompress the buffer specified by Source and SourceSize. If the size of
the uncompressed buffer or the size of the scratch buffer cannot be determined from the
compressed data specified by Source and SourceData, then EFI_INVALID_PARAMETER is
returned. Otherwise, the size of the uncompressed buffer is returned in DestinationSize, the
size of the scratch buffer is returned in ScratchSize, and EFI_SUCCESS is returned.

The GetInfo() function does not have scratch buffer available to perform a thorough checking
of the validity of the source data. It just retrieves the “Original Size” field from the beginning bytes
of the source data and output it as DestinationSize. And ScratchSize is specific to the
decompression implementation.

Status Codes Returned
EFI_SUCCESS The size of the uncompressed data was returned in

DestinationSize and the size of the scratch buffer was
returned in ScratchSize.

EFI_INVALID_PARAMETER The size of the uncompressed data or the size of the scratch buffer
cannot be determined from the compressed data specified by
Source and SourceData.

 Protocols — Compression Algorithm Specification

Version 1.10 12/01/02 17-19

EFI_DECOMPRESS_PROTOCOL.Decompress()

Summary

Decompresses a compressed source buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DECOMPRESS_DECOMPRESS) (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID* Source,
 IN UINT32 SourceSize,
 IN OUT VOID* Destination,
 IN UINT32 DestinationSize,
 IN OUT VOID* Scratch,
 IN UINT32 ScratchSize
);

Parameters

This A pointer to the EFI_DECOMPRESS_PROTOCOL instance.
Type EFI_DECOMPRESS_PROTOCOL is defined in
Section 17.5.

Source The source buffer containing the compressed data.

SourceSize The size of source data.

Destination On output, the destination buffer that contains the
uncompressed data.

DestinationSize The size of the destination buffer. The size of the destination
buffer needed is obtained from GetInfo().

Scratch A temporary scratch buffer that is used to perform the
decompression.

ScratchSize The size of scratch buffer. The size of the scratch buffer needed
is obtained from GetInfo().

Extensible Firmware Interface Specification

17-20 12/01/02 Version 1.10

Description

The Decompress() function extracts decompressed data to its original form.

This protocol is designed so that the decompression algorithm can be implemented without using
any memory services. As a result, the Decompress() function is not allowed to call
AllocatePool() or AllocatePages() in its implementation. It is the caller’s
responsibility to allocate and free the Destination and Scratch buffers.

If the compressed source data specified by Source and SourceSize is sucessfully
decompressed into Destination, then EFI_SUCCESS is returned. If the compressed source
data specified by Source and SourceSize is not in a valid compressed data format, then
EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS Decompression completed successfully, and the uncompressed

buffer is returned in Destination.

EFI_INVALID_PARAMETER The source buffer specified by Source and SourceSize is

corrupted (not in a valid compressed format).

Version 1.10 12/01/02 18-1

18
 Protocols - Device I/O Protocol

This chapter defines the Device I/O protocol. This protocol is used by code, typically drivers,
running in the EFI boot services environment to access memory and I/O. In particular, functions
for managing PCI buses are defined here although other bus types may be supported in a similar
fashion as extensions to this specification.

The services defined in this chapter have been superceded by the services described in Chapter 12.
Both the PCI Root Bridge I/O Protocol and the PCI I/O Protocol provide a more complete set of
services for managing PCI devices. The PCI Root Bridge I/O Protocol and PCI I/O Protocol are
not defined in the EFI 1.02 Specification. If an EFI image is required to be compliant with the EFI
1.02 Specification, then the Device I/O Protocol is the only option for these types of I/O services.
If an EFI image is required to be compliant with the EFI 1.10 Specification, then the PCI Root
Bridge I/O Protocol or the PCI I/O Protocol must be used for these types of I/O services.

18.1 Device I/O Overview

The interfaces provided in the DEVICE_IO protocol are for performing basic operations to
memory, I/O, and PCI configuration space. The DEVICE_IO protocol can be thought of as the bus
driver for the system. The system provides abstracted access to basic system resources to allow a
driver to have a programmatic method to access these basic system resources.

The DEVICE_IO protocol allows for future innovation of the platform. It abstracts device-
specific code from the system memory map. This allows system designers to greatly change
the system memory map without impacting platform independent code that is consuming basic
system resources.

It is important to note that this specification ties these interfaces into a single protocol solely for the
purpose of simplicity. Other similar bus- or device-specific protocols that “programmatic child
drivers” may require can easily be added by using a new protocol GUID. For example, a
comprehensive USB-specific host controller protocol interface could be defined for child drivers.
These drivers would perform a LocateDevicePath() to obtain the proper USB interface set,
from somewhere up the device path, just as a PCI-based device driver would do with the
DEVICE_IO protocol to gain access to the PCI configuration space interfaces.

Extensible Firmware Interface Specification

18-2 12/01/02 Version 1.10

18.2 DEVICE_IO Protocol

This section defines the Device I/O Protocol. This protocol provides the basic Memory, I/O, and
PCI interfaces that are used to abstract accesses to devices.

DEVICE_IO Protocol

Summary

Provides the basic Memory, I/O, and PCI interfaces that are used to abstract accesses to devices.

GUID
#define DEVICE_IO_PROTOCOL \

{ af6ac311-84c3-11d2-8e3c-00a0c969723b }

Protocol Interface Structure
typedef struct _EFI_DEVICE_IO_INTERFACE {
 EFI_IO_ACCESS Mem;
 EFI_IO_ACCESS Io;
 EFI_IO_ACCESS Pci;
 EFI_IO_MAP Map;

EFI_PCI_DEVICE_PATH PciDevicePath;
 EFI_IO_UNMAP Unmap;
 EFI_IO_ALLOCATE_BUFFER AllocateBuffer;
 EFI_IO_FLUSH Flush;
 EFI_IO_FREE_BUFFER FreeBuffer;
} EFI_DEVICE_IO_INTERFACE;

Parameters

Mem Allows reads and writes to memory mapped I/O space. See the Mem()
function description.

Io Allows reads and writes to I/O space. See the Io() function
description.

Pci Allows reads and writes to PCI configuration space. See the Pci()
function description.

Map Provides the device specific addresses needed to access system memory
for DMA. See the Map() function description.

PciDevicePath Provides an EFI Device Path for a PCI device with the given PCI
configuration space address. See the PciDevicePath() function
description.

Protocols — Device I/O Protocol

Version 1.10 12/01/02 18-3

Unmap Releases any resources allocated by Map(). See the Unmap() function
description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping. See the
AllocateBuffer() function description.

Flush Flushes any posted write data to the device. See the Flush() function
description.

FreeBuffer Free pages that were allocated with AllocateBuffer(). See the
FreeBuffer() function description.

Related Definitions
//***
// EFI_IO_WIDTH
//***

typedef enum {
IO_UINT8 = 0,
IO_UINT16 = 1,
IO_UINT32 = 2,
IO_UINT64 = 3

} EFI_IO_WIDTH;

//***
// EFI_DEVICE_IO
//***

typedef
EFI_STATUS
(EFIAPI *EFI_DEVICE_IO) (

IN struct _EFI_DEVICE_IO_INTERFACE *This,
IN EFI_IO_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);

//***
// EFI_IO_ACCESS
//***

typedef struct {
EFI_DEVICE_IO Read;
EFI_DEVICE_IO Write;

} EFI_IO_ACCESS;

Extensible Firmware Interface Specification

18-4 12/01/02 Version 1.10

Description

The DEVICE_IO protocol provides the basic Memory, I/O, and PCI interfaces that are used to
abstract accesses to devices.

A driver that controls a physical device obtains the proper DEVICE_IO protocol interface by
checking for the supported protocol on the programmatic parent(s) for the device. This is easily
done via the LocateDevicePath() boot service function.

The following C code fragment illustrates the use of the DEVICE_IO protocol:

// Get the handle to our parent that provides the device I/O
// protocol interfaces to “MyDevice” (which has the device path
// of “MyDevicePath”)
EFI_DEVICE_IO_INTERFACE *IoFncs;
EFI_DEVICE_PATH *SearchPath;

SearchPath = MyDevicePath;
Status = LocateDevicePath (
 &DeviceIoProtocol, // Protocol GUID
 &SearchPath, // Device Path SearchKey
 &DevHandle // Return EFI Handle
);

// Get the device I/O interfaces from the handle
Status = HandleProtocol (DevHandle, &DeviceIoProtocol, &IoFncs);

// Read 1 dword into Buffer from MyDevice’s I/O address
IoFncs->Io.Read (IoFncs, IO_UINT32, MyDeviceAddress, 1, &Buffer);

The call to LocateDevicePath() takes the Device Path of a device and returns the handle that
contains the DEVICE_IO protocol for the device. The handle is passed to HandleProtocol()
with a pointer to the EFI_GUID for the DEVICE_IO protocol, and a pointer to the DEVICE_IO
protocol is returned. The DEVICE_IO protocol pointer IoFncs is then used to do an I/O read
to a device.

 Protocols — Device I/O Protocol

Version 1.10 12/01/02 18-5

DEVICE_IO.Mem(), .Io(), and .Pci()

Summary

Enables a driver to access device registers in the appropriate memory or I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEVICE_IO) (
 IN struct EFI_DEVICE_IO_INTERFACE *This,
 IN EFI_IO_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 18.2.

Width Signifies the width of the I/O operations. Type EFI_IO_WIDTH is
defined in Section 18.2.

Address The base address of the I/O operations. The caller is responsible for
aligning the Address if required.

Count The number of I/O operations to perform. Bytes moved is Width size *
Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

Extensible Firmware Interface Specification

18-6 12/01/02 Version 1.10

Description

The DEVICE_IO.Mem(), .Io(), and .Pci() functions enable a driver to access device
registers in the appropriate memory or I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
IA-32 platforms, width requests of IO_UINT64 do not work.

For Mem() and Io(), the address field is the bus relative address as seen by the device on the bus.
For Mem() and Io() the caller must align the starting address to be on a proper width boundary.

For Pci(), the address field is encoded as shown in Table 18-1. The caller must align the register
number being accessed to be on a proper width boundary.

Table 18-1. PCI Address

Mnemonic

Byte
Offset

Byte
Length

Description

Register 0 1 The register number on the function.

Function 1 1 The function on the device.

Device 2 1 The device on the bus.

Bus 3 1 The bus.

Segment 4 1 The segment number.

Reserved 5 3 Must be zero.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the device.

EFI_INVALID_PARAMETER Width is invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 Protocols — Device I/O Protocol

Version 1.10 12/01/02 18-7

DEVICE_IO.PciDevicePath()

Summary

Provides an EFI Device Path for a PCI device with the given PCI configuration space address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_DEVICE_PATH) (
 IN EFI_DEVICE_IO_INTERFACE *This,
 IN UINT64 PciAddress,
 IN OUT EFI_DEVICE_PATH **PciDevicePath
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 18.2.

PciAddress The PCI configuration space address of the device whose Device Path
is going to be returned. The address field is encoded as shown in
Table 18-1.

PciDevicePath A pointer to the pointer for the EFI Device Path for PciAddress.
Memory for the Device Path is allocated from the pool. Type
EFI_DEVICE_PATH is defined in Chapter 8.

Description

The DEVICE_IO.PciDevicePath() function provides an EFI Device Path for a PCI device
with the given PCI configuration space address.

A Device Path for the requested PCI device is returned in PciDevicePath.
PciDevicePath() allocates the memory required for the Device Path from the pool and the
caller is responsible for calling FreePool() to free the memory used to contain the Device Path.
If there is not enough memory to calculate or return the PciDevicePath the function will return
EFI_OUT_OF_RESOURCES. If the function cannot calculate a valid Device Path for
PciAddress the function will return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The PciDevicePath returns a pointer to a valid EFI Device Path.

EFI_UNSUPPORTED The PciAddress does not map to a valid EFI Device Path.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

18-8 12/01/02 Version 1.10

DEVICE_IO.Map()

Summary

Provides the device-specific addresses needed to access system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IO_MAP) (
 IN EFI_DEVICE_IO_INTERFACE *This,
 IN EFI_IO_OPERATION_TYPE Operation,
 IN EFI_PHYSICAL_ADDRESS *HostAddress,
 IN OUT UINTN *NumberOfBytes,
 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
 OUT VOID **Mapping
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 18.2.

Operation Indicates if the bus master is going to read or write to system memory.
Type EFI_IO_OPERATION_TYPE is defined in “Related Definitions”
below.

HostAddress The system memory address to map to the device. Type
EFI_PHYSICAL_ADDRESS is defined in Chapter 5.

NumberOfBytes On input the number of bytes to map. On output the number of bytes
that were mapped.

DeviceAddress The resulting map address for the bus master device to use to access the
hosts HostAddress. Type EFI_PHYSICAL_ADDRESS is defined in
Chapter 5.

Mapping A resulting value to pass to Unmap().

 Protocols — Device I/O Protocol

Version 1.10 12/01/02 18-9

Related Definitions
//***
// EFI_IO_OPERATION_TYPE
//***

typedef enum {
 EfiBusMasterRead,

EfiBusMasterWrite,
 EfiBusMasterCommonBuffer
} EFI_IO_OPERATION_TYPE;

EfiBusMasterRead A read operation from system memory by a bus master.

EfiBusMasterWrite A write operation to system memory by a bus master.

EfiBusMasterCommonBuffer Provides both read and write access to system memory
by both the processor and a bus master. The buffer is
coherent from both the processor’s and the bus master’s
point of view.

Description

The DEVICE_IO.Map() function provides the device specific addresses needed to access system
memory. This function is used to map system memory for bus master DMA accesses.

All bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or write data
transfer, then EfiBusMasterRead or EfiBusMasterWrite is used and the range is
unmapped to complete the operation. If performing an EfiBusMasterRead operation, all the
data must be present in system memory before the Map() is performed. Similarly, if performing
an EfiBusMasterWrite, the data cannot be properly accessed in system memory until the
Unmap() is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiBusMasterCommonBuffer.
However, only memory allocated via the DEVICE_IO.AllocateBuffer() interface is
guaranteed to be able to be mapped for this operation type.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than
requested.

Status Codes Returned
EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER The Operation or HostAddress is undefined.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

18-10 12/01/02 Version 1.10

DEVICE_IO.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_UNMAP) (
 IN EFI_DEVICE_IO_INTERFACE *This,
 IN VOID *Mapping
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 18.2.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EFIBusMasterWrite, the data is committed to the target system
memory. Any resources used for the mapping are freed.

Status Codes Returned
EFI_SUCCESS The range was unmapped.

EFI_DEVICE_ERROR The data was not committed to the target system memory.

Protocols — Device I/O Protocol

Version 1.10 12/01/02 18-11

DEVICE_IO.AllocateBuffer()

Summary

Allocates pages that are suitable for an EFIBusMasterCommonBuffer mapping.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_ALLOCATE_BUFFER) (

IN EFI_DEVICE_IO_INTERFACE *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS *HostAddress
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 18.2.

Type The type allocation to perform. Type EFI_ALLOCATE_TYPE is
defined in Chapter 5.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is defined
in Chapter 5.

Pages The number of pages to allocate.

HostAddress A pointer to store the base address of the allocated range. Type
EFI_PHYSICAL_ADDRESS is defined in Chapter 5.

Description

The AllocateBuffer() function allocates pages that are suitable for an
EFIBusMasterCommonBuffer mapping.

The AllocateBuffer() function internally calls AllocatePages() to allocate a memory
range that can be mapped as an EFIBusMasterCommonBuffer. When the buffer is no longer
needed, the driver frees the memory with a call to FreeBuffer().

Allocation requests of Type AllocateAnyPages will allocate any available range of pages that
satisfies the request. On input the data pointed to by HostAddress is ignored.

Extensible Firmware Interface Specification

18-12 12/01/02 Version 1.10

Allocation requests of Type AllocateMaxAddress will allocate any available range of pages
that satisfies the request that are below or equal to the value pointed to by HostAddress on
input. On success, the value pointed to by HostAddress contains the base of the range actually
allocated. If there are not enough consecutive available pages below the requested address, an error
is returned.

Allocation requests of Type AllocateAddress will allocate the pages at the address supplied
in the data pointed to by HostAddress. If the range is not available memory an error is returned.

Status Codes Returned
EFI_SUCCESS The requested memory pages were allocated.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.

EFI_INVALID_PARAMETER The requested memory type is invalid.

EFI_UNSUPPORTED The requested HostAddress is not supported on
this platform.

 Protocols — Device I/O Protocol

Version 1.10 12/01/02 18-13

DEVICE_IO.Flush()

Summary

Flushes any posted write data to the device.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_FLUSH) (
 IN EFI_DEVICE_IO_INTERFACE *This
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 18.2.

Description

The Flush() function flushes any posted write data to the device.

Status Codes Returned
EFI_SUCCESS The buffers were flushed.

EFI_DEVICE_ERROR The buffers were not flushed due to a hardware error.

Extensible Firmware Interface Specification

18-14 12/01/02 Version 1.10

DEVICE_IO.FreeBuffer()

Summary

Frees pages that were allocated with AllocateBuffer().

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_FREE_BUFFER) (
 IN EFI_DEVICE_IO_INTERFACE *This,
 IN UINTN Pages,
 IN EFI_PHYSICAL_ADDRESS HostAddress
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 18.2.

Pages The number of pages to free.

HostAddress The base address of the range to free. Type
EFI_PHYSICAL_ADDRESS is defined in Chapter 5.

Description

The FreeBuffer() function frees pages that were allocated with AllocateBuffer().

The FreeBuffer() function internally calls FreePages() to free a memory range.

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocateBuffer().

EFI_INVALID_PARAMETER HostAddress is not page aligned or Pages is invalid.

Version 1.10 12/01/02 19-1

19
EFI Byte Code Virtual Machine

This chapter defines an EFI Byte Code (EBC) Virtual Machine that can provide platform- and
processor-independent mechanisms for loading and executing EFI device drivers.

19.1 Overview

The current design for option ROMs that are used in IA-32 personal computer systems has been in
place since 1981. Attempts to change the basic design requirements have failed for a variety of
reasons. The EBC Virtual Machine described in this chapter is attempting to help achieve the
following goals:

• Abstract and extensible design
• Processor independence
• OS independence
• Build upon existing specifications when possible
• Facilitate the removal of legacy infrastructure
• Exclusive use of EFI Services

One way to satisfy many of these goals is to define a pseudo or virtual machine that can interpret
a predefined instruction set. This will allow the virtual machine to be ported across processor and
system architectures without changing or recompiling the option ROM. This specification defines
a set of machine level instructions that can be generated by a C compiler.

The following sections are a detailed description of the requirements placed on future
option ROMs.

19.1.1 Processor Architecture Independence
Option ROM images shall be independent of IA-32 and Itanium architectures. In order to abstract
the architectural differences between processors (not just limited to IA-32 and Itanium processors)
option ROM images shall be EBC. This model is presented below:

• 64-bit C source code
• The EFI EBC image is the flashed image
• The system BIOS implements the EBC interpreter
• The interpreter handles 32 vs. 64 bit issues

Current Option ROM technology is processor dependent and heavily reliant upon the existence of
the PC-AT infrastructure. These dependencies inhibit the evolution of both hardware and software
under the veil of “backward compatibility.” A solution that isolates the hardware and support
infrastructure through abstraction will facilitate the uninhibited progression of technology.

Extensible Firmware Interface Specification

19-2 12/01/02 Version 1.10

19.1.2 OS Independent
Option ROMs shall not require or assume the existence of a particular OS.

19.1.3 EFI Compliant
Option ROM compliance with EFI requires (but is not limited to) the following:

1. Little endian layout
2. Single-threaded model with interrupt polling if needed
3. Where EFI provides required services, EFI is used exclusively. These include:

• Console I/O
• Memory Management
• Timer services
• Global variable access

4. When an Option ROM provides EFI services, the EFI specification is strictly followed:
• Service/protocol installation
• Calling conventions
• Data structure layouts
• Guaranteed return on services

19.1.4 Coexistence of Legacy Option ROMs
The infrastructure shall support coexistent Legacy Option ROM and EBC Option ROM images.
This case would occur, for example, when a Plug and Play Card has both Legacy and EBC Option
ROM images flashed. The details of the mechanism used to select which image to load is beyond
the scope of this document. Basically, a legacy System BIOS would not recognize an EBC Option
ROM and therefore would never load it. Conversely, an EFI Firmware Boot Manager would only
load images that it supports.

The EBC Option ROM format must utilize a legacy format to the extent that a Legacy System
BIOS can:

1. Determine the type of the image, in order to ignore the image. The type must be incompatible
with currently defined types.

2. Determine the size of the image, in order to skip to the next image.

19.1.5 Relocatable Image
An EBC option ROM image shall be eligible for placement in any system memory area large
enough to accommodate it.

Current option ROM technology requires images to be shadowed in system memory address range
0xC0000 to 0xEFFFF on a 2048 byte boundary. This dependency not only limits the number of
Option ROMs, it results in unused memory fragments up to 2 KB.

EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-3

19.1.6 Size Restrictions Based on Memory Available
EBC option ROM images shall not be limited to a predetermined fixed maximum size.

Current option ROM technology limits the size of a preinitialization option ROM image to 128 KB
(126 KB actual). Additionally, in the DDIM an image is not allowed to grow during initialization.
It is inevitable that 64-bit solutions will increase in complexity and size. To avoid revisiting this
issue, EBC option ROM size is only limited by available system memory. EFI memory allocation
services allow device drivers to claim as much memory as they need, within limits of available
system memory.

The PCI specification limits the size of an image stored in an option ROM to 16 MB. If the driver
is stored on the hard drive then the 16MB option ROM limit does not apply. In addition, the
PE/COFF object format limits the size of images to 2 GB.

19.2 Memory Ordering

The term memory ordering refers to the order in which a processor issues reads (loads) and writes
(stores) out onto the bus to system memory. The EBC Virtual Machine enforces strong memory
ordering, where reads and writes are issued on the system bus in the order they occur in the
instruction stream under all circumstances.

19.3 Virtual Machine Registers

The EBC virtual machine utilizes a simple register set. There are two categories of VM registers:
general purpose registers and dedicated registers. All registers are 64-bits wide. There are eight (8)
general-purpose registers (R0-R7), which are used by most EBC instructions to manipulate or fetch
data. Table 19-1 lists the general-purpose registers in the VM and the conventions for their usage
during execution.

Table 19-1. General Purpose VM Registers

Index Register Description

0 R0 Points to the top of the stack

1-3 R1-R3 Preserved across calls

4-7 R4-R7 Scratch, not preserved across calls

Register R0 is used as a stack pointer and is used by the CALL, RET, PUSH, and POP instructions.
The VM initializes this register to point to the incoming arguments when an EBC image is started
or entered. This register may be modified like any other general purpose VM register using EBC
instructions. Register R7 is used for function return values.

Extensible Firmware Interface Specification

19-4 12/01/02 Version 1.10

Unlike the general-purpose registers, the VM dedicated registers have specific purposes. There are
two dedicated registers: the instruction pointer (IP), and the flags (Flags) register. Specialized
instructions provide access to the dedicated registers. These instructions reference the particular
dedicated register by its assigned index value. Table 19-2 lists the dedicated registers and their
corresponding index values.

Table 19-2. Dedicated VM Registers

Index Register Description

FLAGS

Bit Description

0 C = Condition code

1 SS = Single step

2..63 Reserved

0

1 IP Points to current instruction

2..7 Reserved Not defined

The VM Flags register contains VM status and context flags. Table 19-3 lists the descriptions of
the bits in the Flags register.

Table 19-3. VM Flags Register

Bit Flag Description

0 C Condition code. Set to 1 if the result of the last compare was true,
or set to 0 if the last compare was false. Used by conditional JMP
instructions.

1 S Single-step. If set, causes the VM to generate a single-step
exception after executing each instruction. The bit is not cleared
by the VM following the exception.

2..63 - Reserved

The VM IP register is used as an instruction pointer and holds the address of the currently
executing EBC instruction. The virtual machine will update the IP to the address of the next
instruction on completion of the current instruction, and will continue execution from the address
indicated in IP. The IP register can be moved into any general-purpose register (R0-R7). Data
manipulation and data movement instructions can then be used to manipulate the value. The only
instructions that may modify the IP are the JMP, CALL, and RET instructions. Since the
instruction set is designed to use words as the minimum instruction entity, the low order bit (bit 0)
of IP is always cleared to 0. If a JMP, CALL, or RET instruction causes bit 0 of IP to be set to 1,
then an alignment exception occurs.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-5

19.4 Natural Indexing

The natural indexing mechanism is the critical functionality that enables EBC to be executed
unchanged on 32- or 64-bit systems. Natural indexing is used to specify the offset of data relative
to a base address. However, rather than specifying the offset as a fixed number of bytes, the offset
is encoded in a form that specifies the actual offset in two parts: a constant offset, and an offset
specified as a number of natural units (where one natural unit = sizeof (VOID *)). These two
values are used to compute the actual offset to data at runtime. When the VM decodes an index
during execution, the resultant offset is computed based on the natural processor size. The encoded
indexes themselves may be 16, 32, or 64 bits in size. Table 19-4 describes the fields in a natural
index encoding.

Table 19-4. Index Encoding

Bit # Description

N Sign bit (sign), most significant bit

N-3..N-1 Bits assigned to natural units (w)

A..N-4 Constant units (c)

0..A-1 Natural units (n)

As shown in Table 19-4, for a given encoded index, the most significant bit (bit N) specifies the
sign of the resultant offset after it has been calculated. The sign bit is followed by three bits
(N-3..N-1) that are used to compute the width of the natural units field (n). The value (w) from
this field is multiplied by the index size in bytes to determine the actual width (A) of the natural
units field (n). Once the width of the natural units field has been determined, then the natural units
(n) and constant units (c) can be extracted. The offset is then calculated at runtime according to the
following equation:

Offset = (c + n * (sizeof (VOID *))) * sign

The following sections describe each of these fields in more detail.

19.4.1 Sign Bit
The sign bit determines the sign of the index once the offset calculation has been performed. All
index computations using “n” and “c” are done with positive numbers, and the sign bit is only used
to set the sign of the final offset computed.

Extensible Firmware Interface Specification

19-6 12/01/02 Version 1.10

19.4.2 Bits Assigned to Natural Units
This 3-bit field that is used to determine the width of the natural units field. The units vary based
on the size of the index according to Table 19-5. For example, for a 16-bit index, the value
contained in this field would be multiplied by 2 to get the actual width of the natural-units field.

Table 19-5. Index Size in Index Encoding

Index Size Units

16 bits 2 bits

32 bits 4 bits

64 bits 8 bits

19.4.3 Constant
The constant is the number of bytes in the index that do not scale with processor size. When the
index is a 16-bit value, the maximum constant is 4095. This index is achieved when the bits
assigned to natural units is 0.

19.4.4 Natural Units
Natural units are used when a structure has fields that can vary with the architecture of the
processor. Fields that precipitate the use of natural units include pointers and EFI INTN and
UINTN data types. The size of one pointer or INTN/UINTN equals one natural unit. The natural
units field in an index encoding is a count of the number of natural fields whose sizes (in bytes)
must be added to determine a field offset.

As an example, assume that a given EBC instruction specifies a 16-bit index of 0xA048. This
breaks down into:

• Sign bit (bit 15) = 1 (negative offset)
• Bits assigned to natural units (w, bits 14-12) = 2. Multiply by index size in bytes = 2 x 2 = 4 (A)
• c = bits 11-4 = 4
• n = bits 3-0 = 8

On a 32-bit machine, the offset is then calculated to be:

• Offset = (4 + 8 * 4) * -1 = -36

On a 64-bit machine, the offset is calculated to be:

• Offset = (4 + 8 * 8) * -1 = -68

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-7

19.5 EBC Instruction Operands

The VM supports an EBC instruction set that performs data movement, data manipulation,
branching, and other miscellaneous operations typical of a simple processor. Most instructions
operate on two operands, and have the general form:

INSTRUCTION Operand1, Operand2

Typically, instruction operands will be one of the following:

• Direct
• Indirect
• Indirect with index
• Immediate

The following subsections explain these operands.

19.5.1 Direct Operands
When a direct operand is specified for an instruction, the data to operate upon is contained in one of
the VM general-purpose registers R0-R7. Syntactically, an example of direct operand mode could
be the ADD instruction:

ADD64 R1, R2

This form of the instruction utilizes two direct operands. For this particular instruction, the VM
would take the contents of register R2, add it to the contents of register R1, and store the result in
register R1.

19.5.2 Indirect Operands
When an indirect operand is specified, a VM register contains the address of the operand data. This
is sometimes referred to as register indirect, and is indicated by prefixing the register operand with
“@.” Syntactically, an example of an indirect operand mode could be this form of the ADD
instruction:

ADD32 R1, @R2

For this instruction, the VM would take the 32-bit value at the address specified in R2, add it to the
contents of register R1, and store the result in register R1.

Extensible Firmware Interface Specification

19-8 12/01/02 Version 1.10

19.5.3 Indirect with Index Operands
When an indirect with index operand is specified, the address of the operand is computed by adding
the contents of a register to a decoded natural index that is included in the instruction. Typically
with indexed addressing, the base address will be loaded in the register and an index value will be
used to indicate the offset relative to this base address. Indexed addressing takes the form

@R1 (+n,+c)

where:

• R1 is one of the general-purpose registers (R0-R7) which contains the base address
• +n is a count of the number of “natural” units offset. This portion of the total offset is

computed at runtime as (n * sizeof (VOID *))
• +c is a byte offset to add to the natural offset to resolve the total offset

The values of n and c can be either positive or negative, though they must both have the same sign.
These values get encoded in the indexes associated with EBC instructions as shown in Table 19-4.
Indexes can be 16-, 32-, or 64-bits wide depending on the instruction. An example of indirect with
index syntax would be:

ADD32 R1, @R2 (+1, +8)

This instruction would take the address in register R2, add (8 + 1 * sizeof (VOID *)), read the
32-bit value at the address, add the contents of R1 to the value, and store the result back to R1.

19.5.4 Immediate Operands
Some instructions support an immediate operand, which is simply a value included in the
instruction encoding. The immediate value may or may not be sign extended, depending on the
particular instruction. One instruction that supports an immediate operand is MOVI. An example
usage of this instruction is:

MOVIww R1, 0x1234

This instruction moves the immediate value 0x1234 directly into VM register R1. The immediate
value is contained directly in the encoding for the MOVI instruction.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-9

19.6 EBC Instruction Syntax

Most EBC instructions have one or more variations that modify the size of the instruction and/or
the behavior of the instruction itself. These variations will typically modify an instruction in one or
more of the following ways:

• The size of the data being operated upon
• The addressing mode for the operands
• The size of index or immediate data

To represent these variations syntactically in this specification the following conventions are used:

• Natural indexes are indicated with the “Index” keyword, and may take the form of “Index16,”
“Index32,” or “Index64” to indicate the size of the index value supported. Sometimes the form
Index16|32|64 is used here, which is simply a shorthand notation for Index16|Index32|Index64.
A natural index is encoded per Table 19-4 and is resolved at runtime.

• Immediate values are indicated with the “Immed” keyword, and may take the form of
“Immed16,” “Immed32,” or “Immed64” to indicate the size of the immediate value supported.
The shorthand notation Immed16|32|64 is sometimes used when different size immediate
values are supported.

• Terms in brackets [] are required.
• Terms in braces { } are optional.
• Alternate terms are separated by a vertical bar |.
• The form R1 and R2 represent Operand 1 register and Operand 2 register respectfully, and can

typically be any VM general-purpose register R0-R7.
• Within descriptions of the instructions, brackets [] enclosing a register and/or index indicate

that the contents of the memory pointed to by the enclosed contents are used.

19.7 Instruction Encoding

Most EBC instructions take the form:

INSTRUCTION R1, R2 Index|Immed

For those instructions that adhere to this form, the binary encoding for the instruction will typically
consist of an opcode byte, followed by an operands byte, followed by two or more bytes of
immediate or index data. Thus the instruction stream will be:

(1 Byte Opcode) + (1 Byte Operands) + (Immediate data|Index data)

Extensible Firmware Interface Specification

19-10 12/01/02 Version 1.10

19.7.1 Instruction Opcode Byte Encoding
The first byte of an instruction is the opcode byte, and an instruction’s actual opcode value
consumes 6 bits of this byte. The remaining two bits will typically be used to indicate operand sizes
and/or presence or absence of index or immediate data. Table 19-6 defines the bits in the opcode
byte for most instructions, and their usage.

Table 19-6. Opcode Byte Encoding

Bit Sym Description

6..7 Modifiers One or more of:

• Index or immediate data present/absent

• Operand size

• Index or immediate data size

0..5 Op Instruction opcode

For those instructions that use bit 7 to indicate the presence of an index or immediate data and bit 6
to indicate the size of the index or immediate data, if bit 7 is 0 (no immediate data), then bit 6 is
ignored by the VM. Otherwise, unless otherwise specified for a given instruction, setting unused
bits in the opcode byte results in an instruction encoding exception when the instruction is
executed. Setting the modifiers field in the opcode byte to reserved values will also result in an
instruction encoding exception.

19.7.2 Instruction Operands Byte Encoding
The second byte of most encoded instructions is an operand byte, which encodes the registers for
the instruction operands and whether the operands are direct or indirect. Table 19-7 defines the
encoding for the operand byte for these instructions. Unless otherwise specified for a given
instruction, setting unused bits in the operand byte results in an instruction encoding exception
when the instruction is executed. Setting fields in the operand byte to reserved values will also
result in an instruction encoding exception.

Table 19-7. Operand Byte Encoding

Bit Description

7 0 = Operand 2 is direct
1 = Operand 2 is indirect

4..6 Operand 2 register

3 0 = Operand 1 is direct
1 = Operand 1 is indirect

0..2 Operand 1 register

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-11

19.7.3 Index/Immediate Data Encoding
Following the operand bytes for most instructions is the instruction’s immediate data. The
immediate data is, depending on the instruction and instruction encoding, either an unsigned or
signed literal value, or an index encoded using natural encoding. In either case, the size of the
immediate data is specified in the instruction encoding.

For most instructions, the index/immediate value in the instruction stream is interpreted as a signed
immediate value if the register operand is direct. This immediate value is then added to the
contents of the register to compute the instruction operand. If the register is indirect, then the data
is usually interpreted as a natural index (see Section 19.4) and the computed index value is added to
the contents of the register to get the address of the operand.

19.8 EBC Instruction Set

The following sections describe each of the EBC instructions in detail. Information includes an
assembly-language syntax, a description of the instruction functionality, binary encoding, and any
limitations or unique behaviors of the instruction.

Extensible Firmware Interface Specification

19-12 12/01/02 Version 1.10

ADD

SYNTAX:

ADD[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Adds two signed operands and stores the result to Operand 1. The operation can be performed on
either 32-bit (ADD32) or 64-bit (ADD64) operands.

OPERATION:

Operand 1 <= Operand 1 + Operand 2

Table 19-8. ADD Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0C

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the R2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is ADD32 and Operand 1 is direct, then the result is stored back to the

Operand 1 register with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-13

AND

SYNTAX:

AND[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs a logical AND operation on two operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (AND32) or 64-bit (AND64) operands.

OPERATION:

Operand 1 <= Operand 1 AND Operand 2

Table 19-9. AND Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x14

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the register contents such that Operand 2 = R2 + Immed16.
• If the instruction is AND32 and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

Extensible Firmware Interface Specification

19-14 12/01/02 Version 1.10

ASHR

SYNTAX:

ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs an arithmetic right-shift of a signed 32-bit (ASHR32) or 64-bit (ASHR64) operand and
stores the result back to Operand 1

OPERATION:

Operand 1 <= Operand 1 SHIFT-RIGHT Operand 2

Table 19-10 ASHR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x19

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2+ Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the register contents such that Operand 2 = R2 + Immed16.
• If the instruction is ASHR32, and Operand 1 is direct, then the result is stored back to the

Operand 1 register with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-15

BREAK

SYNTAX:

BREAK [break code]

DESCRIPTION

The BREAK instruction is used to perform special processing by the VM. The break code specifies
the functionality to perform.

BREAK 0 – Runaway program break. This indicates that the VM is likely executing code
from cleared memory. This results in a bad break exception.

BREAK 1 – Get virtual machine version. This instruction returns the 64-bit virtual machine
revision number in VM register R7. The encoding is shown in Table 19-11 and Table 19-12.
A VM that conforms to this version of the specification should return a version number of
0x00010000.

Table 19-11 VM Version format

BITS DESCRIPTION

63-32 Reserved = 0

31..16 VM major version

15..0 VM minor version

BREAK 3 – Debug breakpoint. Executing this instruction results in a debug break exception.
If a debugger is attached or available, then it may halt execution of the image.

BREAK 4 – System call. There are no system calls supported for use with this break code, so
the VM will ignore the instruction and continue execution at the following instruction.

BREAK 5 – Create thunk. This causes the interpreter to create a thunk for the EBC entry
point whose 32-bit IP-relative offset is stored at the 64-bit address in VM register R7. The
interpreter then replaces the contents of the memory location pointed to by R7 to point to the
newly created thunk. Since all EBC IP-relative offsets are relative to the next instruction or
data object, the original offset is off by 4, so must be incremented by 4 to get the actual
address of the entry point.

BREAK 6 – Set compiler version. An EBC C compiler can insert this break instruction into
an executable to set the compiler version used to build an EBC image. When the VM
executes this instruction it takes the compiler version from register R7 and may perform
version compatibility checking. The compiler version number follows the same format as the
VM version number returned by the BREAK 1 instruction.

Extensible Firmware Interface Specification

19-16 12/01/02 Version 1.10

Table 19-12. BREAK Instruction Encoding

BYTE DESCRIPTION

0 Opcode = 0x00

1 0 = Runaway program break

1 = Get virtual machine version

3 = Debug breakpoint

4 = System call

5 = Create thunk

6 = Set compiler version

BEHAVIORS AND RESTRICTIONS:
• Executing an undefined BREAK code results in a bad break exception.
• Executing BREAK 0 results in a bad break exception.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-17

CALL

SYNTAX:

CALL32{EX}{a} {@}R1 {Immed32|Index32}

CALL64{EX}{a} Immed64

DESCRIPTION:

The CALL instruction pushes the address of the following instruction on the stack and jumps to a
subroutine. The subroutine may be either EBC or native code, and may be to an absolute or
IP-relative address. CALL32 is used to jump directly to EBC code within a given application,
whereas CALLEX is used to jump to external code (either native or EBC), which requires
thunking. Functionally, the CALL does the following:

 R0 = R0 - 8;
 PUSH64 ReturnAddress
 if (Opcode.ImmedData64Bit) {
 if (Operands.EbcCall) {
 IP = Immed64;
 } else {
 NativeCall (Immed64);
 }
 } else {
 if (Operand1 != R0) {
 Addr = Operand1;
 } else {
 Addr = Immed32;
 }
 if (Operands.EbcCall) {
 if (Operands.RelativeAddress) {
 IP += Addr + SizeOfThisInstruction;
 } else {
 IP = Addr
 }
 } else {
 if (Operands.RelativeAddress) {
 NativeCall (IP + Addr)
 } else {
 NativeCall (Addr)
 }
 }

Extensible Firmware Interface Specification

19-18 12/01/02 Version 1.10

OPERATION:

R0 <= R0 – 16

[R0] <= IP + SizeOfThisInstruction

IP <= IP + SizeOfThisInstruction + Operand 1 (relative CALL)

IP <= Operand 1 (absolute CALL)

Table 19-13 CALL Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index data absent

1 = Immediate/index data present

6 0 = CALL32 with 32-bit immediate data/index if present

1 = CALL64 with 64-bit immediate data

0

0..5 Opcode = 0x03

Bit Description

6..7 Reserved = 0

5 0 = Call to EBC

1 = Call to native code

4 0 = Absolute address

1 = Relative address

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..5 Optional 32-bit index/immediate for CALL32

2..9 Required 64-bit immediate data for CALL64

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-19

BEHAVIOR AND RESTRICTIONS:
• For the CALL32 forms, if Operand 1 is indirect, then the immediate data is interpreted as an

index, and the Operand 1 value is fetched from memory address [R1 + Index32].
• For the CALL32 forms, if Operand 1 is direct, then the immediate data is considered a signed

immediate value and is added to the Operand 1 register contents such that Operand 1 = R1 +
Immed32.

• For the CALLEX forms, the VM must fix up the stack pointer and execute a call to native code
in a manner compatible with the native code such that the callee is able to access arguments
passed on the VM stack..

• For the CALLEX forms, the value returned by the callee should be returned in R7.
• For the CALL64 forms, the Operand 1 fields are ignored.
• If Byte7:Bit6 = 1 (CALL64), then Byte1:Bit4 is assumed to be 0 (absolute address)
• For CALL32 forms, if Operand 1 register = R0, then the register operand is ignored and only

the immediate data is used in the calculation of the call address.
• Prior to the call, the VM will decrement the stack pointer R0 by 16 bytes, and store the 64-bit

return address on the stack.
• Offsets for relative calls are relative to the address of the instruction following the CALL

instruction.

Extensible Firmware Interface Specification

19-20 12/01/02 Version 1.10

CMP

SYNTAX:

CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

The CMP instruction is used to compare Operand 1 to Operand 2. Supported comparison modes are
=, <=, >=, unsigned <=, and unsigned >=. The comparison size can be 32 bits (CMP32) or 64 bits
(CMP64). The effect of this instruction is to set or clear the condition code bit in the Flags register
per the comparison results. The operands are compared as signed values except for the CMPulte
and CMPugte forms.

OPERATION:

CMPeq: Flags.C <= (Operand 1 == Operand 2)

CMPlte: Flags.C <= (Operand 1 <= Operand 2)

CMPgte: Flags.C <= (Operand 1 >= Operand 2)

CMPulte: Flags.C <= (Operand 1 <= Operand 2) (unsigned)

CMPugte: Flags.C <= (Operand 1>= Operand 2) (unsigned)

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-21

Table 19-14 CMP Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index data absent

1 = Immediate/index data present

6 0 = 32-bit comparison

1 = 64-bit comparison

Opcode

0

0..5

0x05 = CMPeq compare equal

0x06 = CMPlte compare signed less then/equal

0x07 = CMPgte compare signed greater than/equal

0x08 = CMPulte compare unsigned less than/equal

0x09 = CMPugte compare unsigned greater than/equal

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 Reserved = 0

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the register contents such that Operand 2 = R2 + Immed16.
• Only register direct is supported for Operand 1.

Extensible Firmware Interface Specification

19-22 12/01/02 Version 1.10

CMPI

SYNTAX:

CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}R1 {Index16}, Immed16|Immed32

DESCRIPTION:

Compares two operands, one of which is an immediate value, for =, <=, >=, unsigned <=, or
unsigned >=, and sets or clears the condition flag bit in the Flags register accordingly. Comparisons
can be performed on a 32-bit (CMPI32) or 64-bit (CMPI64) basis. The size of the immediate data
can be either 16 bits (CMPIw) or 32 bits (CMPId).

OPERATION:

CMPIeq: Flags.C <= (Operand 1 == Operand 2)

CMPIlte: Flags.C <= (Operand 1 <= Operand 2)

CMPIgte: Flags.C <= (Operand 1 >= Operand 2)

CMPIulte: Flags.C <= (Operand 1 <= Operand 2)

CMPIugte: Flags.C <= (Operand 1>= Operand 2)

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-23

Table 19-15. CMPI Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = 16-bit immediate data

1 = 32-bit immediate data

6 0 = 32-bit comparison

1 = 64-bit comparison

Opcode

0

0..5

0x2D = CMPIeq compare equal

0x2E = CMPIlte compare signed less then/equal

0x2F = CMPIgte compare signed greater than/equal

0x30 = CMPIulte compare unsigned less than/equal

0x31 = CMPIugte compare unsigned greater than/equal

Bit Description

5..7 Reserved = 0

4 0 = Operand 1 index absent

1 = Operand 1 index present

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data

BEHAVIORS AND RESTRICTIONS:
• The immediate data is fetched as a signed value.
• If the immediate data is smaller than the comparison size, then the immediate data is sign-

extended appropriately.
• If Operand 1 is direct, and an Operand 1 index is specified, then an instruction encoding

exception is generated.

Extensible Firmware Interface Specification

19-24 12/01/02 Version 1.10

DIV

SYNTAX:

DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs a divide operation on two signed operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (DIV32) or 64-bit (DIV64) operands.

OPERATION:

Operand 1 <= Operand 1 / Operand 2

Table 19-16 DIV Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x10

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2+ Index16].
• If Operand 2 is direct, then the immediate data is considered a signed value and is added to the

register contents such that Operand 2 = R2 + Immed16
• If the instruction is DIV32 form, and Operand 1 is direct, then the upper 32 bits of the result are

set to 0 before storing to the Operand 1 register.
• A divide-by-0 exception occurs if Operand 2 = 0.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-25

DIVU

SYNTAX:

DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs a divide operation on two unsigned operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (DIVU32) or 64-bit (DIVU64) operands.

OPERATION:

Operand 1 <= Operand 1 / Operand 2

Table 19-17 DIVU Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x11

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the value is

fetched from memory as an unsigned value at address [R2+ Index16].
• If Operand 2 is direct, then the immediate data is considered an unsigned value and is added to

the Operand 2 register contents such that Operand 2 = R2 + Immed16
• For the DIVU32 form, if Operand 1 is direct then the upper 32 bits of the result are set to 0

before storing back to the Operand 1 register.
• A divide-by-0 exception occurs if Operand 2 = 0.

Extensible Firmware Interface Specification

19-26 12/01/02 Version 1.10

EXTNDB

SYNTAX:

EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Sign-extend a byte value and store the result to Operand 1. The byte can be signed extended to
32 bits (EXTNDB32) or 64 bits (EXTNDB64).

OPERATION:

Operand 1 <= (sign extended) Operand 2

Table 19-18 EXTNDB Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x1A

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the byte

Operand 2 value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value, is added

to the signed-extended byte from the Operand 2 register, and the byte result is sign extended to
32 or 64 bits.

• If the instruction is EXTNDB32 and Operand 1 is direct, then the 32-bit result is stored in the
Operand 1 register with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-27

EXTNDD

SYNTAX:

EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Sign-extend a 32-bit Operand 2 value and store the result to Operand 1. The Operand 2 value can
be extended to 32 bits (EXTNDD32) or 64 bits (EXTNDD64).

OPERATION:

Operand 1 <= (sign extended) Operand 2

Table 19-19. EXTNDD Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x1C

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the 32-bit value

is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that

Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.
• If the instruction is EXTNDD32 and Operand 1 is direct, then the result is stored in the

Operand 1 register with the upper 32 bits cleared.

Extensible Firmware Interface Specification

19-28 12/01/02 Version 1.10

EXTNDW

SYNTAX:

EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Sign-extend a 16-bit Operand 2 value and store the result back to Operand 1. The value can be
signed extended to 32 bits (EXTNDW32) or 64 bits (EXTNDW64).

OPERATION:

Operand 1 <= (sign extended) Operand 2

Table 19-20. EXTNDW Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x1B

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the word value

is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that

Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.
• If the instruction is EXTNDW32 and Operand 1 is direct, then the 32-bit result is stored in the

Operand 1 register with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-29

JMP

SYNTAX:

JMP32{cs|cc} {@}R1 {Immed32|Index32}

JMP64{cs|cc} Immed64

DESCRIPTION:

The JMP instruction is used to conditionally or unconditionally jump to a relative or absolute
address and continue executing EBC instructions. The condition test is done using the condition bit
in the VM Flags register. The JMP64 form only supports an immediate value that can be used for
either a relative or absolute jump. The JMP32 form adds support for indirect addressing of the JMP
offset or address. The JMP is implemented as:

if (ConditionMet) {
 if (Operand.RelativeJump) {
 IP += Operand1 + SizeOfThisInstruction;
 } else {
 IP = Operand1;
 }
}

OPERATION:

IP <= Operand 1 (absolute address)

IP <= IP + SizeOfThisInstruction + Operand 1 (relative address)

Extensible Firmware Interface Specification

19-30 12/01/02 Version 1.10

Table 19-21 JMP Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index data absent

1 = Immediate/index data present

6 0 = JMP32

1 = JMP64

0

0..5 Opcode = 0x01

Bit Description

7 0 = Unconditional jump

1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)

1 = Jump if Flags.C is set (cs)

5 Reserved = 0

4 0 = Absolute address

1 = Relative address

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..5 Optional 32-bit immediate data/index for JMP32

2..9 64-bit immediate data for JMP64

BEHAVIORS AND RESTRICTIONS:
• Operand 1 fields are ignored for the JMP64 forms
• If the instruction is JMP32, and Operand 1 register = R0, then the register contents are assumed

to be 0.
• If the instruction is JMP32, and Operand 1 is indirect, then the immediate data is interpreted as

an index, and the jump offset or address is fetched as a 32-bit signed value from address [R1 +
Index32]

• If the instruction is JMP32, and Operand 1 is direct, then the immediate data is considered a
signed immediate value such that Operand 1 = R1 + Immed32

• If the jump is unconditional, then Byte1:Bit6 (condition) is ignored
• If the instruction is JMP64, and Byte0:Bit7 is clear (no immediate data), then an instruction

encoding exception is generated.
• If the instruction is JMP32, and Operand 2 is indirect, then the Operand 2 value is read as a

natural value from memory address [R1 + Index32]
• An alignment check exception is generated if the jump is taken and the target address is odd.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-31

JMP8

SYNTAX:

JMP8{cs|cc} Immed8

DESCRIPTION:

Conditionally or unconditionally jump to a relative offset and continue execution. The offset is a
signed one-byte offset specified in the number of words. The offset is relative to the start of the
following instruction.

OPERATION:

IP = IP + SizeOfThisInstruction + (Immed8 * 2)

Table 19-22 JMP8 Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Unconditional jump

1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)

1 = Jump if Flags.C is set (cs)

0

0..5 Opcode = 0x02

1 Immediate data (signed word offset)

BEHAVIORS AND RESTRICTIONS:
• If the jump is unconditional, then Byte0:Bit6 (condition) is ignored

Extensible Firmware Interface Specification

19-32 12/01/02 Version 1.10

LOADSP

SYNTAX:

LOADSP [Flags], R2

DESCRIPTION:

This instruction loads a VM dedicated register with the contents of a VM general-purpose register
R0-R7. The dedicated register is specified by its index as shown in Table 19-2.

OPERATION:

Operand 1 <= R2

Table 19-23. LOADSP Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 Reserved = 0

0

0..5 Opcode = 0x29

7 Reserved

4..6 Operand 2 general purpose register

3 Reserved

1

0..2 Operand 1 dedicated register index

BEHAVIORS AND RESTRICTIONS:
• Attempting to load any register (Operand 1) other than the Flags register results in an

instruction encoding exception.
• Specifying a reserved dedicated register index results in an instruction encoding exception.
• If Operand 1 is the Flags register, then reserved bits in the Flags register are not modified by

this instruction.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-33

MOD

SYNTAX:

MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Perform a modulus on two signed 32-bit (MOD32) or 64-bit (MOD64) operands and store the
result to Operand 1.

OPERATION:

Operand 1 <= Operand 1 MOD Operand 2

Table 19-24. MOD Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x12

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that

Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.
• If Operand 2 = 0, then a divide-by-zero exception is generated.

Extensible Firmware Interface Specification

19-34 12/01/02 Version 1.10

MODU

SYNTAX:

MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Perform a modulus on two unsigned 32-bit (MODU32) or 64-bit (MODU64) operands and store the
result to Operand 1.

OPERATION:

Operand 1 <= Operand 1 MOD Operand 2

Table 19-25. MODU Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x13

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered an unsigned immediate value such

that Operand 2 = R2 + Immed16.
• If Operand 2 = 0, then a divide-by-zero exception is generated.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-35

MOV

SYNTAX:

MOV[b|w|d|q]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}

MOVqq {@}R1 {Index64}, {@}R2 {Index64}

DESCRIPTION:

This instruction moves data from Operand 2 to Operand 1. Both operands can be indexed, though
both indexes are the same size. In the instruction syntax for the first form, the first variable
character indicates the size of the data move, which can be 8 bits (b), 16 bits (w), 32 bits (d), or 64
bits (q). The optional character indicates the presence and size of the index value(s), which may be
16 bits (w) or 32 bits (d). The MOVqq instruction adds support for 64-bit indexes.

OPERATION:

Operand 1 <= Operand 2

Extensible Firmware Interface Specification

19-36 12/01/02 Version 1.10

Table 19-26. MOV Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 1 index absent

1 = Operand 1 index present

0

6 0 = Operand 2 index absent

1 = Operand 2 index present

 0..5 0x1D = MOVbw opcode

0x1E = MOVww opcode

0x1F = MOVdw opcode

0x20 = MOVqw opcode

0x21 = MOVbd opcode

0x22 = MOVwd opcode

0x23 = MOVdd opcode

0x24 = MOVqd opcode

0x28 = MOVqq opcode

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index

2..9 Optional Operand 1 64-bit index (MOVqq)

2..9/10..17 Optional Operand 2 64-bit index (MOVqq)

BEHAVIORS AND RESTRICTIONS:
• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding

exception is generated.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-37

MOVI

SYNTAX:

MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64

DESCRIPTION:

This instruction moves a signed immediate value to Operand 1. In the instruction syntax, the first
variable character specifies the width of the move, which may be 8 bits (b), 16 bits (w), 32-bits (d),
or 64 bits (q). The second variable character specifies the width of the immediate data, which may
be 16 bits (w), 32 bits (d), or 64 bits (q).

OPERATION:

Operand 1 <= Operand 2

Table 19-27. MOVI Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 0 = Reserved

1 = Immediate data is 16 bits (w)

2 = Immediate data is 32 bits (d)

3 = Immediate data is 64 bits (q)

0

0..5 Opcode = 0x37

Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent

1 = Operand 1 index present

4..5 0 = 8 bit (b) move

1 = 16 bit (w) move

2 = 32 bit (d) move

3 = 64 bit (q) move

1

3 0 = Operand 1 direct

1 = Operand 1 indirect

 0..2 Operand 1

2..3 Optional 16-bit index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data

2..9/4..11 64-bit immediate data

Extensible Firmware Interface Specification

19-38 12/01/02 Version 1.10

BEHAVIORS AND RESTRICTIONS:
• Specifying an index value with Operand 1 direct results in an instruction encoding exception.
• If the immediate data is smaller than the move size, then the value is sign-extended to the

width of the move.
• If Operand 1 is a register, then the value is stored to the register with bits beyond the move

size cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-39

MOVIn

SYNTAX:

MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64

DESCRIPTION:

This instruction moves an indexed value of form (+n,+c) to Operand 1. The index value is
converted from (+n, +c) format to a signed offset per the encoding described in Table 19-4. The
size of the Operand 2 index data can be 16 (w), 32 (d), or 64 (q) bits.

OPERATION:

Operand 1 <= Operand 2 (index value)

Table 19-28. MOVIn Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 0 = Reserved

1 = Operand 2 index value is 16 bits (w)

2 = Operand 2 index value is 32 bits (d)

3 = Operand 2 index value is 64 bits (q)

0

0..5 Opcode = 0x38

Bit Description

7 Reserved

6 0 = Operand 1 index absent

1 = Operand 1 index present

4..5 Reserved = 0

1

3 0 = Operand 1 direct

1 = Operand 1 indirect

 0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit Operand 2 index

2..5/4..7 32-bit Operand 2 index

2..9/4..11 64-bit Operand 2 index

Extensible Firmware Interface Specification

19-40 12/01/02 Version 1.10

BEHAVIORS AND RESTRICTIONS:
• Specifying an Operand 1 index when Operand 1 is direct results in an instruction encoding

exception.
• The Operand 2 index is sign extended to the size of the move if necessary.
• If the Operand 2 index size is smaller than the move size, then the value is truncated.
• If Operand 1 is direct, then the Operand 2 value is sign extended to 64 bits and stored to the

Operand 1 register.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-41

MOVn

SYNTAX:

MOVn{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}

DESCRIPTION:

This instruction loads an unsigned natural value from Operand 2 and stores the value to Operand 1.
Both operands can be indexed, though both operand indexes are the same size. The operand
index(s) can be 16 bits (w) or 32 bits (d).

OPERATION:

Operand1 <= (UINTN)Operand2

Table 19-29. MOVn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 1 index absent

1 = Operand 1 index present

0

6 0 = Operand 2 index absent

1 = Operand 2 index present

 0..5 0x32 = MOVnw opcode

0x33 = MOVnd opcode

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index

Extensible Firmware Interface Specification

19-42 12/01/02 Version 1.10

BEHAVIORS AND RESTRICTIONS:
• If an index is specified for Operand 2, and Operand 2 register is direct, then the Operand 2

index value is added to the register contents such that Operand 2 = (UINTN)(R2 + Index).
• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding

exception is generated.
• If Operand 1 is direct, then the Operand 2 value will be 0-extended to 64 bits on a 32-bit

machine before storing to the Operand 1 register.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-43

MOVREL

SYNTAX:

MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64

DESCRIPTION:

This instruction fetches data at an IP-relative immediate offset (Operand 2) and stores the result to
Operand 1. The offset is a signed offset relative to the following instruction. The fetched data is
unsigned and may be 16 (w), 32 (d), or 64 (q) bits in size.

OPERATION:

Operand 1 <= [IP + SizeOfThisInstruction + Immed]

Table 19-30. MOVREL Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 0 = Reserved

1 = Immediate data is 16 bits (w)

2 = Immediate data is 32 bits (d)

3 = Immediate data is 64 bits (q)

0

0..5 Opcode = 0x39

Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent

1 = Operand 1 index present

4..5 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate offset

2..5/4..7 32-bit immediate offset

2..9/4..11 64-bit immediate offset

BEHAVIORS AND RESTRICTIONS:
• If an Operand 1 index is specified and Operand 1 is direct, then an instruction encoding

exception is generated.

Extensible Firmware Interface Specification

19-44 12/01/02 Version 1.10

MOVsn

SYNTAX:

MOVsn{w} {@}R1, {Index16}, {@}R2 {Index16|Immed16}

MOVsn{d} {@}R1 {Index32}, {@}R2 {Index32|Immed32}

DESCRIPTION:

Moves a signed natural value from Operand 2 to Operand 1. Both operands can be indexed,
though the indexes are the same size. Indexes can be either 16 bits (MOVsnw) or 32 bits
(MOVsnd) in size.

OPERATION:

Operand 1 <= Operand 2

Table 19-31. MOVsn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 1 index absent

1 = Operand 1 index present

0

6 0 = Operand 2 index/immediate data absent

1 = Operand 2 index/immediate data present

 0..5 0x25 = MOVsnw opcode

0x26 = MOVsnd opcode

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index (MOVsnw)

2..3/4..5 Optional 16-bit Operand 2 index (MOVsnw)

2..5 Optional 32-bit Operand 1 index/immediate data (MOVsnd)

2..5/6..9 Optional 32-bit Operand 2 index/immediate data (MOVsnd)

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-45

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is direct, and Operand 2 index/immediate data is specified, then the immediate

value is read as a signed immediate value and is added to the contents of Operand 2 register
such that Operand 2 = R2 + Immed.

• If Operand 2 is indirect, and Operand 2 index/immediate data is specified, then the immediate
data is interpreted as an index and the Operand 2 value is fetched from memory as a signed
value at address [R2 + Index16].

• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding
exception is generated.

• If Operand 1 is direct, then the Operand 2 value is sign-extended to 64-bits on 32-bit native
machines.

Extensible Firmware Interface Specification

19-46 12/01/02 Version 1.10

MUL

SYNTAX:

MUL[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Perform a signed multiply of two operands and store the result back to Operand 1. The operands
can be either 32 bits (MUL32) or 64 bits (MUL64).

OPERATION:

Operand 1 <= Operand * Operand 2

Table 19-32. MUL Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0E

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 2 immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is MUL32, and Operand 1 is direct, then the result is stored to Operand 1

register with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-47

MULU

SYNTAX:

MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs an unsigned multiply of two 32-bit (MULU32) or 64-bit (MULU64) operands, and stores
the result back to Operand 1.

OPERATION:

Operand 1 <= Operand * Operand 2

Table 19-33. MULU Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0F

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is MULU32 and Operand 1 is direct, then the result is written to the Operand

1 register with the upper 32 bits cleared.

Extensible Firmware Interface Specification

19-48 12/01/02 Version 1.10

NEG

SYNTAX:

NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Multiply Operand 2 by negative 1, and store the result back to Operand 1. Operand 2 is a signed
value and fetched as either a 32-bit (NEG32) or 64-bit (NEG64) value.

OPERATION

Operand 1 <= -1 * Operand 2

Table 19-34. NEG Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0B

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is NEG32 and Operand 1 is direct, then the result is stored in Operand 1

register with the upper 32-bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-49

NOT

SYNTAX:

NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs a logical NOT operation on Operand 2, an unsigned 32-bit (NOT32) or 64-bit (NOT64)
value, and stores the result back to Operand 1.

OPERATION

Operand 1 <= NOT Operand 2

Table 19-35. NOT Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0A

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is NOT32 and Operand 1 is a register, then the result is stored in the

Operand 1 register with the upper 32 bits cleared.

Extensible Firmware Interface Specification

19-50 12/01/02 Version 1.10

OR

SYNTAX:

OR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs a bit-wise OR of two 32-bit (OR32) or 64-bit (OR64) operands, and stores the result back
to Operand 1.

OPERATION:

Operand 1 <= Operand 1 OR Operand 2

Table 19-36. OR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x15

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is OR32 and Operand 1 is direct, then the result is stored to Operand 1 register

with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-51

POP

SYNTAX:

POP[32|64] {@}R1 {Index16|Immed16}

DESCRIPTION:

This instruction pops a 32-bit (POP32) or 64-bit (POP64) value from the stack, stores the result to
Operand 1, and adjusts the stack pointer R0 accordingly.

OPERATION:

Operand 1 <= [R0]

R0 <= R0 + 4 (POP32)

R0 <= R0 + 8 (POP64)

Table 19-37. POP Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x2C

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is read

as a signed value and is added to the value popped from the stack, and the result stored to the
Operand 1 register.

• If Operand 1 is indirect, then the immediate data is interpreted as an index, and the value
popped from the stack is stored to address [R1 + Index16].

• If the instruction is POP32, and Operand 1 is direct, then the popped value is sign-extended to
64 bits before storing to the Operand 1 register.

Extensible Firmware Interface Specification

19-52 12/01/02 Version 1.10

POPn

SYNTAX:

POPn {@}R1 {Index16|Immed16}

DESCRIPTION:

Read an unsigned natural value from memory pointed to by stack pointer R0, adjust the stack
pointer accordingly, and store the value back to Operand 1.

OPERATION:

Operand 1 <= (UINTN)[R0]

R0 <= R0 + sizeof (VOID *)

Table 19-38. POPn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 Reserved = 0

0

0..5 Opcode = 0x36

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is

fetched as a signed value and is added to the value popped from the stack and the result is
stored back to the Operand 1 register.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the value popped from the stack is stored at [R1 + Index16].

• If Operand 1 is direct, and the instruction is executed on a 32-bit machine, then the result is
stored to the Operand 1 register with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-53

PUSH

SYNTAX:

PUSH[32|64] {@}R1 {Index16|Immed16}

DESCRIPTION:

Adjust the stack pointer R0 and store a 32-bit (PUSH32) or 64-bit (PUSH64) Operand 1 value on
the stack.

OPERATION:

R0 <= R0 - 4 (PUSH32)

R0 <= R0 - 8 (PUSH64)

[R0] <= Operand 1

Table 19-39. PUSH Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x2B

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is read

as a signed value and is added to the Operand 1 register contents such that Operand 1 = R1 +
Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the pushed value is read from [R1 + Index16].

Extensible Firmware Interface Specification

19-54 12/01/02 Version 1.10

PUSHn

SYNTAX:

PUSHn {@}R1 {Index16|Immed16}

DESCRIPTION:

Adjust the stack pointer R0, and store a natural value on the stack.

OPERATION:

R0 <= R0 - sizeof (VOID *)

[R0] <= Operand 1

Table 19-40. PUSHn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 Reserved = 0

0

0..5 Opcode = 0x35

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is

fetched as a signed value and is added to the Operand 1 register contents such that Operand 1 =
R1 + Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the Operand 1 value pushed is fetched from [R1 + Index16].

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-55

RET

SYNTAX:

RET

DESCRIPTION:

This instruction fetches the return address from the stack, sets the IP to the value, adjusts the stack
pointer register R0, and continues execution at the return address. If the RET is a final return from
the EBC driver, then execution control returns to the caller, which may be EBC or native code.

OPERATION:

IP <= [R0]

R0 <= R0 + 16

Table 19-41. RET Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 Reserved = 0

0

0..5 Opcode = 0x04

1 Reserved = 0

BEHAVIORS AND RESTRICTIONS:
• An alignment exception will be generated if the return address is not aligned on a 16-bit

boundary.

Extensible Firmware Interface Specification

19-56 12/01/02 Version 1.10

SHL

SYNTAX:

SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Left-shifts Operand 1 by Operand 2 bit positions and stores the result back to Operand 1. The
operand sizes may be either 32-bits (SHL32) or 64 bits (SHL64).

OPERATION:

Operand 1 <= Operand 1 << Operand 2

Table 19-42. SHL Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x17

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is SHL32, and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-57

SHR

SYNTAX:

SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Right-shifts unsigned Operand 1 by Operand 2 bit positions and stores the result back to Operand 1.
The operand sizes may be either 32-bits (SHR32) or 64 bits (SHR64).

OPERATION:

Operand 1 <= Operand 1 >> Operand 2

Table 19-43. SHR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x18

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is SHR32, and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

Extensible Firmware Interface Specification

19-58 12/01/02 Version 1.10

STORESP

SYNTAX:

STORESP R1, [IP|Flags]

DESCRIPTION:

This instruction transfers the contents of a dedicated register to a general-purpose register. See
Table 19-2 for the VM dedicated registers and their corresponding index values.

OPERATION:

Operand 1 <= Operand 2

Table 19-44. STORESP Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 Reserved = 0

0

0..5 Opcode = 0x2A

7 Reserved = 0

4..6 Operand 2 dedicated register index

3 Reserved = 0

1

0..2 Operand 1 general purpose register

BEHAVIORS AND RESTRICTIONS:
• Specifying an invalid dedicated register index results in an instruction encoding exception.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-59

SUB

SYNTAX:

SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Subtracts a 32-bit (SUB32) or 64-bit (SUB64) signed Operand 2 value from a signed Operand 1
value of the same size, and stores the result to Operand 1.

OPERATION:

Operand 1 <= Operand 1 - Operand 2

Table 19-45. SUB Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0D

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16
• If the instruction is SUB32 and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

Extensible Firmware Interface Specification

19-60 12/01/02 Version 1.10

XOR

SYNTAX:

XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION:

Performs a bit-wise exclusive OR of two 32-bit (XOR32) or 64-bit (XOR64) operands, and stores
the result back to Operand 1.

OPERATION:

Operand 1 <= Operand 1 XOR Operand 2

Table 19-46. XOR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x16

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS:
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is XOR32 and Operand1 is direct, then the result is stored to the Operand 1

register with the upper 32-bits cleared.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-61

19.9 Runtime and Software Conventions

19.9.1 Calling Outside VM
Calls can be made to routines in other modules that are native or in another VM. It is the
responsibility of the calling VM to prepare the outgoing arguments correctly to make the call
outside the VM. It is also the responsibility of the VM to prepare the incoming arguments correctly
for the call from outside the VM. Calls outside the VM must use the CALLEX instruction.

19.9.2 Calling Inside VM
Calls inside VM can be made either directly using the CALL or CALLEX instructions. Using direct
CALL instructions is an optimization.

19.9.3 Parameter Passing
Parameters are pushed on the VM stack per the CDECL calling convention. Per this convention,
the last argument in the parameter list is pushed on the stack first, and the first argument in the
parameter list is pushed on the stack last.

All parameters are stored or accessed as natural size (using naturally sized instruction) except 64-bit
integers, which are pushed as 64-bit values. 32-bit integers are pushed as natural size (since they
should be passed as 64-bit parameter values on 64-bit machines).

19.9.4 Return Values
Return values of 8 bytes or less in size are returned in general-purpose register R7. Return values
larger than 8 bytes are not supported.

19.9.5 Binary Format
PE32+ format will be used for generating binaries for the VM. A VarBss section will be included
in the binary image. All global and static variables will be placed in this section. The size of the
section will be based on worst-case 64-bit pointers. Initialized data and pointers will also be placed
in the VarBss section, with the compiler generating code to initialize the values at runtime.

19.10 Architectural Requirements

This section provides a high level overview of the architectural requirements that are necessary to
support execution of EBC on a platform.

Extensible Firmware Interface Specification

19-62 12/01/02 Version 1.10

19.10.1 EBC Image Requirements
All EBC images will be PE32+ format. Some minor additions to the format will be required to
support EBC images. See the Microsoft Portable Executable and Common Object File Format
Specification pointed to in the References section for details of this image file format.

A given EBC image must be executable on different platforms, independent of whether it is a 32- or
64-bit processor. All EBC images should be driver implementations.

19.10.2 EBC Execution Interfacing Requirements
EBC drivers will typically be designed to execute in an (usually preboot) EFI environment. As
such, EBC drivers must be able to invoke protocols and expose protocols for use by other drivers or
applications. The following execution transitions must be supported:

• EBC calling EBC
• EBC calling native code
• Native code calling EBC
• Native code calling native code
• Returning from all the above transitions

Obviously native code calling native code is available by default, so is not discussed in this
document.

To maintain backward compatibility with existing native code, and minimize the overhead for
non-EBC drivers calling EBC protocols, all four transitions must be seamless from the application
perspective. Therefore, drivers, whether EBC or native, shall not be required to have any
knowledge of whether or not the calling code, or the code being called, is native or EBC compiled
code. The onus is put on the tools and interpreter to support this requirement.

19.10.3 Interfacing Function Parameters Requirements
To allow code execution across protocol boundaries, the interpreter must ensure that parameters
passed across execution transitions are handled in the same manner as the standard parameter
passing convention for the native processor.

19.10.4 Function Return Requirements
The interpreter must support standard function returns to resume execution to the caller of external
protocols. The details of this requirement are specific to the native processor. The called function
must not be required to have any knowledge of whether or not the caller is EBC or native code.

19.10.5 Function Return Values Requirements
The interpreter must support standard function return values from called protocols. The exact
implementation of this functionality is dependent on the native processor. This requirement applies
to return values of 64 bits or less. The called function must not be required to have any knowledge
of whether or not the caller is EBC or native code. Note that returning of structures is not
supported.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-63

19.11 EBC Interpreter Protocol

The EFI EBC protocol provides services to execute EBC images, which will typically be loaded
into option ROMs.

EFI_EBC_PROTOCOL

Summary

This protocol provides the services that allow execution of EBC images.

GUID
#define EFI_EBC_PROTOCOL_GUID \
 {0x13AC6DD1,0x73D0,0x11D4,0xB0,0x6B,0x00,0xAA,0x00,0xBD,0x6D,0xE7}

Protocol Interface Structure
typedef struct _EFI_EBC_PROTOCOL {
 EFI_EBC_CREATE_THUNK CreateThunk;
 EFI_EBC_UNLOAD_IMAGE UnloadImage;
 EFI_EBC_REGISTER_ICACHE_FLUSH RegisterICacheFlush;
 EFI_EBC_GET_VERSION GetVersion;
} EFI_EBC_PROTOCOL;

Parameters

CreateThunk Creates a thunk for an EBC image entry point or protocol service, and
returns a pointer to the thunk. See the CreateThunk() function
description.

UnloadImage Called when an EBC image is unloaded to allow the interpreter to
perform any cleanup associated with the image’s execution. See the
UnloadImage() function description.

RegisterICacheFlush
Called to register a callback function that the EBC interpreter can call to
flush the processor instruction cache after creating thunks. See the
RegisterICacheFlush() function description.

GetVersion Called to get the version of the associated EBC interpreter. See the
GetVersion() function description.

Extensible Firmware Interface Specification

19-64 12/01/02 Version 1.10

Description

The EFI EBC protocol provides services to load and execute EBC images, which will typically be
loaded into option ROMs. The image loader will load the EBC image, perform standard
relocations, and invoke the CreateThunk() service to create a thunk for the EBC image’s entry
point. The image can then be run using the standard EFI start image services.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-65

EFI_EBC_PROTOCOL.CreateThunk()

Summary

Creates a thunk for an EBC entry point, returning the address of the thunk.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EBC_CREATE_THUNK) (
 IN EFI_EBC_PROTOCOL *This,
 IN EFI_HANDLE ImageHandle,
 IN VOID *EbcEntryPoint,
 OUT VOID **Thunk
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

ImageHandle Handle of image for which the thunk is being created.

EbcEntryPoint Address of the actual EBC entry point or protocol service the
thunk should call.

Thunk Returned pointer to a thunk created.

Description

A PE32+ EBC image, like any other PE32+ image, contains an optional header that specifies the
entry point for image execution. However for EBC images this is the entry point of EBC
instructions, so is not directly executable by the native processor. Therefore when an EBC image is
loaded, the loader must call this service to get a pointer to native code (thunk) that can be executed
which will invoke the interpreter to begin execution at the original EBC entry point.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image entry point is not 2-byte aligned.

EFI_OUT_OF_RESOURCES Memory could not be allocated for the thunk.

Extensible Firmware Interface Specification

19-66 12/01/02 Version 1.10

EFI_EBC_PROTOCOL.UnloadImage()

Summary

Called prior to unloading an EBC image from memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EBC_UNLOAD_IMAGE) (
 IN EFI_EBC_PROTOCOL *This,
 IN EFI_HANDLE ImageHandle
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

ImageHandle Image handle of the EBC image that is being unloaded from
memory.

Description

This function is called after an EBC image has exited, but before the image is actually unloaded. It
is intended to provide the interpreter with the opportunity to perform any cleanup that may be
necessary as a result of loading and executing the image.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image handle is not recognized as belonging to an EBC image that
has been executed.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-67

EFI_EBC_PROTOCOL.RegisterICacheFlush()

Summary

Registers a callback function that the EBC interpreter calls to flush the processor instruction cache
following creation of thunks.

Prototype
typedef
EFI_STATUS
(* EFI_EBC_REGISTER_ICACHE_FLUSH) (
 IN EFI_EBC_PROTOCOL *This,
 IN EBC_ICACHE_FLUSH Flush
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

Flush Pointer to a function of type EBC_ICACH_FLUSH. See “Related
Definitions” below for a detailed description of this type.

Related Definitions
typedef
EFI_STATUS
(* EBC_ICACHE_FLUSH) (
 IN EFI_PHYSICAL_ADDRESS Start,
 IN UINT64 Length
);

Start The beginning physical address to flush from the processor’s
instruction cache.

Length The number of bytes to flush from the processor’s instruction
cache.

This is the prototype for the Flush callback routine. A pointer to a routine of this type is passed
to the EBC EFI_EBC_REGISTER_ICACHE_FLUSH protocol service.

Extensible Firmware Interface Specification

19-68 12/01/02 Version 1.10

Description

An EBC image’s original PE32+ entry point is not directly executable by the native processor.
Therefore to execute an EBC image, a thunk (which invokes the EBC interpreter for the image’s
original entry point) must be created for the entry point, and the thunk is executed when the EBC
image is started. Since the thunks may be created on-the-fly in memory, the processor’s instruction
cache may require to be flushed after thunks are created. The caller to this EBC service can
provide a pointer to a function to flush the instruction cache for any thunks created after the
CreateThunk() service has been called. If an instruction-cache flush callback is not provided
to the interpreter, then the interpreter assumes the system has no instruction cache, or that flushing
the cache is not required following creation of thunks.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-69

EFI_EBC_PROTOCOL.GetVersion()

Summary

Called to get the version of the interpreter.

Prototype
typedef
EFI_STATUS
(* EFI_EBC_GET_VERSION) (
 IN EFI_EBC_PROTOCOL *This,
 OUT UINT64 *Version
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

Version Pointer to where to store the returned version of the interpreter.

Description

This function is called to get the version of the loaded EBC interpreter. The value and format of the
returned version is identical to that returned by the EBC BREAK 1 instruction.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Version pointer is NULL.

Extensible Firmware Interface Specification

19-70 12/01/02 Version 1.10

19.12 EBC Tools

19.12.1 EBC C Compiler
This section describes the responsibilities of the EBC C compiler. To fully specify these
responsibilities requires that the thunking mechanisms between EBC and native code be described.

19.12.2 C Coding Convention
The EBC C compiler supports only the C programming language. There is no support for C++,
inline assembly, floating point types/operations, or C calling conventions other than CDECL.

Pointer type in C is supported only as 64-bit pointer. The code should be 64-bit pointer ready (not
assign pointers to integers and vice versa).

The compiler does not support user-defined sections through pragmas.

Global variables containing pointers that are initialized will be put in the uninitialized VarBss
section and the compiler will generate code to initialize these variables during load time. The code
will be placed in an init text section. This compiler-generated code will be executed before the
actual image entry point is executed.

19.12.3 EBC Interface Assembly Instructions
The EBC instruction set includes two forms of a CALL instruction that can be used to invoke
external protocols. Their assembly language formats are:

CALLEX Immed64

CALLEX32 {@}R1 {Immed32}

Both forms can be used to invoke external protocols at an absolute address specified by the
immediate data and/or register operand. The second form also supports jumping to code at a
relative address. When one of these instructions is executed, the interpreter is responsible for
thunking arguments and then jumping to the destination address. When the called function returns,
code begins execution at the EBC instruction following the CALL instruction. The process by
which this happens is called thunking. Later sections describe this operation in detail.

19.12.4 Stack Maintenance and Argument Passing
There are several EBC assembly instructions that directly manipulate the stack contents and stack
pointer. These instructions operate on the EBC stack, not the interpreter stack. The instructions
include the EBC PUSH, POP, PUSHn, and POPn, and all forms of the MOV instructions.

These instructions must adjust the EBC stack pointer in the same manner as equivalent
instructions of the native instruction set. With this implementation, parameters pushed on the
stack by an EBC driver can be accessed normally for stack-based native code. If native code
expects parameters in registers, then the interpreter thunking process must transfer the arguments
from EBC stack to the appropriate processor registers. The process would need to be reversed
when native code calls EBC.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-71

19.12.5 Native to EBC Arguments Calling Convention
The calling convention for arguments passed to EBC functions follows the standard CDECL calling
convention. The arguments must be pushed as their native size. After the function arguments have
been pushed on the stack, execution is passed to the called EBC function. The overhead of
thunking the function parameters depends on the standard parameter passing convention for the
host processor. The implementation of this functionality is left to the interpreter.

19.12.6 EBC to Native Arguments Calling Convention
When EBC makes function calls via function pointers, the EBC C compiler cannot determine
whether the calls are to native code or EBC. It therefore assumes that the calls are to native code,
and emits the appropriate EBC CALLEX instructions. To be compatible with calls to native code,
the calling convention of EBC calling native code must follow the parameter passing convention of
the native processor. The EBC C compiler generates EBC instructions that push all arguments on
the stack. The interpreter is then responsible for performing the necessary thunking. The exact
implementation of this functionality is left to the interpreter.

19.12.7 EBC to EBC Arguments Calling Convention
If the EBC C compiler is able to determine that a function call is to a local function, it can emit a
standard EBC CALL instruction. In this case, the function arguments are passed as described in the
other sections of this specification.

19.12.8 Function Returns
When EBC calls an external function, the thunking process includes setting up the host processor
stack or registers such that when the called function returns, execution is passed back to the EBC at
the instruction following the call. The implementation is left to the interpreter, but it must follow
the standard function return process of the host processor. Typically this will require the interpreter
to push the return address on the stack or move it to a processor register prior to calling the
external function.

19.12.9 Function Return Values
EBC function return values of 8 bytes or less are returned in VM general-purpose register R7.
Returning values larger than 8 bytes on the stack is not supported. Instead, the caller or callee must
allocate memory for the return value, and the caller can pass a pointer to the callee, or the callee can
return a pointer to the value in the standard return register R7.

If an EBC function returns to native code, then the interpreter thunking process is responsible for
transferring the contents of R7 to an appropriate location such that the caller has access to the value
using standard native code. Typically the value will be transferred to a processor register.
Conversely, if a native function returns to an EBC function, the interpreter is responsible for
transferring the return value from the native return memory or register location into VM
register R7.

Extensible Firmware Interface Specification

19-72 12/01/02 Version 1.10

19.12.10 Thunking
Thunking is the process by which transitions between execution of native and EBC are handled.
The major issues that must be addressed for thunking are the handling of function arguments, how
the external function is invoked, and how return values and function returns are handled. The
following sections describe the thunking process for the possible transitions.

19.12.10.1 Thunking EBC to Native Code
By definition, all external calls from within EBC are calls to native code. The EBC CALLEX
instructions are used to make these calls. A typical application for EBC calling native code would
be a simple “Hello World” driver. For an EFI driver, the code could be written as shown below.

EFI_STATUS EfiMain (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *ST
)
{
 ST->ConOut->OutputString(ST->ConOut, L”Hello World!”);
 return EFI_SUCCESS;
}

This C code, when compiled to EBC assembly, could result in two PUSHn instructions to push the
parameters on the stack, some code to get the absolute address of the OutputString() function,
then a CALLEX instruction to jump to native code. Typical pseudo assembly code for the function
call could be something like the following:

PUSHn _HelloString
PUSHn _ConOut
MOVnw R1, _OutputString
CALLEX64 R1

The interpreter is responsible for executing the PUSHn instructions to push the arguments on the
EBC stack when interpreting the PUSHn instructions. When the CALLEX instruction is
encountered, it must thunk to external native code. The exact thunking mechanism is native
processor dependent. For example, an IA-32 thunking implementation could simply move the
system stack pointer to point to the EBC stack, then perform a CALL to the absolute address
specified in VM register R1. However, the function calling convention for the Itanium processor
family calls for the first 8 function arguments being passed in registers. Therefore, the Itanium
processor family thunking mechanism requires the arguments to be copied from the EBC stack into
processor registers. Then a CALL can be performed to jump to the absolute address in VM register
R1. Note that since the interpreter is not aware of the number of arguments to the function being
called, the maximum amount of data may be copied from the EBC stack into processor registers.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-73

19.12.10.2 Thunking Native Code to EBC
An EBC driver may install protocols for use by other EBC drivers or EFI drivers or applications.
These protocols provide the mechanism by which external native code can call EBC. Typical EFI
C code to install a generic protocol is shown below.

EFI_STATUS Foo(UINT32 Arg1, UINT32 Arg2);

MyProtInterface->Service1 = Foo;

Status = LibInstallProtocolInterfaces (&Handle, &MyProtGUID,
MyProtInterface, NULL);

To support thunking native code to EBC, the EBC compiler resolves all EBC function pointers
using one level of indirection. In this way, the address of an EBC function actually becomes the
address of a piece of native (thunk) code that invokes the interpreter to execute the actual EBC
function. As a result of this implementation, any time the address of an EBC function is taken, the
EBC C compiler must generate the following:

• A 64-bit function pointer data object that contains the actual address of the EBC function
• EBC initialization code that is executed before the image entry point that will execute EBC

BREAK 5 instructions to create thunks for each function pointer data object
• Associated relocations for the above

So for the above code sample, the compiler must generate EBC initialization code similar to the
following. This code is executed prior to execution of the actual EBC driver’s entry point.

MOVqq R7, Foo_pointer ; get address of Foo pointer
BREAK 5 ; create a thunk for the function

The BREAK instruction causes the interpreter to create native thunk code elsewhere in memory,
and then modify the memory location pointed to by R7 to point to the newly created thunk code for
EBC function Foo. From within EBC, when the address of Foo is taken, the address of the thunk is
actually returned. So for the assignment of the protocol Service1 above, the EBC C compiler will
generate something like the following:

MOVqq R7, Foo_pointer ; get address of Foo function pointer
MOVqq R7, @R7 ; one level of indirection
MOVn R6, _MyProtInterface->Service1 ; get address of variable
MOVqq @R6, R7 ; address of thunk to ->Service1

19.12.10.3 Thunking EBC to EBC
EBC can call EBC via function pointers or protocols. These two mechanisms are treated identically
by the EBC C compiler, and are performed using EBC CALLEX instructions. For EBC to call
EBC, the EBC being called must have provided the address of the function. As described above,
the address is actually the address of native thunk code for the actual EBC function. Therefore,
when EBC calls EBC, the interpreter assumes native code is being called so prepares function
arguments accordingly, and then makes the call. The native thunk code assumes native code is
calling EBC, so will basically “undo” the preparation of function arguments, and then invoke the
interpreter to execute the actual EBC function of interest.

Extensible Firmware Interface Specification

19-74 12/01/02 Version 1.10

19.12.11 EBC Linker
New constants must be defined for use by the linker in processing EBC images. For EBC images,
the linker must set the machine type in the PE file header accordingly to indicate that the image
contains EBC.

#define IMAGE_FILE_MACHINE_EBC 0x0EBC

In addition, the linker must support EBC images with of the following subsystem types as set in a
PE32+ optional header:

#define IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

For EFI EBC images and object files, the following relocation types must be supported:

// No relocations required
#define IMAGE_REL_EBC_ABSOLUTE 0x0000
// 32-bit address w/o image base
#define IMAGE_REL_EBC_ADDR32NB 0x0001
// 32-bit relative address from byte following relocs
#define IMAGE_REL_EBC_REL32 0x0002
// Section table index
#define IMAGE_REL_EBC_SECTION 0x0003
// Offset within section
#define IMAGE_REL_EBC_SECREL 0x0004

The ADDR32NB relocation is used internally to the linker when RVAs are emitted. It also is used
for version resources which probably will not be used. The REL32 relocation is for PC relative
addressing on code. The SECTION and SECREL relocations are used for debug information.

19.12.12 Image Loader
The EFI image loader is responsible for loading an executable image into memory and performing
any fixups prior to execution of the image. For EBC images, the image loader must also invoke the
interpreter protocol to create a thunk for the image entry point and return the address of this thunk.
After loading the image in this manner, the image can be executed in the standard manner. To
implement this functionality, only minor changes will be made to EFI service LoadImage(), and
no changes should be made to StartImage().

After the image is unloaded, the EFI image load service must call the EBC UnloadImage()
service to perform any cleanup to complete unloading of the image. Typically this will include
freeing up any memory allocated for thunks for the image during load and execution.

19.12.13 Debug Support
The interpreter must support debugging in an EFI environment per the EFI debug support protocol.

 EFI Byte Code Virtual Machine

Version 1.10 12/01/02 19-75

19.13 VM Exception Handling

This section lists the different types of exceptions that the VM may assert during execution of an
EBC image. If a debugger is attached to the EBC driver via the EFI debug support protocol, then
the debugger should be able to capture and identify the exception type. If a debugger is not
attached, then depending on the severity of the exception, the interpreter may do one of the
following:

• Invoke the EFI ASSERT() macro, which will typically display an error message and halt the
system

• Sit in a while(1) loop to hang the system
• Ignore the exception and continue execution of the image (minor exceptions only)

It is a platform policy decision as to the action taken in response to EBC exceptions. The following
sections describe the exceptions that may be generated by the VM.

19.13.1 Divide By 0 Exception
A divide-by-0 exception can occur for the EBC instructions DIV, DIVU, MOD, and MODU.

19.13.2 Debug Break Exception
A debug break exception occurs if the VM encounters a BREAK instruction with a break code of 3.

19.13.3 Invalid Opcode Exception
An invalid opcode exception will occur if the interpreter encounters a reserved opcode during
execution.

19.13.4 Stack Fault Exception
A stack fault exception can occur if the interpreter detects that function nesting within the
interpreter or system interrupts was sufficient to potentially corrupt the EBC image’s stack
contents. This exception could also occur if the EBC driver attempts to adjust the stack pointer
outside the range allocated to the driver.

19.13.5 Alignment Exception
An alignment exception can occur if the particular implementation of the interpreter does not
support unaligned accesses to data or code. It may also occur if the stack pointer or instruction
pointer becomes misaligned.

19.13.6 Instruction Encoding Exception
An instruction encoding exception can occur for the following:

• For some instructions, if an Operand 1 index is specified and Operand 1 is direct
• If an instruction encoding has reserved bits set to values other than 0
• If an instruction encoding has a field set to a reserved value.

Extensible Firmware Interface Specification

19-76 12/01/02 Version 1.10

19.13.7 Bad Break Exception
A bad break exception occurs if the VM encounters a BREAK instruction with a break code of 0, or
any other unrecognized or unsupported break code.

19.13.8 Undefined Exception
An undefined exception can occur for other conditions detected by the VM. The cause of such an
exception is dependent on the VM implementation, but will most likely include internal VM faults.

19.14 Option ROM Formats

The new option ROM capability is designed to be a departure from the legacy method of formatting
an option ROM. PCI local bus add-in cards are the primary targets for this design although support
for future bus types will be added as necessary. EFI EBC drivers can be stored in option ROMs or
on hard drives in an EFI system partition.

The new format defined for the EFI specification is intended to coexist with legacy format PCI
Expansion ROM images. This provides the ability for IHVs to make a single option ROM binary
that contains both legacy and new format images at the same time. This is important for the ability
to have single add-in card SKUs that can work in a variety of systems both with and without native
support for EFI. Support for multiple image types in this way provides a smooth migration path
during the period before widespread adoption of EFI drivers as the primary means of support for
software needed to accomplish add-in card operation in the pre-OS boot timeframe.

19.14.1 EFI Drivers for PCI Add-in Cards
The location mechanism for EFI drivers in PCI option ROM containers is described fully in
Chapter 12 (section 12.4.2). Readers should refer to this section for complete details of the scheme
and associated data structures.

19.14.2 Non-PCI Bus Support
EFI expansion ROMs are not supported on any other bus besides PCI local bus in the current
revision of the EFI specification.

This means that support for EFI drivers in legacy ISA add-in card ROMs is explicitly excluded.

Support for EFI drivers to be located on add-in card type devices for future bus designs other than
PCI local bus will be added to future revisions of the EFI specification. This support will depend
upon the specifications that govern such new bus designs with respect to the mechanisms defined
for support of driver code on devices.

Version 1.10 12/01/02 A-1

Appendix A
GUID and Time Formats

All EFI GUIDs (Globally Unique Identifiers) have the format described in Appendix J of the
Wired for Management Baseline Specification. This document references the format of the GUID,
but implementers must reference the Wired for Management specifications for algorithms to
generate GUIDs. The following table defines the format of an EFI GUID (128 bits).

Table A-1. EFI GUID Format

Mnemonic

Byte
Offset

Byte
Length

Description

TimeLow 0 4 The low field of the timestamp.

TimeMid 4 2 The middle field of the timestamp.

TimeHighAndVersion 6 2 The high field of the timestamp multiplexed with the
version number.

ClockSeqHighAndReserved 8 1 The high field of the clock sequence multiplexed with
the variant.

ClockSeqLow 9 1 The low field of the clock sequence.

Node 10 6 The spatially unique node identifier. This can be
based on any IEEE 802 address obtained from a
network card. If no network card exists in the system,
a cryptographic-quality random number can be used.

All EFI time is stored in the format described by Appendix J of the Wired for Management
Baseline Specification. This appendix for GUID defines a 60-bit timestamp format that is used to
generate the GUID. All EFI time information is stored in 64-bit structures that contain the
following format: The timestamp is a 60-bit value that is represented by Coordinated Universal
Time (UTC) as a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date
of Gregorian reform to the Christian calendar). This time value will not roll over until the year
3400 AD. It is assumed that a future version of the EFI specification can deal with the year-3400
issue by extending this format if necessary.

Extensible Firmware Interface Specification

A-2 12/01/02 Version 1.10

Version 1.10 12/01/02 B-1

Appendix B
Console

The EFI console was designed so that it could map to common console devices. This appendix
explains how an EFI console could map to a VGA with PC AT 101/102, PC ANSI, or
ANSI X3.64 consoles.

B.1 SIMPLE_INPUT

Table B-1 gives examples of how an EFI scan code can be mapped to ANSI X3.64 terminal,
PCANSI terminal, or an AT 101/102 keyboard. PC ANSI terminals support an escape sequence
that begins with the ASCII character 0x1b and is followed by the ASCII character 0x5B, “ [”.
ASCII characters that define the control sequence that should be taken follow the escape sequence.
(The escape sequence does not contain spaces, but spaces are used in Table B-1 to ease the reading
of the table.) ANSI X3.64, when combined with ISO 6429, can be used to represent the same
subset of console support required by EFI. ANSI X3.64 uses a single character escape sequence
CSI: ASCII character 0x9B. ANSI X3.64 can optionally use the same two-character escape
sequence “ESC [”. ANSI X3.64 and ISO 6429 support the same escape codes as PC ANSI.

Table B-1. EFI Scan Codes for SIMPLE_INPUT

EFI Scan Code

Description

ANSI X3.64
Codes

PC ANSI
Codes

AT 101/102 Keyboard
Scan Codes

0x00 Null scan code N/A N/A N/A

0x01 Move cursor up 1 row CSI A ESC [A 0xe0, 0x48

0x02 Move cursor down 1 row CSI B ESC [B 0xe0, 0x50

0x03 Move cursor right 1 column CSI C ESC [C 0xe0, 0x4d

0x04 Move cursor left 1 column CSI D ESC [D 0xe0, 0x4b

0x05 Home CSI H ESC [H 0xe0, 0x47

0x06 End CSI K ESC [K 0xe0, 0x4f

0x07 Insert CSI @ ESC [@ 0xe0, 0x52

0x08 Delete CSI P ESC [P 0xe0, 0x53

0x09 Page Up CSI ? ESC [? 0xe0, 0x49

0x0a Page Down CSI / ESC [/ 0xe0, 0x51

continued

Extensible Firmware Interface Specification

B-2 12/01/02 Version 1.10

Table B-1. EFI Scan Codes for SIMPLE_INPUT (continued)

EFI Scan Code

Description

ANSI X3.64
Codes

PC ANSI
Codes

AT 101/102 Keyboard
Scan Codes

0x0b Function 1 CSI O P ESC [O P 0x3b

0x0c Function 2 CSI O Q ESC [O Q 0x3c

0x0d Function 3 CSI O w ESC [O w 0x3d

0x0e Function 4 CSI O x ESC [O x 0x3e

0x0f Function 5 CSI O t ESC [O t 0x3f

0x10 Function 6 CSI O u ESC [O u 0x40

0x11 Function 7 CSI O q ESC [O q 0x41

0x12 Function 8 CSI O r ESC [O r 0x42

0x13 Function 9 CSI O p ESC [O p 0x43

0x14 Function 10 CSI O M ESC [O M 0x44

0x17 Escape CSI ESC 0x01

B.2 SIMPLE_TEXT_OUTPUT

Table B-2 defines how the programmatic methods of the SIMPLE_TEXT_OUPUT protocol could
be implemented as PC ANSI or ANSI X3.64 terminals. Detailed descriptions of PC ANSI and
ANSI X3.64 escape sequences are as follows. The same type of operations can be supported via a
PC AT type INT 10h interface.

Table B-2. Control Sequences That Can Be Used to Implement SIMPLE_TEXT_OUTPUT

PC ANSI
Codes

ANSI X3.64
Codes

Description

ESC [2 J CSI 2 J Clear Display Screen.

ESC [0 m CSI 0 m Normal Text.

ESC [1 m CSI 1 m Bright Text.

ESC [7 m CSI 7 m Reversed Text.

ESC [30 m CSI 30 m Black foreground, compliant with ISO Standard 6429.

ESC [31 m CSI 31 m Red foreground, compliant with ISO Standard 6429.

ESC [32 m CSI 32 m Green foreground, compliant with ISO Standard 6429.

ESC [33 m CSI 33 m Yellow foreground, compliant with ISO Standard 6429.

ESC [34 m CSI 34 m Blue foreground, compliant with ISO Standard 6429.

continued

 Console

Version 1.10 12/01/02 B-3

 Table B-2. Control Sequences That Can Be Used to Implement SIMPLE_TEXT_OUTPUT
(continued)

PC ANSI
Codes

ANSI X3.64
Codes

Description

ESC [35 m CSI 35 m Magenta foreground, compliant with ISO Standard 6429.

ESC [36 m CSI 36 m Cyan foreground, compliant with ISO Standard 6429.

ESC [37 m CSI 37 m White foreground, compliant with ISO Standard 6429.

ESC [40 m CSI 40 m Black background, compliant with ISO Standard 6429.

ESC [41 m CSI 41 m Red background, compliant with ISO Standard 6429.

ESC [42 m CSI 42 m Green background, compliant with ISO Standard 6429.

ESC [43 m CSI 43 m Yellow background, compliant with ISO Standard 6429.

ESC [44 m CSI 44 m Blue background, compliant with ISO Standard 6429.

ESC [45 m CSI 45 m Magenta background, compliant with ISO Standard 6429.

ESC [46 m CSI 46 m Cyan background, compliant with ISO Standard 6429.

ESC [47 m CSI 47 m White background, compliant with ISO Standard 6429.

ESC [3 h CSI = 3 h Set Mode 80x25 color.

ESC [row;col H CSI row;col H Set cursor position to row;col. Row and col are strings of ASCII digits.

Version 1.10 12/01/02 B-4

Version 1.10 12/01/02 C-1

Appendix C
Device Path Examples

This appendix presents an example EFI Device Path and explains its relationship to the ACPI name
space. An example system design is presented along with its corresponding ACPI name space.
These physical examples are mapped back to EFI Device Paths.

C.1 Example Computer System

Figure C-1 represents a hypothetical computer system architecture that will be used to discuss the
construction of EFI Device Paths. The system consists of a memory controller that connects
directly to the processors’ front side bus. The memory controller is only part of a larger chipset,
and it connects to a root PCI host bridge chip, and a secondary root PCI host bridge chip. The
secondary PCI host bridge chip produces a PCI bus that contains a PCI to PCI bridge. The root PCI
host bridge produces a PCI bus, and also contains USB, ATA66, and AC ’97 controllers. The root
PCI host bridge also contains an LPC bus that is used to connect a SIO (Super IO) device. The SIO
contains a PC-AT-compatible floppy disk controller, and other PC-AT-compatible devices like a
keyboard controller.

OM13179

CPU CPU

AGP PDRAM

PCI 33MHz

LPC

PCI Slots

3

P
C

I S
lo

ts

PCI Slots

2

1FDC
KBD
GPIO
Serial

Parallel
Mouse

IR

SIO

USB ATA66 AC'97

Memory
Controller Secondary

PCI Host
Bridge

Root PCI
Host

Bridge

Memory
Controller

PCI to PCI
Bridge

Figure C-1. Example Computer System

Extensible Firmware Interface Specification

C-2 12/01/02 Version 1.10

The remainder of this appendix describes how to construct a device path for three example devices
from the system in Figure C-1. The following is a list of the examples used:

• Legacy floppy
• IDE Disk
• Secondary root PCI bus with PCI to PCI bridge

Figure C-2 is a partial ACPI name space for the system in Figure C-1. Figure C-2 is based on
Figure 5-3 in the Advanced Configuration and Power Interface Specification.

OM13180

Root of ACPI Name Space

_ SB - System Bus Tree

PCI0 - Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

IDE0 - IDE Device

_ADR - PCI Device #, Function #

 PRIM - Primary IDE Channel

_ADR - Primary 0, Secondary 1

 MAST - Master IDE Device
2

_ADR - Master 0, Slave 1

ISA0 - ISA Bridge

_HID & _UID - ACPI Device ID and Unique ID
_ADR - PCI Device #, Function #

FLPY - Legacy Floppy

_HID - Address of Floppy

PCI0 - Secondary Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

1

3

KEY...

Device Object

Data Object

Example Platform
Reference1

Figure C-2. Partial ACPI Name Space for Example System

C.2 Legacy Floppy

The legacy floppy controller is contained in the SIO chip that is connected root PCI bus host bridge
chip. The root PCI host bridge chip produces PCI bus 0, and other resources that appear directly to
the processors in the system.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The SIO appears to the system to
be a set of ISA devices, so it is represented as a child of PCI0 with the name ISA0. The floppy
controller is represented by FLPY as a child of the ISA0 bus.

 Device Path Examples

Version 1.10 12/01/02 C-3

The EFI Device Path for the legacy floppy is defined in Table C-1. It would contain entries for the
following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0
• PCI to ISA Bridge. PCI Device Path with device and function of the PCI to ISA bridge. ACPI

name space _SB\PCI0\ISA0
• Floppy Plug and Play ID. ACPI Device Path _HID PNP0303, _UID 0. ACPI name space

_SB\PCI0\ISA0\FLPY
• End Device Path

Table C-1. Legacy Floppy Device Path

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function

11 1 0x10 PCI Device

12 1 0x02 Generic Device Path Header – Type ACPI Device Path

13 1 0x01 Sub type – ACPI Device Path

14 2 0x0C Length

16 4 0x41D0,
0x0303

_HID PNP0303

1A 4 0x0000 _UID

1E 1 0xFF Generic Device Path Header – Type End Device Path

1F 1 0xFF Sub type – End Device Path

20 2 0x04 Length

C.3 IDE Disk

The IDE Disk controller is a PCI device that is contained in a function of the root PCI host bridge.
The root PCI host bridge is a multi function device and has a separate function for chipset registers,
USB, and IDE. The disk connected to the IDE ATA bus is defined as being on the primary or
secondary ATA bus, and of being the master or slave device on that bus.

Extensible Firmware Interface Specification

C-4 12/01/02 Version 1.10

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The IDE controller appears to the
system to be a PCI device with some legacy properties, so it is represented as a child of PCI0 with
the name IDE0. PRIM is a child of IDE0 and it represents the primary ATA bus of the IDE
controller. MAST is a child of PRIM and it represents that this device is the ATA master device on
this primary ATA bus.

The EFI Device Path for the PCI IDE controller is defined in Table C-2. It would contain entries
for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0
• PCI IDE controller. PCI Device Path with device and function of the IDE controller. ACPI

name space _SB\PCI0\IDE0
• ATA Address. ATA Messaging Device Path for Primary bus and Master device. ACPI name

space _SB\PCI0\IDE0\PRIM\MAST
• End Device Path

Table C-2. IDE Disk Device Path

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x01 PCI Function

11 1 0x10 PCI Device

12 1 0x03 Generic Device Path Header – Messaging Device Path

13 1 0x01 Sub type – ATAPI Device Path

14 2 0x06 Length

16 1 0x00 Primary =0, Secondary = 1

17 1 0x00 Master = 0, Slave = 1

18 2 0x0000 LUN

1A 1 0xFF Generic Device Path Header – Type End Device Path

1B 1 0xFF Sub type – End Device Path

1C 2 0x04 Length

 Device Path Examples

Version 1.10 12/01/02 C-5

C.4 Secondary Root PCI Bus with PCI to PCI Bridge

The secondary PCI host bridge materializes a second set of PCI buses into the system. The PCI
buses on the secondary PCI host bridge are totally independent of the PCI buses on the root PCI
host bridge. The only relationship between the two is they must be configured to not consume the
same resources. The primary PCI bus of the secondary PCI host bridge also contains a PCI to PCI
bridge. There is some arbitrary PCI device plugged in behind the PCI to PCI bridge in a PCI slot.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI1 is a child of _SB and it represents the secondary PCI host bridge. The PCI to PCI bridge and
the device plugged into the slot on its primary bus are not described in the ACPI name space.
These devices can be fully configured by following the applicable PCI specification.

The EFI Device Path for the secondary root PCI bridge with a PCI to PCI bridge is defined in
Table C-3. It would contain entries for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 1. ACPI name space _SB\PCI1
• PCI to PCI Bridge. PCI Device Path with device and function of the PCI Bridge. ACPI name

space _SB\PCI1, PCI to PCI bridges are defined by PCI specification and not ACPI.
• PCI Device. PCI Device Path with the device and function of the PCI device. ACPI name

space _SB\PCI1, PCI devices are defined by PCI specification and not ACPI.
• End Device Path.

Table C-3. Secondary Root PCI Bus with PCI to PCI Bridge Device Path

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0001 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function for PCI to PCI bridge

11 1 0x0c PCI Device for PCI to PCI bridge

12 1 0x01 Generic Device Path Header – Type Hardware Device Path

13 1 0x01 Sub type PCI Device Path

14 2 0x08 Length

16 1 0x00 PCI Function for PCI Device

17 1 0x00 PCI Device for PCI Device

18 1 0xFF Generic Device Path Header – Type End Device Path

19 1 0xFF Sub type – End Device Path

1A 2 0x04 Length

Extensible Firmware Interface Specification

C-6 12/01/02 Version 1.10

C.5 ACPI Terms

Names in the ACPI name space that start with an underscore (“_”) are reserved by the ACPI
specification and have architectural meaning. All ACPI names in the name space are four
characters in length. The following four ACPI names are used in this specification.

_ADR. The Address on a bus that has standard enumeration. An example would be PCI, where
the enumeration method is described in the PCI Local Bus specification.

_CRS. The current resource setting of a device. A _CRS is required for devices that are not
enumerated in a standard fashion. _CRS is how ACPI converts nonstandard devices into Plug and
Play devices.

_HID. Represents a device’s Plug and Play hardware ID, stored as a 32-bit compressed EISA ID.
_HID objects are optional in ACPI. However, a _HID object must be used to describe any device
that will be enumerated by the ACPI driver in the OS. This is how ACPI deals with non–Plug and
Play devices.

_UID. Is a serial number style ID that does not change across reboots. If a system contains more
than one device that reports the same _HID, each device must have a unique _UID. The _UID only
needs to be unique for device that have the exact same _HID value.

 Device Path Examples

Version 1.10 12/01/02 C-7

C.6 EFI Device Path as a Name Space

Figure C-3 shows the EFI Device Path for the example system represented as a name space. The
Device Path can be represented as a name space, but EFI does support manipulating the Device
Path as a name space. You can only access Device Path information by locating the
DEVICE_PATH_INTERFACE from a handle. Not all the nodes in a Device Path will have a
handle.

OM13181

PCI (Device)
Dev, Func

3

Media (Hard Drive)
Partition 1

ACPI (Root PCI Bridge)
_HID PNP0A03
_UID 0

Root
/

ACPI (Root PCI Bridge)
_HID PNP0A03
_UID 1

PCI (ISA Bridge)
Dev, Func

PCI (ISA Bridge)
Dev, Func

PCI (PCI to PCI Bridge)
Dev, Func

ACPI (Legacy Floppy)
_HID PNP0303
_UID 0

Message (ATA)
Primary
Maste1 2

1

KEY...
Device Path Node
with EFI Handles

Device Path Node
only in other device paths

Example Platform
Reference

Figure C-3. EFI Device Path Displayed As a Name Space

Extensible Firmware Interface Specification

C-8 12/01/02 Version 1.10

Version 1.10 12/01/02 D-1

Appendix D
Status Codes

EFI interfaces return an EFI_STATUS code. Table D-2, Table D-3, and Table D-4 list these codes
for success, errors, and warnings, respectively. Error codes also have their highest bit set, so all
error codes have negative values. The range of status codes that have the highest bit set and the
next to highest bit clear are reserved for use by EFI. The range of status codes that have both the
highest bit set and the next to highest bit set are reserved for use by OEMs. Success and warning
codes have their highest bit clear, so all success and warning codes have positive values. The range
of status codes that have both the highest bit clear and the next to highest bit clear are reserved for
use by EFI. The range of status code that have the highest bit clear and the next to highest bit set
are reserved for use by OEMs. Table D-1 lists the status code ranges described above.

Table D-1. EFI_STATUS Codes Ranges

IA-32 Range

Itanium Architecture
Range

Description

0x00000000-

0x3fffffff

0x0000000000000000-

0x3fffffffffffffff
Success and warning codes reserved for use by EFI. See
Table D-2 and Table D-4 for valid values in this range.

0x40000000-

0x7fffffff

0x4000000000000000-

0x7fffffffffffffff
Success and warning codes reserved for use by OEMs.

0x80000000-

0xbfffffff

0x8000000000000000-

0xbfffffffffffffff
Error codes reserved for use by EFI. See Table D-3 for
valid values for this range.

0xc0000000-

0xffffffff

0xc000000000000000-

0xffffffffffffffff
Error codes reserved for use by OEMs.

Table D-2. EFI_STATUS Success Codes (High Bit Clear)

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed successfully.

Table D-3. EFI_STATUS Error Codes (High Bit Set)

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request.

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the requested data.
The required buffer size is returned in the appropriate
parameter when this error occurs.

continued

Extensible Firmware Interface Specification

D-2 12/01/02 Version 1.10

Table D-3. EFI_STATUS Error Codes (High Bit Set) (continued)

Mnemonic Value Description

EFI_NOT_READY 6 There is no data pending upon return.

EFI_DEVICE_ERROR 7 The physical device reported an error while attempting the
operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconstancy was detected on the file system causing
the operating to fail.

EFI_VOLUME_FULL 11 There is no more space on the file system.

EFI_NO_MEDIA 12 The device does not contain any medium to perform the
operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last
access.

EFI_NOT_FOUND 14 The item was not found.

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network operation.

EFI_INCOMPATIBLE_VERSION 25 The function encountered an internal version that was
incompatible with a version requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security violation.

EFI_CRC_ERROR 27 A CRC error was detected.

Table D-4. EFI_STATUS Warning Codes (High Bit Clear)

Mnemonic Value Description

EFI_WARN_UNKOWN_GLYPH 1 The Unicode string contained one or more characters that
the device could not render and were skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the data to the file was not
flushed properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small, and the data was
truncated to the buffer size.

Version 1.10 12/01/02 E-1

Appendix E
32/64-Bit UNDI Specification

E.1 Introduction

This appendix defines the 32/64-bit H/W and S/W Universal Network Driver Interfaces (UNDIs).
These interfaces provide one method for writing a network driver; other implementations are
possible.

NOTE

This is the Beta-1 version of the 32/64-bit UNDI Specification.

E.1.1 Definitions

Table E-1. Definitions

Term Definition

BC BaseCode
The PXE BaseCode, included as a core protocol in EFI, is comprised of a simple network stack
(UDP/IP) and a few common network protocols (DHCP, Bootserver Discovery, TFTP) that are
useful for remote booting machines.

LOM LAN On Motherboard
This is a network device that is built onto the motherboard (or baseboard) of the machine.

NBP Network Bootstrap Program
This is the first program that is downloaded into a machine that has selected a PXE capable
device for remote boot services.
A typical NBP examines the machine it is running on to try to determine if the machine is
capable of running the next layer (OS or application). If the machine is not capable of running
the next layer, control is returned to the EFI boot manager and the next boot device is selected.
If the machine is capable, the next layer is downloaded and control can then be passed to the
downloaded program.
Though most NBPs are OS loaders, NBPs can be written to be standalone applications such as
diagnostics, backup/restore, remote management agents, browsers, etc.

NIC Network Interface Card
Technically, this is a network device that is inserted into a bus on the motherboard or in an
expansion board. For the purposes of this document, the term NIC will be used in a generic
sense, meaning any device that enables a network connection (including LOMs and network
devices on external busses (USB, 1394, etc.)).

continued

Extensible Firmware Interface Specification

E-2 12/01/02 Version 1.10

Table E-1. Definitions (continued)

Term Definition

ROM Read-Only Memory
When used in this specification, ROM refers to a nonvolatile memory storage device on a NIC.

PXE Preboot Execution Environment

The complete PXE specification covers three areas; the client, the network and the server.

Client

• Makes network devices into bootable devices.

• Provides APIs for PXE protocol modules in EFI and for universal drivers in the OS.

Network

• Uses existing technology: DHCP, TFTP, etc.

• Adds “vendor specific” tags to DHCP to define PXE specific operation within DHCP.

• Adds multicast TFTP for high bandwidth remote boot applications.

• Defines Bootserver discovery based on DHCP packet format.

Server

• Bootserver: Responds to Bootserver discovery requests and serves up remote boot
images.

• proxyDHCP: Used to ease the transition of PXE clients and servers into existing network
infrastructure. proxyDHCP provides the additional DHCP information that is needed by PXE
clients and Bootservers without making changes to existing DHCP servers.

• MTFTP: Adds multicast support to a TFTP server.

• Plug-In Modules: Example proxyDHCP and Bootservers provided in the PXE SDK
(software development kit) have the ability to take plug-in modules (PIMs). These PIMs are
used to change/enhance the capabilities of the proxyDHCP and Bootservers.

UNDI Universal Network Device Interface

UNDI is an architectural interface to NICs. Traditionally NICs have had custom interfaces and
custom drivers (each NIC had a driver for each OS on each platform architecture). Two
variations of UNDI are defined in this specification: H/W UNDI and S/W UNDI. H/W UNDI is an
architectural hardware interface to a NIC. S/W UNDI is a software implementation of the H/W
UNDI.

32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-3

E.1.2 Referenced Specifications

When implementing PXE services, protocols, ROMs or drivers, it is a good idea to understand the
related network protocols and BIOS specifications. Table E-2 below includes all of the
specifications referenced in this document.

Table E-2. Referenced Specifications

Acronym Protocol/Specification

ARP Address Resolution Protocol – http://www.ietf.org/rfc/rfc0826.txt. Required reading for
those implementing the BC protocol.

Assigned
Numbers

Lists the reserved numbers used in the RFCs and in this specification -
http://www.ietf.org/rfc/rfc1700.txt

BIOS Basic Input/Output System – Contact your BIOS manufacturer for reference and
programming manuals.

BOOTP Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt. - This reference is included for
backward compatibility. BC protocol supports DHCP and BOOTP.
Required reading for those implementing the BC protocol or PXE Bootservers.

DHCP Dynamic Host Configuration Protocol

DHCP for Ipv4 (protocol: http://www.ietf.org/rfc/rfc2131.txt, options:
http://www.ietf.org/rfc/rfc2132.txt)

Required reading for those implementing the BC protocol or PXE Bootservers.

EFI Extensible Firmware Interface – http://developer.intel.com/technology/efi/index.htm

Required reading for those implementing NBPs, OS loaders and preboot applications for
machines with the EFI preboot environment.

ICMP Internet Control Message Protocol
ICMP for Ipv4: http://www.ietf.org/rfc/rfc0792.txt
ICMP for Ipv6: http://www.ietf.org/rfc/rfc2463.txt
Required reading for those implementing the BC protocol.

IETF Internet Engineering Task Force – http://www.ietf.org/
This is a good starting point for obtaining electronic copies of Internet standards, drafts,
and RFCs.

IGMP Internet Group Management Protocol – http://www.ietf.org/rfc/rfc2236.txt
Required reading for those implementing the BC protocol.

IP Internet Protocol
Ipv4: http://www.ietf.org/rfc/rfc0791.txt
Ipv6: http://www.ietf.org/rfc/rfc2460.txt and http://www.ipv6.org
Required reading for those implementing the BC protocol.

MTFTP Multicast TFTP – Defined in the 16-bit PXE specification.

Required reading for those implementing the BC protocol.

continued

http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/rfc/rfc1700.txt
http://www.ietf.org/rfc/rfc0951.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://developer.intel.com/technology/efi/index.htm
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/
http://www.ietf.org/rfc/rfc2236.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ipv6.org

Extensible Firmware Interface Specification

E-4 12/01/02 Version 1.10

Table E-2. Referenced Specifications (continued)

Acronym Protocol/Specification

PCI Peripheral Component Interface – http://www.pcisig.com/ - Source for PCI specifications.

Required reading for those implementing S/W or H/W UNDI on a PCI NIC or LOM.

PnP Plug-and-Play – http://www.phoenix.com/en/support/white+papers-specs/

Source for PnP specifications.

PXE Preboot eXecution Environment
16-bit PXE v2.1: ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf
Required reading.

RFC Request For Comments – http://www.ietf.org/rfc.html and
http://www.keywave.ad.jp/RFC/index.html

TCP Transmission Control Protocol
TCPv4: http://www.ietf.org/rfc/rfc0793.txt
TCPv6: ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
Required reading for those implementing the BC protocol.

TFTP Trivial File Transfer Protocol
TFTP (protocol: http://www.ietf.org/rfc/rfc1350.txt, options: http://www.ietf.org/rfc/rfc2347.txt,
http://www.ietf.org/rfc/rfc2348.txt, and http://www.ietf.org/rfc/rfc2349.txt).
Required reading for those implementing the BC protocol.

UDP User Datagram Protocol
UDP over IPv4: http://www.ietf.org/rfc/rfc0768.txt
UDP over IPv6: http://www.ietf.org/rfc/rfc2454.txt
Required reading for those implementing the BC protocol.

WfM Wired for Management
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

Recommended reading for those implementing the BC protocol or PXE Bootservers.

http://www.pcisig.com/
http://www.phoenix.com/en/support/white+papers-specs/
ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc/rfc0793.txt
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/rfc/rfc2349.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc2454.txt
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.keywave.ad.jp/RFC/index.html

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-5

E.1.3 OS Network Stacks

This is a simplified overview of three OS network stacks that contain three types of network
drivers: Custom, S/W UNDI and H/W UNDI. Figure E-1 depicts an application bound to an OS
protocol stack, which is in turn bound to a protocol driver that is bound to three NICs. Table E-3
below gives a brief list of pros and cons about each type of driver implementation.

OM13182

Application - 1

OS Protocol Stack

Custom

NIC
Specific
Protocol

Driver

NIC Specific
Protocol Driver

Application - 2

OS Protocol Stack

S/W UNDI

OS Universal Protocol Driver

Application - 3

OS Protocol Stack

H/W UNDI

OS Universal Protocol Driver

NIC - 2
Vend - B

NIC - 3
Vend - B

NIC - 1
Vendor - A

NIC - 5
Vend - D

NIC - 6
Vend - D

NIC - 4
Vendor - C

H/W UNDI
NIC - 9

Vendor - F

H/W UNDI
NIC - 8

Vendor - F

H/W UNDI
NIC - 7

Vendor - E

Figure E-1. Network Stacks with Three Classes of Drivers

Extensible Firmware Interface Specification

E-6 12/01/02 Version 1.10

Table E-3. Driver Types: Pros and Cons

Driver Pro Con

Custom • Can be very fast and efficient.
NIC vendor tunes driver to OS
& device.

• OS vendor does not have to
write NIC driver.

• New driver for each OS/architecture must be
maintained by NIC vendor.

• OS vendor must trust code supplied by third-party.

• OS vendor cannot test all possible driver/NIC
versions.

• Driver must be installed before NIC can be used.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

S/W UNDI • S/W UNDI driver is simpler
than a Custom driver. Easier
to test outside of the OS
environment.

• OS vendor can tune the
universal protocol driver for
best OS performance.

• NIC vendor only has to write
one driver per processor
architecture.

• Slightly slower than Custom or H/W UNDI because of
extra call layer between protocol stack and NIC.

• S/W UNDI driver must be loaded before NIC can be
used.

• OS vendor has to write the universal driver.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

H/W UNDI • H/W UNDI provides a
common architectural
interface to all network
devices.

• OS vendor controls all security
and performance issues in
network stack.

• NIC vendor does not have to
write any drivers.

• NIC can be used without an
OS or driver installed (preboot
management).

• OS vendor has to write the universal driver (this might
also be a Pro, depending on your point of view).

32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-7

E.2 Overview

There are three major design changes between this specification and the 16-bit UNDI in version 2.1
of the PXE Specification:

• A new architectural hardware interface has been added.
• All UNDI commands use the same command format.
• BC is no longer part of the UNDI ROM.

E.2.1 32/64-bit UNDI Interface

The !PXE structures are used locate and identify the type of 32/64-bit UNDI interface (H/W or
S/W), as shown in Figure E-2. These structures are normally only used by the system BIOS and
universal network drivers.

OM13183

!PXE
H/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature

Len Fudge Rev IFcnt

Major Minor reserved

 Implementation

Status

Command

CDBaddr

Len

Len +
0x04
Len +
0x08
Len +
0x0C

!PXE
S/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature

 Len Fudge Rev IFcnt

Major Minor reserved

 Implementation

Entry Point

 reserved #bus

BusTypes(s)

0x10

0x14

0x18

0x1C

0x10 reserved

0x20 More BusTypes(s)

Figure E-2. !PXE Structures for H/W and S/W UNDI

The !PXE structures used for H/W and S/W UNDIs are similar but not identical. The difference in
the format is tied directly to the differences required by the implementation. The !PXE structures
for 32/64-bit UNDI are not compatible with the !PXE structure for 16-bit UNDI.

The !PXE structure for H/W UNDI is built into the NIC hardware. The first nine fields (from
offsets 0x00 to 0x0F) are implemented as read-only memory (or ports). The last three fields (from
Len to Len + 0x0F) are implemented as read/write memory (or ports). The optional reserved field
at 0x10 is not defined in this specification and may be used for vendor data. How the location of
the !PXE structure is found in system memory, or in I/O space is outlined in section E.5, “UNDI as
an EFI Runtime Driver.”

Extensible Firmware Interface Specification

E-8 12/01/02 Version 1.10

The !PXE structure for S/W UNDI can be loaded into system memory from one of three places;
ROM on a NIC, system nonvolatile storage, or external storage. Since there are no direct memory
or I/O ports available in the S/W UNDI !PXE structure, an indirect callable entry point is provided.
S/W UNDI developers are free to make their internal designs as simple or complex as they desire,
as long as all of the UNDI commands in this specification are implemented.

Descriptions of the fields in the !PXE structures is given in Table E-4.

Table E-4. !PXE Structure Field Definitions

Identifier Value Description

Signature “!PXE” !PXE structure signature. This field is used to locate an UNDI hardware or
software interface in system memory (or I/O) space. ‘!’ is in the first (lowest
address) byte, ‘P’ is in the second byte, ‘X’ in the third and ‘E’ in the last. This
field must be aligned on a 16-byte boundary (the last address byte must be
zero).

Len Varies Number of !PXE structure bytes to checksum.

When computing the checksum of this structure the Len field MUST be used
as the number of bytes to checksum. The !PXE structure checksum is
computed by adding all of the bytes in the structure, starting with the first byte
of the structure Signature: '!'. If the 8-bit sum of all of the unsigned bytes in
this structure is not zero, this is not a valid !PXE structure.

Fudge Varies This field is used to make the 8-bit checksum of this structure equal zero.

Rev 0x02 Revision of this structure.

IFcnt Varies This field reports the number (minus one) of physical external network
connections that are controlled by this !PXE interface. (If there is one network
connector, this field is zero. If there are two network connectors, this field is
one.)

Major 0x03 UNDI command interface major revision.

Minor 0x00 UNDI command interface minor revision.

reserved 0x0000 This field is reserved and must be set to zero.

continued

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-9

Table E-4. !PXE Structure Field Definitions (continued)

Identifier Value Description

Implementation Varies Identifies type of UNDI

 (S/W or H/W, 32 bit or 64 bit) and what features have been implemented.
The implementation bits are defined below. Undefined bits must be set to zero
by UNDI implementors. Applications/drivers must not rely on the contents of
undefined bits (they may change later revisions).

Bit 0x00: Command completion interrupts supported (1) or not supported (0)

Bit 0x01: Packet received interrupts supported (1) or not supported (0)

Bit 0x02: Transmit complete interrupts supported (1) or not supported (0)

Bit 0x03: Software interrupt supported (1) or not supported (0)

Bit 0x04: Filtered multicast receives supported (1) or not supported (0)

Bit 0x05: Broadcast receives supported (1) or not supported (0)

Bit 0x06: Promiscuous receives supported (1) or not supported (0)

Bit 0x07: Promiscuous multicast receives supported (1) or not supported (0)

Bit 0x08: Station MAC address settable (1) or not settable (0)

Bit 0x09: Statistics supported (1) or not supported (0)

Bit 0x0A,0x0B: NvData not available (0), read only (1), sparse write supported
(2), bulk write supported (3)

Bit 0x0C: Multiple frames per command supported (1) or not supported (0)

Bit 0x0D: Command queuing supported (1) or not supported (0)

Bit 0x0E: Command linking supported (1) or not supported (0)

Bit 0x0F: Packet fragmenting supported (1) or not supported (0)

Bit 0x10: Device can address 64 bits (1) or only 32 bits (0)

Bit 0x1E: S/W UNDI: Entry point is virtual address (1) or unsigned offset from
start of !PXE structure (0).

Bit 0x1F: Interface type: H/W UNDI (1) or S/W UNDI (0)

H/W UNDI Fields

Reserved Varies This field is optional and may be used for OEM & vendor unique data. If this
field is present its length must be a multiple of 16 bytes and must be included
in the !PXE structure checksum. This field, if present, will always start on a
16-byte boundary.

Note: The size/contents of the !PXE structure may change in future revisions
of this specification. Do not rely on OEM & vendor data starting at the same
offset from the beginning of the !PXE structure. It is recommended that the
OEM & vendor data include a signature that drivers/applications can
search for.

continued

Extensible Firmware Interface Specification

E-10 12/01/02 Version 1.10

Table E-4. !PXE Structure Field Definitions (continued)

Identifier Value Description

Status Varies UNDI operation, command and interrupt status flags.

This is a read-only port. Undefined status bits must be set to zero. Reading
this port does NOT clear the status.

Bit 0x00: Command completion interrupt pending (1) or not pending (0)

Bit 0x01: Packet received interrupt pending (1) or not pending (0)

Bit 0x02: Transmit complete interrupt pending (1) or not pending (0)

Bit 0x03: Software interrupt pending (1) or not pending (0)

Bit 0x04: Command completion interrupts enabled (1) or disabled (0)

Bit 0x05: Packet receive interrupts enabled (1) or disabled (0)

Bit 0x06: Transmit complete interrupts enabled (1) or disabled (0)

Bit 0x07: Software interrupts enabled (1) or disabled (0)

Bit 0x08: Unicast receive enabled (1) or disabled (0)

Bit 0x09: Filtered multicast receive enabled (1) or disabled (0)

Bit 0x0A: Broadcast receive enabled (1) or disabled (0)

Bit 0x0B: Promiscuous receive enabled (1) or disabled (0)

Bit 0x0C: Promiscuous multicast receive enabled (1) or disabled (0)

Bit 0x1D: Command failed (1) or command succeeded (0)

Bits 0x1F:0x1E: UNDI state: Stopped (0), Started (1), Initialized (2), Busy (3)

Command Varies Use to execute commands, clear interrupt status and enable/disable receive
levels. This is a read/write port. Read reflects the last write.

Bit 0x00: Clear command completion interrupt (1) or NOP (0)

Bit 0x01: Clear packet received interrupt (1) or NOP (0)

Bit 0x02: Clear transmit complete interrupt (1) or NOP (0)

Bit 0x03: Clear software interrupt (1) or NOP (0)

Bit 0x04: Command completion interrupt enable (1) or disable (0)

Bit 0x05: Packet receive interrupt enable (1) or disable (0)

Bit 0x06: Transmit complete interrupt enable (1) or disable (0)

Bit 0x07: Software interrupt enable (1) or disable (0). Setting this bit to (1)
also generates a software interrupt.

Bit 0x08: Unicast receive enable (1) or disable (0)

Bit 0x09: Filtered multicast receive enable (1) or disable (0)

Bit 0x0A: Broadcast receive enable (1) or disable (0)

Bit 0x0B: Promiscuous receive enable (1) or disable (0)

Bit 0x0C: Promiscuous multicast receive enable (1) or disable (0)

Bit 0x1F: Operation type: Clear interrupt and/or filter (0), Issue command (1)

continued

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-11

Table E-4. !PXE Structure Field Definitions (continued)

Identifier Value Description

CDBaddr Varies Write the physical address of a CDB to this port. (Done with one 64-bit or two
32-bit writes, depending on processor architecture.) When done, use one 32-
bit write to the command port to send this address into the command queue.
Unused upper address bits must be set to zero.

S/W UNDI Fields

EntryPoint Varies S/W UNDI API entry point address. This is either a virtual address or an offset
from the start of the !PXE structure. Protocol drivers will push the 64-bit virtual
address of a CDB on the stack and then call the UNDI API entry point. When
control is returned to the protocol driver, the protocol driver must remove the
address of the CDB from the stack.

reserved Zero Reserved for future use.

BusTypeCnt Varies This field is the count of 4-byte BusType entries in the next field.

BusType Varies This field defines the type of bus S/W UNDI is written to support:

“PCIR,” “PCCR,” “USBR” or “1394.” This field is formatted like the Signature
field. If the S/W UNDI supports more than one BusType there will be more
than one BusType identifier in this field.

Extensible Firmware Interface Specification

E-12 12/01/02 Version 1.10

E.2.1.1 Issuing UNDI Commands
How commands are written and status is checked varies a little depending on the type of UNDI
(H/W or S/W) implementation being used. The command flowchart shown in Figure E-3 is a high-
level diagram on how commands are written to both H/W and S/W UNDI.

OM13184

Step 1
Fill in CDB(s). Commands may
be linked if supported by UNDI.

Step 2 (H/W UNDI)
Write physical address of first
CDB to CDBaddr register.

Step 3 (H/W UNDI)
Initiate command execution
(write to UNDI Command port)

Step 4 (H/W UNDI)
Wait for completion status. Can
be polled in separate thread of
interrupt driven, if supported by
UNDI.

Step 2 (S/W UNDI)
Push virtual address of first CDB
onto CPU stack.

Step 3 (S/W UNDI)
Initiate command execution (Call
S/W UNDI API entry point).

Step 4 (S/W UNDI)
Wait for completion status. Some
S/W UNDI implementations can
be polled or interrupt driven,
others will not return until
command execution completes.

CDB

Step 5
Issue more commands.

Figure E-3. Issuing UNDI Commands

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-13

E.2.2 UNDI Command Format

The format of the CDB is the same for all UNDI commands. Figure E-4 shows the structure of the
CDB. Some of the commands do not use or always require the use of all of the fields in the CDB.
When fields are not used they must be initialized to zero or the UNDI will return an error. The
StatCode and StatFlags fields must always be initialized to zero or the UNDI will return an error.
All reserved fields (and bit fields) must be initialized to zero or the UNDI will return an error.

Basically, the rule is: Do it right, or don’t do it at all.

OM13185

CDB
Command Descriptor Block

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

OpCode OpFlags

CPBaddr

DBaddr
0x10

0x14

0x18

0x1C

CPBsize DBsize

StatCode StatFlags

IFnum Control

Figure E-4. UNDI Command Descriptor Block (CDB)

Descriptions of the CDB fields are given in Table E-5.

Table E-5. UNDI CDB Field Definitions

Identifier Description

OpCode Operation Code (Function Number, Command Code, etc.)

This field is used to identify the command being sent to the UNDI. The meanings of
some of the bits in the OpFlags and StatFlags fields, and the format of the CPB and DB
structures depends on the value in the OpCode field. Commands sent with an OpCode
value that is not defined in this specification will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

OpFlags Operation Flags

This bit field is used to enable/disable different features in a specific command operation.
It is also used to change the format/contents of the CPB and DB structures. Commands
sent with reserved bits set in the OpFlags field will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

continued

Extensible Firmware Interface Specification

E-14 12/01/02 Version 1.10

Table E-5. UNDI CDB Field Definitions (continued)

Identifier Description

CPBsize Command Parameter Block Size

This field should be set to a number that is equal to the number of bytes that will be read
from CPB structure during command execution. Setting this field to a number that is too
small will cause the command to not be executed and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

The contents of the CPB structure will not be modified.

DBsize Data Block Size

This field should be set to a number that is equal to the number of bytes that will be
written into the DB structure during command execution. Setting this field to a number
that is smaller than required will cause an error. It may be zero in some cases where the
information is not needed.

CPBaddr Command Parameter Block Address

For H/W UNDI, this field must be the physical address of the CPB structure. For S/W
UNDI, this field must be the virtual address of the CPB structure. If the operation does
not have/use a CPB, this field must be initialized to PXE_CPBADDR_NOT_USED. Setting
up this field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

DBaddr Data Block Address

For H/W UNDI, this field must be the physical address of the DB structure. For S/W
UNDI, this field must be the virtual address of the DB structure. If the operation does not
have/use a CPB, this field must be initialized to PXE_DBADDR_NOT_USED. Setting up
this field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

StatCode Status Code

This field is used to report the type of command completion: success or failure (and the
type of failure). This field must be initialized to zero before the command is issued. The
contents of this field is not valid until the PXE_STATFLAGS_COMMAND_COMPLETE status
flag is set. If this field is not initialized to PXE_STATCODE_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

StatFlags Status Flags

This bit field is used to report command completion and identify the format, if any, of the
DB structure. This field must be initialized to zero before the command is issued. Until
the command state changes to error or complete, all other CDB fields must not be
changed. If this field is not initialized to PXE_STATFLAGS_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

Bits 0x0F & 0x0E: Command state: Not started (0), Queued (1), Error (2), Complete (3).

continued

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-15

Table E-5. UNDI CDB Field Definitions (continued)

Identifier Description

IFnum Interface Number

This field is used to identify which network adapter (S/W UNDI) or network connector
(H/W UNDI) this command is being sent to. If an invalid interface number is given, the
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

Control Process Control

This bit field is used to control command UNDI inter-command processing. Setting
control bits that are not supported by the UNDI will cause the command execution to fail
with a StatCode of PXE_STATCODE_INVALID_CDB.

Bit 0x00: Another CDB follows this one (1) or this is the last or only CDB in the list (0).

Bit 0x01: Queue command if busy (1), fail if busy (0).

E.3 UNDI C Definitions

The definitions in this section are used to aid in the portability and readability of the example
32/64-bit S/W UNDI source code and the rest of this specification.

E.3.1 Portability Macros

These macros are used for storage and communication portability.

E.3.1.1 PXE_INTEL_ORDER or PXE_NETWORK_ORDER
This macro is used to control conditional compilation in the S/W UNDI source code. One of these
definitions needs to be uncommented in a common PXE header file.
//#define PXE_INTEL_ORDER 1 // Intel order
//#define PXE_NETWORK_ORDER 1 // network order

E.3.1.2 PXE_UINT64_SUPPORT or PXE_NO_UINT64_SUPPORT
This macro is used to control conditional compilation in the PXE source code. One of these
definitions must to be uncommented in the common PXE header file.
//#define PXE_UINT64_SUPPORT 1 // UINT64 supported
//#define PXE_NO_UINT64_SUPPORT 1 // UINT64 not supported

Extensible Firmware Interface Specification

E-16 12/01/02 Version 1.10

E.3.1.3 PXE_BUSTYPE
Used to convert a 4-character ASCII identifier to a 32-bit unsigned integer.
#if PXE_INTEL_ORDER
define PXE_BUSTYPE(a,b,c,d) \
((((PXE_UINT32)(d) & 0xFF) << 24) | \
(((PXE_UINT32)(c) & 0xFF) << 16) | \
(((PXE_UINT32)(b) & 0xFF) << 8) | \
((PXE_UINT32)(a) & 0xFF))
#else
define PXE_BUSTYPE(a,b,c,d) \
((((PXE_UINT32)(a) & 0xFF) << 24) | \
(((PXE_UINT32)(b) & 0xFF) << 16) | \
(((PXE_UINT32)(c) & 0xFF) << 8) | \
((PXE_UINT32)(f) & 0xFF))
#endif

//***
// UNDI ROM ID and devive ID signature
//***
#define PXE_BUSTYPE_PXE PXE_BUSTYPE(’!’, ’P’, ’X’, ’E’)

//***
// BUS ROM ID signatures
//***
#define PXE_BUSTYPE_PCI PXE_BUSTYPE(’P’, ’C’, ’I’, ’R’)
#define PXE_BUSTYPE_PC_CARD PXE_BUSTYPE(’P’, ’C’, ’C’, ’R’)
#define PXE_BUSTYPE_USB PXE_BUSTYPE(’U’, ’S’, ’B’, ’R’)
#define PXE_BUSTYPE_1394 PXE_BUSTYPE(’1’, ’3’, ’9’, ’4’)

E.3.1.4 PXE_SWAP_UINT16
This macro swaps bytes in a 16-bit word.
#ifdef PXE_INTEL_ORDER
define PXE_SWAP_UINT16(n) \
((((PXE_UINT16)(n) & 0x00FF) << 8) | \
(((PXE_UINT16)(n) & 0xFF00) >> 8))
#else
define PXE_SWAP_UINT16(n) (n)
#endif

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-17

E.3.1.5 PXE_SWAP_UINT32
This macro swaps bytes in a 32-bit word.
#ifdef PXE_INTEL_ORDER
define PXE_SWAP_UINT32(n) \
((((PXE_UINT32)(n) & 0x000000FF) << 24) | \
(((PXE_UINT32)(n) & 0x0000FF00) << 8) | \
(((PXE_UINT32)(n) & 0x00FF0000) >> 8) | \
(((PXE_UINT32)(n) & 0xFF000000) >> 24)
#else
define PXE_SWAP_UINT32(n) (n)
#endif

E.3.1.6 PXE_SWAP_UINT64
This macro swaps bytes in a 64-bit word for compilers that support 64-bit words.
#if PXE_UINT64_SUPPORT != 0
ifdef PXE_INTEL_ORDER
define PXE_SWAP_UINT64(n) \
((((PXE_UINT64)(n) & 0x00000000000000FF) << 56) | \
(((PXE_UINT64)(n) & 0x000000000000FF00) << 40) | \
(((PXE_UINT64)(n) & 0x0000000000FF0000) << 24) | \
(((PXE_UINT64)(n) & 0x00000000FF000000) << 8) | \
(((PXE_UINT64)(n) & 0x000000FF00000000) >> 8) | \
(((PXE_UINT64)(n) & 0x0000FF0000000000) >> 24) | \
(((PXE_UINT64)(n) & 0x00FF000000000000) >> 40) | \
(((PXE_UINT64)(n) & 0xFF00000000000000) >> 56)
else
define PXE_SWAP_UINT64(n) (n)
endif
#endif // PXE_UINT64_SUPPORT

This macro swaps bytes in a 64-bit word, in place, for compilers that do not support 64-bit words.
This version of the 64-bit swap macro cannot be used in expressions.
#if PXE_NO_UINT64_SUPPORT != 0
if PXE_INTEL_ORDER
define PXE_SWAP_UINT64(n)
 \
{
 \
PXE_UINT32 tmp = (PXE_UINT64)(n)[1]; \
(PXE_UINT64)(n)[1] = PXE_SWAP_UINT32((PXE_UINT64)(n)[0]); \
(PXE_UINT64)(n)[0] = PXE_SWAP_UINT32(tmp); \
}
else
define PXE_SWAP_UINT64(n) (n)
endif
#endif // PXE_NO_UINT64_SUPPORT

Extensible Firmware Interface Specification

E-18 12/01/02 Version 1.10

E.3.2 Miscellaneous Macros

E.3.2.1 Miscellaneous
#define PXE_CPBSIZE_NOT_USED 0 // zero
#define PXE_DBSIZE_NOT_USED 0 // zero
#define PXE_CPBADDR_NOT_USED (PXE_UINT64)0 // zero
#define PXE_DBADDR_NOT_USED (PXE_UINT64)0 // zero

E.3.3 Portability Types

The examples given below are just that, examples. The actual typedef instructions used in a new
implementation may vary depending on the compiler and processor architecture.

The storage sizes defined in this section are critical for PXE module inter-operation. All of the
portability typedefs define little endian (Intel format) storage. The least significant byte is stored in
the lowest memory address and the most significant byte is stored in the highest memory address,
as shown in Figure E-5.

OM13186

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

UINT8 UINT16 UINT32 UINT64

LSB MSB

Figure E-5. Storage Types

E.3.3.1 PXE_CONST
The const type does not allocate storage. This type is a modifier that is used to help the compiler
optimize parameters that do not change across function calls.
#define PXE_CONST const

E.3.3.2 PXE_VOLATILE
The volatile type does not allocate storage. This type is a modifier that is used to help the compiler
deal with variables that can be changed by external procedures or hardware events.
#define PXE_VOLATILE volatile

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-19

E.3.3.3 PXE_VOID
The void type does not allocate storage. This type is used only to prototype functions that do not
return any information and/or do not take any parameters.
typedef void PXE_VOID;

E.3.3.4 PXE_UINT8
Unsigned 8-bit integer.
typedef unsigned char PXE_UINT8;

E.3.3.5 PXE_UINT16
Unsigned 16-bit integer.
typedef unsigned short PXE_UINT16;

E.3.3.6 PXE_UINT32
Unsigned 32-bit integer.
typedef unsigned PXE_UINT32;

E.3.3.7 PXE_UINT64
Unsigned 64-bit integer.
#if PXE_UINT64_SUPPORT != 0
typedef unsigned long PXE_UINT64;
#endif // PXE_UINT64_SUPPORT

If a 64-bit integer type is not available in the compiler being used, use this definition:
#if PXE_NO_UINT64_SUPPORT != 0
typedef PXE_UINT32 PXE_UINT64[2];
#endif // PXE_NO_UINT64_SUPPORT

E.3.3.8 PXE_UINTN
Unsigned integer that is the default word size used by the compiler. This needs to be at least a
32-bit unsigned integer.
typedef unsigned PXE_UINTN;

Extensible Firmware Interface Specification

E-20 12/01/02 Version 1.10

E.3.4 Simple Types

The PXE simple types are defined using one of the portability types from the previous section.

E.3.4.1 PXE_BOOL
Boolean (true/false) data type. For PXE zero is always false and nonzero is always true.
typedef PXE_UINT8 PXE_BOOL;
#define PXE_FALSE 0 // zero
#define PXE_TRUE (!PXE_FALSE)

E.3.4.2 PXE_OPCODE
UNDI OpCode (command) descriptions are given in the next chapter. There are no BC OpCodes,
BC protocol functions are discussed later in this document.

typedef PXE_UINT16 PXE_OPCODE;

// Return UNDI operational state.
#define PXE_OPCODE_GET_STATE 0x0000

// Change UNDI operational state from Stopped to Started.
#define PXE_OPCODE_START 0x0001

// Change UNDI operational state from Started to Stopped.
#define PXE_OPCODE_STOP 0x0002

// Get UNDI initialization information.
#define PXE_OPCODE_GET_INIT_INFO 0x0003

// Get NIC configuration information.
#define PXE_OPCODE_GET_CONFIG_INFO 0x0004

// Changed UNDI operational state from Started to Initialized.
#define PXE_OPCODE_INITIALIZE 0x0005

// Reinitialize the NIC H/W.
#define PXE_OPCODE_RESET 0x0006

// Change the UNDI operational state from Initialized to Started.
#define PXE_OPCODE_SHUTDOWN 0x0007

// Read & change state of external interrupt enables.
#define PXE_OPCODE_INTERRUPT_ENABLES 0x0008

// Read & change state of packet receive filters.
#define PXE_OPCODE_RECEIVE_FILTERS 0x0009

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-21

// Read & change station MAC address.
#define PXE_OPCODE_STATION_ADDRESS 0x000A

// Read traffic statistics.
#define PXE_OPCODE_STATISTICS 0x000B

// Convert multicast IP address to multicast MAC address.
#define PXE_OPCODE_MCAST_IP_TO_MAC 0x000C

// Read or change nonvolatile storage on the NIC.
#define PXE_OPCODE_NVDATA 0x000D

// Get & clear interrupt status.
#define PXE_OPCODE_GET_STATUS 0x000E

// Fill media header in packet for transmit.
#define PXE_OPCODE_FILL_HEADER 0x000F

// Transmit packet(s).
#define PXE_OPCODE_TRANSMIT 0x0010

// Receive packet.
#define PXE_OPCODE_RECEIVE 0x0011

// Last valid PXE UNDI OpCode number.
#define PXE_OPCODE_LAST_VALID 0x0011

E.3.4.3 PXE_OPFLAGS

typedef PXE_UINT16 PXE_OPFLAGS;

#define PXE_OPFLAGS_NOT_USED 0x0000

//***
// UNDI Get State
//***

// No OpFlags

//***
// UNDI Start
//***

// No OpFlags

Extensible Firmware Interface Specification

E-22 12/01/02 Version 1.10

//***
// UNDI Stop
//***

// No OpFlags

//***
// UNDI Get Init Info
//***

// No Opflags

//***
// UNDI Get Config Info
//***

// No Opflags

//***
// UNDI Initialize
//***

#define PXE_OPFLAGS_INITIALIZE_CABLE_DETECT_MASK 0x0001
#define PXE_OPFLAGS_INITIALIZE_DETECT_CABLE 0x0000
#define PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE 0x0001

//***
// UNDI Reset
//***

#define PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS 0x0001
#define PXE_OPFLAGS_RESET_DISABLE_FILTERS 0x0002

//***
// UNDI Shutdown
//***

// No OpFlags

//***
// UNDI Interrupt Enables
//***

// Select whether to enable or disable external interrupt
// signals. Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPFLAGS.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-23

#define PXE_OPFLAGS_INTERRUPT_OPMASK 0xC000
#define PXE_OPFLAGS_INTERRUPT_ENABLE 0x8000
#define PXE_OPFLAGS_INTERRUPT_DISABLE 0x4000
#define PXE_OPFLAGS_INTERRUPT_READ 0x0000

// Enable receive interrupts. An external interrupt will be
// generated after a complete non-error packet has been received.

#define PXE_OPFLAGS_INTERRUPT_RECEIVE 0x0001

// Enable transmit interrupts. An external interrupt will be
// generated after a complete non-error packet has been
// transmitted.

#define PXE_OPFLAGS_INTERRUPT_TRANSMIT 0x0002

// Enable command interrupts. An external interrupt will be
// generated when command execution stops.

#define PXE_OPFLAGS_INTERRUPT_COMMAND 0x0004

// Generate software interrupt. Setting this bit generates an
// externalinterrupt, if it is supported by the hardware.

#define PXE_OPFLAGS_INTERRUPT_SOFTWARE 0x0008

//***
// UNDI Receive Filters
//***

// Select whether to enable or disable receive filters.
// Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPCODE.

#define PXE_OPFLAGS_RECEIVE_FILTER_OPMASK 0xC000
#define PXE_OPFLAGS_RECEIVE_FILTER_ENABLE 0x8000
#define PXE_OPFLAGS_RECEIVE_FILTER_DISABLE 0x4000
#define PXE_OPFLAGS_RECEIVE_FILTER_READ 0x0000

// To reset the contents of the multicast MAC address filter
// list,set this OpFlag:

#define PXE_OPFLAGS_RECEIVE_FILTERS_RESET_MCAST_LIST 0x2000

// Enable unicast packet receiving. Packets sent to the
// current station MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_UNICAST 0x0001

Extensible Firmware Interface Specification

E-24 12/01/02 Version 1.10

// Enable broadcast packet receiving. Packets sent to the
// broadcast MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// Enable filtered multicast packet receiving. Packets sent to
// anyof the multicast MAC addresses in the multicast MAC address
// filter list will be received. If the filter list is empty, no
// multicast

#define PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// Enable promiscuous packet receiving. All packets will be
// received.

#define PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// Enable promiscuous multicast packet receiving. All multicast
// packets will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***
// UNDI Station Address
//***

#define PXE_OPFLAGS_STATION_ADDRESS_READ 0x0000
#define PXE_OPFLAGS_STATION_ADDRESS_WRITE 0x0000
#define PXE_OPFLAGS_STATION_ADDRESS_RESET 0x0001

//***
// UNDI Statistics
//***

#define PXE_OPFLAGS_STATISTICS_READ 0x0000
#define PXE_OPFLAGS_STATISTICS_RESET 0x0001

//***
// UNDI MCast IP to MAC
//***

// Identify the type of IP address in the CPB.

#define PXE_OPFLAGS_MCAST_IP_TO_MAC_OPMASK 0x0003
#define PXE_OPFLAGS_MCAST_IPV4_TO_MAC 0x0000
#define PXE_OPFLAGS_MCAST_IPV6_TO_MAC 0x0001

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-25

//***
// UNDI NvData
//***

// Select the type of nonvolatile data operation.

#define PXE_OPFLAGS_NVDATA_OPMASK 0x0001
#define PXE_OPFLAGS_NVDATA_READ 0x0000
#define PXE_OPFLAGS_NVDATA_WRITE 0x0001

//***
// UNDI Get Status
//***

// Return current interrupt status. This will also clear any
// interrupts that are currently set. This can be used in a
// polling routine. The interrupt flags are still set and
// cleared even when the interrupts are disabled.

#define PXE_OPFLAGS_GET_INTERRUPT_STATUS 0x0001

// Return list of transmitted buffers for recycling. Transmit
// buffers must not be changed or unallocated until they have
// recycled. After issuing a transmit command, wait for a
// transmit complete interrupt. When a transmit complete
// interrupt is received, read the transmitted buffers. Do not
// plan on getting one buffer per interrupt. Some NICs and UNDIs
// may transmit multiple buffers per interrupt.

#define PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS 0x0002

//***
// UNDI Fill Header
//***

#define PXE_OPFLAGS_FILL_HEADER_OPMASK 0x0001
#define PXE_OPFLAGS_FILL_HEADER_FRAGMENTED 0x0001
#define PXE_OPFLAGS_FILL_HEADER_WHOLE 0x0000

//***
// UNDI Transmit
//***

// S/W UNDI only. Return after the packet has been transmitted.
// A transmit complete interrupt will still be generated and the
// transmit buffer will have to be recycled.

#define PXE_OPFLAGS_SWUNDI_TRANSMIT_OPMASK 0x0001
#define PXE_OPFLAGS_TRANSMIT_BLOCK 0x0001
#define PXE_OPFLAGS_TRANSMIT_DONT_BLOCK 0x0000

Extensible Firmware Interface Specification

E-26 12/01/02 Version 1.10

#define PXE_OPFLAGS_TRANSMIT_OPMASK 0x0002
#define PXE_OPFLAGS_TRANSMIT_FRAGMENTED 0x0002
#define PXE_OPFLAGS_TRANSMIT_WHOLE 0x0000

//***
// UNDI Receive
//***

// No OpFlags

E.3.4.4 PXE_STATFLAGS

typedef PXE_UINT16 PXE_STATFLAGS;

#define PXE_STATFLAGS_INITIALIZE 0x0000

//***
// Common StatFlags that can be returned by all commands.
//***

// The COMMAND_COMPLETE and COMMAND_FAILED status flags must be
// implemented by all UNDIs. COMMAND_QUEUED is only needed by
// UNDIs that support command queuing.

#define PXE_STATFLAGS_STATUS_MASK 0xC000
#define PXE_STATFLAGS_COMMAND_COMPLETE 0xC000
#define PXE_STATFLAGS_COMMAND_FAILED 0x8000
#define PXE_STATFLAGS_COMMAND_QUEUED 0x4000

//***
// UNDI Get State
//***

#define PXE_STATFLAGS_GET_STATE_MASK 0x0003
#define PXE_STATFLAGS_GET_STATE_INITIALIZED 0x0002
#define PXE_STATFLAGS_GET_STATE_STARTED 0x0001
#define PXE_STATFLAGS_GET_STATE_STOPPED 0x0000

//***
// UNDI Start
//***

// No additional StatFlags

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-27

//***
// UNDI Get Init Info
//***

#define PXE_STATFLAGS_CABLE_DETECT_MASK 0x0001
#define PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED 0x0000
#define PXE_STATFLAGS_CABLE_DETECT_SUPPORTED 0x0001

//***
// UNDI Initialize
//***

#define PXE_STATFLAGS_INITIALIZED_NO_MEDIA 0x0001

//***
// UNDI Reset
//***

#define PXE_STATFLAGS_RESET_NO_MEDIA 0x0001

//***
// UNDI Shutdown
//***

// No additional StatFlags

//***
// UNDI Interrupt Enables
//***

// If set, receive interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_RECEIVE 0x0001

// If set, transmit interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_TRANSMIT 0x0002

// If set, command interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_COMMAND 0x0004

//***
// UNDI Receive Filters
//***

// If set, unicast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_UNICAST 0x0001

Extensible Firmware Interface Specification

E-28 12/01/02 Version 1.10

// If set, broadcast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// If set, multicast packets that match up with the multicast
// address filter list will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// If set, all packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// If set, all multicast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***
// UNDI Station Address
//***

// No additional StatFlags

//***
// UNDI Statistics
//***

// No additional StatFlags

//***
// UNDI MCast IP to MAC
//***

// No additional StatFlags

//***
// UNDI NvData
//***

// No additional StatFlags

//***
// UNDI Get Status
//***

// Use to determine if an interrupt has occurred.
#define PXE_STATFLAGS_GET_STATUS_INTERRUPT_MASK 0x000F
#define PXE_STATFLAGS_GET_STATUS_NO_INTERRUPTS 0x0000

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-29

// If set, at least one receive interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_RECEIVE 0x0001

// If set, at least one transmit interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_TRANSMIT 0x0002

// If set, at least one command interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_COMMAND 0x0004

// If set, at least one software interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_SOFTWARE 0x0008

// This flag is set if the transmitted buffer queue is empty.
// This flag will be set if all transmitted buffer addresses
// get written into the DB.
#define PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY 0x0010

// This flag is set if no transmitted buffer addresses were
// written into the DB. (This could be because DBsize was
// too small.)
#define PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN 0x0020

//***
// UNDI Fill Header
//***

// No additional StatFlags

//***
// UNDI Transmit
//***

// No additional StatFlags.

//***
// UNDI Receive
//***

// No additional StatFlags.

Extensible Firmware Interface Specification

E-30 12/01/02 Version 1.10

E.3.4.5 PXE_STATCODE
typedef PXE_UINT16 PXE_STATCODE;

#define PXE_STATCODE_INITIALIZE 0x0000

//***
// Common StatCodes returned by all UNDI commands, UNDI protocol
// functions and BC protocol functions.
//***

#define PXE_STATCODE_SUCCESS 0x0000
#define PXE_STATCODE_INVALID_CDB 0x0001
#define PXE_STATCODE_INVALID_CPB 0x0002
#define PXE_STATCODE_BUSY 0x0003
#define PXE_STATCODE_QUEUE_FULL 0x0004
#define PXE_STATCODE_ALREADY_STARTED 0x0005
#define PXE_STATCODE_NOT_STARTED 0x0006
#define PXE_STATCODE_NOT_SHUTDOWN 0x0007
#define PXE_STATCODE_ALREADY_INITIALIZED 0x0008
#define PXE_STATCODE_NOT_INITIALIZED 0x0009
#define PXE_STATCODE_DEVICE_FAILURE 0x000A
#define PXE_STATCODE_NVDATA_FAILURE 0x000B
#define PXE_STATCODE_UNSUPPORTED 0x000C
#define PXE_STATCODE_BUFFER_FULL 0x000D
#define PXE_STATCODE_INVALID_PARAMETER 0x000E
#define PXE_STATCODE_INVALID_UNDI 0x000F
#define PXE_STATCODE_IPV4_NOT_SUPPORTED 0x0010
#define PXE_STATCODE_IPV6_NOT_SUPPORTED 0x0011
#define PXE_STATCODE_NOT_ENOUGH_MEMORY 0x0012
#define PXE_STATCODE_NO_DATA 0x0013

E.3.4.6 PXE_IFNUM
typedef PXE_UINT16 PXE_IFNUM;

// This interface number must be passed to the S/W UNDI Start
// command.

#define PXE_IFNUM_START 0x0000

// This interface number is returned by the S/W UNDI Get State
// and Start commands if information in the CDB, CPB or DB is
// invalid.

#define PXE_IFNUM_INVALID 0x0000

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-31

E.3.4.7 PXE_CONTROL
typedef PXE_UINT16 PXE_CONTROL;

// Setting this flag directs the UNDI to queue this command for
// later execution if the UNDI is busy and it supports command
// queuing. If queuing is not supported, a
// PXE_STATCODE_INVALID_CONTROL error is returned. If the queue
// is full, a PXE_STATCODE_CDB_QUEUE_FULL error is returned.

#define PXE_CONTROL_QUEUE_IF_BUSY 0x0002

// These two bit values are used to determine if there are more
// UNDI CDB structures following this one. If the link bit is
// set, there must be a CDB structure following this one.
// Execution will start on the next CDB structure as soon as this
// one completes successfully. If an error is generated by this
// command, execution will stop.

#define PXE_CONTROL_LINK 0x0001
#define PXE_CONTROL_LAST_CDB_IN_LIST 0x0000

E.3.4.8 PXE_FRAME_TYPE
typedef PXE_UINT8 PXE_FRAME_TYPE;

#define PXE_FRAME_TYPE_NONE 0x00
#define PXE_FRAME_TYPE_UNICAST 0x01
#define PXE_FRAME_TYPE_BROADCAST 0x02
#define PXE_FRAME_TYPE_FILTERED_MULTICAST 0x03
#define PXE_FRAME_TYPE_PROMISCUOUS 0x04
#define PXE_FRAME_TYPE_PROMISCUOUS_MULTICAST 0x05

E.3.4.9 PXE_IPV4
This storage type is always big endian (network order) not little endian (Intel order).
typedef PXE_UINT32 PXE_IPV4;

E.3.4.10 PXE_IPV6
This storage type is always big endian (network order) not little endian (Intel order).
typedef struct s_PXE_IPV6 {
 PXE_UINT32 num[4];
} PXE_IPV6;

E.3.4.11 PXE_MAC_ADDR
This storage type is always big endian (network order) not little endian (Intel order).
typedef struct {
 PXE_UINT8 num[32];
} PXE_MAC_ADDR;

Extensible Firmware Interface Specification

E-32 12/01/02 Version 1.10

E.3.4.12 PXE_IFTYPE
The interface type is returned by the Get Initialization Information command and is used by the BC
DHCP protocol function. This field is also used for the low order 8-bits of the H/W type field in
ARP packets. The high order 8-bits of the H/W type field in ARP packets will always be set to
0x00 by the BC.
typedef PXE_UINT8 PXE_IFTYPE;

// This information is from the ARP section of RFC 1700.

// 1 Ethernet (10Mb)
// 2 Experimental Ethernet (3Mb)
// 3 Amateur Radio AX.25
// 4 Proteon ProNET Token Ring
// 5 Chaos
// 6 IEEE 802 Networks
// 7 ARCNET
// 8 Hyperchannel
// 9 Lanstar
// 10 Autonet Short Address
// 11 LocalTalk
// 12 LocalNet (IBM PCNet or SYTEK LocalNET)
// 13 Ultra link
// 14 SMDS
// 15 Frame Relay
// 16 Asynchronous Transmission Mode (ATM)
// 17 HDLC
// 18 Fibre Channel
// 19 Asynchronous Transmission Mode (ATM)
// 20 Serial Line
// 21 Asynchronous Transmission Mode (ATM)

#define PXE_IFTYPE_ETHERNET 0x01
#define PXE_IFTYPE_TOKENRING 0x04
#define PXE_IFTYPE_FIBRE_CHANNEL 0x12

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-33

E.3.5 Compound Types

All PXE structures must be byte packed.

E.3.5.1 PXE_HW_UNDI
This section defines the C structures and #defines for the !PXE H/W UNDI interface.
#pragma pack(1)
typedef struct s_pxe_hw_undi {
 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE
 PXE_UINT8 Len; // sizeof(PXE_HW_UNDI)
 PXE_UINT8 Fudge; // makes 8-bit cksum equal zero
 PXE_UINT8 Rev; // PXE_ROMID_REV
 PXE_UINT8 IFcnt; // physical connector count
 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER
 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER
 PXE_UINT16 reserved; // zero, not used
 PXE_UINT32 Implementation; // implementation flags
} PXE_HW_UNDI;
#pragma pack()

// Status port bit definitions

// UNDI operation state

#define PXE_HWSTAT_STATE_MASK 0xC0000000
#define PXE_HWSTAT_BUSY 0xC0000000
#define PXE_HWSTAT_INITIALIZED 0x80000000
#define PXE_HWSTAT_STARTED 0x40000000
#define PXE_HWSTAT_STOPPED 0x00000000

// If set, last command failed

#define PXE_HWSTAT_COMMAND_FAILED 0x20000000

// If set, identifies enabled receive filters

#define PXE_HWSTAT_PROMISCUOUS_MULTICAST_RX_ENABLED 0x00001000
#define PXE_HWSTAT_PROMISCUOUS_RX_ENABLED 0x00000800
#define PXE_HWSTAT_BROADCAST_RX_ENABLED 0x00000400
#define PXE_HWSTAT_MULTICAST_RX_ENABLED 0x00000200
#define PXE_HWSTAT_UNICAST_RX_ENABLED 0x00000100

Extensible Firmware Interface Specification

E-34 12/01/02 Version 1.10

// If set, identifies enabled external interrupts

#define PXE_HWSTAT_SOFTWARE_INT_ENABLED 0x00000080
#define PXE_HWSTAT_TX_COMPLETE_INT_ENABLED 0x00000040
#define PXE_HWSTAT_PACKET_RX_INT_ENABLED 0x00000020
#define PXE_HWSTAT_CMD_COMPLETE_INT_ENABLED 0x00000010

// If set, identifies pending interrupts

#define PXE_HWSTAT_SOFTWARE_INT_PENDING 0x00000008
#define PXE_HWSTAT_TX_COMPLETE_INT_PENDING 0x00000004
#define PXE_HWSTAT_PACKET_RX_INT_PENDING 0x00000002
#define PXE_HWSTAT_CMD_COMPLETE_INT_PENDING 0x00000001

// Command port definitions

// If set, CDB identified in CDBaddr port is given to UNDI.
// If not set, other bits in this word will be processed.

#define PXE_HWCMD_ISSUE_COMMAND 0x80000000
#define PXE_HWCMD_INTS_AND_FILTS 0x00000000

// Use these to enable/disable receive filters.

#define PXE_HWCMD_PROMISCUOUS_MULTICAST_RX_ENABLE 0x00001000
#define PXE_HWCMD_PROMISCUOUS_RX_ENABLE 0x00000800
#define PXE_HWCMD_BROADCAST_RX_ENABLE 0x00000400
#define PXE_HWCMD_MULTICAST_RX_ENABLE 0x00000200
#define PXE_HWCMD_UNICAST_RX_ENABLE 0x00000100

// Use these to enable/disable external interrupts

#define PXE_HWCMD_SOFTWARE_INT_ENABLE 0x00000080
#define PXE_HWCMD_TX_COMPLETE_INT_ENABLE 0x00000040
#define PXE_HWCMD_PACKET_RX_INT_ENABLE 0x00000020
#define PXE_HWCMD_CMD_COMPLETE_INT_ENABLE 0x00000010

// Use these to clear pending external interrupts

#define PXE_HWCMD_CLEAR_SOFTWARE_INT 0x00000008
#define PXE_HWCMD_CLEAR_TX_COMPLETE_INT 0x00000004
#define PXE_HWCMD_CLEAR_PACKET_RX_INT 0x00000002
#define PXE_HWCMD_CLEAR_CMD_COMPLETE_INT 0x00000001

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-35

E.3.5.2 PXE_SW_UNDI
This section defines the C structures and #defines for the !PXE S/W UNDI interface.
#pragma pack(1)
typedef struct s_pxe_sw_undi {
 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE
 PXE_UINT8 Len; // sizeof(PXE_SW_UNDI)
 PXE_UINT8 Fudge; // makes 8-bit cksum zero
 PXE_UINT8 Rev; // PXE_ROMID_REV
 PXE_UINT8 IFcnt; // physical connector count
 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER
 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER
 PXE_UINT16 reserved1; // zero, not used
 PXE_UINT32 Implementation; // Implementation flags
 PXE_UINT64 EntryPoint; // API entry point
 PXE_UINT8 reserved2[3]; // zero, not used
 PXE_UINT8 BusCnt; // number of bustypes supported
 PXE_UINT32 BusType[1]; // list of supported bustypes
} PXE_SW_UNDI;
#pragma pack()

E.3.5.3 PXE_UNDI
PXE_UNDI combines both the H/W and S/W UNDI types into one typedef and has #defines for
common fields in both H/W and S/W UNDI types.
#pragma pack(1)
typedef union u_pxe_undi {
 PXE_HW_UNDI hw;
 PXE_SW_UNDI sw;
} PXE_UNDI;
#pragma pack()

// Signature of !PXE structure

#define PXE_ROMID_SIGNATURE PXE_BUSTYPE(’!’, ’P’, ’X’, ’E’)

// !PXE structure format revision

#define PXE_ROMID_REV 0x02

// UNDI command interface revision. These are the values that
// get sent in option 94 (Client Network Interface Identifier) in
// the DHCP Discover and PXE Boot Server Request packets.

#define PXE_ROMID_MAJORVER 0x03
#define PXE_ROMID_MINORVER 0x01

Extensible Firmware Interface Specification

E-36 12/01/02 Version 1.10

// Implementation flags

#define PXE_ROMID_IMP_HW_UNDI 0x80000000
#define PXE_ROMID_IMP_SW_VIRT_ADDR 0x40000000
#define PXE_ROMID_IMP_64BIT_DEVICE 0x00010000
#define PXE_ROMID_IMP_FRAG_SUPPORTED 0x00008000
#define PXE_ROMID_IMP_CMD_LINK_SUPPORTED 0x00004000
#define PXE_ROMID_IMP_CMD_QUEUE_SUPPORTED 0x00002000
#define PXE_ROMID_IMP_MULTI_FRAME_SUPPORTED 0x00001000
#define PXE_ROMID_IMP_NVDATA_SUPPORT_MASK 0x00000C00
#define PXE_ROMID_IMP_NVDATA_BULK_WRITABLE 0x00000C00
#define PXE_ROMID_IMP_NVDATA_SPARSE_WRITABLE 0x00000800
#define PXE_ROMID_IMP_NVDATA_READ_ONLY 0x00000400
#define PXE_ROMID_IMP_NVDATA_NOT_AVAILABLE 0x00000000
#define PXE_ROMID_IMP_STATISTICS_SUPPORTED 0x00000200
#define PXE_ROMID_IMP_STATION_ADDR_SETTABLE 0x00000100
#define PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED \

 0x00000080
#define PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED \ 0x00000040
#define PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED \ 0x00000020
#define PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED \

 0x00000010
#define PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED \ 0x00000008
#define PXE_ROMID_IMP_TX_COMPLETE_INT_SUPPORTED \ 0x00000004
#define PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED \ 0x00000002
#define PXE_ROMID_IMP_CMD_COMPLETE_INT_SUPPORTED \ 0x00000001

E.3.5.4 PXE_CDB
PXE UNDI command descriptor block.
#pragma pack(1)
typedef struct s_pxe_cdb {
 PXE_OPCODE OpCode;
 PXE_OPFLAGS OpFlags;
 PXE_UINT16 CPBsize;
 PXE_UINT16 DBsize;
 PXE_UINT64 CPBaddr;
 PXE_UINT64 DBaddr;
 PXE_STATCODE StatCode;
 PXE_STATFLAGS StatFlags;
 PXE_UINT16 IFnum;
 PXE_CONTROL Control;
} PXE_CDB;
#pragma pack()

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-37

E.3.5.5 PXE_IP_ADDR
This storage type is always big endian (network order) not little endian (Intel order).
#pragma pack(1)
typedef union u_pxe_ip_addr {
 PXE_IPV6 IPv6;
 PXE_IPV4 IPv4;
} PXE_IP_ADDR;
#pragma pack()

E.3.5.6 PXE_DEVICE
This typedef is used to identify the network device that is being used by the UNDI. This
information is returned by the Get Config Info command.
#pragma pack(1)
typedef union pxe_device {

// PCI and PC Card NICs are both identified using bus, device
// and function numbers. For PC Card, this may require PC
// Card services to be loaded in the BIOS or preboot
// environment.
struct {
// See S/W UNDI ROMID structure definition for PCI and
// PCC BusType definitions.
PXE_UINT32 BusType;

// Bus, device & function numbers that locate this device.
PXE_UINT16 Bus;
PXE_UINT8 Device;
PXE_UINT8 Function;
} PCI, PCC;

} PXE_DEVICE;
#pragma pack()

Extensible Firmware Interface Specification

E-38 12/01/02 Version 1.10

E.4 UNDI Commands

All 32/64-bit UNDI commands use the same basic command format, the CDB (Command
Descriptor Block). CDB fields that are not used by a particular command must be initialized to
zero by the application/driver that is issuing the command.

All UNDI implementations must set the command completion status
(PXE_STATFLAGS_COMMAND_COMPLETE) after command execution completes. Applications
and drivers must not alter or rely on the contents of any of the CDB, CPB or DB fields until the
command completion status is set.

All commands return status codes for invalid CDB contents and, if used, invalid CPB contents.
Commands with invalid parameters will not execute. Fix the error and submit the command again.

Figure E-6 describes the different UNDI states (Stopped, Started and Initialized), shows the
transitions between the states and which UNDI commands are valid in each state.

OM13187

Stopped

Started

Initialized

Valid Commands
Get State
Start

Valid Commands
Get State
Stop
Get Init Info
Initialize
MCast IP To MAC

Valid Commands
Get State
Get Init Info
Reset
Shutdown
Get Runtime Info
Set Runtime Info
Get Status
Fill Header
Transmit
Receive
MCast IP To MAC

Stop Start

Shutdown Initialize

Figure E-6. UNDI States, Transitions & Valid Commands

NOTE

All memory addresses including the CDB address, CPB address, and the DB address submitted to
the S/W UNDI by the protocol drivers must be processor-based addresses. All memory addresses
submitted to the H/W UNDI must be device based addresses.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-39

NOTE

Additional requirements for S/W UNDI implementations: Processor register contents must be
unchanged by S/W UNDI command execution (the application/driver does not have to save
processor registers when calling S/W UNDI). Processor arithmetic flags are undefined
(application/driver must save processor arithmetic flags if needed). Application/driver must
remove CDB address from stack after control returns from S/W UNDI.

NOTE

Additional requirements for 32-bit network devices: All addresses given to the S/W UNDI must be
32-bit addresses. Any address that exceeds 32 bits (4 GB) will result in a return of one of the
following status codes: PXE_STATCODE_INVALID_PARAMETER,
PXE_STATCODE_INVALID_CDB or PXE_STATCODE_INVALID_CPB.

When executing linked commands, command execution will stop at the end of the CDB list (when
the PXE_CONTROL_LINK bit is not set) or when a command returns an error status code.

E.4.1 Command Linking and Queuing

When linking commands, the CDBs must be stored consecutively in system memory without any
gaps in between. Do not set the Link bit in the last CDB in the list. As shown in Figure E-7, the
Link bit must be set in all other CDBs in the list.

OM13188

Linked CDBs
0x00

0x1F
0x20

0x3F

Set Link bit.

0x40

0x5F

Set Link bit.

Do not set
Link bit.

CDB

CDB

CDB

Figure E-7. Linked CDBs

Extensible Firmware Interface Specification

E-40 12/01/02 Version 1.10

When the H/W UNDI is executing commands, the State bits in the Status field in the !PXE
structure will be set to Busy (3).

When H/W or S/W UNDI is executing commands and a new command is issued, a StatCode of
PXE_STATCODE_BUSY and a StatFlag of PXE_STATFLAG_COMMAND_FAILURE is set in the
CDB. For linked commands, only the first CDB will be set to Busy, all other CDBs will be
unchanged. When a linked command fails, execution on the list stops. Commands after the failing
command will not be run.

As shown in Figure E-8, when queuing commands, only the first CDB needs to have the Queue
Control flag set. If queuing is supported and the UNDI is busy and there is room in the command
queue, the command (or list of commands) will be queued.

OM13189

Queued CDBs
0x00

0x1F
0x20

0x3F

Set Queue bit.
Set Link bit.

0x40

0x5F

Set Queue bit.
Set Link bit.

Set Queue bit.
Set Link bit.

CDB

CDB

CDB

Figure E-8. Queued CDBs

When a command is queued a StatFlag of PXE_STATFLAG_COMMAND_QUEUED is set (if linked
commands are queued only the StatFlag of the first CDB gets set). This signals that the command
was added to the queue. Commands in the queue will be run on a first-in, first-out, basis. When a
command fails, the next command in the queue is run. When a linked command in the queue fails,
execution on the list stops. The next command, or list of commands, that was added to the
command queue will be run.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-41

E.4.2 Get State

This command is used to determine the operational state of the UNDI. An UNDI has three possible
operational states:

Stopped: A stopped UNDI is free for the taking. When all interface numbers (IFnum)
for a particular S/W UNDI are stopped, that S/W UNDI image can be relocated or
removed. A stopped UNDI will accept Get State and Start commands.

Started: A started UNDI is in use. A started UNDI will accept Get State, Stop,
Get Init Info, and Initialize commands.

Initialized: An initialized UNDI is in used. An initialized UNDI will accept all
commands except: Start, Stop, and Initialize.

Drivers, NBPs, and applications should not use UNDIs that are already started or initialized.

No other operational checks are made by this command. If this is a S/W UNDI, the
PXE_START_CPB.Delay() and PXE_START_CPB.Virt2Phys() callbacks will
not be used.

E.4.2.1 Issuing the Command
To issue a Get State command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Get State command

OpCode PXE_OPCODE_GET_STATE

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

Extensible Firmware Interface Specification

E-42 12/01/02 Version 1.10

E.4.2.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags contain operational state.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued. All other fields are unchanged.

INITIALIZE Command has not been executed or queued.

E.4.2.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. StatFlags contain operational state.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

If the command completes successfully, use PXE_STATFLAGS_GET_STATE_MASK to check the
state of the UNDI.

StatFlags Reason

STOPPED The UNDI is stopped.

STARTED The UNDI is started, but not initialized.

INITIALIZED The UNDI is initialized.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-43

E.4.3 Start

This command is used to change the UNDI operational state from stopped to started. No other
operational checks are made by this command. Protocol driver makes this call for each network
interface supported by the UNDI with a set of call back routines and a unique identifier to identify
the particular interface. UNDI does not interpret the unique identifier in any way except that it is a
64-bit value and it will pass it back to the protocol driver as a parameter to all the call back routines
for any particular interface. If this is a S/W UNDI, the callback functions Delay(), Virt2Phys(),
Map_Mem(), UnMap_Mem(), and Sync_Mem() functions will not be called by this command.

E.4.3.1 Issuing the Command
To issue a Start command for H/W UNDI, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a H/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

To issue a Start command for S/W UNDI, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a S/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize sizeof(PXE_CPB_START)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_START structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

Extensible Firmware Interface Specification

E-44 12/01/02 Version 1.10

Preparing the CPB

The CPB for the S/W UNDI Start command (shown below) must be filled in and the size and
address of the CPB must be given in the CDB.
#pragma pack(1)
typedef struct s_pxe_cpb_start {
 // PXE_VOID Delay(PXE_UINT64 microseconds);

 // UNDI will never request a delay smaller than 10 microseconds
 // and will always request delays in increments of 10
 // microseconds. The Delay() CallBack routine must delay
 // between n and n + 10 microseconds before returning control
 // to the UNDI.

 // This field cannot be set to zero.
 PXE_UINT64 Delay;

 // PXE_VOID Block(PXE_UINT32 enable);

 // UNDI may need to block multithreaded/multiprocessor access
 // to critical code sections when programming or accessing the
 // network device. To this end, a blocking service is needed
 // by the UNDI. When UNDI needs a block, it will call Block()
 // passing a nonzero value. When UNDI no longer needs a
 // block, it will call Block() with a zero value. When called,
 // if the Block() is already enabled, do not return control to
 // the UNDI until the previous Block() is disabled.

 // This field cannot be set to zero.
 PXE_UINT64 Block;

 // PXE_VOID Virt2Phys(PXE_UINT64 virtual, PXE_UINT64
 // physical_ptr);

 // UNDI will pass the virtual address of a buffer and the
 // virtual address of a 64-bit physical buffer. Convert the
 // virtual address to a physical address and write the result
 // to the physical address buffer. If virtual and physical
 // addresses are the same, just copy the virtual address to the
 // physical address buffer.

 // This field can be set to zero if virtual and physical
 // addresses are equal.

 PXE_UINT64 Virt2Phys;

 // PXE_VOID Mem_IO(UINT64 unq_id, PXE_UINT8 read_write,
 //PXE_UINT8 len, PXE_UINT64 port, PXE_UINT64 buf_addr);
 //

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-45

 // UNDI will read or write the device io space using this
 // call-back function. It passes the number of bytes as the
 // len parameter and it will be either 1,2,4 or 8.
 //
 // This field cannot be set to zero.
 //

 PXE_UINT64 Mem_IO;

 //
 // PXE_VOID Map_Mem(UINT64 unq_id, UINT64 virtual_addr,
 // UINT32 size, UINT32 Direction, UINT64 mapped_addr);
 //
 // UNDI will pass the virtual address of a buffer, direction of
 // the data flow from/to the mapped buffer (the constants
 // values for the direction flag are defined below)
 // and a place holder (pointer) for the mapped address.
 // This call will Map the given address to a physical DMA
 // address and write the result to the mapped_addr pointer. If
 // there is no need to map the given address to a lower
 // physical address i.e. the given virtual address points to a
 // physical memory that can be used for the DMA read/write, it
 // converts the given virtual address to its physical address
 // and write that in the mapped address pointer.
 //
 // This field can be set to zero if there is no mapping service
 // available or if all the physical addresses are DMA
 // compatible.
 //
 UINT64 Map_Mem;

 //
 // PXE_VOID UnMap_Mem(UINT64 unq_id, UINT64 virtual_addr,
 // UINT32 size, UINT32 Direction, UINT64 mapped_addr);
 //
 // UNDI will pass the virtual and mapped addresses of a buffer
 // This call will un map the given address
 //
 // This field can be set to zero if there is no unmapping
 // service available
 //
 UINT64 UnMap_Mem;

Extensible Firmware Interface Specification

E-46 12/01/02 Version 1.10

 //
 // PXE_VOID Sync_Mem(UINT64 unq_id, UINT64 virtual,
 // UINT32 size, UINT32 Direction, UINT64 mapped_addr);
 //
 // UNDI will pass the virtual and mapped addresses of a buffer
 // This call will synchronize the contents of both the virtual
 // and mapped buffers for the given Direction. This call does
 // not do anything if both the virtual and mapped addresses
 // point to the same physical memory.
 //
 // This field can be set to zero if there is no service
 // available
 //
 UINT64 Sync_Mem;

 // protocol driver can provide anything for this Unique_ID,
 // UNDI remembers that as just a 64bit value assocaited to the
 // interface specified by the ifnum and gives it back as a
 // parameter to all the call-back routines when calling for
 // that interface!

 UINT64 Unique_ID;

} PXE_CPB_START;
#pragma pack()

#define TO_AND_FROM_DEVICE 0
#define FROM_DEVICE 1
#define TO_DEVICE 2
#define PXE_DELAY_MILLISECOND 1000
#define PXE_DELAY_SECOND 1000000
#define PXE_IO_READ 0
#define PXE_IO_WRITE 1
#define PXE_MEM_READ 2
#define PXE_MEM_WRITE 4

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-47

E.4.3.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now started.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.3.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now started.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

ALREADY_STARTED The UNDI is already started.

Extensible Firmware Interface Specification

E-48 12/01/02 Version 1.10

E.4.4 Stop

This command is used to change the UNDI operational state from started to stopped.

E.4.4.1 Issuing the Command
To issue a Stop command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Stop command

OpCode PXE_OPCODE_STOP

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

E.4.4.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now stopped.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has not been executed or queued.

E.4.4.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now stopped.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_SHUTDOWN The UNDI is initialized and must be shutdown before it can be stopped.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-49

E.4.5 Get Init Info

This command is used to retrieve initialization information that is needed by drivers and
applications to initialized UNDI.

E.4.5.1 Issuing the Command
To issue a Get Init Info command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Get Init Info command

OpCode PXE_OPCODE_GET_INIT_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_INIT_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_INIT_INFO structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.5.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB can be used.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.5.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB can be used.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

Extensible Firmware Interface Specification

E-50 12/01/02 Version 1.10

StatFlags

To determine if cable detection is supported by this UNDI/NIC, use these macros with the value
returned in the CDB.StatFlags field:
PXE_STATFLAGS_CABLE_DETECT_MASK
PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED
PXE_STATFLAGS_CABLE_DETECT_SUPPORTED

DB
#pragma pack(1)
typedef struct s_pxe_db_get_init_info {

 // Minimum length of locked memory buffer that must be given to
 // the Initialize command. Giving UNDI more memory will
 // generally give better performance.

 // If MemoryRequired is zero, the UNDI does not need and will
 // not use system memory to receive and transmit packets.

 PXE_UINT32 MemoryRequired;

 // Maximum frame data length for Tx/Rx excluding the media
 // header.
 //
 PXE_UINT32 FrameDataLen;

 // Supported link speeds are in units of mega bits. Common
 // ethernet values are 10, 100 and 1000. Unused LinkSpeeds[]
 // entries are zero filled.

 PXE_UINT32 LinkSpeeds[4];

 // Number of nonvolatile storage items.

 PXE_UINT32 NvCount;

 // Width of nonvolatile storage item in bytes. 0, 1, 2 or 4

 PXE_UINT16 NvWidth;

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-51

 // Media header length. This is the typical media header
 // length for this UNDI. This information is needed when
 // allocating receive and transmit buffers.

 PXE_UINT16 MediaHeaderLen;

 // Number of bytes in the NIC hardware (MAC) address.

 PXE_UINT16 HWaddrLen;

 // Maximum number of multicast MAC addresses in the multicast
 // MAC address filter list.

 PXE_UINT16 MCastFilterCnt;

 // Default number and size of transmit and receive buffers that
 // will be allocated by the UNDI. If MemoryRequired is
 // nonzero, this allocation will come out of the memory buffer
 // given to the Initialize command. If MemoryRequired is zero,
 // this allocation will come out of memory on the NIC.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize;

 // Hardware interface types defined in the Assigned Numbers RFC
 // and used in DHCP and ARP packets.
 // See the PXE_IFTYPE typedef and PXE_IFTYPE_xxx macros.

 PXE_UINT8 IFtype;

 // Supported duplex options. This can be one or a combination
 // of more than one constants defined as PXE_DUPLEX_xxxxx
 // below. This value indicates the ability of UNDI to
 // change/control the duplex modes of the NIC.

 PXE_UINT8 SupportedDuplexModes;

Extensible Firmware Interface Specification

E-52 12/01/02 Version 1.10

 // Supported loopback options. This field can be one or a
 // combination of more than one constants defined as
 // PXE_LOOPBACK_xxxxx #defines below. This value indicates
 // the ability of UNDI to change/control the loopback modes
 // of the NIC

 PXE_UINT8 SupportedLoopBackModes;
} PXE_DB_GET_INIT_INFO;
#pragma pack()

#define PXE_MAX_TXRX_UNIT_ETHER 1500
#define PXE_HWADDR_LEN_ETHER 0x0006

#define PXE_DUPLEX_AUTO_DETECT_SUPPORTED 1
define PXE_DUPLEX_FORCE_FULL_SUPPORTED 2
#define PXE_DUPLEX_FORCE_HALF_SUPPORTED 4

#define PXE_LOOPBACK_INTERNAL_SUPPORTED 1
#define PXE_LOOPBACK_EXTERNAL_SUPPORTED 2

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-53

E.4.6 Get Config Info

This command is used to retrieve configuration information about the NIC being controlled by
 the UNDI.

E.4.6.1 Issuing the Command
To issue a Get Config Info command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Get Config Info command

OpCode PXE_OPCODE_GET_CONFIG_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_CONFIG_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_CONFIG_INFO structure

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

E.4.6.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

Extensible Firmware Interface Specification

E-54 12/01/02 Version 1.10

E.4.6.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB has been written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

DB
#pragma pack(1)
typedef struct s_pxe_pci_config_info {

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.
 // For PCI bus devices, this field is set to PXE_BUSTYPE_PCI.

 PXE_UINT32 BusType;

 // This identifies the PCI network device that this UNDI
 // interface is bound to.

 PXE_UINT16 Bus;
 PXE_UINT8 Device;
 PXE_UINT8 Function;

 // This is a copy of the PCI configuration space for this
 // network device.

 union {

PXE_UINT8 Byte[256];
PXE_UINT16 Word[128];
PXE_UINT32 Dword[64];

 } Config;
} PXE_PCI_CONFIG_INFO;
#pragma pack()
#pragma pack(1)
typedef struct s_pxe_pcc_config_info {

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-55

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.
 // For PCC bus devices, this field is set to PXE_BUSTYPE_PCC.

 PXE_UINT32 BusType;

 // This identifies the PCC network device that this UNDI
 // interface is bound to.

 PXE_UINT16 Bus;
 PXE_UINT8 Device;
 PXE_UINT8 Function;

 // This is a copy of the PCC configuration space for this
 // network device.

 union {

PXE_UINT8 Byte[256];
PXE_UINT16 Word[128];
PXE_UINT32 Dword[64];

} Config;
} PXE_PCC_CONFIG_INFO;
#pragma pack()

#pragma pack(1)
typedef union u_pxe_db_get_config_info {
 PXE_PCI_CONFIG_INFO pci;
 PXE_PCC_CONFIG_INFO pcc;
} PXE_DB_GET_CONFIG_INFO;
#pragma pack()

Extensible Firmware Interface Specification

E-56 12/01/02 Version 1.10

E.4.7 Initialize

This command resets the network adapter and initializes UNDI using the parameters supplied in the
CPB. The Initialize command must be issued before the network adapter can be setup to transmit
and receive packets. This command will not enable the receive unit or external interrupts.

Once the memory requirements of the UNDI are obtained by using the Get Init Info command, a
block of kernel (nonswappable) memory may need to be allocated by the protocol driver. The
address of this kernel memory must be passed to UNDI using the Initialize command CPB. This
memory is used for transmit and receive buffers and internal processing.

Initializing the network device will take up to four seconds for most network devices and in some
extreme cases (usually poor cables) up to twenty seconds. Control will not be returned to the caller
and the COMMAND_COMPLETE status flag will not be set until the NIC is ready to transmit.

E.4.7.1 Issuing the Command
To issue an Initialize command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for an Initialize command

OpCode PXE_OPCODE_INITIALIZE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_INITIALIZE)

DBsize sizeof(PXE_DB_INITIALIZE)

CPBaddr Address of a PXE_CPB_INITIALIZE structure.

Dbaddr Address of a PXE_DB_INITIALIZE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

Cable detection can be enabled or disabled by setting one of the following OpFlags:
PXE_OPFLAGS_INITIALIZE_CABLE_DETECT
PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-57

Preparing the CPB

If the MemoryRequired field returned in the PXE_DB_GET_INIT_INFO structure is zero, the
Initialize command does not need to be given a memory buffer or even a CPB structure. If the
MemoryRequired field is nonzero, the Initialize command does need a memory buffer.
#pragma pack(1)
typedef struct s_pxe_cpb_initialize {

 // Address of first (lowest) byte of the memory buffer.
 // This buffer must be in contiguous physical memory and cannot
 // be swapped out. The UNDI will be using this for transmit
 // and receive buffering. This address must be a processor-
 // based address for S/W UNDI and a device-based address for
 // H/W UNDI.

 PXE_UINT64 MemoryAddr;

 // MemoryLength must be greater than or equal to MemoryRequired
 // returned by the Get Init Info command.

 PXE_UINT32 MemoryLength;

 // Desired link speed in Mbit/sec. Common ethernet values are
 // 10, 100 and 1000. Setting a value of zero will auto-detect
 // and/or use the default link speed (operation depends on
 // UNDI/NIC functionality).

 PXE_UINT32 LinkSpeed;

 // Suggested number and size of receive and transmit buffers to
 // allocate. If MemoryAddr and MemoryLength are nonzero, this
 // allocation comes out of the supplied memory buffer. If
 // MemoryAddr and MemoryLength are zero, this allocation comes
 // out of memory on the NIC.

 // If these fields are set to zero, the UNDI will allocate
 // buffer counts and sizes as it sees fit.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize;

Extensible Firmware Interface Specification

E-58 12/01/02 Version 1.10

 // The following configuration parameters are optional and must
 // be zero to use the default values.
 // The possible values for these parameters are defined below.

 PXE_UINT8 DuplexMode;

 PXE_UINT8 LoopBackMode;
} PXE_CPB_INITIALIZE;
#pragma pack()

#define PXE_DUPLEX_AUTO_DETECT 0x00
#define PXE_FORCE_FULL_DUPLEX 0x01

#define PXE_FORCE_HALF_DUPLEX 0x02

#define PXE_LOOPBACK_NORMAL 0
#define PXE_LOOPBACK_INTERNAL 1
#define PXE_LOOPBACK_EXTERNAL 2

E.4.7.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device is now
initialized. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-59

E.4.7.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device is now
initialized. DB has been written. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

ALREADY_INITIALIZED The UNDI is already initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage could not be read.

StatFlags

Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still initialized.

PXE_STATFLAGS_INITIALIZED_NO_MEDIA

Before Using the DB
#pragma pack(1)
typedef struct s_pxe_db_initialize {

 // Actual amount of memory used from the supplied memory
 // buffer. This may be less that the amount of memory
 // supplied and may be zero if the UNDI and network device
 // do not use external memory buffers. Memory used by the
 // UNDI and network device is allocated from the lowest
 // memory buffer address.

 PXE_UINT32 MemoryUsed;

 // Actual number and size of receive and transmit buffers that
 // were allocated.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize
} PXE_DB_INITIALIZE;
#pragma pack()

Extensible Firmware Interface Specification

E-60 12/01/02 Version 1.10

E.4.8 Reset

This command resets the network adapter and reinitializes the UNDI with the same parameters
provided in the Initialize command. The transmit and receive queues are emptied and any pending
interrupts are cleared. Depending on the state of the OpFlags, the receive filters and external
interrupt enables may also be reset.

Resetting the network device may take up to four seconds and in some extreme cases (usually poor
cables) up to twenty seconds. Control will not be returned to the caller and the
COMMAND_COMPLETE status flag will not be set until the NIC is ready to transmit.

E.4.8.1 Issuing the Command
To issue a Reset command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Reset command

OpCode PXE_OPCODE_RESET

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

Normally the settings of the receive filters and external interrupt enables are unchanged by the
Reset command. These two OpFlags will alter the operation of the Reset command.
PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS
PXE_OPFLAGS_RESET_DISABLE_FILTERS

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-61

E.4.8.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device have been
reset. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.8.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device have been
reset. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage is not valid.

StatFlags

Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still reset.

PXE_STATFLAGS_RESET_NO_MEDIA

Extensible Firmware Interface Specification

E-62 12/01/02 Version 1.10

E.4.9 Shutdown

The Shutdown command resets the network adapter and leaves it in a safe state for another driver to
initialize. Any pending transmits or receives are lost. Receive filters and external interrupt enables
are reset (disabled). The memory buffer assigned in the Initialize command can be released or
reassigned.

Once UNDI has been shutdown, it can then be stopped or initialized again. The Shutdown
command changes the UNDI operational state from initialized to started.

E.4.9.1 Issuing the Command
To issue a Shutdown command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Shutdown command

OpCode PXE_OPCODE_SHUTDOWN

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-63

E.4.9.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device are shutdown.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.9.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device are shutdown.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

Extensible Firmware Interface Specification

E-64 12/01/02 Version 1.10

E.4.10 Interrupt Enables

The Interrupt Enables command can be used to read and/or change the current external interrupt
enable settings. Disabling an external interrupt enable prevents an external (hardware) interrupt
from being signaled by the network device, internally the interrupt events can still be polled by
using the Get Status command.

E.4.10.1 Issuing the Command
To issue an Interrupt Enables command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for an Interrupt Enables command

OpCode PXE_OPCODE_INTERRUPT_ENABLES

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read the current external interrupt enables settings set CDB.OpFlags to:

• PXE_OPFLAGS_INTERRUPT_READ

To enable or disable external interrupts set one of these OpFlags:

• PXE_OPFLAGS_INTERRUPT_DISABLE

• PXE_OPFLAGS_INTERRUPT_ENABLE

When enabling or disabling interrupt settings, the following additional OpFlag bits are used to
specify which types of external interrupts are to be enabled or disabled:

• PXE_OPFLAGS_INTERRUPT_RECEIVE

• PXE_OPFLAGS_INTERRUPT_TRANSMIT

• PXE_OPFLAGS_INTERRUPT_COMMAND

• PXE_OPFLAGS_INTERRUPT_SOFTWARE

Setting PXE_OPFLAGS_INTERRUPT_SOFTWARE does not enable an external interrupt type, it
generates an external interrupt.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-65

E.4.10.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.10.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

StatFlags

If the command was successful, the CDB.StatFlags field reports which external interrupt
enable types are currently set. Possible CDB.StatFlags bit settings are:

• PXE_STATFLAGS_INTERRUPT_RECEIVE

• PXE_STATFLAGS_INTERRUPT_TRANSMIT

• PXE_STATFLAGS_INTERRUPT_COMMAND

The bits set in CDB.StatFlags may be different than those that were requested in
CDB.OpFlags. For example: If transmit and receive share an external interrupt line, setting
either the transmit or receive interrupt will always enable both transmit and receive interrupts. In
this case both transmit and receive interrupts will be reported in CDB.StatFlags. Always
expect to get more than you ask for!

Extensible Firmware Interface Specification

E-66 12/01/02 Version 1.10

E.4.11 Receive Filters

This command is used to read and change receive filters and, if supported, read and change the
multicast MAC address filter list. Control will not be returned to the caller and the
COMMAND_COMPLETE status flag will not be set until the NIC is ready to receive.

E.4.11.1 Issuing the Command
To issue a Receive Filters command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Receive Filters command

OpCode PXE_OPCODE_RECEIVE_FILTERS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE_FILTERS)

DBsize sizeof(PXE_DB_RECEIVE_FILTERS)

CPBaddr Address of PXE_CPB_RECEIVE_FILTERS structure.

DBaddr Address of PXE_DB_RECEIVE_FILTERS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read the current receive filter settings set the CDB.OpFlags field to:

• PXE_OPFLAGS_RECEIVE_FILTER_READ

To change the current receive filter settings set one of these OpFlag bits:

• PXE_OPFLAGS_RECEIVE_FILTER_ENABLE

• PXE_OPFLAGS_RECEIVE_FILTER_DISABLE

When changing the receive filter settings, at least one of the OpFlag bits in this list must be
selected:

• PXE_OPFLAGS_RECEIVE_FILTER_UNICAST

• PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST

To clear the contents of the multicast MAC address filter list, set this OpFlag:

• PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-67

Preparing the CPB

The receive filter CPB is used to change the contents multicast MAC address filter list. To leave
the multicast MAC address filter list unchanged, set the CDB.CPBsize field to
PXE_CPBSIZE_NOT_USED and CDB.CPBaddr to PXE_CPBADDR_NOT_USED.

To change the multicast MAC address filter list, set CDB.CPBsize to the size, in bytes, of the
multicast MAC address filter list and set CDB.CPBaddr to the address of the first entry in the
multicast MAC address filter list.
typedef struct s_pxe_cpb_receive_filters {

 // List of multicast MAC addresses. This list, if present,
 // will replace the existing multicast MAC address filter list.

 PXE_MAC_ADDR MCastList[n];
} PXE_CPB_RECEIVE_FILTERS;

E.4.11.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.11.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

Extensible Firmware Interface Specification

E-68 12/01/02 Version 1.10

StatFlags

The receive filter settings in CDB.StatFlags are:

• PXE_STATFLAGS_RECEIVE_FILTER_UNICAST

• PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST

Unsupported receive filter settings in OpFlags are promoted to the next more liberal receive filter
setting. For example: If broadcast or filtered multicast are requested and are not supported by the
network device, but promiscuous is; the promiscuous status flag will be set.

DB

The DB is used to read the current multicast MAC address filter list. The CDB.DBsize and
CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and PXE_DBADDR_NOT_USED if
the multicast MAC address filter list does not need to be read. When reading the multicast MAC
address filter list extra entries in the DB will be filled with zero.
typedef struct s_pxe_db_receive_filters {

 // Filtered multicast MAC address list.

 PXE_MAC_ADDR MCastList[n];
} PXE_DB_RECEIVE_FILTERS;

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-69

E.4.12 Station Address

This command is used to get current station and broadcast MAC addresses and, if supported, to
change the current station MAC address.

E.4.12.1 Issuing the Command
To issue a Station Address command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Station Address command

OpCode PXE_OPCODE_STATION_ADDRESS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_STATION_ADDRESS)

DBsize sizeof(PXE_DB_STATION_ADDRESS)

CPBaddr Address of PXE_CPB_STATION_ADDRESS structure.

DBaddr Address of PXE_DB_STATION_ADDRESS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read current station and broadcast MAC addresses set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_READ

To change the current station to the address given in the CPB set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_WRITE

To reset the current station address back to the power on default, set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_RESET

Preparing the CPB

To change the current station MAC address the CDB.CPBsize and CDB.CPBaddr fields must
be set.
typedef struct s_pxe_cpb_station_address {

 // If supplied and supported, the current station MAC address
 // will be changed.

 PXE_MAC_ADDR StationAddr;
} PXE_CPB_STATION_ADDRESS;

Extensible Firmware Interface Specification

E-70 12/01/02 Version 1.10

E.4.12.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.12.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED The requested operation is not supported.

Before Using the DB

The DB is used to read the current station, broadcast and permanent station MAC addresses. The
CDB.DBsize and CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and
PXE_DBADDR_NOT_USED if these addresses do not need to be read.
typedef struct s_pxe_db_station_address {

 // Current station MAC address.
 PXE_MAC_ADDR StationAddr;

 // Station broadcast MAC address.
 PXE_MAC_ADDR BroadcastAddr;

 // Permanent station MAC address.
 PXE_MAC_ADDR PermanentAddr;
} PXE_DB_STATION_ADDRESS;

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-71

E.4.13 Statistics

This command is used to read and clear the NIC traffic statistics. Before using this command check
to see if statistics is supported in the !PXE.Implementation flags.

E.4.13.1 Issuing the Command
To issue a Statistics command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Statistics command

OpCode PXE_OPCODE_STATISTICS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_STATISTICS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_STATISTICS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read the current statistics counters set the OpFlags field to:
PXE_OPFLAGS_STATISTICS_READ

To reset the current statistics counters set the OpFlags field to:
PXE_OPFLAGS_STATISTICS_RESET

E.4.13.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

Extensible Firmware Interface Specification

E-72 12/01/02 Version 1.10

E.4.13.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED This command is not supported.

DB

Unsupported statistics counters will be zero filled by UNDI.
typedef struct s_pxe_db_statistics {

 // Bit field identifying what statistic data is collected by
 // the UNDI/NIC.
 // If bit 0x00 is set, Data[0x00] is collected.
 // If bit 0x01 is set, Data[0x01] is collected.
 // If bit 0x20 is set, Data[0x20] is collected.
 // If bit 0x21 is set, Data[0x21] is collected.
 // Etc.
 PXE_UINT64 Supported;

 // Statistic data.

 PXE_UINT64 Data[64];
} PXE_DB_STATISTICS;

// Total number of frames received. Includes frames with errors
// and dropped frames.
#define PXE_STATISTICS_RX_TOTAL_FRAMES 0x00

// Number of valid frames received and copied into receive
// buffers.
#define PXE_STATISTICS_RX_GOOD_FRAMES 0x01

// Number of frames below the minimum length for the media.
// This would be <64 for ethernet.
#define PXE_STATISTICS_RX_UNDERSIZE_FRAMES 0x02

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-73

// Number of frames longer than the maxminum length for the
// media. This would be >1500 for ethernet.
#define PXE_STATISTICS_RX_OVERSIZE_FRAMES 0x03

// Valid frames that were dropped because receive buffers
// were full.
#define PXE_STATISTICS_RX_DROPPED_FRAMES 0x04

// Number of valid unicast frames received and not dropped.
#define PXE_STATISTICS_RX_UNICAST_FRAMES 0x05

// Number of valid broadcast frames received and not dropped.
#define PXE_STATISTICS_RX_BROADCAST_FRAMES 0x06

// Number of valid mutlicast frames received and not dropped.
#define PXE_STATISTICS_RX_MULTICAST_FRAMES 0x07

// Number of frames w/ CRC or alignment errors.
#define PXE_STATISTICS_RX_CRC_ERROR_FRAMES 0x08

// Total number of bytes received. Includes frames with errors
// and dropped frames.
#define PXE_STATISTICS_RX_TOTAL_BYTES 0x09

// Transmit statistics.
#define PXE_STATISTICS_TX_TOTAL_FRAMES 0x0A
#define PXE_STATISTICS_TX_GOOD_FRAMES 0x0B
#define PXE_STATISTICS_TX_UNDERSIZE_FRAMES 0x0C
#define PXE_STATISTICS_TX_OVERSIZE_FRAMES 0x0D
#define PXE_STATISTICS_TX_DROPPED_FRAMES 0x0E
#define PXE_STATISTICS_TX_UNICAST_FRAMES 0x0F
#define PXE_STATISTICS_TX_BROADCAST_FRAMES 0x10
#define PXE_STATISTICS_TX_MULTICAST_FRAMES 0x11
#define PXE_STATISTICS_TX_CRC_ERROR_FRAMES 0x12
#define PXE_STATISTICS_TX_TOTAL_BYTES 0x13

// Number of collisions detection on this subnet.
#define PXE_STATISTICS_COLLISIONS 0x14

// Number of frames destined for unsupported protocol.
#define PXE_STATISTICS_UNSUPPORTED_PROTOCOL 0x15

Extensible Firmware Interface Specification

E-74 12/01/02 Version 1.10

E.4.14 MCast IP To MAC

Translate a multicast IPv4 or IPv6 address to a multicast MAC address.

E.4.14.1 Issuing the Command
To issue a MCast IP To MAC command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a MCast IP To MAC command

OpCode PXE_OPCODE_MCAST_IP_TO_MAC

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_MCAST_IP_TO_MAC)

DBsize sizeof(PXE_DB_MCAST_IP_TO_MAC)

CPBaddr Address of PXE_CPB_MCAST_IP_TO_MAC structure.

Dbaddr Address of PXE_DB_MCAST_IP_TO_MAC structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To convert a multicast IP address to a multicast MAC address the UNDI needs to know the format
of the IP address. Set one of these OpFlags to identify the format of the IP addresses in the CPB:
PXE_OPFLAGS_MCAST_IPV4_TO_MAC
PXE_OPFLAGS_MCAST_IPV6_TO_MAC

Preparing the CPB

Fill in an array of one or more multicast IP addresses. Be sure to set the CDB.CPBsize and
CDB.CPBaddr fields accordingly.
typedef struct s_pxe_cpb_mcast_ip_to_mac {

 // Multicast IP address to be converted to multicast
 // MAC address.
 PXE_IP_ADDR IP[n];
} PXE_CPB_MCAST_IP_TO_MAC;

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-75

E.4.14.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.14.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

Before Using the DB

The DB is where the multicast MAC addresses will be written.
typedef struct s_pxe_db_mcast_ip_to_mac {

 // Multicast MAC address.

 PXE_MAC_ADDR MAC[n];
} PXE_DB_MCAST_IP_TO_MAC;

Extensible Firmware Interface Specification

E-76 12/01/02 Version 1.10

E.4.15 NvData

This command is used to read and write (if supported by NIC H/W) nonvolatile storage on the NIC.
Nonvolatile storage could be EEPROM, FLASH or battery backed RAM.

E.4.15.1 Issuing the Command
To issue a NvData command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a NvData command

OpCode PXE_OPCODE_NVDATA

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_NVDATA)

DBsize sizeof(PXE_DB_NVDATA)

CPBaddr Address of PXE_CPB_NVDATA structure.

Dbaddr Address of PXE_DB_NVDATA structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

Preparing the CPB

There are two types of nonvolatile data CPBs, one for sparse updates and one for bulk updates.
Sparse updates allow updating of single nonvolatile storage items. Bulk updates always update all
nonvolatile storage items. Check the !PXE.Implementation flags to see which type of
nonvolatile update is supported by this UNDI and network device.

If you do not need to update the nonvolatile storage set the CDB.CPBsize and CDB.CPBaddr
fields to PXE_CPBSIZE_NOT_USED and PXE_CPBADDR_NOT_USED.

Sparse NvData CPB
typedef struct s_pxe_cpb_nvdata_sparse {
 // NvData item list. Only items in this list will be updated.

 struct {

// Nonvolatile storage address to be changed.
PXE_UINT32 Addr;

// Data item to write into above storage address.
union {
 PXE_UINT8 Byte;
 PXE_UINT16 Word;
 PXE_UINT32 Dword;
} Data;

 } Item[n];
} PXE_CPB_NVDATA_SPARSE;

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-77

Bulk NvData CPB
// When using bulk update, the size of the CPB structure must be
// the same size as the nonvolatile NIC storage.

typedef union u_pxe_cpb_nvdata_bulk {

 // Array of byte-wide data items.
 PXE_UINT8 Byte[n];

 // Array of word-wide data items.
 PXE_UINT16 Word[n];

 // Array of dword-wide data items.
 PXE_UINT32 Dword[n];
} PXE_CPB_NVDATA_BULK;

E.4.15.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Nonvolatile data is updated from CPB
and/or written to DB.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.15.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Nonvolatile data is updated from CPB
and/or written to DB.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED Requested operation is unsupported.

Extensible Firmware Interface Specification

E-78 12/01/02 Version 1.10

DB

Check the width and number of nonvolatile storage items. This information is returned by the Get
Init Info command.
typedef struct s_pxe_db_nvdata {

 // Arrays of data items from nonvolatile storage.
 union {

// Array of byte-wide data items.
PXE_UINT8 Byte[n];

// Array of word-wide data items.
PXE_UINT16 Word[n];

// Array of dword-wide data items.
PXE_UINT32 Dword[n];

 } Data;
} PXE_DB_NVDATA;

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-79

E.4.16 Get Status

This command returns the current interrupt status and/or the transmitted buffer addresses. If the
current interrupt status is returned, pending interrupts will be acknowledged by this command.
Transmitted buffer addresses that are written to the DB are removed from the transmitted buffer
queue.

This command may be used in a polled fashion with external interrupts disabled.

E.4.16.1 Issuing the Command
To issue a Get Status command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Get Status command

OpCode PXE_OPCODE_GET_STATUS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize Sizeof(PXE_DB_GET_STATUS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_GET_STATUS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

Setting OpFlags

Set one or both of the OpFlags below to return the interrupt status and/or the transmitted buffer
addresses.
PXE_OPFLAGS_GET_INTERRUPT_STATUS
PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS

E.4.16.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags and/or DB are updated.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

Extensible Firmware Interface Specification

E-80 12/01/02 Version 1.10

E.4.16.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. StatFlags and/or DB are updated.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

StatFlags

If the command completes successfully and the PXE_OPFLAGS_GET_INTERRUPT_STATUS
OpFlag was set in the CDB, the current interrupt status is returned in the CDB.StatFlags field
and any pending interrupts will have been cleared.
PXE_STATFLAGS_GET_STATUS_RECEIVE
PXE_STATFLAGS_GET_STATUS_TRANSMIT
PXE_STATFLAGS_GET_STATUS_COMMAND
PXE_STATFLAGS_GET_STATUS_SOFTWARE

The StatFlags above may not map directly to external interrupt signals. For example: Some NICs
may combine both the receive and transmit interrupts to one external interrupt line. When a receive
and/or transmit interrupt occurs, use the Get Status to determine which type(s) of interrupt(s)
occurred.

This flag is set if the transmitted buffer queue is empty. This flag will be set if all transmitted
buffer addresses get written t into the DB.
PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY

This flag is set if no transmitted buffer addresses were written into the DB.
PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-81

Using the DB

When reading the transmitted buffer addresses there should be room for at least one 64-bit address
in the DB. Once a complete transmitted buffer address is written into the DB, the address is
removed from the transmitted buffer queue. If the transmitted buffer queue is full, attempts to use
the Transmit command will fail.
#pragma pack(1)
typedef struct s_pxe_db_get_status {

 // Length of next receive frame (header + data). If this is
 // zero, there is no next receive frame available.

 PXE_UINT32 RxFrameLen;

 // Reserved, set to zero.

 PXE_UINT32 reserved;

 // Addresses of transmitted buffers that need to be recycled.

 PXE_UINT64 xBuffer[n];
} PXE_DB_GET_STATUS;
#pragma pack()

Extensible Firmware Interface Specification

E-82 12/01/02 Version 1.10

E.4.17 Fill Header

This command is used to fill the media header(s) in transmit packet(s).

E.4.17.1 Issuing the Command
To issue a Fill Header command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Fill Header command

OpCode PXE_OPCODE_FILL_HEADER

OpFlags Set as needed.

CPBsize PXE_CPB_FILL_HEADER

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_FILL_HEADER structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

Select one of the OpFlags below so the UNDI knows what type of CPB is being used.
PXE_OPFLAGS_FILL_HEADER_WHOLE
PXE_OPFLAGS_FILL_HEADER_FRAGMENTED

Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how many CPBs are
packed together.

Nonfragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_fill_header {

 // Source and destination MAC addresses. These will be copied
 // into the media header without doing byte swapping.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Address of first byte of media header. The first byte of
 // packet data follows the last byte of the media header.
 PXE_UINT64 MediaHeader;

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-83

 // Length of packet data in bytes (not including the media
 // header).
 PXE_UINT32 PacketLen;

 // Protocol type. This will be copied into the media header
 // without doing byte swapping. Protocol type numbers can be
 // obtained from the Assigned Numbers RFC 1700.
 PXE_UINT16 Protocol;

 // Length of the media header in bytes.
 PXE_UINT16 MediaHeaderLen;
} PXE_CPB_FILL_HEADER;
#pragma pack()

#define PXE_PROTOCOL_ETHERNET_IP 0x0800
#define PXE_PROTOCOL_ETHERNET_ARP 0x0806

Fragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_fill_header_fragmented {

 // Source and destination MAC addresses. These will be copied
 // into the media header without doing byte swapping.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Length of packet data in bytes (not including the media
 // header).

 PXE_UINT32 PacketLen;
 // Protocol type. This will be copied into the media header
 // without doing byte swapping. Protocol type numbers can be
 // obtained from the Assigned Numbers RFC 1700.
 PXE_MEDIA_PROTOCOL Protocol;

 // Length of the media header in bytes.
 PXE_UINT16 MediaHeaderLen;

 // Number of packet fragment descriptors.
 PXE_UINT16 FragCnt;

 // Reserved, must be set to zero.
 PXE_UINT16 reserved;

Extensible Firmware Interface Specification

E-84 12/01/02 Version 1.10

 // Array of packet fragment descriptors. The first byte of the
 // media header is the first byte of the first fragment.

 struct {

// Address of this packet fragment.
PXE_UINT64 FragAddr;

// Length of this packet fragment.
PXE_UINT32 FragLen;

// Reserved, must be set to zero.
PXE_UINT32 reserved;

 } FragDesc[n];
} PXE_CPB_FILL_HEADER_FRAGMENTED;
#pragma pack()

E.4.17.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frame is ready to transmit.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.17.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Frame is ready to transmit.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-85

E.4.18 Transmit

The Transmit command is used to place a packet into the transmit queue. The data buffers given to
this command are to be considered locked and the application or universal network driver loses the
ownership of those buffers and must not free or relocate them until the ownership returns.

When the packets are transmitted, a transmit complete interrupt is generated (if interrupts are
disabled, the transmit interrupt status is still set and can be checked using the Get Status command).

Some UNDI implementations and network adapters support transmitting multiple packets with one
transmit command. If this feature is supported, multiple transmit CPBs can be linked in one
transmit command.

Though all UNDIs support fragmented frames, the same cannot be said for all network devices or
protocols. If a fragmented frame CPB is given to UNDI and the network device does not support
fragmented frames (see !PXE.Implementation flags), the UNDI will have to copy the
fragments into a local buffer before transmitting.

E.4.18.1 Issuing the Command
To issue a Transmit command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Transmit command

OpCode PXE_OPCODE_TRANSMIT

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_TRANSMIT)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_TRANSMIT structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

Extensible Firmware Interface Specification

E-86 12/01/02 Version 1.10

OpFlags

Check the !PXE.Implementation flags to see if the network device support fragmented
packets. Select one of the OpFlags below so the UNDI knows what type of CPB is being used.
PXE_OPFLAGS_TRANSMIT_WHOLE
PXE_OPFLAGS_TRANSMIT_FRAGMENTED

In addition to selecting whether or not fragmented packets are being given, S/W UNDI needs to
know if it should block until the packets are transmitted. H/W UNDI cannot block, these two
OpFlag settings have no affect when used with H/W UNDI.
PXE_OPFLAGS_TRANSMIT_BLOCK
PXE_OPFLAGS_TRANSMIT_DONT_BLOCK

Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how may frames are
to be transmitted.

Nonfragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_transmit {

 // Address of first byte of frame buffer. This is also the
 // first byte of the media header. This address must be a
 // processor-based address for S/W UNDI and a device-based
 // address for H/W UNDI.
 PXE_UINT64 FrameAddr;

 // Length of the data portion of the frame buffer in bytes. Do
 // not include the length of the media header.
 PXE_UINT32 DataLen;

 // Length of the media header in bytes.
 PXE_UINT16 MediaheaderLen;

 // Reserved, must be zero.
 PXE_UINT16 reserved;
} PXE_CPB_TRANSMIT;
#pragma pack()

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-87

Fragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_transmit_fragments {

 // Length of packet data in bytes (not including the media
 // header).
 PXE_UINT32 FrameLen;

 // Length of the media header in bytes.
 PXE_UINT16 MediaheaderLen;

 // Number of packet fragment descriptors.
 PXE_UINT16 FragCnt;

 // Array of frame fragment descriptors. The first byte of the
 // first fragment is also the first byte of the media header.
 struct {

// Address of this frame fragment. This address must be a
// processor-based address for S/W UNDI and a device-based
// address for H/W UNDI.
PXE_UINT64 FragAddr;

// Length of this frame fragment.
PXE_UINT32 FragLen;

// Reserved, must be set to zero.
PXE_UINT32 reserved;

 } FragDesc[n];
} PXE_CPB_TRANSMIT_FRAGMENTS;
#pragma pack()

Extensible Firmware Interface Specification

E-88 12/01/02 Version 1.10

E.4.18.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Use the Get Status command to see
when frame buffers can be reused.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.18.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Use the Get Status command to see
when frame buffers can be reused.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

BUFFER_FULL Transmit buffer is full. Call Get Status command to empty buffer.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-89

E.4.19 Receive

When the network adapter has received a frame, this command is used to copy the frame into
driver/application storage. Once a frame has been copied, it is removed from the receive queue.

E.4.19.1 Issuing the Command
To issue a Receive command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Receive command

OpCode PXE_OPCODE_RECEIVE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE)

DBsize sizeof(PXE_DB_RECEIVE)

CPBaddr Address of a PXE_CPB_RECEIVE structure.

DBaddr Address of a PXE_DB_RECEIVE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. For each complete received frame, a receive buffer large enough to
contain the entire unfragmented frame needs to be described in the CPB. Note that if a smaller than
required buffer is provided, only a portion of the packet is received into the buffer, and the
remainder of the packet is lost. Subsequent attempts to receive the same packet with a corrected
(larger) buffer will be unsuccessful, because the packet will have been flushed from the queue.
#pragma pack(1)
typedef struct s_pxe_cpb_receive {

 // Address of first byte of receive buffer. This is also the
 // first byte of the frame header. This address must be a
 // processor-based address for S/W UNDI and a device-based
 // address for H/W UNDI.

 PXE_UINT64 BufferAddr;

 // Length of receive buffer. This must be large enough to hold
 // the received frame (media header + data). If the length of
 // smaller than the received frame, data will be lost.
 PXE_UINT32 BufferLen;

 // Reserved, must be set to zero.
 PXE_UINT32 reserved;
} PXE_CPB_RECEIVE;
#pragma pack()

Extensible Firmware Interface Specification

E-90 12/01/02 Version 1.10

E.4.19.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frames received and DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.19.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Frames received and DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

NO_DATA Receive buffers are empty.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

 32/64-Bit UNDI Specification

Version 1.10 12/01/02 E-91

Using the DB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple
DBs can be packed together.
#pragma pack(1)
typedef struct s_pxe_db_receive {

 // Source and destination MAC addresses from media header.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Length of received frame. May be larger than receive buffer
 // size. The receive buffer will not be overwritten. This is
 // how to tell if data was lost because the receive buffer was
 // too small.
 PXE_UINT32 FrameLen;

 // Protocol type from media header.
 PXE_PROTOCOL Protocol;

 // Length of media header in received frame.
 PXE_UINT16 MediaHeaderLen;

 // Type of receive frame.
 PXE_FRAME_TYPE Type;

 // Reserved, must be zero.
 PXE_UINT8 reserved[7];
} PXE_DB_RECEIVE;
#pragma pack()

Extensible Firmware Interface Specification

E-92 12/01/02 Version 1.10

E.5 UNDI as an EFI Runtime Driver

This section defines the interface between UNDI and EFI and how UNDI must be initialized as an
EFI runtime driver.

In the EFI environment, UNDI must implement the Network Interface Identifier (NII) protocol and
install an interface pointer of the type NII protocol with EFI. It must also install a device path
protocol with a device path that includes the hardware device path (such as PCI) appended with the
NIC’s MAC address. If the UNDI drives more than one NIC device, it must install one set of NII
and device path protocols for each device it controls.

UNDI must be compiled as a runtime driver so that when the operating system loads, a universal
protocol driver can use the UNDI driver to access the NIC hardware.

For the universal driver to be able to find UNDI, UNDI must install a configuration table (using the
EFI boot service InstallConfigurationTable()) for the GUID
NETWORK_INTERFACE_IDENTIFIER_PROTOCOL. The format of the configuration table for
UNDI is defined as follows.
struct undiconfig_table {
 UINT32 NumberOfInterfaces; // The number of NIC devices

// that this UNDI controls.
UINT32 reserved;

 struct undiconfigtable *nextlink;
// A pointer to the next UNDI
// configuration table.

 struct {
 VOID *NII_InterfacePointer;

// Pointer to the NII interface structure.
 VOID *DevicePathPointer;

// pointer to the device path for this NIC
 } NII_entry[n]; // The length of this array is given in

// the NumberOfInterfaces field.
} UNDI_CONFIG_TABLE;

Since there can only be one configuration table associated with any GUID and there can be more
than one UNDI loaded, every instance of UNDI must check for any previous installations of the
configuration tables and if there are any, it must traverse through the list of all UNDI configuration
tables using the nextlink and install itself as the nextlink of the last table in the list.

The universal protocol driver is responsible for converting all the pointers in the
UNDI_CONFIGURATION_TABLE to virtual addresses before accessing them. However, UNDI
must install an event handler for the SET_VIRTUAL_ADDRESS event and convert all its internal
pointers into virtual addresses when the event occurs for the universal protocol driver to be able
to use UNDI.

Version 1.10 12/01/02 F-1

Appendix F
Using the Simple Pointer Protocol

The Simple Pointer Protocol is intended to provide a simple mechanism for an EFI application to
interact with the user with some type of pointer device. To keep this interface simple, many of the
custom controls that are typically present in an OS-present environment were left out. This
includes the ability to adjust the double-click speed and the ability to adjust the pointer speed.
Instead, the recommendations for how the Simple Pointer Protocol should be used are listed here.

X-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output
display, the movement along the x-axis should move the pointer or cursor horizontally.

Y-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output
display, the movement along the y-axis should move the pointer or cursor vertically.

Z-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output
display, and the application that is using the Simple Pointer Protocol supports scrolling, then the
movement along the z-axis should scroll the output display.

Double Click Speed:

If two clicks of the same button on a pointer occur in less than 0.5 seconds, then a double-click
event has occurred. If a the same button is pressed with more than 0.5 seconds between clicks,
then this is interpreted as two single-click events.

Pointer Speed:

The Simple Pointer Protocol returns the movement of the pointer device along an axis in counts.
The Simple Pointer Protocol also contains a set of resolution fields that define the number of
counts that will be received for each millimeter of movement of the pointer device along an axis.
From these two values, the consumer of this protocol can determine the distance the pointer
device has been moved in millimeters along an axis. For most applications, movement of a
pointer device will result in the movement of a pointer on the screen. For each millimeter of
motion by the pointer device in the x-axis, the pointer on the screen will be moved 2 percent of
the screen width. For each millimeter of motion by the pointer device in the y-axis, the pointer on
the screen will be moved 2 percent of the screen height.

Extensible Firmware Interface Specification

F-2 12/01/02 Version 1.10

Version 1.10 12/01/02 G-1

Appendix G
Using the EFI SCSI Pass Thru Protocol

This appendix describes how an EFI utility might gain access to the EFI SCSI Pass Thru interfaces.
The basic concept is to use the LocateHandle() boot service to retrieve the list of handles that
support the EFI_SCSI_PASS_THRU_Protocol. Each of these handles represents a different
SCSI channel present in the system. Each of these handles can then be used the retrieve the
EFI_SCSI_PASS_THRU_Protocol interface with the HandleProtocol() boot service.
The EFI_SCSI_PASS_THRU_Protocol interface provides the services required to access any
of the SCSI devices attached to a SCSI channel. The services of the
EFI_SCSI_PASS_THRU_Protocol are then to loop through the Target IDs of all the SCSI
devices on the SCSI channel.

#include “efi.h”
#include “efilib.h”

#include EFI_PROTOCOL_DEFINITION(ScsiPassThru)

EFI_GUID gEfiScsiPassThruProtocolGuid = EFI_SCSI_PASS_THRU_PROTOCOL_GUID;

EFI_STATUS
UtilityEntryPoint(
 EFI_HANDLE ImageHandle,
 EFI_SYSTEM_TABLE SystemTable
)
{
 EFI_STATUS Status;
 UINTN NoHandles;
 EFI_HANDLE *HandleBuffer;
 UINTN Index;
 EFI_SCSI_PASS_THRU_PROTOCOL *ScsiPassThruProtocol;

 //
 // Initialize EFI Library
 //
 InitializeLib (ImageHandle, SystemTable);

 //
 // Get list of handles that support the
 // EFI_SCSI_PASS_THRU_PROTOCOL
 //
 NoHandles = 0;
 HandleBuffer = NULL;
 Status = LibLocateHandle(
 ByProtocol,
 &gEfiScsiPassThruProtocolGuid,
 NULL,
 &NoHandles,
 &HandleBuffer
);

Extensible Firmware Interface Specification

G-2 12/01/02 Version 1.10

 if (EFI_ERROR(Status)) {
 BS->Exit(ImageHandle,EFI_SUCCESS,0,NULL);
 }

 //
 // Loop through all the handles that support
 // EFI_SCSI_PASS_THRU
 //
 for (Index = 0; Index < NoHandles; Index++) {

 //
 // Get the EFI_SCSI_PASS_THRU_PROTOCOL Interface
 // on each handle
 //
 BS->HandleProtocol(
 HandleBuffer[Index],
 &gEfiScsiPassThruProtocolGuid,
 (VOID **)&ScsiPassThruProtocol
);

 if (!EFI_ERROR(Status)) {

 //
 // Use the EFI_SCSI_PASS_THRU Interface to
 // perform tests
 //
 Status = DoScsiTests(ScsiPassThruProtocol);
 }
 }
 return EFI_SUCCESS;
}

EFI_STATUS
DoScsiTests(
 EFI_SCSI_PASS_THRU _PROTOCOL *ScsiPassThruProtocol
)

{
 EFI_STATUS Status;
 UINT32 Target;
 UINT64 Lun;
 EFI_SCSI_PASS_THRU_SCSI_REQUEST_PACKET Packet;
 EFI_EVENT Event;

 Using the EFI SCSI Pass Thru Protocol

Version 1.10 12/01/02 G-3

 //
 // Get first Target ID and LUN on the SCSI channel
 //
 Target = 0xffffffff;
 Lun = 0;
 Status = ScsiPassThruProtocol->GetNextDevice(
 ScsiPassThruProtocol,
 &Target,
 &Lun
);

 //
 // Loop through all the SCSI devices on the SCSI channel
 //
 while (!EFI_ERROR (Status)) {

 //
 // Blocking I/O example.
 // Fill in Packet before calling PassThru()
 //
 Status = ScsiPassThruProtocol->PassThru(
 ScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 NULL
);

 //
 // Non Blocking I/O
 // Fill in Packet and create Event before calling PassThru()
 //
 Status = ScsiPassThruProtocol->PassThru(
 ScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 &Event
);

 //
 // Get next Target ID and LUN on the SCSI channel
 //
 Status = ScsiPassThruProtocol->GetNextDevice(
 ScsiPassThruProtocol,
 &Target,
 &Lun
);
 }

 return EFI_SUCCESS;
}

Extensible Firmware Interface Specification

G-4 12/01/02 Version 1.10

Version 1.10 12/01/02 H-1

Appendix H
Compression Source Code

/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Compress.c

Abstract:

 Compression routine. The compression algorithm is a mixture of
 LZ77 and Huffman Coding. LZ77 transforms the source data into a
 sequence of Original Characters and Pointers to repeated strings.
 This sequence is further divided into Blocks and Huffman codings
 are applied to each Block.

Revision History:
--*/

#include <string.h>
#include <stdlib.h>
#include "eficommon.h"

//
// Macro Definitions
//

typedef INT16 NODE;
#define UINT8_MAX 0xff
#define UINT8_BIT 8
#define THRESHOLD 3
#define INIT_CRC 0
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define PERC_FLAG 0x8000U
#define CODE_BIT 16
#define NIL 0
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(p, c) ((p) + ((c) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY 0xA001
#define UPDATE_CRC(c) mCrc = mCrcTable[(mCrc ^ (c)) & 0xFF] ^ (mCrc >>
UINT8_BIT)

//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//

#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define PBIT 4

Extensible Firmware Interface Specification

H-2 12/01/02 Version 1.10

#define NT (CODE_BIT + 3)
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

//
// Function Prototypes
//

STATIC
VOID
PutDword(
 IN UINT32 Data
);

STATIC
EFI_STATUS
AllocateMemory (
);

STATIC
VOID
FreeMemory (
);

STATIC
VOID
InitSlide (
);

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
);

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
);

STATIC
VOID
Split (
 IN NODE Old
);

STATIC
VOID
InsertNode (
);

 Compression Source Code

Version 1.10 12/01/02 H-3

STATIC
VOID
DeleteNode (
);

STATIC
VOID
GetNextMatch (
);

STATIC
EFI_STATUS
Encode (
);

STATIC
VOID
CountTFreq (
);

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
);

STATIC
VOID
WriteCLen (
);

STATIC
VOID
EncodeC (
 IN INT32 c
);

STATIC
VOID
EncodeP (
 IN UINT32 p
);

STATIC
VOID
SendBlock (
);

STATIC
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
);

Extensible Firmware Interface Specification

H-4 12/01/02 Version 1.10

STATIC
VOID
HufEncodeStart (
);

STATIC
VOID
HufEncodeEnd (
);

STATIC
VOID
MakeCrcTable (
);

STATIC
VOID
PutBits (
 IN INT32 n,
 IN UINT32 x
);

STATIC
INT32
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
);

STATIC
VOID
InitPutBits (
);

STATIC
VOID
CountLen (
 IN INT32 i
);

STATIC
VOID
MakeLen (
 IN INT32 Root
);

STATIC
VOID
DownHeap (
 IN INT32 i
);

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
);

 Compression Source Code

Version 1.10 12/01/02 H-5

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
 OUT UINT16 CodeParm[]
);

//
// Global Variables
//

STATIC UINT8 *mSrc, *mDst, *mSrcUpperLimit, *mDstUpperLimit;

STATIC UINT8 *mLevel, *mText, *mChildCount, *mBuf, mCLen[NC], mPTLen[NPT],
*mLen;
STATIC INT16 mHeap[NC + 1];
STATIC INT32 mRemainder, mMatchLen, mBitCount, mHeapSize, mN;
STATIC UINT32 mBufSiz = 0, mOutputPos, mOutputMask, mSubBitBuf, mCrc;
STATIC UINT32 mCompSize, mOrigSize;

STATIC UINT16 *mFreq, *mSortPtr, mLenCnt[17], mLeft[2 * NC - 1], mRight[2 * NC
- 1],
 mCrcTable[UINT8_MAX + 1], mCFreq[2 * NC - 1], mCTable[4096],
mCCode[NC],
 mPFreq[2 * NP - 1], mPTCode[NPT], mTFreq[2 * NT - 1];

STATIC NODE mPos, mMatchPos, mAvail, *mPosition, *mParent, *mPrev, *mNext =
NULL;

//
// functions
//

EFI_STATUS
Compress (
 IN UINT8 *SrcBuffer,
 IN UINT32 SrcSize,
 IN UINT8 *DstBuffer,
 IN OUT UINT32 *DstSize
)
/*++

Routine Description:

 The main compression routine.

Arguments:

 SrcBuffer - The buffer storing the source data
 SrcSize - The size of the source data
 DstBuffer - The buffer to store the compressed data
 DstSize - On input, the size of DstBuffer; On output,
 the size of the actual compressed data.

Extensible Firmware Interface Specification

H-6 12/01/02 Version 1.10

Returns:

 EFI_BUFFER_TOO_SMALL - The DstBuffer is too small. In this case,
 DstSize contains the size needed.
 EFI_SUCCESS - Compression is successful.

--*/
{
 EFI_STATUS Status = EFI_SUCCESS;

 //
 // Initializations
 //

 mBufSiz = 0;
 mBuf = NULL;
 mText = NULL;
 mLevel = NULL;
 mChildCount = NULL;
 mPosition = NULL;
 mParent = NULL;
 mPrev = NULL;
 mNext = NULL;

 mSrc = SrcBuffer;
 mSrcUpperLimit = mSrc + SrcSize;
 mDst = DstBuffer;
 mDstUpperLimit = mDst + *DstSize;

 PutDword(0L);
 PutDword(0L);

 MakeCrcTable ();

 mOrigSize = mCompSize = 0;
 mCrc = INIT_CRC;

 //
 // Compress it
 //

 Status = Encode();
 if (EFI_ERROR (Status)) {
 return EFI_OUT_OF_RESOURCES;
 }

 //
 // Null terminate the compressed data
 //
 if (mDst < mDstUpperLimit) {
 *mDst++ = 0;
 }

 //
 // Fill in compressed size and original size
 //
 mDst = DstBuffer;
 PutDword(mCompSize+1);
 PutDword(mOrigSize);

 Compression Source Code

Version 1.10 12/01/02 H-7

 //
 // Return
 //

 if (mCompSize + 1 + 8 > *DstSize) {
 *DstSize = mCompSize + 1 + 8;
 return EFI_BUFFER_TOO_SMALL;
 } else {
 *DstSize = mCompSize + 1 + 8;
 return EFI_SUCCESS;
 }

}

STATIC
VOID
PutDword(
 IN UINT32 Data
)
/*++

Routine Description:

 Put a dword to output stream

Arguments:

 Data - the dword to put

Returns: (VOID)

--*/
{
 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x08)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x10)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x18)) & 0xff);
 }
}

STATIC
EFI_STATUS
AllocateMemory ()
/*++

Extensible Firmware Interface Specification

H-8 12/01/02 Version 1.10

Routine Description:

 Allocate memory spaces for data structures used in compression process

Argements: (VOID)

Returns:

 EFI_SUCCESS - Memory is allocated successfully
 EFI_OUT_OF_RESOURCES - Allocation fails

--*/
{
 UINT32 i;

 mText = malloc (WNDSIZ * 2 + MAXMATCH);
 for (i = 0; i < WNDSIZ * 2 + MAXMATCH; i ++) {
 mText[i] = 0;
 }
 mLevel = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mLevel));
 mChildCount = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mChildCount));
 mPosition = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mPosition));
 mParent = malloc (WNDSIZ * 2 * sizeof(*mParent));
 mPrev = malloc (WNDSIZ * 2 * sizeof(*mPrev));
 mNext = malloc ((MAX_HASH_VAL + 1) * sizeof(*mNext));

 mBufSiz = 16 * 1024U;
 while ((mBuf = malloc(mBufSiz)) == NULL) {
 mBufSiz = (mBufSiz / 10U) * 9U;
 if (mBufSiz < 4 * 1024U) {
 return EFI_OUT_OF_RESOURCES;
 }
 }
 mBuf[0] = 0;

 return EFI_SUCCESS;
}

VOID
FreeMemory ()
/*++

Routine Description:

 Called when compression is completed to free memory previously allocated.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 if (mText) {
 free (mText);
 }

 if (mLevel) {
 free (mLevel);
 }

 Compression Source Code

Version 1.10 12/01/02 H-9

 if (mChildCount) {
 free (mChildCount);
 }

 if (mPosition) {
 free (mPosition);
 }

 if (mParent) {
 free (mParent);
 }

 if (mPrev) {
 free (mPrev);
 }

 if (mNext) {
 free (mNext);
 }

 if (mBuf) {
 free (mBuf);
 }

 return;
}

STATIC
VOID
InitSlide ()
/*++

Routine Description:

 Initialize String Info Log data structures

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE i;

 for (i = WNDSIZ; i <= WNDSIZ + UINT8_MAX; i++) {
 mLevel[i] = 1;
 mPosition[i] = NIL; /* sentinel */
 }
 for (i = WNDSIZ; i < WNDSIZ * 2; i++) {
 mParent[i] = NIL;
 }
 mAvail = 1;
 for (i = 1; i < WNDSIZ - 1; i++) {
 mNext[i] = (NODE)(i + 1);
 }

Extensible Firmware Interface Specification

H-10 12/01/02 Version 1.10

 mNext[WNDSIZ - 1] = NIL;
 for (i = WNDSIZ * 2; i <= MAX_HASH_VAL; i++) {
 mNext[i] = NIL;
 }
}

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
)
/*++

Routine Description:

 Find child node given the parent node and the edge character

Arguments:

 q - the parent node
 c - the edge character

Returns:

 The child node (NIL if not found)

--*/
{
 NODE r;

 r = mNext[HASH(q, c)];
 mParent[NIL] = q; /* sentinel */
 while (mParent[r] != q) {
 r = mNext[r];
 }

 return r;
}

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
)
/*++

Routine Description:

 Create a new child for a given parent node.

Arguments:

 q - the parent node
 c - the edge character
 r - the child node

 Compression Source Code

Version 1.10 12/01/02 H-11

Returns: (VOID)

--*/
{
 NODE h, t;

 h = (NODE)HASH(q, c);
 t = mNext[h];
 mNext[h] = r;
 mNext[r] = t;
 mPrev[t] = r;
 mPrev[r] = h;
 mParent[r] = q;
 mChildCount[q]++;
}

STATIC
VOID
Split (
 NODE Old
)
/*++

Routine Description:

 Split a node.

Arguments:

 Old - the node to split

Returns: (VOID)

--*/
{
 NODE New, t;

 New = mAvail;
 mAvail = mNext[New];
 mChildCount[New] = 0;
 t = mPrev[Old];
 mPrev[New] = t;
 mNext[t] = New;
 t = mNext[Old];
 mNext[New] = t;
 mPrev[t] = New;
 mParent[New] = mParent[Old];
 mLevel[New] = (UINT8)mMatchLen;
 mPosition[New] = mPos;
 MakeChild(New, mText[mMatchPos + mMatchLen], Old);
 MakeChild(New, mText[mPos + mMatchLen], mPos);
}

STATIC
VOID
InsertNode ()
/*++

Extensible Firmware Interface Specification

H-12 12/01/02 Version 1.10

Routine Description:

 Insert string info for current position into the String Info Log

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, j, t;
 UINT8 c, *t1, *t2;

 if (mMatchLen >= 4) {

 //
 // We have just got a long match, the target tree
 // can be located by MatchPos + 1. Travese the tree
 // from bottom up to get to a proper starting point.
 // The usage of PERC_FLAG ensures proper node deletion
 // in DeleteNode() later.
 //

 mMatchLen--;
 r = (INT16)((mMatchPos + 1) | WNDSIZ);
 while ((q = mParent[r]) == NIL) {
 r = mNext[r];
 }
 while (mLevel[q] >= mMatchLen) {
 r = q; q = mParent[q];
 }
 t = q;
 while (mPosition[t] < 0) {
 mPosition[t] = mPos;
 t = mParent[t];
 }
 if (t < WNDSIZ) {
 mPosition[t] = (NODE)(mPos | PERC_FLAG);
 }
 } else {

 //
 // Locate the target tree
 //

 q = (INT16)(mText[mPos] + WNDSIZ);
 c = mText[mPos + 1];
 if ((r = Child(q, c)) == NIL) {
 MakeChild(q, c, mPos);
 mMatchLen = 1;
 return;
 }
 mMatchLen = 2;
 }

 //
 // Traverse down the tree to find a match.
 // Update Position value along the route.
 // Node split or creation is involved.
 //

 Compression Source Code

Version 1.10 12/01/02 H-13

 for (; ;) {
 if (r >= WNDSIZ) {
 j = MAXMATCH;
 mMatchPos = r;
 } else {
 j = mLevel[r];
 mMatchPos = (NODE)(mPosition[r] & ~PERC_FLAG);
 }
 if (mMatchPos >= mPos) {
 mMatchPos -= WNDSIZ;
 }
 t1 = &mText[mPos + mMatchLen];
 t2 = &mText[mMatchPos + mMatchLen];
 while (mMatchLen < j) {
 if (*t1 != *t2) {
 Split(r);
 return;
 }
 mMatchLen++;
 t1++;
 t2++;
 }
 if (mMatchLen >= MAXMATCH) {
 break;
 }
 mPosition[r] = mPos;
 q = r;
 if ((r = Child(q, *t1)) == NIL) {
 MakeChild(q, *t1, mPos);
 return;
 }
 mMatchLen++;
 }
 t = mPrev[r];
 mPrev[mPos] = t;
 mNext[t] = mPos;
 t = mNext[r];
 mNext[mPos] = t;
 mPrev[t] = mPos;
 mParent[mPos] = q;
 mParent[r] = NIL;

 //
 // Special usage of ’next’
 //
 mNext[r] = mPos;

}

STATIC
VOID
DeleteNode ()
/*++

Routine Description:

 Delete outdated string info. (The Usage of PERC_FLAG
 ensures a clean deletion)

Extensible Firmware Interface Specification

H-14 12/01/02 Version 1.10

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, s, t, u;

 if (mParent[mPos] == NIL) {
 return;
 }

 r = mPrev[mPos];
 s = mNext[mPos];
 mNext[r] = s;
 mPrev[s] = r;
 r = mParent[mPos];
 mParent[mPos] = NIL;
 if (r >= WNDSIZ || --mChildCount[r] > 1) {
 return;
 }
 t = (NODE)(mPosition[r] & ~PERC_FLAG);
 if (t >= mPos) {
 t -= WNDSIZ;
 }
 s = t;
 q = mParent[r];
 while ((u = mPosition[q]) & PERC_FLAG) {
 u &= ~PERC_FLAG;
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ);
 q = mParent[q];
 }
 if (q < WNDSIZ) {
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ | PERC_FLAG);
 }
 s = Child(r, mText[t + mLevel[r]]);
 t = mPrev[s];
 u = mNext[s];
 mNext[t] = u;
 mPrev[u] = t;
 t = mPrev[r];
 mNext[t] = s;
 mPrev[s] = t;
 t = mNext[r];
 mPrev[t] = s;
 mNext[s] = t;

 Compression Source Code

Version 1.10 12/01/02 H-15

 mParent[s] = mParent[r];
 mParent[r] = NIL;
 mNext[r] = mAvail;
 mAvail = r;
}

STATIC
VOID
GetNextMatch ()
/*++

Routine Description:

 Advance the current position (read in new data if needed).
 Delete outdated string info. Find a match string for current position.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 n;

 mRemainder--;
 if (++mPos == WNDSIZ * 2) {
 memmove(&mText[0], &mText[WNDSIZ], WNDSIZ + MAXMATCH);
 n = FreadCrc(&mText[WNDSIZ + MAXMATCH], WNDSIZ);
 mRemainder += n;
 mPos = WNDSIZ;
 }
 DeleteNode();
 InsertNode();
}

STATIC
EFI_STATUS
Encode ()
/*++

Routine Description:

 The main controlling routine for compression process.

Arguments: (VOID)

Returns:

 EFI_SUCCESS - The compression is successful
 EFI_OUT_0F_RESOURCES - Not enough memory for compression process

--*/
{
 EFI_STATUS Status;
 INT32 LastMatchLen;
 NODE LastMatchPos;

 Status = AllocateMemory();
 if (EFI_ERROR(Status)) {
 FreeMemory();

Extensible Firmware Interface Specification

H-16 12/01/02 Version 1.10

 return Status;
 }

 InitSlide();

 HufEncodeStart();

 mRemainder = FreadCrc(&mText[WNDSIZ], WNDSIZ + MAXMATCH);

 mMatchLen = 0;
 mPos = WNDSIZ;
 InsertNode();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 while (mRemainder > 0) {
 LastMatchLen = mMatchLen;
 LastMatchPos = mMatchPos;
 GetNextMatch();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }

 if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {

 //
 // Not enough benefits are gained by outputting a pointer,
 // so just output the original character
 //

 Output(mText[mPos - 1], 0);
 } else {

 //
 // Outputting a pointer is beneficial enough, do it.
 //

 Output(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
 (mPos - LastMatchPos - 2) & (WNDSIZ - 1));
 while (--LastMatchLen > 0) {
 GetNextMatch();
 }
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 }
 }

 HufEncodeEnd();
 FreeMemory();
 return EFI_SUCCESS;
}

STATIC
VOID
CountTFreq ()
/*++

 Compression Source Code

Version 1.10 12/01/02 H-17

Routine Description:

 Count the frequencies for the Extra Set

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 for (i = 0; i < NT; i++) {
 mTFreq[i] = 0;
 }
 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 i = 0;
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;
 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 mTFreq[0] = (UINT16)(mTFreq[0] + Count);
 } else if (Count <= 18) {
 mTFreq[1]++;
 } else if (Count == 19) {
 mTFreq[0]++;
 mTFreq[1]++;
 } else {
 mTFreq[2]++;
 }
 } else {
 mTFreq[k + 2]++;
 }
 }
}

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
)
/*++

Routine Description:

 Outputs the code length array for the Extra Set or the Position Set.

Extensible Firmware Interface Specification

H-18 12/01/02 Version 1.10

Arguments:

 n - the number of symbols
 nbit - the number of bits needed to represent ’n’
 Special - the special symbol that needs to be take care of

Returns: (VOID)

--*/
{
 INT32 i, k;

 while (n > 0 && mPTLen[n - 1] == 0) {
 n--;
 }
 PutBits(nbit, n);
 i = 0;
 while (i < n) {
 k = mPTLen[i++];
 if (k <= 6) {
 PutBits(3, k);
 } else {
 PutBits(k - 3, (1U << (k - 3)) - 2);
 }
 if (i == Special) {
 while (i < 6 && mPTLen[i] == 0) {
 i++;
 }
 PutBits(2, (i - 3) & 3);
 }
 }
}

STATIC
VOID
WriteCLen ()
/*++

Routine Description:

 Outputs the code length array for Char&Length Set

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 PutBits(CBIT, n);
 i = 0;
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;

 Compression Source Code

Version 1.10 12/01/02 H-19

 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 for (k = 0; k < Count; k++) {
 PutBits(mPTLen[0], mPTCode[0]);
 }
 } else if (Count <= 18) {
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, Count - 3);
 } else if (Count == 19) {
 PutBits(mPTLen[0], mPTCode[0]);
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, 15);
 } else {
 PutBits(mPTLen[2], mPTCode[2]);
 PutBits(CBIT, Count - 20);
 }
 } else {
 PutBits(mPTLen[k + 2], mPTCode[k + 2]);
 }
 }
}

STATIC
VOID
EncodeC (
 IN INT32 c
)
{
 PutBits(mCLen[c], mCCode[c]);
}

STATIC
VOID
EncodeP (
 IN UINT32 p
)
{
 UINT32 c, q;

 c = 0;
 q = p;
 while (q) {
 q >>= 1;
 c++;
 }
 PutBits(mPTLen[c], mPTCode[c]);
 if (c > 1) {
 PutBits(c - 1, p & (0xFFFFU >> (17 - c)));
 }
}

STATIC
VOID
SendBlock ()
/*++

Extensible Firmware Interface Specification

H-20 12/01/02 Version 1.10

Routine Description:

 Huffman code the block and output it.

Argument: (VOID)

Returns: (VOID)

--*/
{
 UINT32 i, k, Flags, Root, Pos, Size;
 Flags = 0;

 Root = MakeTree(NC, mCFreq, mCLen, mCCode);
 Size = mCFreq[Root];
 PutBits(16, Size);
 if (Root >= NC) {
 CountTFreq();
 Root = MakeTree(NT, mTFreq, mPTLen, mPTCode);
 if (Root >= NT) {
 WritePTLen(NT, TBIT, 3);
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, Root);
 }
 WriteCLen();
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, 0);
 PutBits(CBIT, 0);
 PutBits(CBIT, Root);
 }
 Root = MakeTree(NP, mPFreq, mPTLen, mPTCode);
 if (Root >= NP) {
 WritePTLen(NP, PBIT, -1);
 } else {
 PutBits(PBIT, 0);
 PutBits(PBIT, Root);
 }
 Pos = 0;
 for (i = 0; i < Size; i++) {
 if (i % UINT8_BIT == 0) {
 Flags = mBuf[Pos++];
 } else {
 Flags <<= 1;
 }
 if (Flags & (1U << (UINT8_BIT - 1))) {
 EncodeC(mBuf[Pos++] + (1U << UINT8_BIT));
 k = mBuf[Pos++] << UINT8_BIT;
 k += mBuf[Pos++];
 EncodeP(k);
 } else {
 EncodeC(mBuf[Pos++]);
 }
 }
 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }

 Compression Source Code

Version 1.10 12/01/02 H-21

 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
}

STATIC
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
)
/*++

Routine Description:

 Outputs an Original Character or a Pointer

Arguments:

 c - The original character or the ’String Length’ element of a Pointer
 p - The ’Position’ field of a Pointer

Returns: (VOID)

--*/
{
 STATIC UINT32 CPos;

 if ((mOutputMask >>= 1) == 0) {
 mOutputMask = 1U << (UINT8_BIT - 1);
 if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {
 SendBlock();
 mOutputPos = 0;
 }
 CPos = mOutputPos++;
 mBuf[CPos] = 0;
 }
 mBuf[mOutputPos++] = (UINT8) c;
 mCFreq[c]++;
 if (c >= (1U << UINT8_BIT)) {
 mBuf[CPos] |= mOutputMask;
 mBuf[mOutputPos++] = (UINT8)(p >> UINT8_BIT);
 mBuf[mOutputPos++] = (UINT8) p;
 c = 0;
 while (p) {
 p >>= 1;
 c++;
 }
 mPFreq[c]++;
 }
}

Extensible Firmware Interface Specification

H-22 12/01/02 Version 1.10

STATIC
VOID
HufEncodeStart ()
{
 INT32 i;

 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }
 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
 mOutputPos = mOutputMask = 0;
 InitPutBits();
 return;
}

STATIC
VOID
HufEncodeEnd ()
{
 SendBlock();

 //
 // Flush remaining bits
 //
 PutBits(UINT8_BIT - 1, 0);

 return;
}

STATIC
VOID
MakeCrcTable ()
{
 UINT32 i, j, r;

 for (i = 0; i <= UINT8_MAX; i++) {
 r = i;
 for (j = 0; j < UINT8_BIT; j++) {
 if (r & 1) {
 r = (r >> 1) ^ CRCPOLY;
 } else {
 r >>= 1;
 }
 }
 mCrcTable[i] = (UINT16)r;
 }
}

STATIC
VOID
PutBits (
 IN INT32 n,
 IN UINT32 x
)
/*++

 Compression Source Code

Version 1.10 12/01/02 H-23

Routine Description:

 Outputs rightmost n bits of x

Argments:

 n - the rightmost n bits of the data is used
 x - the data

Returns: (VOID)

--*/
{
 UINT8 Temp;

 if (n < mBitCount) {
 mSubBitBuf |= x << (mBitCount -= n);
 } else {

 Temp = (UINT8)(mSubBitBuf | (x >> (n -= mBitCount)));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 if (n < UINT8_BIT) {
 mSubBitBuf = x << (mBitCount = UINT8_BIT - n);
 } else {

 Temp = (UINT8)(x >> (n - UINT8_BIT));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - n);
 }
 }
}

STATIC
INT32
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
)
/*++

Routine Description:

 Read in source data

Arguments:

 p - the buffer to hold the data
 n - number of bytes to read

Extensible Firmware Interface Specification

H-24 12/01/02 Version 1.10

Returns:

 number of bytes actually read

--*/
{
 INT32 i;

 for (i = 0; mSrc < mSrcUpperLimit && i < n; i++) {
 *p++ = *mSrc++;
 }
 n = i;

 p -= n;
 mOrigSize += n;
 while (--i >= 0) {
 UPDATE_CRC(*p++);
 }
 return n;
}

STATIC
VOID
InitPutBits ()
{
 mBitCount = UINT8_BIT;
 mSubBitBuf = 0;
}

STATIC
VOID
CountLen (
 IN INT32 i
)
/*++

Routine Description:

 Count the number of each code length for a Huffman tree.

Arguments:

 i - the top node

Returns: (VOID)

--*/
{
 STATIC INT32 Depth = 0;

 if (i < mN) {
 mLenCnt[(Depth < 16) ? Depth : 16]++;
 } else {
 Depth++;
 CountLen(mLeft [i]);
 CountLen(mRight[i]);
 Depth--;
 }
}

 Compression Source Code

Version 1.10 12/01/02 H-25

STATIC
VOID
MakeLen (
 IN INT32 Root
)
/*++

Routine Description:

 Create code length array for a Huffman tree

Arguments:

 Root - the root of the tree

--*/
{
 INT32 i, k;
 UINT32 Cum;

 for (i = 0; i <= 16; i++) {
 mLenCnt[i] = 0;
 }
 CountLen(Root);

 //
 // Adjust the length count array so that
 // no code will be generated longer than the designated length
 //

 Cum = 0;
 for (i = 16; i > 0; i--) {
 Cum += mLenCnt[i] << (16 - i);
 }
 while (Cum != (1U << 16)) {
 mLenCnt[16]--;
 for (i = 15; i > 0; i--) {
 if (mLenCnt[i] != 0) {
 mLenCnt[i]--;
 mLenCnt[i+1] += 2;
 break;
 }
 }
 Cum--;
 }
 for (i = 16; i > 0; i--) {
 k = mLenCnt[i];
 while (--k >= 0) {
 mLen[*mSortPtr++] = (UINT8)i;
 }
 }
}

Extensible Firmware Interface Specification

H-26 12/01/02 Version 1.10

STATIC
VOID
DownHeap (
 IN INT32 i
)
{
 INT32 j, k;

 //
 // priority queue: send i-th entry down heap
 //

 k = mHeap[i];
 while ((j = 2 * i) <= mHeapSize) {
 if (j < mHeapSize && mFreq[mHeap[j]] > mFreq[mHeap[j + 1]]) {
 j++;
 }
 if (mFreq[k] <= mFreq[mHeap[j]]) {
 break;
 }
 mHeap[i] = mHeap[j];
 i = j;
 }
 mHeap[i] = (INT16)k;
}

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
)
/*++

Routine Description:

 Assign code to each symbol based on the code length array

Arguments:

 n - number of symbols
 Len - the code length array
 Code - stores codes for each symbol

Returns: (VOID)

--*/
{
 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;
 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + mLenCnt[i]) << 1);
 }
 for (i = 0; i < n; i++) {
 Code[i] = Start[Len[i]]++;
 }
}

 Compression Source Code

Version 1.10 12/01/02 H-27

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
 OUT UINT16 CodeParm[]
)
/*++

Routine Description:

 Generates Huffman codes given a frequency distribution of symbols

Arguments:

 NParm - number of symbols
 FreqParm - frequency of each symbol
 LenParm - code length for each symbol
 CodeParm - code for each symbol

Returns:

 Root of the Huffman tree.

--*/
{
 INT32 i, j, k, Avail;

 //
 // make tree, calculate len[], return root
 //

 mN = NParm;
 mFreq = FreqParm;
 mLen = LenParm;
 Avail = mN;
 mHeapSize = 0;
 mHeap[1] = 0;
 for (i = 0; i < mN; i++) {
 mLen[i] = 0;
 if (mFreq[i]) {
 mHeap[++mHeapSize] = (INT16)i;
 }
 }
 if (mHeapSize < 2) {
 CodeParm[mHeap[1]] = 0;
 return mHeap[1];
 }
 for (i = mHeapSize / 2; i >= 1; i--) {

 //
 // make priority queue
 //
 DownHeap(i);
 }
 mSortPtr = CodeParm;
 do {
 i = mHeap[1];

Extensible Firmware Interface Specification

H-28 12/01/02 Version 1.10

 if (i < mN) {
 *mSortPtr++ = (UINT16)i;
 }
 mHeap[1] = mHeap[mHeapSize--];
 DownHeap(1);
 j = mHeap[1];
 if (j < mN) {
 *mSortPtr++ = (UINT16)j;
 }
 k = Avail++;
 mFreq[k] = (UINT16)(mFreq[i] + mFreq[j]);
 mHeap[1] = (INT16)k;
 DownHeap(1);
 mLeft[k] = (UINT16)i;
 mRight[k] = (UINT16)j;
 } while (mHeapSize > 1);

 mSortPtr = CodeParm;
 MakeLen(k);
 MakeCode(NParm, LenParm, CodeParm);

 //
 // return root
 //
 return k;
}

Version 1.10 12/01/02 I-1

Appendix I
Decompression Source Code

/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Decompress.c

Abstract:

 Decompressor.

--*/

#include "EfiCommon.h"

#define BITBUFSIZ 16
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define THRESHOLD 3
#define CODE_BIT 16
#define UINT8_MAX 0xff
#define BAD_TABLE -1

//
// C: Char&Len Set; P: Position Set; T: exTra Set
//

#define NC (0xff + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define NT (CODE_BIT + 3)
#define PBIT 4
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

typedef struct {
 UINT8 *mSrcBase; //Starting address of compressed data
 UINT8 *mDstBase; //Starting address of decompressed data

 UINT16 mBytesRemain;
 UINT16 mBitCount;
 UINT16 mBitBuf;
 UINT16 mSubBitBuf;
 UINT16 mBufSiz;
 UINT16 mBlockSize;

Extensible Firmware Interface Specification

I-2 12/01/02 Version 1.10

 UINT32 mDataIdx;
 UINT32 mCompSize;
 UINT32 mOrigSize;
 UINT32 mOutBuf;
 UINT32 mInBuf;

 UINT16 mBadTableFlag;

 UINT8 mBuffer[WNDSIZ];
 UINT16 mLeft[2 * NC - 1];
 UINT16 mRight[2 * NC - 1];
 UINT32 mBuf;
 UINT8 mCLen[NC];
 UINT8 mPTLen[NPT];
 UINT16 mCTable[4096];
 UINT16 mPTTable[256];
} SCRATCH_DATA;

//
// Function Prototypes
//

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
);

STATIC
VOID
Decode (
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
);

//
// Functions
//

EFI_STATUS
EFIAPI
GetInfo (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 OUT UINT32 *DstSize,
 OUT UINT32 *ScratchSize
)
/*++

Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.GetInfo().

 Decompression Source Code

Version 1.10 12/01/02 I-3

Arguments:

 This - Protocol instance pointer.
 Source - The source buffer containing the compressed data.
 SrcSize - The size of source buffer
 DstSize - The size of destination buffer.
 ScratchSize - The size of scratch buffer.

Returns:

 EFI_SUCCESS - The size of destination buffer and the size of
scratch buffer are successull retrieved.
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{
 UINT8 *Src;

 *ScratchSize = sizeof (SCRATCH_DATA);

 Src = Source;
 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 *DstSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);
 return EFI_SUCCESS;
}

EFI_STATUS
EFIAPI
Decompress (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 IN OUT VOID *Destination,
 IN UINT32 DstSize,
 IN OUT VOID *Scratch,
 IN UINT32 ScratchSize
)
/*++

Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.Decompress().

Arguments:

 This - The protocol instance.
 Source - The source buffer containing the compressed data.
 SrcSize - The size of the source buffer
 Destination - The destination buffer to store the decompressed data
 DstSize - The size of the destination buffer.
 Scratch - The buffer used internally by the decompress routine. This
buffer is needed to store intermediate data.
 ScratchSize - The size of scratch buffer.

Extensible Firmware Interface Specification

I-4 12/01/02 Version 1.10

Returns:

 EFI_SUCCESS - Decompression is successfull
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{
 UINT32 Index;
 UINT16 Count;
 UINT32 CompSize;
 UINT32 OrigSize;
 UINT8 *Dst1;
 EFI_STATUS Status;
 SCRATCH_DATA *Sd;
 UINT8 *Src;
 UINT8 *Dst;

 Status = EFI_SUCCESS;
 Src = Source;
 Dst = Destination;
 Dst1 = Dst;

 if (ScratchSize < sizeof (SCRATCH_DATA)) {
 return EFI_INVALID_PARAMETER;
 }

 Sd = (SCRATCH_DATA *)Scratch;

 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 CompSize = Src[0] + (Src[1] << 8) + (Src[2] << 16) + (Src[3] << 24);
 OrigSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);

 if (SrcSize < CompSize + 8) {
 return EFI_INVALID_PARAMETER;
 }

 Src = Src + 8;

 for (Index = 0; Index < sizeof(SCRATCH_DATA); Index++) {
 ((UINT8*)Sd)[Index] = 0;
 }

 Sd->mBytesRemain = (UINT16)(-1);
 Sd->mSrcBase = Src;
 Sd->mDstBase = Dst;
 Sd->mCompSize = CompSize;
 Sd->mOrigSize = OrigSize;

 //
 // Fill the first two bytes
 //
 FillBuf(Sd, BITBUFSIZ);

 while (Sd->mOrigSize > 0) {

 Count = (UINT16) (WNDSIZ < Sd->mOrigSize? WNDSIZ: Sd->mOrigSize);
 Decode (Sd, Count);

 Decompression Source Code

Version 1.10 12/01/02 I-5

 if (Sd->mBadTableFlag != 0) {
 //
 // Something wrong with the source
 //
 return EFI_INVALID_PARAMETER;
 }

 for (Index = 0; Index < Count; Index ++) {
 if (Dst1 < Dst + DstSize) {
 *Dst1++ = Sd->mBuffer[Index];
 } else {
 return EFI_INVALID_PARAMETER;
 }
 }

 Sd->mOrigSize -= Count;
 }

 if (Sd->mBadTableFlag != 0) {
 Status = EFI_INVALID_PARAMETER;
 } else {
 Status = EFI_SUCCESS;
 }

 return Status;
}

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Shift mBitBuf NumOfBits left. Read in NumOfBits of bits from source.

Arguments:

 Sd - The global scratch data
 NumOfBit - The number of bits to shift and read.

Returns: (VOID)

--*/
{
 Sd->mBitBuf = (UINT16)(Sd->mBitBuf << NumOfBits);

 while (NumOfBits > Sd->mBitCount) {

 Sd->mBitBuf |= (UINT16)(Sd->mSubBitBuf <<
 (NumOfBits = (UINT16)(NumOfBits - Sd->mBitCount)));

 if (Sd->mCompSize > 0) {

Extensible Firmware Interface Specification

I-6 12/01/02 Version 1.10

 //
 // Get 1 byte into SubBitBuf
 //
 Sd->mCompSize --;
 Sd->mSubBitBuf = 0;
 Sd->mSubBitBuf = Sd->mSrcBase[Sd->mInBuf ++];
 Sd->mBitCount = 8;

 } else {

 Sd->mSubBitBuf = 0;
 Sd->mBitCount = 8;

 }
 }

 Sd->mBitCount = (UINT16)(Sd->mBitCount - NumOfBits);
 Sd->mBitBuf |= Sd->mSubBitBuf >> Sd->mBitCount;
}

STATIC
UINT16
GetBits(
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Get NumOfBits of bits out from mBitBuf. Fill mBitBuf with subsequent
 NumOfBits of bits from source. Returns NumOfBits of bits that are
 popped out.

Arguments:

 Sd - The global scratch data.
 NumOfBits - The number of bits to pop and read.

Returns:

 The bits that are popped out.

--*/
{
 UINT16 OutBits;

 OutBits = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - NumOfBits));

 FillBuf (Sd, NumOfBits);

 return OutBits;
}

 Decompression Source Code

Version 1.10 12/01/02 I-7

STATIC
UINT16
MakeTable (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfChar,
 IN UINT8 *BitLen,
 IN UINT16 TableBits,
 OUT UINT16 *Table
)
/*++

Routine Description:

 Creates Huffman Code mapping table according to code length array.

Arguments:

 Sd - The global scratch data
 NumOfChar - Number of symbols in the symbol set
 BitLen - Code length array
 TableBits - The width of the mapping table
 Table - The table

Returns:

 0 - OK.
 BAD_TABLE - The table is corrupted.

--*/
{
 UINT16 Count[17];
 UINT16 Weight[17];
 UINT16 Start[18];
 UINT16 *p;
 UINT16 k;
 UINT16 i;
 UINT16 Len;
 UINT16 Char;
 UINT16 JuBits;
 UINT16 Avail;
 UINT16 NextCode;
 UINT16 Mask;

 for (i = 1; i <= 16; i ++) {
 Count[i] = 0;
 }

 for (i = 0; i < NumOfChar; i++) {
 Count[BitLen[i]]++;
 }

 Start[1] = 0;

 for (i = 1; i <= 16; i ++) {
 Start[i + 1] = (UINT16)(Start[i] + (Count[i] << (16 - i)));
 }

Extensible Firmware Interface Specification

I-8 12/01/02 Version 1.10

 if (Start[17] != 0) {/*(1U << 16)*/
 return (UINT16)BAD_TABLE;
 }

 JuBits = (UINT16)(16 - TableBits);

 for (i = 1; i <= TableBits; i ++) {
 Start[i] >>= JuBits;
 Weight[i] = (UINT16)(1U << (TableBits - i));
 }

 while (i <= 16) {
 Weight[i++] = (UINT16)(1U << (16 - i));
 }

 i = (UINT16)(Start[TableBits + 1] >> JuBits);

 if (i != 0) {
 k = (UINT16)(1U << TableBits);
 while (i != k) {
 Table[i++] = 0;
 }
 }

 Avail = NumOfChar;
 Mask = (UINT16)(1U << (15 - TableBits));

 for (Char = 0; Char < NumOfChar; Char++) {

 Len = BitLen[Char];
 if (Len == 0) {
 continue;
 }

 NextCode = (UINT16)(Start[Len] + Weight[Len]);

 if (Len <= TableBits) {

 for (i = Start[Len]; i < NextCode; i ++) {
 Table[i] = Char;
 }

 } else {

 k = Start[Len];
 p = &Table[k >> JuBits];
 i = (UINT16)(Len - TableBits);

 while (i != 0) {
 if (*p == 0) {
 Sd->mRight[Avail] = Sd->mLeft[Avail] = 0;
 *p = Avail ++;
 }

 if (k & Mask) {
 p = &Sd->mRight[*p];
 } else {
 p = &Sd->mLeft[*p];
 }

 Decompression Source Code

Version 1.10 12/01/02 I-9

 k <<= 1;
 i --;
 }

 *p = Char;

 }

 Start[Len] = NextCode;
 }

 //
 // Succeeds
 //
 return 0;
}

STATIC
UINT16
DecodeP (
 IN SCRATCH_DATA *Sd
)
/*++

Routine description:

 Decodes a position value.

Arguments:

 Sd - the global scratch data

Returns:

 The position value decoded.

--*/
{
 UINT16 Val;
 UINT16 Mask;

 Val = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];

 if (Val >= NP) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);

 do {

 if (Sd->mBitBuf & Mask) {
 Val = Sd->mRight[Val];
 } else {
 Val = Sd->mLeft[Val];
 }

 Mask >>= 1;
 } while (Val >= NP);
 }

Extensible Firmware Interface Specification

I-10 12/01/02 Version 1.10

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[Val]);

 if (Val) {
 Val = (UINT16)((1U << (Val - 1)) + GetBits (Sd, (UINT16)(Val - 1)));
 }

 return Val;
}

STATIC
UINT16
ReadPTLen (
 IN SCRATCH_DATA *Sd,
 IN UINT16 nn,
 IN UINT16 nbit,
 IN UINT16 Special
)
/*++

Routine Descriptiion:

 Reads code lengths for the Extra Set or the Position Set

Arguments:

 Sd - The global scratch data
 nn - Number of symbols
 nbit - Number of bits needed to represent nn
 Special - The special symbol that needs to be taken care of

Returns:

 0 - OK.
 BAD_TABLE - Table is corrupted.

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

 n = GetBits (Sd, nbit);

 if (n == 0) {
 c = GetBits (Sd, nbit);

 for (i = 0; i < 256; i ++) {
 Sd->mPTTable[i] = c;
 }

 for (i = 0; i < nn; i++) {
 Sd->mPTLen[i] = 0;
 }

 Decompression Source Code

Version 1.10 12/01/02 I-11

 return 0;
 }

 i = 0;

 while (i < n) {

 c = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - 3));

 if (c == 7) {
 Mask = 1U << (BITBUFSIZ - 1 - 3);
 while (Mask & Sd->mBitBuf) {
 Mask >>= 1;
 c += 1;
 }
 }

 FillBuf (Sd, (UINT16)((c < 7) ? 3 : c - 3));

 Sd->mPTLen [i++] = (UINT8)c;

 if (i == Special) {
 c = GetBits (Sd, 2);
 while ((INT16)(--c) >= 0) {
 Sd->mPTLen[i++] = 0;
 }
 }
 }

 while (i < nn) {
 Sd->mPTLen [i++] = 0;
 }

 return (MakeTable (Sd, nn, Sd->mPTLen, 8, Sd->mPTTable));
}

STATIC
VOID
ReadCLen (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Reads code lengths for Char&Len Set.

Arguments:

 Sd - the global scratch data

Returns: (VOID)

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

Extensible Firmware Interface Specification

I-12 12/01/02 Version 1.10

 n = GetBits(Sd, CBIT);

 if (n == 0) {
 c = GetBits(Sd, CBIT);

 for (i = 0; i < NC; i ++) {
 Sd->mCLen[i] = 0;
 }

 for (i = 0; i < 4096; i ++) {
 Sd->mCTable[i] = c;
 }

 return;
 }

 i = 0;
 while (i < n) {

 c = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];
 if (c >= NT) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);

 do {

 if (Mask & Sd->mBitBuf) {
 c = Sd->mRight [c];
 } else {
 c = Sd->mLeft [c];
 }

 Mask >>= 1;

 }while (c >= NT);
 }

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[c]);

 if (c <= 2) {

 if (c == 0) {
 c = 1;
 } else if (c == 1) {
 c = (UINT16)(GetBits (Sd, 4) + 3);
 } else if (c == 2) {
 c = (UINT16)(GetBits (Sd, CBIT) + 20);
 }

 while ((INT16)(--c) >= 0) {
 Sd->mCLen[i++] = 0;
 }

 } else {

 Decompression Source Code

Version 1.10 12/01/02 I-13

 Sd->mCLen[i++] = (UINT8)(c - 2);

 }
 }

 while (i < NC) {
 Sd->mCLen[i++] = 0;
 }

 MakeTable (Sd, NC, Sd->mCLen, 12, Sd->mCTable);

 return;
}

STATIC
UINT16
DecodeC (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Decode a character/length value.

Arguments:

 Sd - The global scratch data.

Returns:

 The value decoded.

--*/
{
 UINT16 j;
 UINT16 Mask;

 if (Sd->mBlockSize == 0) {

 //
 // Starting a new block
 //

 Sd->mBlockSize = GetBits(Sd, 16);
 Sd->mBadTableFlag = ReadPTLen (Sd, NT, TBIT, 3);
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }

 ReadCLen (Sd);

 Sd->mBadTableFlag = ReadPTLen (Sd, NP, PBIT, (UINT16)(-1));
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }
 }

Extensible Firmware Interface Specification

I-14 12/01/02 Version 1.10

 Sd->mBlockSize --;
 j = Sd->mCTable[Sd->mBitBuf >> (BITBUFSIZ - 12)];

 if (j >= NC) {
 Mask = 1U << (BITBUFSIZ - 1 - 12);

 do {
 if (Sd->mBitBuf & Mask) {
 j = Sd->mRight[j];
 } else {
 j = Sd->mLeft[j];
 }

 Mask >>= 1;
 } while (j >= NC);
 }

 //
 // Advance what we have read
 //
 FillBuf(Sd, Sd->mCLen[j]);

 return j;
}

STATIC
VOID
Decode (
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
)
 /*++

Routine Description:

 Decode NumOfBytes and put the resulting data at starting point of mBuffer.
 The buffer is circular.

Arguments:

 Sd - The global scratch data
 NumOfBytes - Number of bytes to decode

Returns: (VOID)

 --*/
{
 UINT16 di;
 UINT16 r;
 UINT16 c;

 r = 0;
 di = 0;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];

 Decompression Source Code

Version 1.10 12/01/02 I-15

 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (r >= NumOfBytes) {
 return;
 }
 Sd->mBytesRemain --;
 }

 for (;;) {
 c = DecodeC (Sd);
 if (Sd->mBadTableFlag != 0) {
 return;
 }

 if (c < 256) {

 //
 // Process an Original character
 //

 Sd->mBuffer[di++] = (UINT8)c;
 r ++;
 if (di >= WNDSIZ) {
 return;
 }

 } else {

 //
 // Process a Pointer
 //

 c = (UINT16)(c - (UINT8_MAX + 1 - THRESHOLD));
 Sd->mBytesRemain = c;

 Sd->mDataIdx = (r - DecodeP(Sd) - 1) & (WNDSIZ - 1); //Make circular

 di = r;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];
 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (di >= WNDSIZ) {
 return;
 }
 Sd->mBytesRemain --;
 }
 }
 }

 return;
}

Extensible Firmware Interface Specification

I-16 12/01/02 Version 1.10

Version 1.10 12/01/02 J-1

Appendix J
EFI Byte Code Virtual Machine

Opcode Summary

The following table lists the opcodes for EBC instructions. Note that opcodes only require 6 bits of
the opcode byte of EBC instructions. The other two bits are used for other encodings that are
dependent on the particular instruction.

Table J-1. EBC Virtual Machine Opcode Summary

Opcode Description

0x00 BREAK [break code]

0x01 JMP32{cs|cc} {@}R1 {Immed32|Index32}
JMP64{cs|cc} Immed64

0x02 JMP8{cs|cc} Immed8

0x03 CALL32{EX}{a} {@}R1 {Immed32|Index32}
CALL64{EX}{a} Immed64

0x04 RET

0x05 CMP[32|64]eq R1, {@}R2 {Index16|Immed16}

0x06 CMP[32|64]lte R1, {@}R2 {Index16|Immed16}

0x07 CMP[32|64]gte R1, {@}R2 {Index16|Immed16}

0x08 CMP[32|64]ulte R1, {@}R2 {Index16|Immed16}

0x09 CMP[32|64]ugte R1, {@}R2 {Index16|Immed16}

0x0A NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}

0x0B NEG[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0C ADD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0D SUB[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0E MUL[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0F MULU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x10 DIV[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x11 DIVU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x12 MOD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x13 MODU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x14 AND[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x15 OR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x16 XOR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x17 SHL[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x18 SHR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x19 ASHR[32|64] {@}R1,{@}R2 {Index16|Immed16}

continued

Extensible Firmware Interface Specification

J-2 12/01/02 Version 1.10

 Table J-1. EBC Virtual Machine Opcode Summary (continued)

Opcode Description

0x1A EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}

0x1B EXTNDW[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1C EXTNDD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1D MOVbw {@}R1 {Index16}, {@}R2 {Index16}

0x1E MOVww {@}R1 {Index16}, {@}R2 {Index16}

0x1F MOVdw {@}R1 {Index16}, {@}R2 {Index16}

0x20 MOVqw {@}R1 {Index16}, {@}R2 {Index16}

0x21 MOVbd {@}R1 {Index32}, {@}R2 {Index32}

0x22 MOVwd {@}R1 {Index32}, {@}R2 {Index32}

0x23 MOVdd {@}R1 {Index32}, {@}R2 {Index32}

0x24 MOVqd {@}R1 {Index32}, {@}R2 {Index32}

0x25 MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}

0x26 MOVsnd {@}R1 {Index32}, {@}R2 {Index32|Immed32}

0x27 Reserved

0x28 MOVqq {@}R1 {Index64}, {@}R2 {Index64}

0x29 LOADSP [Flags], R2

0x2A STORESP R1, [IP|Flags]

0x2B PUSH[32|64] {@}R1 {Index16|Immed16}

0x2C POP[32|64] {@}R1 {Index16|Immed16}

0x2D CMPI[32|64][w|d]eq {@}R1 {Index16}, Immed16|Immed32

0x2E CMPI[32|64][w|d]lte {@}R1 {Index16}, Immed16|Immed32

0x2F CMPI[32|64][w|d]gte {@}R1 {Index16}, Immed16|Immed32

0x30 CMPI[32|64][w|d]ulte {@}R1 {Index16}, Immed16|Immed32

0x31 CMPI[32|64][w|d]ugte {@}R1 {Index16}, Immed16|Immed32

0x32 MOVnw {@}R1 {Index16}, {@}R2 {Index16}

0x33 MOVnd {@}R1 {Index32}, {@}R2 {Index32}

0x34 Reserved

0x35 PUSHn {@}R1 {Index16|Immed16}

0x36 POPn {@}R1 {Index16|Immed16}

0x37 MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64

0x38 MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64

0x39 MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64

0x3A Reserved

0x3B Reserved

0x3C Reserved

0x3D Reserved

0x3E Reserved

0x3F Reserved

Version 1.10 12/01/02 K-1

Appendix K
Alphabetic Function Lists

This appendix contains two tables that list all EFI functions alphabetically. Table K-1 lists the
functions in pure alphabetic order. Functions that have the same name can be distinguished by the
associated service or protocol (column 2). For example, there are two “Flush” functions, one from
the Device I/O Protocol and one from the File System Protocol. Table K-2 orders the functions
alphabetically within a service or protocol. That is, column one names the service or protocol, and
column two lists the functions in the service or protocol.

Table K-1. Functions Listed in Alphabetic Order

Function Name Service or Protocol Subservice Function Description

AllocateBuffer Device I/O Protocol Allocates pages that are suitable
for a common buffer mapping.

AllocateBuffer PCI I/O Protocol Allocates pages that are suitable
for a common buffer mapping.

AllocateBuffer PCI Root Bridge I/O
Protocol

 Allocates pages that are suitable
for a common buffer mapping.

AllocatePages Boot Services Memory Allocation
Services

Allocates memory pages of a
particular type.

AllocatePool Boot Services Memory Allocation
Services

Allocates pool of a particular type.

Arp PXE Base Code
Protocol

 Uses the ARP protocol to resolve
a MAC address.

AsyncInterruptTransfer USB Host Controller
Protocol

 Submits an asynchronous
interrupt transfer to an interrupt
endpoint of a USB device.

AsyncIsochronousTransfer USB Host Controller
Protocol

 Submits nonblocking USB
isochronous transfer.

Attributes PCI I/O Protocol Performs an operation on the
attributes that this PCI controller
supports.

Blt UGA Draw Protocol Blt a rectangle of pixels on the
graphics screen. Blt stands for
BLock Transfer.

BuildDevicePath SCSI Passthru
Protocol

 Used to allocate and build a
device path node for a SCSI
device on a SCSI channel.

BulkTransfer USB Host Controller
Protocol

 Submits a bulk transfer to a bulk
endpoint of a USB device.

continued

Extensible Firmware Interface Specification

K-2 12/01/02 Version 1.10

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

CalculateCrc32 Boot Services Miscellaneous
Services

Computes and returns a 32-bit
CRC for a data buffer.

Callback PXE Base Code
Callback Protocol

 Callback routine used by the PXE
Base Code Dhcp(),
Discover(), Mtftp(),
UdpWrite(), and Arp()
functions.

CheckEvent Boot Services Event Services Checks whether an event is in the
signaled state.

ClearRootHubPortFeature USB Host Controller
Protocol

 Clears the feature for the specified
root hub port.

ClearScreen Simple Text Output
Protocol

 Clears the screen with the
currently set background color.

Close File System Protocol Closes the current file handle.

CloseEvent Boot Services Event Services Closes and frees an event
structure.

CloseProtocol Boot Services Protocol Handler
Services

Removes elements from the list of
agents consuming a protocol
interface.

Configuration PCI Root Bridge I/O
Protocol

 Gets the current resource settings
for this PCI root bridge

ConnectController Boot Services Protocol Handler
Services

Uses a set of precedence rules to
find the best set of drivers to
manage a controller.

ControlTransfer USB Host Controller
Protocol

 Submits a control transfer to a
target USB device.

ConvertPointer Runtime Services Virtual Memory
Services

Converts internal pointers when
switching to virtual addressing.

CopyMem Boot Services Miscellaneous
Services

Copies the contents of one buffer
to another buffer.

CopyMem PCI I/O Protocol Allows one region of PCI memory
space to be copied to another
region of PCI memory space

CopyMem PCI Root Bridge I/O
Protocol

 Allows one region of PCI root
bridge memory space to be copied
to another region of PCI root
bridge memory space.

CreateDevice UGA I/O Protocol Dynamically allocate storage for a
child UGA_DEVICE.

CreateEvent Boot Services Event Services Creates a general-purpose event
structure.

continued

Alphabetic Function Lists

Version 1.10 12/01/02 K-3

Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

CreateThunk EFI Byte Code
Protocol

Creates a thunk for an EBC image
entry point or protocol service, and
returns a pointer to the thunk.

Decompress Decompress
Protocol

Decompresses a compressed
source buffer into an
uncompressed destination buffer.

Delete File System Protocol Deletes a file.

DeleteDevice UGA I/O Protocol Free a dynamically allocated child
UGA_DEVICE object that was
allocated via CreateDevice().

Dhcp PXE Base Code
Protocol

Attempts to complete a DHCPv4
D.O.R.A. (discover / offer / request
/ acknowledge) or DHCPv6
S.A.R.R (solicit / advertise /
request / reply) sequence.

DisconnectController Boot Services Protocol Handler
Services

Informs a set of drivers to stop
managing a controller.

Discover PXE Base Code
Protocol

Attempts to complete the PXE
Boot Server and/or boot image
discovery sequence.

DispatchService UGA I/O Protocol This is the main UGA service
dispatch routine for all
UGA_IO_REQUESTs.

DriverLoaded EFI Driver Override
Protocol

Used to associate a driver image
handle with a device path returned
on a prior call.

EFI_IMAGE_ENTRY_POINT Boot Services Image Services Prototype of an EFI Image’s entry
point.

EFI_PXE_BASE_CODE
_CALLBACK

PXE Base Code
Protocol

Callback function that is invoked
when the PXE Base Code
Protocol is waiting for an event.

EnableCursor Simple Text Output
Protocol

Turns the visibility of the cursor
on/off.

Exit Boot Services Image Services Exits the image’s entry point.

ExitBootServices Boot Services Image Services Terminates boot services.

FatToStr Unicode Collation
Protocol

Converts an 8.3 FAT file name in
an OEM character set to a Null-
terminated Unicode string.

Fill Header UNDI Commands This command is used to fill the
media header(s) in transmit
packet(s).

continued

Extensible Firmware Interface Specification

K-4 12/01/02 Version 1.10

Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

Flush Device I/O Protocol Flushes any posted write data to
the device.

Flush File System Protocol Flushes all modified data
associated with the file to the
device.

Flush PCI I/O Protocol Flushes all PCI posted write
transactions to system memory.

Flush PCI Root Bridge I/O
Protocol

Flushes all PCI posted write
transactions to system memory.

FlushBlocks Block I/O Protocol Flushes any cached blocks.

ForceDefaults EFI Driver
Configuration
Protocol

Forces a driver to set the default
configuration options for a
controller.

Free Boot Integrity
Services Protocol

Frees memory structures allocated
and returned by other functions in
the EFI_BIS protocol.

FreeBuffer Device I/O Protocol Frees pages that were allocated
with AllocateBuffer().

FreeBuffer PCI I/O Protocol Frees pages that were allocated
with AllocateBuffer().

FreeBuffer PCI Root Bridge I/O
Protocol

Free pages that were allocated
with AllocateBuffer().

FreePages Boot Services Memory Allocation
Services

Frees memory pages.

FreePool Boot Services Memory Allocation
Services

Frees allocated pool.

Get Config Info UNDI Commands This command is used to retrieve
configuration information about the
NIC being controlled by the UNDI.

Get Init Info UNDI Commands This command is used to retrieve
initialization information that is
needed by drivers and
applications to initialized UNDI.

Get State UNDI Commands This command is used to
determine the operational state of
the UNDI.

Get Status UNDI Commands This command returns the current
interrupt status and/or the
transmitted buffer addresses.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-5

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

GetAttributes PCI Root Bridge I/O
Protocol

 Gets the attributes that a PCI root
bridge supports setting with
SetAttributes(), and the
attributes that a PCI root bridge is
currently using.

GetBarAttributes PCI I/O Protocol Gets the attributes that this PCI
controller supports setting on a
BAR using
SetBarAttributes(), and
retrieves the list of resource
descriptors for a BAR.

GetBootObjectAuthorization
Certificate

Boot Integrity
Services Protocol

 Retrieves the current digital
certificate (if any) used by the
EFI_BIS protocol as the source
of authorization for verifying boot
objects and altering configuration
parameters

GetBootObjectAuthorization
CheckFlag

Boot Integrity
Services Protocol

 Retrieves the current setting of the
authorization check flag that
indicates whether or not
authorization checks are required
for boot objects.

GetBootObjectAuthorization
UpdateToken

Boot Integrity
Services Protocol

 Retrieves an uninterpreted token
whose value gets included and
signed in a subsequent request to
alter the configuration parameters,
to protect against attempts to
“replay” such a request.

GetControl Serial I/O Protocol Reads the status of the control bits
on a serial device.

GetControllerName EFI Component
Name Protocol

 Retrieves a Unicode string that is
the user readable name of the
controller that is being managed
by an EFI Driver.

GetDriver EFI Bus-Specific
Driver Override
Protocol

 Uses a bus-specific algorithm to
retrieve a driver image handle for
a controller.

GetDriver EFI Driver Override
Protocol

 Retrieves the image handle of the
platform override driver for a
controller in the system.

GetDriverName EFI Component
Name Protocol

 Retrieves a Unicode string that is
the user readable name of the EFI
Driver.

continued

Extensible Firmware Interface Specification

K-6 12/01/02 Version 1.10

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

GetDriverPath EFI Driver Override
Protocol

 Retrieves the device path of the
platform override driver for a
controller in the system.

GetInfo Decompress
Protocol

 Given the compressed source
buffer, this function retrieves the
size of the uncompressed
destination buffer and the size of
the scratch buffer required to
perform the decompression.

GetInfo File System Protocol Gets the requested file or volume
information.

GetLocation PCI I/O Protocol Retrieves this PCI controller’s
current PCI bus number, device
number, and function number.

GetMaximumProcessor
Index

Debug Support
Protocol

 Returns the maximum processor
index value that may be used with
RegisterPeriodicCallback()
and
RegisterExceptionCallback()

GetMemoryMap Boot Services Memory Allocation
Services

Returns the current boot services
memory map and memory
map key.

GetMode UGA Draw Protocol Return the current frame buffer
geometry and display refresh rate.

GetNextDevice SCSI Passthru
Protocol

 Used to retrieve the list of legal
Target IDs for the SCSI devices
on a SCSI channel.

GetNextHighMonotonicCount Runtime Services Miscellaneous
Services

Returns the next high 32 bits of a
platform's monotonic counter.

GetNextMonotonicCount Boot Services Miscellaneous
Services

Returns a monotonically
increasing count for the platform.

GetNextVariableName Runtime Services Variable Services Enumerates the current variable
names.

GetPosition File System Protocol Returns the current file position.

GetRootHubPortNumber USB Host Controller
Protocol

 Retrieves the number of root hub
ports that are produced by the
USB host controller.

GetRootHubPortStatus USB Host Controller
Protocol

 Retrieves the status of the
specified root hub port.

continued

Alphabetic Function Lists

Version 1.10 12/01/02 K-7

Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

GetSignatureInfo Boot Integrity
Services Protocol

Retrieves information about the
digital signature algorithms
supported and the identity of the
installed authorization certificate, if
any.

GetState Simple Pointer
Protocol

Retrieves the current state of a
pointer device.

GetState USB Host Controller
Protocol

Retrieves the current state of the
USB host controller.

GetStatus Simple Network
Protocol

Reads the current interrupt status
and recycled transmit buffer status
from the network interface.

GetTargetLun SCSI Passthru
Protocol

Used to translate a device path
node to a Target ID and LUN.

GetTime Runtime Services Time Services Returns the current time and date,
and the time-keeping capabilities
of the platform.

GetVariable Runtime Services Variable Services Returns the value of the specific
variable.

GetWakeupTime Runtime Services Time Services Returns the current wakeup alarm
clock setting.

HandleProtocol Boot Services Protocol Handler
Services

Queries the list of protocol
handlers on a device handle for
the requested Protocol Interface.

Initialize Boot Integrity
Services Protocol

Initializes an application instance
of the EFI_BIS protocol, returning
a handle for the application
instance.

Initialize Simple Network
Protocol

Resets the network adapter and
allocates the transmit and receive
buffers required by the network
interface; also optionally allows
space for additional transmit and
receive buffers to be allocated

Initialize UNDI Commands This command resets the network
adapter and initializes UNDI using
the parameters supplied in the
CPB.

InstallConfigurationTable Boot Services Miscellaneous
Services

Adds, updates, or removes a
configuration table from the EFI
System Table.

continued

Extensible Firmware Interface Specification

K-8 12/01/02 Version 1.10

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

InstallMultipleProtocol
Interfaces

Boot Services Protocol Handler
Services

Installs one or more protocol
interfaces onto a handle.

InstallProtocolInterface Boot Services Protocol Handler
Services

Adds a protocol interface to an
existing or new device handle.

Interrupt Enables UNDI Commands The Interrupt Enables command
can be used to read and/or
change the current external
interrupt enable settings.

InvalidateInstructionCache Debug Support
Protocol

 Invalidate the instruction cache of
the processor.

Io.Read Device I/O Protocol Reads from I/O ports on a bus.

Io.Read PCI I/O Protocol Allows BAR relative reads to PCI
I/O space.

Io.Read PCI Root Bridge I/O
Protocol

 Allows reads from I/O space.

Io.Write Device I/O Protocol Writes to I/O ports on a bus.

Io.Write PCI I/O Protocol Allows BAR relative writes to PCI
I/O space.

Io.Write PCI Root Bridge I/O
Protocol

 Allows writes to I/O space.

IsochronousTransfer USB Host Controller
Protocol

 Submits isochronous transfer to
an isochronous endpoint of a USB
device.

LoadFile Load File Protocol Causes the driver to load the
requested file.

LoadImage Boot Services Image Services Function to dynamically load
another EFI Image.

LocateDevicePath Boot Services Protocol Handler
Services

Locates the closest handle that
supports the specified protocol on
the specified device path.

LocateHandle Boot Services Protocol Handler
Services

Locates the handle(s) that support
the specified protocol.

LocateHandleBuffer Boot Services Protocol Handler
Services

Retrieves the list of handles from
the handle database that meet the
search criteria. The return buffer
is automatically allocated.

LocateProtocol Boot Services Protocol Handler
Services

Finds the first handle in the handle
database the supports the
requested protocol.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-9

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

Map Device I/O Protocol Provides the device specific
addresses needed to access host
memory for DMA.

Map PCI I/O Protocol Provides the PCI controller
specific address needed to access
system memory for DMA.

Map PCI Root Bridge I/O
Protocol

 Provides the PCI controller
specific addresses needed to
access system memory for DMA.

MCast IP to MAC UNDI Commands Translate a multicast IPv4 or IPv6
address to a multicast MAC
address.

MCastIPtoMAC Simple Network
Protocol

 Allows a multicast IP address to
be mapped to a multicast HW
MAC address.

Mem.Read Device I/O Protocol Reads from memory on a bus.

Mem.Read PCI I/O Protocol Allows BAR relative reads to PCI
memory space.

Mem.Read PCI Root Bridge I/O
Protocol

 Allows reads from memory
mapped I/O space.

Mem.Write Device I/O Protocol Writes to memory on a bus.

Mem.Write PCI I/O Protocol Allows BAR relative writes to PCI
memory space.

Mem.Write PCI Root Bridge I/O
Protocol

 Allows writes to memory mapped
I/O space.

MetaiMatch Unicode Collation
Protocol

 Performs a case insensitive
comparison between a Unicode
pattern string and a Unicode
string.

Mtftp PXE Base Code
Protocol

 Is used to perform TFTP and
MTFTP services.

No associated function EFI Device Path
Protocol

 Can be used on any device handle
to obtain generic path/location
information concerning the
physical device or logical device.

No associated function EFI Driver Entry
Point

 The main entry point for an EFI
Driver.

continued

Extensible Firmware Interface Specification

K-10 12/01/02 Version 1.10

Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

NVData Simple Network
Protocol

Allows read and writes to the
NVRAM device attached to a
network interface.

NvData UNDI Commands This command is used to read
and write (if supported by NIC
hardware) nonvolatile storage
on the NIC.

Open File System Protocol Opens or creates a new file.

OpenProtocol Boot Services Protocol Handler
Services

Adds elements to the list of agents
consuming a protocol interface.

OpenProtocolInformation Boot Services Protocol Handler
Services

Retrieve the list of agents that are
currently consuming a protocol
interface.

OpenVolume Simple File System
Protocol

Opens the volume for file I/O
access.

OptionsValid EFI Driver
Configuration
Protocol

Tests to see if a controller's
current configuration options are
valid.

OutputString Simple Text Output
Protocol

Displays the Unicode string on the
device at the current cursor
location.

PassThru SCSI Passthru
Protocol

Sends a SCSI Request Packet to
a SCSI device that is connected to
the SCSI channel.

Pci.Read Device I/O Protocol Reads from PCI Configuration
Space.

Pci.Read PCI I/O Protocol Allows PCI controller relative
reads to PCI configuration space.

Pci.Read PCI Root Bridge I/O
Protocol

Allows reads from PCI
configuration space.

Pci.Write Device I/O Protocol Writes to PCI Configuration
Space.

Pci.Write PCI I/O Protocol Allows PCI controller relative
writes to PCI configuration space.

Pci.Write PCI Root Bridge I/O
Protocol

Allows writes to PCI configuration
space

PciDevicePath Device I/O Protocol Provides an EFI Device Path for a
PCI device with the given PCI
configuration space address.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-11

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

Poll Debugport Protocol Determine if there is any data
available to be read from the
debugport device.

PollIo PCI I/O Protocol Polls an address in PCI I/O space
until an exit condition is met, or a
timeout occurs.

PollIo PCI Root Bridge I/O
Protocol

 Polls an address in I/O space until
an exit condition is met, or a
timeout occurs.

PollMem PCI I/O Protocol Polls an address in PCI memory
space until an exit condition is
met, or a timeout occurs

PollMem PCI Root Bridge I/O
Protocol

 Polls an address in memory
mapped I/O space until an exit
condition is met, or a timeout
occurs.

ProtocolsPerHandle Boot Services Protocol Handler
Services

Retrieves the list of protocols
installed on a handle. The return
buffer is automatically allocated.

QueryMode Simple Text Output
Protocol

 Queries information concerning
the output device’s supported text
mode.

RaiseTPL Boot Services Task Priority
Services

Raises the task priority level.

Read Debugport Protocol Receive a buffer of characters
from the debugport device.

Read File System Protocol Reads bytes from a file.

Read Serial I/O Protocol Receives a buffer of characters
from a serial device.

ReadBlocks Block I/O Protocol Reads the requested number of
blocks from the device.

ReadDisk Disk I/O Protocol Reads data from the disk.

ReadKeyStroke Simple Input
Protocol

 Reads a keystroke from a simple
input device.

Receive Simple Network
Protocol

 Receives a packet from the
network interface.

Receive UNDI Commands When the network adapter has
received a frame, this command is
used to copy the frame into
driver/application storage.

continued

Extensible Firmware Interface Specification

K-12 12/01/02 Version 1.10

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

ReceiveFilters UNDI Commands This command is used to read and
change receive filters and, if
supported, read and change the
multicast MAC address filter list.

ReceiveFilters Simple Network
Protocol

 Enables and disables the receive
filters for the network interface
and, if supported, manages the
filtered multicast HW MAC
address list.

RegisterCacheFlush EFI Byte Code
Protocol

 Called to register a callback
function that the EBC interpreter
can call to flush the processor
instruction cache after creating
thunks.

RegisterExceptionCallback Debug Support
Protocol

 Registers a callback function that
will be called each time the
specified processor exception
occurs.

RegisterPeriodicCallback Debug Support
Protocol

 Registers a callback function that
will be invoked periodically and
asynchronously to the execution of
EFI.

RegisterProtocolNotify Boot Services Protocol Handler
Services

Registers for protocol interface
installation notifications.

ReinstallProtocolInterface Boot Services Protocol Handler
Services

Replaces a protocol interface.

Reset Block I/O Protocol Resets the block device hardware.

Reset Debugport Protocol Resets the debugport hardware.

Reset Serial I/O Protocol Resets the hardware device.

Reset Simple Input
Protocol

 Resets a simple input device.

Reset Simple Network
Protocol

 Resets the network adapter, and
reinitializes it with the parameters
that were provided in the previous
call to Initialize().

Reset Simple Pointer
Protocol

 Resets the pointer device
hardware.

Reset Simple Text Output
Protocol

 Resets the ConsoleOut device.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-13

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

Reset UNDI Commands This command resets the network
adapter and reinitializes the UNDI
with the same parameters
provided in the Initialize()
command.

Reset USB Host Controller
Protocol

 Software reset of USB.

ResetChannel SCSI Passthru
Protocol

 Resets the SCSI channel.

ResetSystem Runtime Services Miscellaneous
Services

Resets the entire platform.

ResetTarget SCSI Passthru
Protocol

 Resets a SCSI device that is
connected to the SCSI channel.

RestoreTPL Boot Services Event Services Restores/lowers the task priority
level.

RunDiagnostics EFI Driver
Diagnostics Protocol

 Runs diagnostics on a controller.

SetAttribute Simple Text Output
Protocol

 Sets the foreground and
background color of the text that is
output.

SetAttributes PCI Root Bridge I/O
Protocol

 Sets attributes for a resource
range on a PCI root bridge.

SetAttributes Serial I/O Protocol Sets communication parameters
for a serial device.

SetBarAttributes PCI I/O Protocol Sets the attributes for a range of a
BAR on a PCI controller.

SetControl Serial I/O Protocol Sets the control bits on a serial
device.

SetCursorPosition Simple Text Output
Protocol

 Sets the current cursor position.

SetInfo File System Protocol Sets the requested file
information.

SetIpFilter PXE Base Code
Protocol

 Updates the IP receive filters of a
network device and enables
software filtering.

SetMem Boot Services Miscellaneous
Services

Fills a buffer with a specified
value.

continued

Extensible Firmware Interface Specification

K-14 12/01/02 Version 1.10

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

SetMode Simple Text Output
Protocol

 Sets the current mode of the
output device.

SetMode UGA Draw Protocol Set the video device into the
specified mode and clears the
output display to black.

SetOptions EFI Driver
Configuration
Protocol

 Allows the user to set controller
specific options for a controller
that a driver is currently managing.

SetPackets PXE Base Code
Protocol

 Updates the contents of the
cached DHCP and Discover
packets.

SetParameters PXE Base Code
Protocol

 Updates the parameters that affect
the operation of the PXE Base
Code Protocol.

SetPosition File System Protocol Sets the current file position.

SetRootHubPortFeature USB Host Controller
Protocol

 Sets the feature for the specified
root hub port.

SetState USB Host Controller
Protocol

 Sets the USB host controller to a
specific state.

SetStationIp PXE Base Code
Protocol

 Updates the station IP address
and/or subnet mask values.

SetTime Runtime Services Time Services Sets the current local time and
date information.

SetTimer Boot Services Event Services Sets an event to be signaled at a
particular time.

SetVariable Runtime Services Variable Services Sets the value of the specified
variable.

SetVirtualAddressMap Runtime Services Virtual Memory
Services

Used by an OS loader to convert
from physical addressing to virtual
addressing.

SetWakeupTime Runtime Services Time Services Sets the system wakeup alarm
clock time.

SetWatchdogTimer Boot Services Miscellaneous
Services

Resets and sets the system’s
watchdog timer.

Shutdown Boot Integrity
Services Protocol

 Ends the lifetime of an application
instance of the EFI_BIS protocol,
invalidating its application instance
handle.

Shutdown Simple Network
Protocol

 Resets the network adapter and
leaves it in a state safe for another
driver to initialize.

continued

Alphabetic Function Lists

Version 1.10 12/01/02 K-15

Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

Shutdown UNDI Commands Resets the network adapter and
leaves it in a safe state for another
driver to initialize.

SignalEvent Boot Services Event Services Signals an event.

Stall Boot Services Miscellaneous
Services

Stalls the processor.

Start EFI Driver Binding
Protocol

Starts a device controller or a bus
controller.

Start PXE Base Code
Protocol

Enables the use of PXE Base
Code Protocol functions.

Start Simple Network
Protocol

Changes the network interface
from the stopped state to the
started state.

Start UNDI Commands This command is used to change
the UNDI operational state from
stopped to started.

StartImage Boot Services Image Services Function to transfer control to the
Image’s entry point.

Station Address UNDI Commands This command is used to get
current station and broadcast
MAC addresses and, if supported,
to change the current station MAC
address.

StationAddress Simple Network
Protocol

Allows the station address of the
network interface to be modified.

Statistics Simple Network
Protocol

Allows the statistics on the
network interface to be reset
and/or collected.

Statistics UNDI Commands This command is used to read and
clear the NIC traffic statistics.

Stop EFI Driver Binding
Protocol

Stops a device controller or a bus
controller.

Stop PXE Base Code
Protocol

Disables the use of PXE Base
Code Protocol functions.

Stop Simple Network
Protocol

Changes the network interface
from the started state to the
stopped state.

Stop UNDI Commands This command is used to change
the UNDI operational state from
started to stopped.

continued

Extensible Firmware Interface Specification

K-16 12/01/02 Version 1.10

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

StriColl Unicode Collation
Protocol

 Performs a case-insensitive
comparison between two Unicode
strings.

StrLwr Unicode Collation
Protocol

 Converts all the Unicode
characters in a Null-terminated
Unicode string to lower case
Unicode characters.

StrToFat Unicode Collation
Protocol

 Converts a Null-terminated
Unicode string to legal characters
in a FAT filename using an OEM
character set.

StrUpr Unicode Collation
Protocol

 Converts all the Unicode
characters in a Null-terminated
Unicode string to upper case
Unicode characters.

Supported EFI Driver Binding
Protocol

 Tests to see if driver supports a
given controller, and further tests
to see if driver supports creating a
handle for a specified child device.

SyncInterruptTransfer USB Host Controller
Protocol

 Submits a synchronous interrupt
transfer to an interrupt endpoint of
a USB device.

TestString Simple Text Output
Protocol

 Tests to see if the ConsoleOut
device supports this Unicode
string.

Transmit Simple Network
Protocol

 Places a packet in the transmit
queue of the network interface.

Transmit UNDI Commands The Transmit command is used to
place a packet into the transmit
queue.

UdpRead PXE Base Code
Protocol

 Reads a UDP packet from a
network interface.

UdpWrite PXE Base Code
Protocol

 Writes a UDP packet to a network
interface.

UninstallMultipleProtocol
Interfaces

Boot Services Protocol Handler
Services

Uninstalls one or more protocol
interfaces from a handle.

UninstallProtocolInterface Boot Services Protocol Handler
Services

Removes a protocol interface from
a device handle.

Unload Loaded Image
Protocol

 Requests an image to unload.

continued

Alphabetic Function Lists

Version 1.10 12/01/02 K-17

Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

UnloadImage Boot Services Image Services Unloads an image.

UnloadImage EFI Byte Code
Protocol

Called when an EBC image is
unloaded to allow the interpreter to
perform any cleanup associated
with the image’s execution.

Unmap Device I/O Protocol Releases any resources allocated
by Map().

Unmap PCI I/O Protocol Releases any resources allocated
by Map().

Unmap PCI Root Bridge I/O
Protocol

Releases any resources allocated
by Map().

UpdateBootObject
Authorization

Boot Integrity
Services Protocol

Requests that the configuration
parameters be altered by installing
or removing an authorization
certificate or changing the setting
of the check flag.

UsbAsyncInterruptTransfer USB I/O Protocol Nonblock USB interrupt transfer.

UsbAsyncIsochronous
Transfer

USB I/O Protocol Nonblock USB isochronous
transfer.

UsbBulkTransfer USB I/O Protocol Accesses the USB Device through
USB Bulk Transfer Pipe.

UsbControlTransfer USB I/O Protocol Accesses the USB Device through
USB Control Transfer Pipe.

UsbGetConfigDescriptor USB I/O Protocol Retrieves the activated
configuration descriptor of a USB
device.

UsbGetDeviceDescriptor USB I/O Protocol Retrieves the device descriptor of
a USB device.

UsbGetEndpointDescriptor USB I/O Protocol Retrieves the endpoint descriptor
of a USB Controller.

UsbGetInterfaceDescriptor USB I/O Protocol Retrieves the interface descriptor
of a USB Controller.

UsbGetStringDescriptor USB I/O Protocol Retrieves the string descriptor
inside a USB Device.

UsbGetSupported
Languages

USB I/O Protocol Retrieves the array of languages
that the USB device supports.

UsbIsochronousTransfer USB I/O Protocol Accesses the USB Device through
USB Isochronous Transfer Pipe.

continued

Extensible Firmware Interface Specification

K-18 12/01/02 Version 1.10

 Table K-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Subservice Function Description

UsbPortReset USB I/O Protocol Resets and reconfigures the USB
controller.

UsbSyncInterruptTransfer USB I/O Protocol Accesses the USB Device through
USB Synchronous Interrupt
Transfer Pipe.

VerifyBootObject Boot Integrity
Services Protocol

 Verifies a boot object according to
the supplied digital signature and
the current authorization certificate
and check flag setting.

VerifyObjectWithCredential Boot Integrity
Services Protocol

 Verifies a data object according to
a supplied digital signature and a
supplied digital certificate.

WaitForEvent Boot Services Event Services Stops execution until an event is
signaled.

Write Debugport Protocol Send a buffer of characters to the
debugport device.

Write File System Protocol Writes bytes to a file.

Write Serial I/O Protocol Sends a buffer of characters to a
serial device.

WriteBlocks Block I/O Protocol Writes the requested number of
blocks to the device.

WriteDisk Disk I/O Protocol Writes data to the disk.

Alphabetic Function Lists

Version 1.10 12/01/02 K-19

Table K-2. Functions Listed Alphabetically within a Service or Protocol

Service or Protocol Function Function Description

FlushBlocks Flushes any cached blocks.

ReadBlocks Reads the requested number of blocks from the
device.

Reset Resets the block device hardware.

Block I/O Protocol

WriteBlocks Writes the requested number of blocks to the device.

Free Frees memory structures allocated and returned by
other functions in the EFI_BIS protocol.

GetBootObjectAuthorization
Certificate

Retrieves the current digital certificate (if any) used by
the EFI_BIS protocol as the source of authorization
for verifying boot objects and altering configuration
parameters

GetBootObjectAuthorization
CheckFlag

Retrieves the current setting of the authorization
check flag that indicates whether or not authorization
checks are required for boot objects.

GetBootObjectAuthorization
UpdateToken

Retrieves an uninterpreted token whose value gets
included and signed in a subsequent request to alter
the configuration parameters, to protect against
attempts to “replay” such a request.

GetSignatureInfo Retrieves information about the digital signature
algorithms supported and the identity of the installed
authorization certificate, if any.

Initialize Initializes an application instance of the EFI_BIS
protocol, returning a handle for the application
instance.

Shutdown Ends the lifetime of an application instance of the
EFI_BIS protocol, invalidating its application
instance handle.

UpdateBootObject
Authorization

Requests that the configuration parameters be
altered by installing or removing an authorization
certificate or changing the setting of the check flag.

VerifyBootObject Verifies a boot object according to the supplied digital
signature and the current authorization certificate and
check flag setting.

Boot Integrity Services
Protocol

VerifyObjectWithCredential Verifies a data object according to a supplied digital
signature and a supplied digital certificate.

continued

Extensible Firmware Interface Specification

K-20 12/01/02 Version 1.10

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

AllocatePages Allocates memory pages of a particular type.

AllocatePool Allocates pool of a particular type.

CalculateCrc32 Computes and returns a 32-bit CRC for a data buffer.

CheckEvent Checks whether an event is in the signaled state.

CloseEvent Closes and frees an event structure.

CloseProtocol Removes elements from the list of agents consuming
a protocol interface.

ConnectController Uses a set of precedence rules to find the best set of
drivers to manage a controller.

CopyMem Copies the contents of one buffer to another buffer.

CreateEvent Creates a general-purpose event structure.

DisconnectController Informs a set of drivers to stop managing a controller.

EFI_IMAGE_
ENTRY_POINT

Prototype of an EFI Image’s entry point.

Exit Exits the image’s entry point.

ExitBootServices Terminates boot services.

FreePages Frees memory pages.

FreePool Frees allocated pool.

GetMemoryMap Returns the current boot services memory map and
memory map key.

GetNextMonotonicCount Returns a monotonically increasing count for the
platform.

HandleProtocol Queries the list of protocol handlers on a device
handle for the requested Protocol Interface.

InstallConfigurationTable Adds, updates, or removes a configuration table from
the EFI System Table

InstallMultipleProtocol
Interfaces

Installs one or more protocol interfaces onto a handle.

InstallProtocolInterface Adds a protocol interface to an existing or new device
handle.

LoadImage Function to dynamically load another EFI Image.

LocateDevicePath Locates the closest handle that supports the specified
protocol on the specified device path.

LocateHandle Locates the handle(s) that support the specified
protocol.

Boot Services

LocateHandleBuffer Retrieves the list of handles from the handle
database that meet the search criteria. The return
buffer is automatically allocated.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-21

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

LocateProtocol Finds the first handle in the handle database the
supports the requested protocol.

OpenProtocol Adds elements to the list of agents consuming a
protocol interface.

OpenProtocolInformation Retrieve the list of agents that are currently
consuming a protocol interface.

ProtocolsPerHandle Retrieves the list of protocols installed on a handle.
The return buffer is automatically allocated.

RaiseTPL Raises the task priority level.

RegisterProtocolNotify Registers for protocol interface installation
notifications

ReinstallProtocolInterface Replaces a protocol interface.

RestoreTPL Restores/lowers the task priority level.

SetMem Fills a buffer with a specified value.

SetTimer Sets an event to be signaled at a particular time.

SetWatchdogTimer Resets and sets the system’s watchdog timer.

SignalEvent Signals an event.

Stall Stalls the processor.

StartImage Function to transfer control to the Image’s entry point.

UninstallMultipleProtocol
Interfaces

Uninstalls one or more protocol interfaces from a
handle.

UninstallProtocolInterface Removes a protocol interface from a device handle.

UnloadImage Unloads an image.

Boot Services
(continued)

WaitForEvent Stops execution until an event is signaled.

Poll Determine if there is any data available to be read
from the debugport device.

Read Receive a buffer of characters from the debugport
device.

Reset Resets the debugport hardware.

Debugport Protocol

Write Send a buffer of characters to the debugport device.

continued

Extensible Firmware Interface Specification

K-22 12/01/02 Version 1.10

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

GetMaximumProcessor
Index

Returns the maximum processor index value that may
be used with RegisterPeriodicCallback() and
RegisterExceptionCallback().

InvalidateInstructionCache Invalidate the instruction cache of the processor.

RegisterExceptionCallback Registers a callback function that will be called each
time the specified processor exception occurs.

Debug Support Protocol

RegisterPeriodicCallback Registers a callback function that will be invoked
periodically and asynchronously to the execution
of EFI.

Decompress Decompresses a compressed source buffer into an
uncompressed destination buffer.

Decompress Protocol

GetInfo Given the compressed source buffer, this function
retrieves the size of the uncompressed destination
buffer and the size of the scratch buffer required to
perform the decompression.

AllocateBuffer Allocates pages that are suitable for a common buffer
mapping.

Flush Flushes any posted write data to the device.

FreeBuffer Frees pages that were allocated with
AllocateBuffer().

Io.Read Reads from I/O ports on a bus.

Io.Write Writes to I/O ports on a bus.

Map Provides the device specific addresses needed to
access host memory for DMA.

Mem.Read Reads from memory on a bus.

Mem.Write Writes to memory on a bus.

Pci.Read Reads from PCI Configuration Space.

Pci.Write Writes to PCI Configuration Space.

PciDevicePath Provides an EFI Device Path for a PCI device with the
given PCI configuration space address.

Device I/O Protocol

Unmap Releases any resources allocated by Map().

ReadDisk Reads data from the disk. Disk I/O Protocol

WriteDisk Writes data to the disk.

EFI Bus-Specific Driver
Override Protocol

GetDriver Uses a bus specific algorithm to retrieve a driver
image handle for a controller.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-23

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

CreateThunk Creates a thunk for an EBC image entry point or
protocol service, and returns a pointer to the thunk.

RegisterCacheFlush Called to register a callback function that the EBC
interpreter can call to flush the processor instruction
cache after creating thunks.

EFI Byte Code Protocol

UnloadImage Called when an EBC image is unloaded to allow the
interpreter to perform any cleanup associated with the
image’s execution.

GetControllerName Retrieves a Unicode string that is the user readable
name of the controller that is being managed by an
EFI Driver.

EFI Component Name
Protocol

GetDriverName Retrieves a Unicode string that is the user readable
name of the EFI Driver.

EFI Device Path
Protocol

No associated function Can be used on any device handle to obtain generic
path/location information concerning the physical
device or logical device.

Start Starts a device controller or a bus controller.

Stop Stops a device controller or a bus controller.

EFI Driver Binding
Protocol

Supported Tests to see if driver supports a given controller, and
further tests to see if driver supports creating a handle
for a specified child device.

ForceDefaults Forces a driver to set the default configuration options
for a controller.

OptionsValid Tests to see if a controller's current configuration
options are valid.

EFI Driver Configuration
Protocol

SetOptions Allows the user to set controller specific options for a
controller that a driver is currently managing.

EFI Driver Diagnostics
Protocol

RunDiagnostics Runs diagnostics on a controller.

EFI Driver Entry Point No associated function The main entry point for an EFI Driver.

DriverLoaded Used to associate a driver image handle with a device
path returned on a prior call.

GetDriver Retrieves the image handle of the platform override
driver for a controller in the system.

EFI Driver Override
Protocol

GetDriverPath Retrieves the device path of the platform override
driver for a controller in the system.

continued

Extensible Firmware Interface Specification

K-24 12/01/02 Version 1.10

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

Close Closes the current file handle.

Delete Deletes a file.

Flush Flushes all modified data associated with the file to
the device.

GetInfo Gets the requested file or volume information.

GetPosition Returns the current file position.

Open Opens or creates a new file.

Read Reads bytes from a file.

SetInfo Sets the requested file information.

SetPosition Sets the current file position.

File System Protocol

Write Writes bytes to a file.

Load File Protocol LoadFile Causes the driver to load the requested file.

Loaded Image Protocol Unload Requests an image to unload.

AllocateBuffer Allocates pages that are suitable for a common buffer
mapping.

Attributes Performs an operation on the attributes that this PCI
controller supports.

CopyMem Allows one region of PCI memory space to be copied
to another region of PCI memory space

Flush Flushes all PCI posted write transactions to system
memory.

FreeBuffer Frees pages that were allocated with
AllocateBuffer().

GetBarAttributes Gets the attributes that this PCI controller supports
setting on a BAR using SetBarAttributes(), and
retrieves the list of resource descriptors for a BAR.

GetLocation Retrieves this PCI controller’s current PCI bus
number, device number, and function number.

Io.Read Allows BAR relative reads to PCI I/O space.

Io.Write Allows BAR relative writes to PCI I/O space.

Map Provides the PCI controller specific address needed
to access system memory for DMA.

Mem.Read Allows BAR relative reads to PCI memory space.

Mem.Write Allows BAR relative writes to PCI memory space.

Pci.Read Allows PCI controller relative reads to PCI
configuration space.

PCI I/O Protocol

Pci.Write Allows PCI controller relative writes to PCI
configuration space.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-25

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

PollIo Polls an address in PCI I/O space until an exit
condition is met, or a timeout occurs.

PollMem Polls an address in PCI memory space until an exit
condition is met, or a timeout occurs

SetBarAttributes Sets the attributes for a range of a BAR on a PCI
controller.

PCI I/O Protocol
(continued)

Unmap Releases any resources allocated by Map().

AllocateBuffer Allocates pages that are suitable for a common buffer
mapping.

Configuration Gets the current resource settings for this PCI root
bridge

CopyMem Allows one region of PCI root bridge memory space
to be copied to another region of PCI root bridge
memory space.

Flush Flushes all PCI posted write transactions to system
memory.

FreeBuffer Free pages that were allocated with
AllocateBuffer().

GetAttributes Gets the attributes that a PCI root bridge supports
setting with SetAttributes(), and the attributes
that a PCI root bridge is currently using.

Io.Read Allows reads from I/O space.

Io.Write Allows writes to I/O space.

Map Provides the PCI controller specific addresses
needed to access system memory for DMA.

Mem.Read Allows reads from memory mapped I/O space.

Mem.Write Allows writes to memory mapped I/O space.

Pci.Read Allows reads from PCI configuration space.

Pci.Write Allows writes to PCI configuration space

PollIo Polls an address in I/O space until an exit condition is
met, or a timeout occurs.

PollMem Polls an address in memory mapped I/O space until
an exit condition is met, or a timeout occurs.

SetAttributes Sets attributes for a resource range on a PCI root
bridge.

PCI Root Bridge I/O
Protocol

Unmap Releases any resources allocated by Map().

PXE Base Code
Callback Protocol

Callback Callback routine used by the PXE Base Code
Dhcp(), Discover(), Mtftp(), UdpWrite(), and
Arp() functions.

continued

Extensible Firmware Interface Specification

K-26 12/01/02 Version 1.10

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

Arp Uses the ARP protocol to resolve a MAC address.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover /
offer / request / acknowledge) or DHCPv6 S.A.R.R
(solicit / advertise / request / reply) sequence.

Discover Attempts to complete the PXE Boot Server and/or
boot image discovery sequence.

EFI_PXE_BASE_CODE
_CALLBACK

Callback function that is invoked when the PXE Base
Code Protocol is waiting for an event.

Mtftp Is used to perform TFTP and MTFTP services.

SetIpFilter Updates the IP receive filters of a network device and
enables software filtering.

SetPackets Updates the contents of the cached DHCP and
Discover packets.

SetParameters Updates the parameters that affect the operation of
the PXE Base Code Protocol.

SetStationIp Updates the station IP address and/or subnet mask
values.

Start Enables the use of PXE Base Code Protocol
functions.

Stop Disables the use of PXE Base Code Protocol
functions.

UdpRead Reads a UDP packet from a network interface.

PXE Base Code
Protocol

UdpWrite Writes a UDP packet to a network interface.

ConvertPointer Used by EFI components to convert internal pointers
when switching to virtual addressing.

GetNextHigh
MonotonicCount

Returns the next high 32 bits of a platform’s
monotonic counter.

GetNextVariableName Enumerates the current variable names.

GetTime Returns the current time and date, and the time-
keeping capabilities of the platform.

GetVariable Returns the value of the specific variable.

GetWakeupTime Returns the current wakeup alarm clock setting.

ResetSystem Resets the entire platform.

SetTime Sets the current local time and date information.

SetVariable Sets the value of the specified variable.

SetVirtualAddressMap Used by an OS loader to convert from physical
addressing to virtual addressing.

Runtime Services

SetWakeupTime Sets the system wakeup alarm clock time.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-27

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

BuildDevicePath Used to allocate and build a device path node for a
SCSI device on a SCSI channel.

GetNextDevice Used to retrieve the list of legal Target IDs for the
SCSI devices on a SCSI channel.

GetTargetLun Used to translate a device path node to a Target ID
and LUN.

PassThru Sends a SCSI Request Packet to a SCSI device that
is connected to the SCSI channel.

ResetChannel Resets the SCSI channel.

SCSI Passthru Protocol

ResetTarget Resets a SCSI device that is connected to the SCSI
channel.

GetControl Reads the status of the control bits on a serial device.

Read Receives a buffer of characters from a serial device.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device.

SetControl Sets the control bits on a serial device.

Serial I/O Protocol

Write Sends a buffer of characters to a serial device.

Simple File System
Protocol

OpenVolume Opens the volume for file I/O access.

ReadKeyStroke Reads a keystroke from a simple input device. Simple Input Protocol

Reset Resets a simple input device.

GetStatus Reads the current interrupt status and recycled
transmit buffer status from the network interface.

Initialize Resets the network adapter and allocates the transmit
and receive buffers required by the network interface;
also optionally allows space for additional transmit
and receive buffers to be allocated

MCastIPtoMAC Allows a multicast IP address to be mapped to a
multicast HW MAC address.

NVData Allows read and writes to the NVRAM device
attached to a network interface.

Receive Receives a packet from the network interface.

ReceiveFilters Enables and disables the receive filters for the
network interface and, if supported, manages the
filtered multicast HW MAC address list

Simple Network
Protocol

Reset Resets the network adapter, and reinitializes it with
the parameters that were provided in the previous call
to Initialize().

continued

Extensible Firmware Interface Specification

K-28 12/01/02 Version 1.10

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

Shutdown Resets the network adapter and leaves it in a state
safe for another driver to initialize.

Start Changes the network interface from the stopped state
to the started state.

StationAddress Allows the station address of the network interface to
be modified.

Statistics Allows the statistics on the network interface to be
reset and/or collected.

Stop Changes the network interface from the started state
to the stopped state.

Simple Network
Protocol (continued)

Transmit Places a packet in the transmit queue of the network
interface.

GetState Retrieves the current state of a pointer device. Simple Pointer Protocol

Reset Resets the pointer device hardware.

ClearScreen Clears the screen with the currently set background
color.

EnableCursor Turns the visibility of the cursor on/off.

OutputString Displays the Unicode string on the device at the
current cursor location.

QueryMode Queries information concerning the output device’s
supported text mode.

Reset Resets the ConsoleOut device.

SetAttribute Sets the foreground and background color of the text
that is output.

SetCursorPosition Sets the current cursor position.

SetMode Sets the current mode of the output device.

Simple Text Output
Protocol

TestString Tests to see if the ConsoleOut device supports this
Unicode string.

Blt Blt a rectangle of pixels on the graphics screen. Blt
stands for BLock Transfer.

GetMode Return the current frame buffer geometry and display
refresh rate.

UGA Draw Protocol

SetMode Sets the video device into the specified mode and
clears the output display to black.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-29

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

CreateDevice Dynamically allocates storage for a child
UGA_DEVICE.

DeleteDevice Frees a dynamically allocated child UGA_DEVICE
object that was allocated via CreateDevice().

UGA I/O Protocol

DispatchService This is the main UGA service dispatch routine for all
UGA_IO_REQUESTs.

Fill Header This command is used to fill the media header(s) in
transmit packet(s).

Get Config Info This command is used to retrieve configuration
information about the NIC being controlled by the
UNDI.

Get Init Info This command is used to retrieve initialization
information that is needed by drivers and applications
to initialized UNDI.

Get State This command is used to determine the operational
state of the UNDI.

Get Status This command returns the current interrupt status
and/or the transmitted buffer addresses.

Initialize This command resets the network adapter and
initializes UNDI using the parameters supplied in the
CPB.

Interrupt Enables The Interrupt Enables command can be used to read
and/or change the current external interrupt enable
settings.

MCast IP to MAC Translate a multicast IPv4 or IPv6 address to a
multicast MAC address.

NvData This command is used to read and write (if supported
by NIC H/W) nonvolatile storage on the NIC.

Receive When the network adapter has received a frame, this
command is used to copy the frame into
driver/application storage.

Receive Filters This command is used to read and change receive
filters and, if supported, read and change the
multicast MAC address filter list.

Reset This command resets the network adapter and
reinitializes the UNDI with the same parameters
provided in the Initialize command.

UNDI Commands

Shutdown The Shutdown command resets the network adapter
and leaves it in a safe state for another driver to
initialize.

continued

Extensible Firmware Interface Specification

K-30 12/01/02 Version 1.10

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

Start This command is used to change the UNDI
operational state from stopped to started.

Station Address This command is used to get current station and
broadcast MAC addresses and, if supported, to
change the current station MAC address.

Statistics This command is used to read and clear the NIC
traffic statistics.

Stop This command is used to change the UNDI
operational state from started to stopped.

UNDI Commands
(continued)

Transmit The Transmit command is used to place a packet into
the transmit queue.

FatToStr Converts an 8.3 FAT file name in an OEM character
set to a Null-terminated Unicode string.

MetaiMatch Performs a case insensitive comparison between a
Unicode pattern string and a Unicode string.

StriColl Performs a case-insensitive comparison between two
Unicode strings.

StrLwr Converts all the Unicode characters in a Null-
terminated Unicode string to lower case Unicode
characters.

StrToFat Converts a Null-terminated Unicode string to legal
characters in a FAT filename using an OEM character
set.

Unicode Collation
Protocol

StrUpr Converts all the Unicode characters in a Null-
terminated Unicode string to upper case Unicode
characters.

AsyncInterruptTransfer Submits an asynchronous interrupt transfer to an
interrupt endpoint of a USB device.

AsyncIsochronousTransfer Submits nonblocking USB isochronous transfer.

BulkTransfer Submits a bulk transfer to a bulk endpoint of a USB
device.

ClearRootHubPortFeature Clears the feature for the specified root hub port.

ControlTransfer Submits a control transfer to a target USB device.

GetRootHubPortNumber Retrieves the number of root hub ports that are
produced by the USB host controller.

GetRootHubPortStatus Retrieves the status of the specified root hub port.

USB Host Controller
Protocol

GetState Retrieves the current state of the USB host controller.

continued

 Alphabetic Function Lists

Version 1.10 12/01/02 K-31

Table K-2. Functions Listed Alphabetically within a Service or Protocol (continued)

Service or Protocol Function Function Description

IsochronousTransfer Submits isochronous transfer to an isochronous
endpoint of a USB device.

Reset Software reset of USB.

SetRootHubPortFeature Sets the feature for the specified root hub port.

SetState Sets the USB host controller to a specific state.

USB Host Controller
Protocol (continued)

SyncInterruptTransfer Submits a synchronous interrupt transfer to an
interrupt endpoint of a USB device.

UsbAsyncInterruptTransfer Nonblock USB interrupt transfer.

UsbAsyncIsochronous
Transfer

Nonblock USB isochronous transfer.

UsbBulkTransfer Accesses the USB Device through USB Bulk Transfer
Pipe.

UsbControlTransfer Accesses the USB Device through USB Control
Transfer Pipe.

UsbGetConfigDescriptor Retrieves the activated configuration descriptor of a
USB device.

UsbGetDeviceDescriptor Retrieves the device descriptor of a USB device.

UsbGetEndpointDescriptor Retrieves the endpoint descriptor of a USB Controller.

UsbGetInterfaceDescriptor Retrieves the interface descriptor of a USB Controller.

UsbGetStringDescriptor Retrieves the string descriptor inside a USB Device.

UsbGetSupported
Languages

Retrieves the array of languages that the USB device
supports.

UsbIsochronousTransfer Accesses the USB Device through USB Isochronous
Transfer Pipe.

UsbPortReset Resets and reconfigures the USB controller.

USB I/O Protocol

UsbSyncInterruptTransfer Accesses the USB Device through USB Synchronous
Interrupt Transfer Pipe.

Extensible Firmware Interface Specification

K-32 12/01/02 Version 1.10

Version 1.10 12/01/02 References-1

References

Related Information

The following publications and sources of information may be useful to you or are referred to by
this specification:

• [BASE64] RFC 1521: MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies. Section 5.2: Base64
Content-Transfer-Encoding. ftp://ftp.isi.edu/in-notes/rfc1521.txt

• [PKCS] The Public-Key Cryptography Standards, RSA Laboratories, Redwood City, CA: RSA
Data Security, Inc.

• [RFC 1700] J. Reynolds, J. Postel: Assigned Numbers | ISI, October 1994
• [RFC 2460] Internet Protocol, Version 6 (IPv6) Specification,

http://www.faqs.org/rfcs/rfc2460.html
• [RFC 791] Internet Protocol DARPA Internet Program Protocol (IPv4) Specification,

September 1981, http://www.faqs.org/rfcs/rfc791.html
• [SM spec] Common Security: CDSA and CSSM, Version 2 (with corrigenda), was Signed

Manifest Specification, The Open Group, May 2000.
http://www.opengroup.org/pubs/catalog/c914.htm

• “El Torito” Bootable CD-ROM Format Specification, Version 1.0, Phoenix Technologies,
Ltd., IBM Corporation, 1994, http://www.phoenix.com/en/support/white+papers-specs/

• Advanced Configuration and Power Interface Specification, Intel, Microsoft, Toshiba,
Compaq, and Phoenix, Revision 2.0, July 27, 2000, http://acpi.info/index.html

• Address Resolution Protocol – http://www.ietf.org/rfc/rfc0826.txt. Refer to Appendix E,
“32/64-Bit UNDI Specification,” for more information.

• Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000,
http://www.acpi.info/spec.htm

• Assigned Numbers – Lists the reserved numbers used in the RFCs and in this specification -
http://www.ietf.org/rfc/rfc1700.txt. Refer to Appendix E, “32/64-Bit UNDI Specification,” for
more information.

• BIOS Boot Specification Version 1.01, Compaq Computer Corporation, Phoenix Technologies
Ltd., Intel Corporation, 1996, http://www.phoenix.com/en/support/white+papers-specs/

• Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt - This reference is included for
backward compatibility. BC protocol supports DHCP and BOOTP. Refer to Appendix E,
“32/64-Bit UNDI Specification,” for more information.

• CAE Specification [UUID], DCE 1.1:Remote Procedure Call, Document Number C706,
Universal Unique Identifier Appendix, Copyright © 1997, The Open Group,
http://www.opengroup.org/onlinepubs/9629399/toc.htm

• Clarification to Plug and Play BIOS Specification Version 1.0,
http://www.microsoft.com/hwdev/tech/pnp/

ftp://ftp.isi.edu/in-notes/rfc1521.txt
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc791.html
http://www.opengroup.org/pubs/catalog/c914.htm
http://www.phoenix.com/en/support/white+papers-specs/
http://acpi.info/index.html
http://www.ietf.org/rfc/rfc0826.txt
http://www.acpi.info/spec.htm
http://www.ietf.org/rfc/rfc1700.txt
http://www.phoenix.com/en/support/white+papers-specs/
http://www.ietf.org/rfc/rfc0951.txt
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.microsoft.com/hwdev/tech/pnp/default.asp

Extensible Firmware Interface Specification

References-2 12/01/02 Version 1.10

• Dynamic Host Configuration Protocol – DHCP for Ipv4 (protocol:
http://www.ietf.org/rfc/rfc2131.txt, options: http://www.ietf.org/rfc/rfc2132.txt). Refer to
Appendix E, “32/64-Bit UNDI Specification,” for more information.

• EFI Specification Version 1.02, Intel Corporation, 2000,
http://developer.intel.com/technology/efi.

• File Verification Using CRC, Mark R. Nelson, Dr. Dobbs, May 1994
• Hardware Design Guide Version 3.0 for Microsoft Windows 2000 Server, Intel Corporation,

Microsoft Corporation, 2000, http://developer.intel.com/design/servers/desguide/hdgv3.htm
• IA-32 Intel Architecture Software Developer’s Manual, Intel Corporation, 2001,

http://www.intel.com/design/pentium4/manuals/
• Information Technology — BIOS Enhanced Disk Drive Services (EDD), working draft

T13/1386D, Revision 5a, September 28, 2000, http://t13.org/project/d1386r5a.pdf
• Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture,

Rev. 1.0, Order number 245317, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/itanium/family/

• Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture, Rev. 1.0,
Order number 245318, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/itanium/family/

• Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference,
Rev. 1.0, Order number 245319, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/itanium/family/

• Itanium® Architecture Software Developer’s Manual, Volume 4: Itanium Processor
Programmer’s Guide, Rev. 1.0, Order number 245320, Intel Corporation, January 2000. Also
available at http://developer.intel.com/design/itanium/family/

• Itanium® Software Conventions and Runtime Architecture Guide, Order number 245358, Intel
Corporation, January, 2000. Also available at http://developer.intel.com/design/itanium/family/

• Itanium® System Abstraction Layer Specification, Available at
http://developer.intel.com/design/itanium/family/

• IEEE 1394 Specification, http://www.1394ta.org/Technology/Specifications/specifications.htm
• Internet Control Message Protocol – ICMP for Ipv4: http://www.ietf.org/rfc/rfc0792.txt.

ICMP for Ipv6: http://www.ietf.org/rfc/rfc2463.txt. Refer to Appendix E, “32/64-Bit UNDI
Specification,” for more information.

• Internet Engineering Task Force – http://www.ietf.org/. Refer to Appendix E, “32/64-Bit
UNDI Specification,” for more information.

• Internet Group Management Protocol – http://www.ietf.org/rfc/rfc2236.txt . Refer to
Appendix E, “32/64-Bit UNDI Specification,” for more information.

• Internet Protocol - Ipv4: http://www.ietf.org/rfc/rfc0791.txt. Ipv6:
http://www.ietf.org/rfc/rfc2460.txt & http://www.ipv6.org. Refer to Appendix E, “32/64-Bit
UNDI Specification,” for more information.

http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://developer.intel.com/technology/efi
http://developer.intel.com/design/servers/desguide/index.htm
http://www.intel.com/design/pentium4/manuals/
http://t13.org/project/d1386r5a.pdf
http://developer.intel.com/design/itanium/family/
http://developer.intel.com/design/itanium/family/
http://developer.intel.com/design/itanium/family/
http://developer.intel.com/design/itanium/family/
http://developer.intel.com/design/itanium/family/
http://www.1394ta.org/Technology/Specifications/specifications.htm
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/
http://www.ietf.org/rfc/rfc2236.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ipv6.org
http://developer.intel.com/design/itanium/family/

References

Version 1.10 12/01/02 References-3

• ISO 639-2:1998. Codes for the Representation of Names of Languages – Part2: Alpha-3 code,
http://www.iso.ch/

• ISO/IEC 3309:1991(E), Information Technology - Telecommunications and information
exchange between systems - High-level data link control (HDLC) procedures - Frame
structure, International Organization For Standardization, Fourth edition 1991-06-01

• ITU-T Rec. V.42, Error-Correcting Procedures for DCEs using asynchronous-to-synchronous
conversion, October, 1996

• Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03,
Microsoft Corporation, December 6, 2000, http://www.microsoft.com/hwdev/specs/

• Microsoft Portable Executable and Common Object File Format Specification, Version 6.0,
http://www.microsoft.com/hwdev/specs/, Microsoft Corporation, May 25, 2000

• OSTA Universal Disk Format Specification, Revision 2.00, Optical Storage Technology
Association, 1998, http://www.osta.org/specs/

• PCI BIOS Specification, Revision 2.1, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/specifications

• PCI Hot-Plug Specification Revision 1.0, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/specifications

• PCI Local Bus Specification Revision 2.2, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/specifications

• Plug and Play BIOS Specification, Version 1.0A, Compaq Computer Corporation, Phoenix
Technologies, Ltd., Intel Corporation, 1994, http://www.microsoft.com/hwdev/tech/pnp/

• Plug and Play – http://www.phoenix.com/en/support/white+papers-specs/ Refer to Appendix
E, “32/64-Bit UNDI Specification,” for more information.

• Portable Executable and Common Object File Format Specification. See
http://www.microsoft.com/hwdev/hardware/PECOFF.asp

• POST Memory Manager Specification, Version 1.01, Phoenix Technologies Ltd., Intel
Corporation, 1997, http://www.phoenix.com/en/support/white+papers-specs/

• Preboot Execution Environment (PXE) Specification, Version 2.1. Intel Corporation, 1999.
Available at ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf.

• Request For Comments – http://www.ietf.org/rfc.html and
http://www.keywave.ad.jp/RFC/index.html. Refer to Appendix E, “32/64-Bit UNDI
Specification,” for more information.

• SYSID BIOS Support Interface Requirements, Version 1.2, Intel Corporation, 1997,
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

• SYSID Programming Interface Version 1.2,
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

• System Management BIOS Reference Specification, Version 2.3, American Megatrends Inc.,
Award Software International Inc., Compaq Computer Corporation, Dell Computer
Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines
Corporation, Phoenix Technologies Limited, and SystemSoft Corporation, 1977, 1998,
http://www.dmtf.org/standards/bios.php or
http://www.phoenix.com/en/support/white+papers-specs/

• Transmission Control Protocol – TCPv4: http://www.ietf.org/rfc/rfc0793.txt. TCPv6:
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt. Refer to Appendix E,“32/64-Bit UNDI Specification,”
for more information.

http://www.iso.ch/
http://www.microsoft.com/hwdev/specs/
http://www.microsoft.com/hwdev/specs/
http://www.osta.org/specs/
http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
http://www.microsoft.com/hwdev/tech/pnp/default.asp
http://www.phoenix.com/en/support/white+papers-specs/
http://www.microsoft.com/hwdev/hardware/PECOFF.asp
http://www.phoenix.com/en/support/white+papers-specs/
ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf
http://www.ietf.org/rfc.html
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.dmtf.org/standards/bios.php
http://www.phoenix.com/en/support/white+papers-specs/
http://www.ietf.org/rfc/rfc0793.txt
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
http://www.keywave.ad.jp/RFC/index.html

Extensible Firmware Interface Specification

References-4 12/01/02 Version 1.10

• Trivial File Transfer Protocol – TFTP (protocol: http://www.ietf.org/rfc/rfc1350.txt, options:
http://www.ietf.org/rfc/rfc2347.txt, http://www.ietf.org/rfc/rfc2348.txt and
http://www.ietf.org/rfc/rfc2349.txt). Refer to Appendix E, “32/64-Bit UNDI Specification,” for
more information.

• User Datagram Protocol – UDP over IPv4: http://www.ietf.org/rfc/rfc0768.txt. UDP over
IPv6: http://www.ietf.org/rfc/rfc2454.txt. Refer to Appendix E, “32/64-Bit UNDI
Specification,” for more information.

• The Unicode Standard, Version 2.1, Unicode Consortium, http://www.unicode.org/
• More information on EFI 1.10 UGA ROM usage under an OS can be found at

www.microsoft.com/hwdev/uga.
• Universal Serial Bus PC Legacy Compatibility Specification, Version 0.9,

http://www.usb.org/developers/docs.html
• Wired for Management Baseline, Version 2.0 Release Candidate. Intel Corporation, 1998,

http://www.intel.com/labs/manage/wfm/wfmspecs.htm

http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/rfc/rfc2349.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc2454.txt
http://www.unicode.org/
http://www.usb.org/developers/docs.html
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.microsoft.com/hwdev/tech/display/uga/default.asp

References

Version 1.10 12/01/02 References-5

Prerequisite Specifications

In general, this specification requires that functionality defined in a number of other existing
specifications be present on a system that implements this specification. This specification
requires that those specifications be implemented at least to the extent that all the required
elements are present.

This specification prescribes the use and extension of previously established industry specification
tables whenever possible. The trend to remove runtime call-based interfaces is well documented.
The ACPI (Advanced Configuration and Power Interface) specification and the SAL (System
Access Layer) specification are two examples of new and innovative firmware technologies that
were designed on the premise that OS developers prefer to minimize runtime calls into firmware.
ACPI focuses on no runtime calls to the BIOS, and the SAL specification only supports runtime
services that make the OS more portable.

ACPI Specification
The interface defined by the Advanced Configuration and Power Interface (ACPI) Specification is
the current state-of-the-art in the platform-to-OS interface. ACPI fully defines the methodology
that allows the OS to discover and configure all platform resources. ACPI allows the description of
non-Plug and Play motherboard devices in a plug and play manner. ACPI also is capable of
describing power management and hot plug events to the OS. (For more information on ACPI,
refer to the ACPI web site at http://www.acpi.info/spec.htm).

WfM Specification
The Wired for Management (WfM) Specification defines a baseline for manageability that can be
used to lower the total cost of ownership of a computer system. WfM includes the System
Management BIOS (SMBIOS) table-based interface that is used by the platform to relate platform-
specific management information to the OS or an OS-based management agent. The format of the
data is defined in the System Management BIOS Reference Specification, and it is up to higher level
software to map the information provided by the platform into the appropriate schema. Examples
of schema would include CIM (Common Information Model) and DMI (Desktop Management
Interface). For more information on WfM or to obtain a copy of the WfM Specification, visit
http://www.intel.com/labs/manage/wfm/wfmspecs.htm. To obtain the System Management BIOS
Reference Specification, visit http://www.phoenix.com/en/support/white+papers-specs/.

http://www.acpi.info/spec.htm
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.phoenix.com/en/support/white+papers-specs/

Extensible Firmware Interface Specification

References-6 12/01/02 Version 1.10

Additional Considerations for Itanium-Based Platforms
Any information or service that is available in Itanium architecture firmware specifications
supercedes any requirement in the common IA-32 and Itanium architecture specifications listed
above. The Itanium architecture firmware specifications (currently the Itanium® System
Abstraction Layer Specification and portions of the Intel® Itanium® Architecture Software
Developer’s Manual, volumes 1–4) define the baseline functionality required for all Itanium
architecture platforms. The major addition that EFI makes to these Itanium architecture firmware
specifications is that it defines a boot infrastructure and a set of services that constitute a common
platform definition for high-volume Itanium architecture–based systems to implement based on the
more generalized Itanium architecture firmware specifications.

The following specifications are the required Intel Itanium architecture specifications for all
Itanium architecture–based platforms:

• Itanium® Processor Family System Abstraction Layer Specification
• Intel® Itanium® Architecture Software Developer’s Manual, volumes 1–4

Both documents are available at http://developer.intel.com/design/itanium/family/.

http://developer.intel.com/design/itanium/family/

Version 1.10 12/01/02 Glossary-1

Glossary

_ADR A reserved name in ACPI name space. It refers to an address on a bus that has
standard enumeration. An example would be PCI, where the enumeration
method is described in the PCI Local Bus specification.

_CRS A reserved name in ACPI name space. It refers to the current resource setting of
a device. A _CRS is required for devices that are not enumerated in a standard
fashion. _CRS is how ACPI converts nonstandard devices into Plug and Play
devices.

_HID A reserved name in ACPI name space. It represents a device’s plug and play
hardware ID and is stored as a 32-bit compressed EISA ID. _HID objects are
optional in ACPI. However, a _HID object must be used to describe any device
that will be enumerated by the ACPI driver in the OS. This is how ACPI deals
with non–Plug and Play devices.

_UID A reserved name in ACPI name space. It is a serial number style ID that does
not change across reboots. If a system contains more than one device that reports
the same _HID, each device must have a unique _UID. The _UID only needs to
be unique for device that have the exact same _HID value.

ACPI Device Path A Device Path that is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described
using ACPI AML in the ACPI name space; this type of node provides linkage to
the ACPI name space.

ACPI Refers to the Advanced Configuration and Power Interface Specification and to
the concepts and technology it discusses. The specification defines a new
interface to the system board that enables the operating system to implement
operating system-directed power management and system configuration.

Base Code (BC) The PXE Base Code, included as a core protocol in EFI, is comprised of a
simple network stack (UDP/IP) and a few common network protocols (DHCP,
Bootserver Discovery, TFTP) that are useful for remote booting machines.

BC See Base Code

Big Endian A memory architecture in which the low-order byte of a multibyte datum is at the
highest address, while the high-order byte is at the lowest address. See Little
Endian.

BIOS Boot Specification Device Path
A Device Path that is used to point to boot legacy operating systems; it is based
on the BIOS Boot Specification, Version 1.01.

Extensible Firmware Interface Specification

Glossary-2 12/01/02 Version 1.10

BIOS Parameter Block (BPB)
The first block (sector) of a partition. It defines the type and location of the FAT
File System on a drive.

BIOS Basic Input/Output System. A collection of low-level I/O service routines.

Block I/O Protocol A protocol that is used during boot services to abstract mass storage devices. It
allows boot services code to perform block I/O without knowing the type of a
device or its controller.

Block Size The fundamental allocation unit for devices that support the Block I/O Protocol.
Not less than 512 bytes. This is commonly referred to as sector size on hard disk
drives.

Boot Device The device handle that corresponds to the device from which the currently
executing image was loaded.

Boot Manager The part of the firmware implementation that is responsible for implementing
system boot policy. Although a particular boot manager implementation is not
specified in this document, such code is generally expected to be able to
enumerate and handle transfers of control to the available OS loaders as well as
EFI applications and drivers on a given system. The boot manager would
typically be responsible for interacting with the system user, where applicable, to
determine what to load during system startup. In cases where user interaction is
not indicated, the boot manager would determine what to load and, if multiple
items are to be loaded, what the sequencing of such loads would be.

Boot Services Driver
A program that is loaded into boot services memory and stays resident until boot
services terminates.

Boot Services Table
A table that contains the firmware entry points for accessing boot services
functions such as Task Priority Services and Memory Allocation Services.
The table is accessed through a pointer in the System Table.

Boot Services Time
The period of time between platform initialization and the call to
ExitBootServices(). During this time, EFI drivers and applications are
loaded iteratively and the system boots from an ordered list of EFI OS loaders.

Boot Services The collection of interfaces and protocols that are present in the boot
environment. The services minimally provide an OS loader with access to
platform capabilities required to complete OS boot. Services are also available to
drivers and applications that need access to platform capability. Boot services
are terminated once the operating system takes control of the platform.

BPB See BIOS Parameter Block.

 Glossary

Version 1.10 12/01/02 Glossary-3

CIM See Common Information Model.

Cluster A collection of disk sectors. Clusters are the basic storage units for disk files.
See File Allocation Table.

COFF Common Object File Format, a standard file format for binary images.

Coherency Domain
(1) The global set of resources that is visible to at least one processor in a
platform.
(2) The address resources of a system as seen by a processor. It consists of both
system memory and I/O space.

Common Information Model (CIM)
An object-oriented schema defined by the DMTF. CIM is an information model
that provides a common way to describe and share management information
enterprise-wide.

Console I/O Protocol
A protocol that is used during boot services to handle input and output of text-
based information intended for the system administrator. It has two parts, a
Simple Input Protocol that is used to obtain input from the ConsoleIn device
and a Simple Text Output Protocol that is used to control text-based output
devices. The Console I/O Protocol is also known as the EFI Console I/O
Protocol.

ConsoleIn The device handle that corresponds to the device used for user input in the boot
services environment. Typically the system keyboard.

ConsoleOut The device handle that corresponds to the device used to display messages to the
user from the boot services environment. Typically a display screen.

Desktop Management Interface (DMI)
A platform management information framework, built by the DMTF and
designed to provide manageability for desktop and server computing platforms
by providing an interface that is:
(1) independent of any specific desktop operating system, network operating
system, network protocol, management protocol, processor, or hardware
platform;
(2) easy for vendors to implement; and
(3) easily mapped to higher-level protocols.

Desktop Management Task Force (DMTF)
The DMTF is a standards organization comprised of companies from all areas of
the computer industry. Its purpose is to create the standards and infrastructure
for cost-effective management of PC systems.

Extensible Firmware Interface Specification

Glossary-4 12/01/02 Version 1.10

Device Handle A handle points to a list of one or more protocols that can respond to requests for
services for a given device referred to by the handle.

Device I/O Protocol
A protocol that is used during boot services to access memory and I/O. Also
called the EFI Device I/O Protocol.

Device Path Instance
When an environment variable represents multiple devices, it is possible for a
device path to contain multiple device paths. An example of this would be the
ConsoleOut environment variable that consists of both a VGA console and a
serial output console. This environment variable would describe a console output
stream that would send output to both devices and therefore has a Device Path
that consists of two complete device paths. Each of these paths is a device path
instance.

Device Path Node A variable-length generic data structure that is used to build a device path.
Nodes are distinguished by type, subtype, length, and path-specific data. See
Device Path.

Device Path Protocol
A protocol that is used during boot services to provide the information needed to
construct and manage Device Paths. Also called the EFI Device Path Protocol.

Device Path A variable-length binary data structure that is composed of variable-length
generic device path nodes and is used to define the programmatic path to a
logical or physical device. There are six major types of device paths: Hardware
Device Path, ACPI Device Path, Messaging Device Path, Media Device Path,
BIOS Boot Specification Device Path, and End Of Hardware Device Path.

DHCP See Dynamic Host Configuration Protocol.

Disk I/O Protocol A protocol that is used during boot services to abstract Block I/O devices to
allow non-block-sized I/O operations. Also called the EFI Disk I/O Protocol.

DMI See Desktop Management Interface.

DMTF See Desktop Management Task Force.

Dynamic Host Configuration Protocol (DHCP)
A protocol that is used to get information from a configuration server. DHCP is
defined by the Desktop Management Task Force, not EFI.

EBC Image Executable EBC image following the PE32+ file format.

EBC See EFI Byte Code.

EFI Extensible Firmware Interface. An interface between the operating system (OS)
and the platform firmware.

 Glossary

Version 1.10 12/01/02 Glossary-5

EFI Application Modular code that may be loaded in the boot services environment to accomplish
platform specific tasks within that environment. Examples of possible
applications might include diagnostics or disaster recovery tools shipped with a
platform that run outside the OS environment. Applications may be loaded in
accordance with policy implemented by the platform firmware to accomplish a
specific task. Control is then returned from the application to the platform
firmware.

EFI Byte Code (EBC)
The binary encoding of instructions as output by the EBC C compiler and linker.
The EBC image is executed by the interpreter.

EFI Driver A module of code typically inserted into the firmware via protocol interfaces.
Drivers may provide device support during the boot process or they may provide
platform services. It is important not to confuse drivers in this specification with
OS drivers that load to provide device support once the OS takes control of the
platform.

EFI File A container consisting of a number of blocks that holds an image or a data file
within a file system that complies with this specification.

EFI Hard Disk A hard disk that supports the new EFI partitioning scheme (GUID Partitions).

EFI OS Loader The first piece of operating system code loaded by the firmware to initiate the OS
boot process. This code is loaded at a fixed address and then executed. The OS
takes control of the system prior to completing the OS boot process by calling the
interface that terminates all boot services.

EFI-compliant Refers to a platform that complies with this specification.

EFI-conformant See EFI-compliant.

End of Hardware Device Path
A Device Path which, depending on the subtype, is used to indicate the end of the
Device Path instance or Device Path structure.

Enhanced Mode (EM)
The 64-bit architecture extension that makes up part of the Intel® Itanium®
architecture.

Event Services The set of functions used to manage events. Includes CheckEvent(),
CreateEvent(), CloseEvent(), SignalEvent(), and
WaitForEvent().

Event An EFI data structure that describes an “event”—for example, the expiration
of a timer.

FAT File System The file system on which the EFI file system is based. See File Allocation
Table and System Partition.

Extensible Firmware Interface Specification

Glossary-6 12/01/02 Version 1.10

FAT See File Allocation Table.

File Allocation Table (FAT)
A table that is used to identify the clusters that make up a disk file. File
allocation tables come in three flavors: FAT12, which uses 12 bits for cluster
numbers; FAT16, which uses 16 bits; and FAT32, which allots 32 bits but only
uses 28 (the other 4 bits are reserved for future use).

File Handle Protocol
A component of the File System Protocol. It provides access to a file or
directory. Also called the EFI File Handle Protocol.

File System Protocol
A protocol that is used during boot services to obtain file-based access to a
device. It has two parts, a Simple File System Protocol that provides a minimal
interface for file-type access to a device, and a File Handle Protocol that
provides access to a file or directory.

Firmware Any software that is included in read-only memory (ROM).

Globally Unique Identifier (GUID)
A 128-bit value used to differentiate services and structures in the boot services
environment. The format of a GUID is defined in Appendix A. See Protocol.

GUID Partition Entry
A data structure that characterizes a GUID Partition. Among other things, it
specifies the starting and ending LBA of the partition.

GUID Partition Table Header
The header in a GUID Partition Table. Among other things, it contains the
number of partition entries in the table and the first and last blocks that can be
used for the entries.

GUID Partition Table
A data structure that describes a GUID Partition. It consists of an GUID
Partition Table Header and, typically, at least one GUID Partition Entry.
There are two partition tables on an EFI Hard Disk: the Primary Partition Table
(located in block 1 of the disk) and a Backup Partition Table (located in the last
block of the disk). The Backup Table is a copy of the Primary Table.

GUID Partition A contiguous group of sectors on an EFI Hard Disk.

Handle See Device Handle.

Hardware Device Path
A Device Path that defines how a hardware device is attached to the resource
domain of a system (the resource domain is simply the shared memory, memory
mapped I/O, and I/O space of the system).

 Glossary

Version 1.10 12/01/02 Glossary-7

IA-32 See Intel Architecture-32.

Image Handle A handle for a loaded image; image handles support the loaded image protocol.

Image Handoff State
The information handed off to a loaded image as it begins execution; it consists
of the image’s handle and a pointer to the image’s system table.

Image Header The initial set of bytes in a loaded image. They define the image’s encoding.

Image Services The set of functions used to manage EFI images. Includes LoadImage(),
StartImage(), UnloadImage(), Exit(), ExitBootServices(),
and EFI_IMAGE_ENTRY_POINT.

Image (1) An executable file stored in a file system that complies with this
specification. Images may be drivers, applications or OS loaders. Also called
an EFI Image.

(2) Executable binary file containing EBC and data. Output by the EBC linker.

Intel Architecture Platform Architecture
A collective term for PC-AT-class computers and other systems based on Intel
Architecture processors of all families.

Intel Architecture-32 (IA-32)
The 32-bit and 16-bit architecture described in the Intel Architecture Software
Developer’s Manual. IA-32 is the architecture of the Intel P6 family of
processors, which includes the Intel® Pentium® Pro, Pentium II, Pentium III, and
Pentium 4 processors.

Intel® Itanium® Architecture
The Intel architecture that has 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set. This architecture is
described in the Itanium™ Architecture Software Developer’s Manual.

Interpreter The software implementation that decodes EBC binary instructions and executes
them on a VM. Also called EBC interpreter.

LAN On Motherboard (LOM)
This is a network device that is built onto the motherboard (or baseboard) of the
machine.

Legacy Platform A platform which, in the interests of providing backward-compatibility, retains
obsolete technology.

LFN See Long File Names.

Extensible Firmware Interface Specification

Glossary-8 12/01/02 Version 1.10

Little Endian A memory architecture in which the low-order byte of a multibyte datum is at the
lowest address, while the high-order byte is at the highest address. See Big
Endian.

Load File Protocol A protocol that is used during boot services to find and load other modules
of code.

Loaded Image Protocol
A protocol that is used during boot services to obtain information about a loaded
image. Also called the EFI Loaded Image Protocol.

Loaded Image A file containing executable code. When started, a loaded image is given its
image handle and can use it to obtain relevant image data.

LOM See LAN On Motherboard.

Long File Names (LFN)
Refers to an extension to the FAT File System that allows file names to be
longer than the original standard (eight characters plus a three-character
extension).

Machine Check Abort (MCA)
The system management and error correction facilities built into the Intel Itanium
processors.

Master Boot Record (MBR)
The data structure that resides on the first sector of a hard disk and defines the
partitions on the disk.

MBR See Master Boot Record.

MCA See Machine Check Abort.

Media Device Path
A Device Path that is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define
which partition on a hard drive was being used.

Memory Allocation Services
The set of functions used to allocate and free memory, and to retrieve the
memory map. Includes AllocatePages(), FreePages(),
AllocatePool(), FreePool(), and GetMemoryMap().

 Glossary

Version 1.10 12/01/02 Glossary-9

Memory Map A collection of structures that defines the layout and allocation of system
memory during the boot process. Drivers and applications that run during the
boot process prior to OS control may require memory. The boot services
implementation is required to ensure that an appropriate representation of
available and allocated memory is communicated to the OS as part of the hand-
off of control.

Memory Type One of the memory types defined by EFI for use by the firmware and EFI
applications. Among others, there are types for boot services code, boot services
data, runtime services code, and runtime services data. Some of the types are
used for one purpose before ExitBootServices() is called and another
purpose after.

Messaging Device Path
A Device Path that is used to describe the connection of devices outside the
Coherency Domain of the system. This type of node can describe physical
messaging information (e.g., a SCSI ID) or abstract information (e.g., networking
protocol IP addresses).

Miscellaneous Services
Various functions that are needed to support the EFI environment. Includes
InstallConfigurationTable(), ResetSystem(), Stall(),
SetWatchdogTimer(), GetNextMonotonicCount(), and
GetNextHighMonotonicCount().

MTFTP See Multicast Trivial File Transfer Protocol.

Multicast Trivial File Transfer Protocol (MTFTP)
A protocol used to download a Network Boot Program to many clients
simultaneously from a TFTP server.

Name Space In general, a collection of device paths; in an EFI Device Path.

Native Code Low level instructions that are native to the host processor. As such, the
processor executes them directly with no overhead of interpretation. Contrast this
with EBC, which must be interpreted by native code to operate on a VM.

NBP See Network Bootstrap Program or Network Boot Program.

Network Boot Program
A remote boot image downloaded by a PXE client using the Trivial File
Transfer Protocol or the Multicast Trivial File Transfer Protocol. See
Network Bootstrap Program.

Extensible Firmware Interface Specification

Glossary-10 12/01/02 Version 1.10

Network Bootstrap Program (NBP)
This is the first program that is downloaded into a machine that has selected a
PXE capable device for remote boot services.

A typical NBP examines the machine it is running on to try to determine if the
machine is capable of running the next layer (OS or application). If the machine
is not capable of running the next layer, control is returned to the EFI boot
manager and the next boot device is selected. If the machine is capable, the next
layer is downloaded and control can then be passed to the downloaded program.

Though most NBPs are OS loaders, NBPs can be written to be standalone
applications such as diagnostics, backup/restore, remote management agents,
browsers, etc.

Network Interface Card (NIC)
Technically, this is a network device that is inserted into a bus on the
motherboard or in an expansion board. For the purposes of this document, the
term NIC will be used in a generic sense, meaning any device that enables a
network connection (including LOMs and network devices on external buses
(USB, 1394, etc.)).

NIC See Network Interface Card.

Page Memory A set of contiguous pages. Page memory is allocated by AllocatePages()
and returned by FreePages().

Partition Discovery
The process of scanning a block device to determine whether it contains a
Partition.

Partition See System Partition.

PC-AT Refers to a PC platform that uses the AT form factor for their motherboards.

PCI Bus Driver Software that creates a handle for every PCI controller on a PCI Host Bus
Controller and installs both the PCI I/O Protocol and the Device Path Protocol
onto that handle. It may optionally perform PCI Enumeration if resources have
not already been allocated to all the PCI Controllers on a PCI Host Bus
Controller. It also loads and starts any EFI drivers found in any PCI Option
ROMs discovered during PCI Enumeration. If a driver is found in a PCI Option
ROM, the PCI Bus Driver will also attach the Bus Specific Driver Override
Protocol to the handle for the PCI Controller that is associated with the PCI
Option ROM that the driver was loaded from.

PCI Bus A collection of up to 32 physical PCI Devices that share the same physical PCI
bus. All devices on a PCI Bus share the same PCI Configuration Space.

 Glossary

Version 1.10 12/01/02 Glossary-11

PCI Configuration Space
The configuration channel defined by PCI to configure PCI Devices into the
resource domain of the system. Each PCI device must produce a standard set of
registers in the form of a PCI Configuration Header, and can optionally produce
device specific registers. The registers are addressed via Type 0 or Type 1 PCI
Configuration Cycles as described by the PCI Specification. The PCI
Configuration Space can be shared across multiple PCI Buses. On most PC-AT
architecture systems and typical Intel chipsets, the PCI Configuration Space is
accessed via I/O ports 0xCF8 and 0xCFC. Many other implementations are
possible.

PCI Controller A hardware components that is discovered by a PCI Bus Driver, and is managed
by a PCI Device Driver. PCI Function and PCI Controller are used
equivalently in this document.

PCI Device Driver Software that manages one or more PCI Controllers of a specific type. A driver
will use the PCI I/O Protocol to produce a device I/O abstraction in the form of
another protocol (i.e. Block I/O, Simple Network, Simple Input, Simple Text
Output, Serial I/O, Load File).

PCI Device A collection of up to 8 PCI Functions that share the same PCI Configuration
Space. A PCI Device is physically connected to a PCI bus.

PCI Enumeration The process of assigning resources to all the PCI Controllers on a given PCI
Host Bus Controller. This includes PCI Bus Number assignments, PCI
Interrupt assignments, PCI I/O resource allocation, the PCI Memory resource
allocation, the PCI Prefetchable Memory resource allocation, and miscellaneous
PCI DMA settings.

PCI Function A controller that provides some type of I/O services. It consumes some
combination of PCI I/O, PCI Memory, and PCI Prefetchable Memory regions,
and up to 256 bytes of the PCI Configuration Space. The PCI Function is the
basic unit of configuration for PCI.

PCI Host Bus Controller
A chipset component that produces PCI I/O, PCI Memory, and PCI Prefetchable
Memory regions in a single Coherency Domain. A PCI Host Bus Controller is
composed of one or more PCI Root Bridges.

PCI I/O Protocol A software interface that provides access to PCI Memory, PCI I/O, and PCI
Configuration spaces for a PCI Controller. It also provides an abstraction for PCI
Bus Master DMA.

PCI Option ROM A ROM device that is accessed through a PCI Controller, and is described in the
PCI Controller’s Configuration Header. It may contain one or more PCI Device
Drivers that are used to manage the PCI Controller.

Extensible Firmware Interface Specification

Glossary-12 12/01/02 Version 1.10

PCI Root Bridge I/O Protocol
A software abstraction that provides access to the PCI I/O, PCI Memory, and PCI
Prefetchable Memory regions in a single Coherency Domain.

PCI Root Bridge A chipset component(s) that produces a physical PCI Local Bus.

PCI Segment A collection of up to 256 PCI Buses that share the same PCI Configuration
Space. PCI Segment is defined in section 6.5.6 of the ACPI 2.0 Specification as
the _SEG object. The SAL_PCI_CONFIG_READ and
SAL_PCI_CONFIG_WRITE procedures defined in chapter 9 of the SAL
Specification define how to access the PCI Configuration Space in a system that
supports multiple PCI Segments. If a system only supports a single PCI Segment
the PCI Segment number is defined to be zero. The existence of PCI Segments
enables the construction of systems with greater than 256 PCI buses.

Pool Memory A set of contiguous bytes. A pool begins on, but need not end on, an “8-byte”
boundary. Pool memory is allocated in pages—that is, firmware allocates
enough contiguous pages to contain the number of bytes specified in the
allocation request. Hence, a pool can be contained within a single page or extend
across multiple pages. Pool memory is allocated by AllocatePool() and
returned by FreePool().

Preboot Execution Environment (PXE)
A means by which agents can be loaded remotely onto systems to perform
management tasks in the absence of a running OS. To enable the interoperability
of clients and downloaded bootstrap programs, the client preboot code must
provide a set of services for use by a downloaded bootstrap. It also must ensure
certain aspects of the client state at the point in time when the bootstrap begins
executing.

The complete PXE specification covers three areas; the client, the network and
the server.
 Client
 - Makes network devices into bootable devices.
 - Provides APIs for PXE protocol modules in EFI and for universal
 drivers in the OS.
 Network
 - Uses existing technology: DHCP, TFTP, etc.
 - Adds “vendor-specific” tags to DHCP to define PXE-specific operation
 within DHCP.
 - Adds multicast TFTP for high bandwidth remote boot applications.
 - Defines Bootserver discovery based on DHCP packet format.
 Server
 Bootserver: Responds to Bootserver discovery requests and serves up
 remote boot images.
 proxyDHCP: Used to ease the transition of PXE clients and servers into
 existing network infrastructure. proxyDHCP provides the additional

 Glossary

Version 1.10 12/01/02 Glossary-13

 DHCP information that is needed by PXE clients and Bootservers
 without making changes to existing DHCP servers.
 MTFTP: Adds multicast support to a TFTP server.
 Plug-In Modules: Example proxyDHCP and Bootservers provided in
 the PXE SDK (software development kit) have the ability to take plug-
 in modules (PIMs). These PIMs are used to change/enhance the
 capabilities of the proxyDHCP and Bootservers.

Protocol Handler Services
The set of functions used to manipulate handles, protocols, and protocol
interfaces. Includes InstallProtocolInterface(),
UninstallProtocolInterface(),
ReinstallProtocolInterface(), HandleProtocol(),
RegisterProtocolNotify(), LocateHandle(), and
LocateDevicePath().

Protocol Handler A function that responds to a call to a HandleProtocol request for a given
handle. A protocol handler returns a protocol interface structure.

Protocol Interface Structure
The set of data definitions and functions used to access a particular type of
device. For example, BLOCK_IO is a protocol that encompasses interfaces to
read and write blocks from mass storage devices. See Protocol.

Protocol Revision Number
The revision number associated with a protocol. See Protocol.

Protocol The information that defines how to access a certain type of device during boot
services. A protocol consists of a GUID, a protocol revision number, and a
protocol interface structure. The interface structure contains data definitions and
a set of functions for accessing the device. A device can have multiple protocols.
Each protocol is accessible through the device’s handle.

PXE Base Code Protocol
A protocol that is used to control PXE-compatible devices. It is layered on top of
a Simple Network Protocol to perform packet-level transactions, and may be
used by the firmware’s boot manager to support booting from remote locations.
Also called the EFI PXE Base Code Protocol.

PXE See Preboot Execution Environment.

Read-Only Memory (ROM)
When used with reference to the UNDI specification, ROM refers to a
nonvolatile memory storage device on a NIC.

ROM See Read-Only Memory.

Extensible Firmware Interface Specification

Glossary-14 12/01/02 Version 1.10

Runtime Services Driver
A program that is loaded into runtime services memory and stays resident during
runtime.

Runtime Services Table
A table that contains the firmware entry points for accessing runtime services
functions such as Time Services and Virtual Memory Services. The table is
accessed through a pointer in the System Table.

Runtime Services Interfaces that provide access to underlying platform specific hardware that may
be useful during OS runtime, such as timers. These services are available during
the boot process but also persist after the OS loader terminates boot services.

SAL See System Abstraction Layer.

Serial I/O Protocol
A protocol that is used during boot services to abstract byte stream devices—that
is, to communicate with character-based I/O devices.

Simple File System Protocol
A component of the File System Protocol. It provides a minimal interface for
file-type access to a device.

Simple Input Protocol
A protocol that is used to obtain input from the ConsoleIn device. It is one of
two protocols that make up the Console I/O Protocol.

Simple Network Protocol
A protocol that is used to provide a packet-level interface to a network adapter.
Also called the EFI Simple Network Protocol.

Simple Text Output Protocol
A protocol that is used to control text-based output devices. It is one of two
protocols that make up the Console I/O Protocol.

SMBIOS See System Management BIOS.

StandardError The device handle that corresponds to the device used to display error messages
to the user from the boot services environment.

Status Codes Success, error, and warning codes returned by boot services and runtime services
functions.

String All strings in this specification are implemented in Unicode.

System Abstraction Layer (SAL)
Firmware that abstracts platform implementation differences, and provides the
basic platform software interface to all higher level software.

 Glossary

Version 1.10 12/01/02 Glossary-15

System Management BIOS (SMBIOS)
A table-based interface that is required by the Wired for Management Baseline
Specification. It is used to relate platform-specific management information to
the OS or to an OS-based management agent.

System Partition A section of a block device that is treated as a logical whole. For a hard disk
with a legacy partitioning scheme, it is a contiguous grouping of sectors whose
starting sector and size are defined by the Master Boot Record. For an EFI
Hard Disk, it is a contiguous grouping of sectors whose starting sector and size
are defined by the GUID Partition Table Header and the associated GUID
Partition Entries. For “El Torito” devices, it is a logical device volume. For a
diskette (floppy) drive, it is defined to be the entire medium (the term “diskette”
includes legacy 3.5” diskette drives as well as newer media such as the Iomega
Zip drive). System Partitions can reside on any medium that is supported by EFI
boot services. System Partitions support backward compatibility with legacy
Intel Architecture systems by reserving the first block (sector) of the partition for
compatibility code.

System Table Table that contains the standard input and output handles for an EFI application,
as well as pointers to the boot services and runtime services tables. It may also
contain pointers to other standard tables such as the ACPI, SMBIOS, and SAL
System tables. A loaded image receives a pointer to its system table when it
begins execution. Also called the EFI System Table.

Task Priority Level (TPL)
The boot services environment exposes three task priority levels: “normal,”
“callback,” and “notify.”

Task Priority Services
The set of functions used to manipulate task priority levels. Includes
RaiseTPL() and RestoreTPL().

TFTP See Trivial File Transport Protocol.

Time Format The format for expressing time in an EFI-compliant platform. For more
information, see Appendix A.

Time Services The set of functions used to manage time. Includes GetTime(), SetTime(),
GetWakeupTime(), and SetWakeupTime().

Timer Services The set of functions used to manipulate timers. Contains a single function,
SetTimer().

TPL See Task Priority Level.

Trivial File Transport Protocol (TFTP)
A protocol used to download a Network Boot Program from a TFTP server.

Extensible Firmware Interface Specification

Glossary-16 12/01/02 Version 1.10

UNDI See Universal Network Device Interface.

Unicode Collation Protocol
A protocol that is used during boot services to perform case-insensitive
comparisons of Unicode strings.

Unicode An industry standard internationalized character set used for human readable
message display.

Universal Network Device Interface (UNDI)
UNDI is an architectural interface to NICs. Traditionally NICs have had custom
interfaces and custom drivers (each NIC had a driver for each OS on each
platform architecture). Two variations of UNDI are defined in this specification:
H/W UNDI and S/W UNDI. H/W UNDI is an architectural hardware interface to
a NIC. S/W UNDI is a software implementation of the H/W UNDI.

Universal Serial Bus (USB)
A bi-directional, isochronous, dynamically attachable serial interface for adding
peripheral devices such as serial ports, parallel ports, and input devices on a
single bus.

USB Bus Driver Software that enumerates and creates a handle for each newly attached USB
Controller and installs both the USB I/O Protocol and the Device Path Protocol
onto that handle, starts that device driver if applicable. For each newly detached
USB Controller, the device driver is stopped, the USB I/O Protocol and the
Device Path Protocol are uninstalled from the device handle, and the device
handle is destroyed.

USB Bus A collection of up to 127 physical USB Devices that share the same physical
USB bus. All devices on a USB Bus share the bandwidth of the USB Bus.

USB Controller A hardware component that is discovered by a USB Bus Driver, and is managed
by a USB Device Driver. USB Interface and USB Controller are used
equivalently in this document.

USB Device Driver
Software that manages one or more USB Controller of a specific type. A driver
will use the USB I/O Protocol to produce a device I/O abstraction in the form of
another protocol (i.e. Block I/O, Simple Network, Simple Input, Simple Text
Output, Serial I/O, Load File).

USB Device A USB peripheral that is physically attached to the USB Bus.

USB Enumeration A periodical process to search the USB Bus to detect if there have been any USB
Controller attached or detached. If an attach event is detected, then the USB
Controllers device address is assigned, and a child handle is created. If a detach
event is detected, then the child handle is destroyed.

 Glossary

Version 1.10 12/01/02 Glossary-17

USB Host Controller
Moves data between system memory and devices on the USB Bus by processing
data structures and generating the USB transactions. For USB 1.1, there are
currently two types of USB Host Controllers: UHCI and OHCI.

USB Hub A special USB Device through which more USB devices can be attached to the
USB Bus.

USB I/O Protocol A software interface that provides services to manage a USB Controller, and
services to move data between a USB Controller and system memory.

USB Interface The USB Interface is the basic unit of a physical USB Device.

USB See Universal Serial Bus.

Variable Services The set of functions used to manage variables. Includes GetVariable(),
SetVariable(), and GetNextVariableName().

Virtual Memory Services
The set of functions used to manage virtual memory. Includes
SetVirtualAddressMap() and ConvertPointer().

VM The Virtual Machine, a pseudo processor implementation consisting of registers
which are manipulated by the interpreter when executing EBC instructions.

Watchdog Timer An alarm timer that may be set to go off. This can be used to regain control in
cases where a code path in the boot services environment fails to or is unable to
return control by the expected path.

WfM See Wired for Management.

Wired for Management (WfM)
Refers to the Wired for Management Baseline Specification. The Specification
defines a baseline for system manageability issues; its intent is to help lower the
cost of computer ownership.

Extensible Firmware Interface Specification

Glossary-18 12/01/02 Version 1.10

Version 1.10 12/01/02 Index-1

Index

_CID, 8-7
_HID, 8-7
_UID, 8-7
32/64-bit UNDI interface, E-7

A

ACPI, References-5
ACPI Device Path, definition of, Glossary-1
ACPI name space, C-1, C-7
ACPI Source Language, 8-1
ACPI Terms, C-7
ACPI, definition of, Glossary-1
ADD, 19-12
Advanced Configuration and Power Interface

specification, References-5. See also related
information

AllocateBuffer(), 12-30, 12-78, 18-11
AllocatePages(), 5-21
AllocatePool(), 5-29
alphabetic function lists, K-1
AND, 19-13
ANSI 3.64 terminals, and

SIMPLE_TEXT_OUTPUT, B-3
Application, EFI, 2-3, 2-4
ARP cache entries, 15-38
Arp(), 15-61
Arrow shapes, 10-14
ASHR, 19-14
ASL, See ACPI Source Language
AsyncInterruptTransfer(), 14-16
AsyncIsochronousTransfer(), 14-23
Attribute bits, PCI Root Bridge I/O, 12-12
attributes

architecturally defined, 3-5
Attributes(), 12-83
Attributes, SIMPLE_TEXT_OUTPUT, 10-19

B

Base Code (BC), definition of, Glossary-1
bibliography, References-1
Big Endian, definition of, Glossary-1
BIOS code, 1-6

BIOS Parameter Block, 11-5
BIOS Parameter Block (BPB), definition of,

Glossary-2
BIOS, definition of, Glossary-2
BIS_ALG_ID, 15-86
BIS_APPLICATION_HANDLE, 15-74
BIS_CERT_ID, 15-85
Block Elements Code Chart, 10-14
Block I/O Protocol, 11-43

Functions
FlushBlocks(), 11-51
Readblocks(), 11-47
WriteBlocks(), 11-49

GUID, 11-43
Interface Structure, 11-43
Revision Number, 11-43

Block Size, definition of, Glossary-2
Blt buffer, 10-25
Blt Operation Table, 10-34
Blt(), 10-32
Boot Device, definition of, Glossary-2
Boot Integrity Services Protocol, 15-70

Functions
Free(), 15-79
GetBootObjectAuthorizationCertificate(),

15-80
GetBootObjectAuthorizationCheckFlag(),

15-81
GetBootObjectAuthorizationUpdate

Token(), 15-82
GetSignatureInfo(), 15-83
Initialize(), 15-73
Shutdown(), 15-77
UpdateBootObjectAuthorization(), 15-88
VerifyBootObject(), 15-96
VerifyObjectWithCredential(), 15-103

GUID, 15-70
Interface Structure, 15-70

boot manager, 3-1
default media boot, 3-3

Boot Manager, definition of, Glossary-2
boot mechanisms, 3-7
boot order list, 3-1

Extensible Firmware Interface Specification

Index-2 12/01/02 Version 1.10

boot process
boot manager (continued)

illustration of, 2-1
overview, 2-1

boot sequence, 3-1
boot services, 1-8
Boot Services, 5-1, 6-1

global functions, 5-1, 6-1
handle-based functions, 5-1, 6-1

Boot Services Driver, definition of, Glossary-2
Boot Services Table, definition of, Glossary-2
Boot Services Table, EFI, 4-1
Boot Services Time, definition of, Glossary-2
Boot Services, definition of, Glossary-2
booting

future boot media, 3-8
via a network device, 3-8
via Load File Protocol, 3-8
via Simple File Protocol, 3-7

booting from
CD-ROM and DVD-ROM, 11-17
diskettes, 11-16
hard drives, 11-16
network devices, 11-17
removable media, 11-16

BPB, See BIOS Parameter Block
BREAK, 19-15
BuildDevicePath(), 13-12
BulkTransfer(), 14-13
bus-specific driver override protocol, 9-30

C

CalculateCrc32(), 5-92
CALL, 19-17
Callback(), 15-68
calling conventions, 2-9

general, 2-6
IA-32, 2-8

CDB, E-13
CheckEvent(), 5-12
ClearRootHubPortFeature (), 14-32
ClearScreen(), 10-21
Close(), 11-26
CloseEvent(), 5-9
CloseProtocol(), 5-56
Cluster, definition of, Glossary-3

CMP, 19-20
CMPI, 19-22
COFF, definition of, Glossary-3
Coherency Domain, definition of, Glossary-3
Common Information Model (CIM), definition

of, Glossary-3
component name protocol, 9-46
compressed data

bit order, 17-3
block body, 17-7
block header, 17-5
format, 17-3, 17-4
overall structure, 17-3

Compression Algorithm Specification, 17-1
compression source code, H-1
compressor design, 17-8
Configuration(), 12-38
ConnectController(), 5-60
Console, B-1
Console I/O protocol, 10-1
ConsoleIn, 10-2
ConsoleIn, definition of, Glossary-3
ConsoleOut, 10-8
ConsoleOut, definition of, Glossary-3
ControlTransfer(), 14-10
conventions

data structure descriptions, 1-11
function descriptions, 1-12
instruction descriptions, 1-13
procedure descriptions, 1-12
protocol descriptions, 1-12
pseudo-code conventions, 1-13
typographic conventions, 1-14

conventions, 1-11
ConvertPointer(), 6-19
Coordinated Universal Time, A-1
CopyMem(), 5-87, 12-25, 12-73
CreateDevice(), 10-37
CreateEvent(), 5-5
CreateThunk(), 19-65

D

data types, EFI, 2-6
Debug Support Protocol, 16-3

Functions
GetMaximumProcessorIndex(), 16-5

 Index

Version 1.10 12/01/02 Index-3

InvalidateInstructionCache(), 16-13
Debug Support Protocol (continued)

Functions
RegisterExceptionCallback(), 16-10
RegisterPeriodicCallback(), 16-6

GUID, 16-3
Interface Structure, 16-3

Debugport device path, 16-20
Debugport Protocol, 16-15

Functions
Poll(), 16-19
Read(), 16-18
Reset(), 16-16
Write(), 16-17

GUID, 16-15
Interface Structure, 16-15

Decompress Protocol, 17-16
Functions

Decompress(), 17-19
GetInfo(), 17-17

GUID, 17-16
Interface Structure, 17-16

Decompress(), 17-19
decompression source code, I-1
decompressor design, 17-15
Defined GUID Partition Entry

Attributes, 11-12
Partition Type GUIDs, 11-12

Delete(), 11-27
DeleteDevice(), 10-39
design overview, 1-8
Desktop Management Interface (DMI),

definition of, Glossary-3
Desktop Management Task Force (DMTF),

definition of, Glossary-3
Device Handle, definition of, Glossary-4
Device I/O Protocol, 18-2

Functions
AllocateBuffer (), 18-11, 18-14
Flush(), 18-13
Io(), 18-5
Map(), 18-8
Mem(), 18-5
Pci(), 18-5
PciDevicePath (), 18-7
Unmap(), 18-10

GUID, 18-2

Interface Structure, 18-2
Device I/O, overview, 18-1
Device Path

for IDE disk, C-4
for legacy floppy, C-2
for secondary root PCI bus with PCI to PCI

bridge, C-6
Device Path Generation, Rules, 8-20

Hardware vs. Messaging Device Paths, 8-22
Housekeeping, 8-20
Media Device Path, 8-22
Other, 8-22
with ACPI _ADR, 8-21
with ACPI _HID and _UID, 8-20

Device Path Instance, definition of, Glossary-4
Device Path Node, definition of, Glossary-4
device path protocol, 8-2
Device Path Protocol, 8-1

GUID, 8-2
Interface Structure, 8-2

Device Path, ACPI, 8-7
Device Path, BIOS Boot Specification, 8-22
Device Path, definition of, Glossary-4
Device Path, hardware

memory-mapped, 8-6
PCCARD, 8-5
PCI, 8-5
vendor, 8-6

Device Path, media, 8-15
Boot Specification, 8-19
CD-ROM Media, 8-17
File Path Media, 8-18
hard drive, 8-15
Media Protocol, 8-18
Vendor-Defined Media, 8-17

Device Path, messaging, 8-8
1394, 8-9
ATAPI, 8-8
FibreChannel, 8-9
I2O, 8-11
InfiniBand, 8-12
IPv4, 8-11
IPv6, 8-12
MAC Address, 8-11
SCSI, 8-9
UART, 8-13
UART flow control, 8-14

Extensible Firmware Interface Specification

Index-4 12/01/02 Version 1.10

USB, 8-10
Device Path, messaging (continued)
USB class, 8-10
Vendor-Defined, 8-14

Device Path, nodes
ACPI Device Path, 8-3
BIOS Boot Specification Device Path, 8-3
End Entire Device Path, 8-4
End of Hardware Device Path, 8-3
End This Instance of a Device Path, 8-4
generic, 8-3
Hardware Device Path, 8-3
Media Device Path, 8-3
Messaging Device Path, 8-3

Device Path,overview, 8-1
device paths

EFI simple pointer, 10-52
PS/2 mouse, 10-52, 10-53
serial mouse, 10-53, 10-54
USB mouse, 10-55

DHCP packet, 15-36
Dhcp(), 15-45
DisconnectController(), 5-64
Discover(), 15-47
Disk I/O Protocol, 11-39

Functions
ReadDisk(), 11-41
WriteDisk(), 11-42

GUID, 11-39
Interface Structure, 11-39
Revision Number, 11-39

DispatchService(), 10-40
DIV, 19-24
DIVU, 19-25
document

attributes, 1-5
audience, 1-7
contents, 1-3
goals, 1-5
organization, 1-3
purpose, 1-1

driver binding protocol, 9-1
driver configuration protocol, 9-32
driver diagnostics protocol, 9-42
Driver Model Boot Services, 5-33

DriverLoaded(), 9-28
Dynamic Host Configuration Protocol (DHCP),

definition of, Glossary-4

E

EBC Image, definition of, Glossary-4
EBC Instruction

ADD, 19-12
AND, 19-13
ASHR, 19-14
BREAK, 19-15
CALL, 19-17
CMP, 19-20
CMPI, 19-22
DIV, 19-24
DIVU, 19-25
EXTNDB, 19-26
EXTNDD, 19-27
EXTNDW, 19-28
JMP, 19-29
JMP8, 19-31
LOADSP, 19-32
MOD, 19-33
MODU, 19-34
MOV, 19-35
MOVI, 19-37
MOVIn, 19-39
MOVn, 19-41
MOVREL, 19-43
MOVsn, 19-44
MUL, 19-46
MULU, 19-47
NEG, 19-48
NOT, 19-49
OR, 19-50
POP, 19-51
POPn, 19-52
PUSH, 19-53
PUSHn, 19-54
RET, 19-55
SHL, 19-56
SHR, 19-57
STORESP, 19-58
SUB, 19-59
XOR, 19-60

 Index

Version 1.10 12/01/02 Index-5

EBC instruction descriptions, 1-13
EBC instruction encoding, 19-10
EBC instruction operands, 19-7

direct operands, 19-7
immediate operands, 19-8
indirect operands, 19-7
indirect with index operands, 19-8

EBC instruction set, 19-11
EBC instruction syntax, 19-9
EBC Interpreter Protocol, 19-63

Functions
CreateThunk(), 19-65
GetVersion(), 19-69
RegisterICacheFlush(), 19-67
UnloadImage(), 19-66

GUID, 19-63
Interface Structure, 19-63

EBC tools
C coding convention, 19-70
debug support, 19-74
EBC C compiler, 19-70
EBC interface assembly instructions, 19-70
EBC linker, 19-74
EBC to EBC arguments calling convention,

19-71
EBC to native arguments calling convention,

19-71
function return values, 19-71
function returns, 19-71
image loader, 19-74
native to EBC arguments calling convention,

19-71
stack maintenance and argument passing,

19-70
thunking, 19-72

EBC Tools, 19-70
EBC virtual machine, 19-1

architectural requirements, 19-61
runtime and software conventions, 19-61

EFI Application, 2-3, 2-4, 11-4
EFI Application, definition of, Glossary-5
EFI Boot Manager, 11-5
EFI Boot Services Table, 4-1
EFI Bus-Specific Driver Override Protocol

functions
GetDriver(), 9-31

EFI Byte Code (EBC), definition of, Glossary-5

EFI Byte Code Virtual Machine, 1-2
EFI Component Name Protocol, 12-46

functions
GetControllerName(), 9-49
GetDriverName(), 9-47

EFI Debug Support Protocol, 16-2
EFI debug support table, 16-22
EFI Debugport Protocol, 16-14
EFI debugport variable, 16-21
EFI Directory Structure, 11-5
EFI Driver, 11-4
EFI Driver Binding Protocol

functions
Start(), 9-10
Stop(), 9-18
Supported(), 9-4

EFI Driver Configuration Protocol, 12-46
functions

ForceDefaults(), 9-39
OptionsValid(), 9-37
SetOptions(), 9-34

EFI driver configuration type, 9-40
EFI Driver Diagnostics Protocol, 12-46
EFI Driver Diagnstics Protocol

functions
RunDiagnostics(), 9-43

EFI driver model, 1-9
EFI Driver Model, 1-2
EFI Driver, definition of, Glossary-5
EFI File, definition of, Glossary-5
EFI Hard Disk, definition of, Glossary-5
EFI Image, 2-2, 11-4
EFI Image handoff state, 2-10

IA-32, 2-9
EFI Image Header, 2-2

PE32+ image format, 2-2
EFI image info, 16-24
EFI Image, definition of, Glossary-7
EFI OS Loader, 2-3, 11-4
EFI OS loader, definition of, Glossary-5
EFI Partition Header, 11-8
EFI partitioning scheme, 11-8
EFI Platform Driver Override Protocol

functions
DriverLoaded(), 9-28
GetDriver(), 9-24
GetDriverPath(), 9-26

Extensible Firmware Interface Specification

Index-6 12/01/02 Version 1.10

EFI Runtime Services Table, 4-1
EFI Scan Codes for SIMPLE_INPUT, B-2
EFI Scan Codes,

SIMPLE_INPUT_INTERFACE, 10-2, 10-3
EFI SCSI Pass-Thru Protocol

functions
BuildDevicePath(), 13-12
GetNextDevice(), 13-10
GetTargetLun(), 13-14
PassThru(), 13-5
ResetChannel(), 13-16
ResetTarget(), 13-17

EFI Specification, 1-1
Design Overview, 1-8
Goals, 1-5
Overview, 1-3
Target Audience, 1-7

EFI System Table, 4-1
EFI system table location, 16-24
EFI tables

EFI_IMAGE_ENTRY_POINT, 4-1
EFI Tables

EFI_BOOT_SERVICES, 4-6
EFI_CONFIGURATION_TABLE, 4-13
EFI_RUNTIME_SERVICES, 4-11
EFI_SYSTEM_TABLE, 4-4
EFI_TABLE_HEADER, 4-3

EFI time, A-1
EFI USB Host Controller Protocol

functions
AsyncInterruptTransfer(), 14-16
AsyncIsochronousTransfer (), 14-23
BulkTransfer(), 14-13
ClearRootHubPortFeature (), 14-32
ControlTransfer(), 14-10
GetRootHubPortNumber (), 14-25
GetRootHubPortStatus (), 14-26
GetState(), 14-6
IsochronousTransfer(), 14-21
Reset(), 14-4
SetRootHubPortFeature (), 14-30
SetState(), 14-8
SyncInterruptTransfer(), 14-19

EFI, definition of, Glossary-4
EFI_ALLOCATE_TYPE, 5-22
EFI_BIS_SIGNATURE_INFO, 15-83
EFI_BIS_VERSION, 15-74

EFI_BLOCK_IO_MEDIA, 11-45
EFI_BOOT_SERVICES table, 4-6
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_

PROTOCOL, 9-30
EFI_COMPONENT_NAME_PROTOCOL,

9-46
EFI_CONFIGURATION_TABLE, 4-13
EFI_DEVICE_IO, 18-4
EFI_DEVICE_PATH, 5-47
EFI_DEVICE_PATH protocol, 8-2
EFI_DRIVER_BINDING_PROTOCOL, 9-1
EFI_DRIVER_CONFIGURATION_ACTION_

REQUIRED, 9-35
EFI_DRIVER_CONFIGURATION_

PROTOCOL, 9-32
EFI_DRIVER_DIAGNOSTIC_TYPE, 9-44
EFI_DRIVER_DIAGNOSTICS_PROTOCOL,

9-42
EFI_DRIVER_OS_HANDOFF, 10-45
EFI_EVENT, 5-6
EFI_FILE_INFO, 11-35

GUID, 11-35
EFI_FILE_SYSTEM_INFO, 11-37
EFI_FILE_SYSTEM_VOLUME_LABEL,

11-38
GUID, 11-38

EFI_GUID, 5-37
EFI_HANDLE, 5-37
EFI_IMAGE_ENTRY_POINT, 4-1, 5-80
EFI_INPUT_KEY, 10-6
EFI_INTERFACE_TYPE, 5-37
EFI_IO_ACCESS, 18-4
EFI_IO_OPERATION_TYPE, 18-9
EFI_IO_WIDTH, 18-4
EFI_LBA, 11-45
EFI_LOADED_IMAGE Protocol, 7-1
EFI_LOCATE_SEARCH_TYPE, 5-43
EFI_MEMORY_DESCRIPTOR, 5-26
EFI_MEMORY_TYPE, 5-22
EFI_NETWORK_INTERFACE_TYPE, 15-28
EFI_NETWORK_STATISTICS, 15-14
EFI_OPEN_PROTOCOL_BY_CHILD_

CONTROLLER, 5-52
EFI_OPEN_PROTOCOL_BY_DRIVER, 5-52,

5-54
EFI_OPEN_PROTOCOL_BY_HANDLE_

PROTOCOL, 5-51, 5-53

 Index

Version 1.10 12/01/02 Index-7

EFI_OPEN_PROTOCOL_EXCLUSIVE, 5-52,
5-55

EFI_OPEN_PROTOCOL_GET_PROTOCOL,
5-51, 5-54

EFI_OPEN_PROTOCOL_TEST_PROTOCOL,
5-52, 5-54

EFI_OPTIONAL_PTR, 6-19
EFI_PARITY_TYPE, 10-58
EFI_PCI_IO_PROTOCOL_ACCESS, 12-57
EFI_PCI_IO_PROTOCOL_ATTRIBUTE_

OPERATION, 12-84
EFI_PCI_IO_PROTOCOL_CONFIG, 12-57
EFI_PCI_IO_PROTOCOL_CONFIG_

ACCESS, 12-57
EFI_PCI_IO_PROTOCOL_IO_MEM, 12-57
EFI_PCI_IO_PROTOCOL_POLL_IO_

MEM, 12-56
EFI_PCI_IO_PROTOCOL_WIDTH, 12-56
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_

ACCESS, 12-12
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_

IO_MEM, 12-11
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_

POLL_IO_MEM, 12-11
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_

WIDTH, 12-11
EFI_PHYSICAL_ADDRESS, 5-22
EFI_PLATFORM_DRIVER_OVERRIDE_

PROTOCOL, 9-22
EFI_PXE_BASE_CODE_CALLBACK_

STATUS, 15-69
EFI_PXE_BASE_CODE_FUNCTION, 15-69
EFI_PXE_BASE_CODE_MODE, 15-31
EFI_PXE_BASE_CODE_MTFTP_INFO, 15-52
EFI_PXE_BASE_CODE_TFTP_OPCODE,

15-52
EFI_RESET_TYPE, 6-21
EFI_RUNTIME_SERVICES table, 4-11
EFI_SCSI_PASS_THRU protocol, 13-1

GUID, 13-1
Interface Structure, 13-2

EFI_SCSI_PASS_THRU_SCSI_REQUEST_
PACKET, 13-6

EFI_SIMPLE_NETWORK_MODE, 15-3
EFI_SIMPLE_NETWORK_STATE, 15-5
EFI_SIMPLE_POINTER_MODE, 10-48
EFI_SIMPLE_POINTER_STATE, 10-50

EFI_STATUS Error Codes, D-1
EFI_STATUS Success Codes, D-1
EFI_STATUS warning codes, D-2
EFI_STOP_BITS_TYPE, 10-58
EFI_SYSTEM_TABLE, 4-4
EFI_TABLE_HEADER, 4-3
EFI_TIME, 6-10
EFI_TIME_CAPABILITIES, 6-12
EFI_USB_HC_PROTOCOL, 14-2
EFI_USB_IO Protocol, 14-38
EFI_VIRTUAL_ADDRESS, 5-27
EFI-compliant, definition of, Glossary-5
El Torito, 11-4, 11-7, 11-13
EnableCursor(), 10-23
End of Hardware Device Path, definition of,

Glossary-5
Enhanced Mode (EM), definition of, Glossary-5
error codes, D-1, D-2
Event Services, 5-2

function list, 5-2
functions

CheckEvent(), 5-12
CloseEvent(), 5-9
CreateEvent(), 5-5
SignalEvent (), 5-10
WaitForEvent(), 5-11

overview, 5-2
event, definition of, Glossary-5
Exit(), 5-81
ExitBootServices(), 5-83
Extensible Firmware Interface Specification, 1-1
EXTNDB, 19-26
EXTNDD, 19-27
EXTNDW, 19-28

F

fallback mode driver, 10-26
FAT file system, 11-4
FAT File System, definition of, Glossary-5
FAT variants, 11-5
FatToStr(), 11-59
File Allocation Table (FAT), definition of,

Glossary-6
file attribute bits, EFI_FILE_INFO, 11-35
File Attributes, EFI_FILE, 11-24
File Handle Protocol, 11-21

Extensible Firmware Interface Specification

Index-8 12/01/02 Version 1.10

Functions
Close(), 11-26
Delete(), 11-27
EFI_FILE_SYSTEM_INFO, 11-37, 11-38
EFI_GENERIC_FILE_INFO, 11-35
Flush(), 11-34
GetInfo(), 11-32
GetPosition(), 11-31
Open(), 11-23
Read(), 11-28
SetInfo(), 11-33
SetPosition(), 11-30
Write(), 11-29

Interface Structure, 11-21
Revision Number, 11-21

file names, 11-5
file system format, 11-4, 11-5
File System Protocol, 11-18
Fill Header, E-87
Firmware Interrupts level, 5-3
firmware menu, 2-1
Firmware, definition of, Glossary-6
Flush(), 11-34, 12-33, 12-81, 18-13
FlushBlocks(), 11-51
ForceDefaults(), 9-39
Free(), 15-79
FreeBuffer(), 12-32, 12-80, 18-14
FreePages(), 5-24
FreePool(), 5-30
Functions

in alphabetic order, K-1, K-2, K-3, K-4, K-5,
K-6, K-7, K-8, K-9, K-10, K-11, K-12, K-
13, K-14, K-15, K-16, K-17, K-18, K-19

in alphabetic order within service or protocol,
K-20, K-21, K-22, K-23, K-24, K-25, K-26,
K-27, K-28, K-29, K-30, K-31, K-32

G

Geometric Shapes Code Chart, 10-14
Get Config Info, E-59
Get Init Info, E-55
Get State, E-47
Get Status, E-84
GetAttributes(), 12-34
GetBarAttributes(), 12-86
GetBootObjectAuthorizationCertificate(), 15-80

GetBootObjectAuthorizationCheckFlag(), 15-81
GetBootObjectAuthorizationUpdateToken(),

15-82
GetControl(), 10-65

control bits, 10-65
GetControllerName(), 9-49
GetDriver(), 9-24, 9-31
GetDriverName(), 9-47
GetDriverPath(), 9-26
GetInfo(), 11-32, 17-17
GetLocation(), 12-82
GetMaximumProcessorIndex(), 16-5
GetMemoryMap(), 5-25
GetMode(), 10-29
GetNextDevice(), 13-10
GetNextHighMonotonicCount(), 6-23
GetNextMonotonicCount(), 5-89
GetNextVariableName(), 6-5
GetPosition(), 11-31
GetRootHubPortNumber(), 14-25
GetRootHubPortStatus()

PortChangeStatus bit definition, 14-27
PortStatus bit definition, 14-27

GetRootHubPortStatus(), 14-26
GetSignatureInfo(), 15-83
GetState(), 10-50, 14-6
GetStatus(), 15-20
GetTargetLun(), 13-14
GetTime(), 6-10
GetVariable(), 6-3
GetVersion(), 19-69
GetWakeupTime(), 6-14
globally unique identifier, definition of,

Glossary-6
Globally Unique Identifiers, format, A-1
glossary, Glossary-1
GPT, See GUID Partition Table
GUID Partition Entry, 11-11
GUID Partition Entry, definition of, Glossary-6
GUID Partition Table, 11-7, 11-8
GUID Partition Table Header, 11-7, 11-10

backup, 11-8
primary, 11-8

GUID Partition Table Header, definition of,
Glossary-6

GUID Partition Table, definition of, Glossary-6
GUID Partition, definition of, Glossary-6

 Index

Version 1.10 12/01/02 Index-9

GUID, definition of, Glossary-6
GUID, format, A-1

H

Handle, definition of, Glossary-6
HandleProtocol(), 5-45
Hardware Device Path, definition of, Glossary-6
Headless system, 8-1
Huffman code generation, 17-13
Huffman coding, H-1

I

IA-32
EFI Image handoff state, 2-9

ICMP error packet, 15-36
IDE disk device path, C-5
Image Handle, definition of, Glossary-7
Image Handoff State, definition of, Glossary-7
Image Header, definition of, Glossary-7
Image Services

function list, 5-75
functions

EFI_IMAGE_ENTRY_POINT, 5-80
Exit(), 5-81
ExitBootServices(), 5-83
LoadImage(), 5-76
StartImage(), 5-78
UnloadImage(), 5-79

overview, 5-74
Image, definition of, Glossary-7
images

loading, 2-1
implementation requirements

general, 2-24
required elements, 2-25

information, resources, References-1
Initialize, E-61
Initialize(), 15-8, 15-73
InstallConfigurationTable(), 5-90
InstallMultipleProtocolInterfaces(), 5-72
InstallProtocolInterface(), 5-36
instruction summary

EFI byte code virtual machine, J-1

Intel Architecture Platform Architecture,
definition of, Glossary-7

Intel Architecture-32 (IA-32), definition of,
Glossary-7

Intel Itanium Architecture, definition of,
Glossary-7

interfaces
general categories, 2-5
purpose, 2-4

Interpreter, definition of, Glossary-7
Interrupt Enables, E-68
InterruptStatus interrupt bit mask settings, 15-20
InvalidateInstructionCache(), 16-13
Io(), 18-5
Io.Read(), 12-21, 12-69
Io.Write(), 12-21, 12-69
IP filter operation, 15-58
ISO-9660, 11-13
IsochronousTransfer(), 14-21
Itanium architecture

EFI Image handoff state, 2-10
firmware specifications, References-6
platforms, References-6
requirements, related to this specification,

References-6
Itanium

firmware specifications, See also related
information

J - L

JMP, 19-29
JMP8, 19-31
LAN On Motherboard (LOM), definition of,

Glossary-7
LBA, See Logical Block Address
legacy floppy device path, C-3
legacy interfaces, 1-6
legacy Master Boot Record, 11-13

and GPT Partitions, 11-15
Partition Record, 11-14

legacy MBR, 11-4, 11-7, 11-15
legacy OS, 1-7
Legacy Platform, definition of, Glossary-7
legacy systems, support of, 1-11
LFN, See long file names
Little Endian, definition of, Glossary-8

Extensible Firmware Interface Specification

Index-10 12/01/02 Version 1.10

Load File Protocol, 11-1, 15-40
Functions

LoadFile(), 11-2
GUID, 11-1
Interface Structure, 11-1

Loaded Image Protocol, 7-1
functions

Unload(), 7-3
GUID, 7-1
Interface Stucture, 7-1
Revision Number, 7-1

Loaded Image, definition of, Glossary-8
LoadFile(), 11-2
LoadImage(), 5-76
LOADSP, 19-32
LocateDevicePath(), 5-47
LocateHandle(), 5-43
LocateHandleBuffer(), 5-68
LocateProtocol(), 5-71
logical block address, 11-7
long file names, 11-5
Long File Names (LFN), definition of,

Glossary-8
LZ77 coding, H-1

M

Machine Check Abort (MCA), definition of,
Glossary-8

Map(), 12-27, 12-75, 18-8
Master Boot Record, 8-15, 11-4
Master Boot Record (MBR), definition of,

Glossary-8
MAX_MCAST_FILTER_CNT, 15-5
MBR, 11-13. See Master Boot Record. See

Master Boot Record
MCast IP To MAC, E-79
MCastIPtoMAC(), 15-17
Media Device Path, definition of, Glossary-8
media formats, 11-15
Mem(), 18-5
Mem.Read(), 12-19, 12-67
Mem.Write(), 12-19, 12-67
Memory Allocation Services

function list, 5-18
functions

AllocatePages(), 5-21
AllocatePool(), 5-29

FreePages(), 5-24
FreePool(), 5-30
GetMemoryMap(), 5-25

overview, 5-18
Memory Attribute Definitions, 5-26
memory map, 5-18
Memory Map, definition of, Glossary-8
Memory Type, definition of, Glossary-9
memory type, usage

after ExitBootServices(), 5-18
before ExitBootServices(), 5-18

Messaging Device Path, definition of,
Glossary-9

MetaiMatch(), 11-55
migration requirements, 1-10

EFI support on a legacy platform, 1-11
legacy OS support, 1-11

migration, from legacy systems, 1-10
Miscellaneous Boot Services

overview, 5-84
Miscellaneous Runtime Services

overview, 6-20
Miscellaneous Services

function list, 5-84, 6-20
functions

CalculateCrc32(), 5-92
CopyMem(), 5-87
GetNextHighMonotonicCount(), 6-23
GetNextMonotonicCount(), 5-89
InstallConfigurationTable(), 5-90
ResetSystem(), 6-21
SetMem(), 5-88
SetWatchdogTimer(), 5-85

MOD, 19-33
MODU, 19-34
MOV, 19-35
MOVI, 19-37
MOVIn, 19-39
MOVn, 19-41
MOVREL, 19-43
MOVsn, 19-44
Mtftp(), 15-51
MUL, 19-46
Multicast Trivial File Transfer Protocol

(MTFTP), definition of, Glossary-9
MULU, 19-47

 Index

Version 1.10 12/01/02 Index-11

N

Name space, 8-1
Name Space

EFI device path, C-8
Name Space, definition of, Glossary-9
Native Code, definition of, Glossary-9
natural indexing, 19-5
NEG, 19-48
Network Boot Program, definition of,

Glossary-9
Network Bootstrap Program (NBP), definition

of, Glossary-9
Network Interface Card (NIC), definition of,

Glossary-10
Network Interface Identifier Protocol, 15-26

GUID, 15-26
Interface Structure, 15-26
Revision Number, 15-26

nonvolatile storage, 12-99
NOT, 19-49
NvData, E-80
NvData(), 15-18
NVRAM variables, 3-1

O

opcode summary
EFI byte code virtual machine, J-1

Open Modes, EFI_FILE, 11-24
Open(), 11-23
OpenProtocol(), 5-49
OpenProtocolInformation(), 5-58
OpenVolume(), 11-20
operating system loader, definition of,

Glossary-5
option ROM, 1-10, 19-1

EBC, 19-2
legacy, 19-2
relocatable image, 19-2

Option ROM, 1-6
option ROM formats, 19-76
OptionsValid(), 9-37
OR, 19-50
OS loader, definition of, Glossary-5
OS Loader, EFI, 2-3
OS network stacks, E-5

OutputString(), 10-12
overview of design, 1-8

P

Page Memory, definition of, Glossary-10
partition discovery, 11-7
Partition Discovery, definition of, Glossary-10
Partition Header, EFI, 11-8
partitioning scheme, EFI, 11-8
PassThru(), 13-5
PCANSI terminals, and

SIMPLE_TEXT_OUTPUT, B-3
PCI bus driver responsibilities, 12-96
PCI Bus Driver, definition of, Glossary-10
PCI bus drivers, 12-47
PCI Bus, definition of, Glossary-10
PCI Configuration Space, definition of,

Glossary-10
PCI Controller, definition of, Glossary-11
PCI device driver responsibilities, 12-97
PCI Device Driver, definition of, Glossary-11
PCI device drivers, 12-51
PCI device paths, 12-91
PCI Device, definition of, Glossary-11
PCI driver initialization, 12-44
PCI driver model, 12-44
PCI Enumeration, definition of, Glossary-11
PCI Function, definition of, Glossary-11
PCI Host Bus Controller, definition of,

Glossary-11
PCI hot-plug events, 12-99
PCI I/O Protocol, 12-54

Functions
AllocateBuffer(), 12-78
Attributes(), 12-83
CopyMem(), 12-73
Flush(), 12-81
FreeBuffer(), 12-80
GetBarAttributes(), 12-86
GetLocation(), 12-82
Io.Read(), 12-69
Io.Write(), 12-69
Map(), 12-75
Mem.Read(), 12-67
Mem.Write(), 12-67
Pci.Read(), 12-71

Extensible Firmware Interface Specification

Index-12 12/01/02 Version 1.10

PCI I/O Protocol (continued)
Functions

Pci.Write(), 12-71
PollIo(), 12-65
PollMem(), 12-63
SetBarAttributes(), 12-89
Unmap(), 12-77

GUID, 12-54
Interface Structure, 12-54

PCI Option ROM, definition of, Glossary-11
PCI option ROMs, 12-93
PCI root bridge device paths, 12-40
PCI Root Bridge I/O Protocol, 12-7

Functions
AllocateBuffer(), 12-30
Configuration(), 12-38
CopyMem(), 12-25
Flush(), 12-33
FreeBuffer(), 12-32
GetAttributes(), 12-34
Io.Read(), 12-21
Io.Write(), 12-21
Map(), 12-27
Mem.Read(), 12-19
Mem.Write(), 12-19
Pci.Read(), 12-23
Pci.Write(), 12-23
PollIo(), 12-17
PollMem(), 12-15
SetAttributes(), 12-36
Unmap(), 12-29

GUID, 12-7
Interface Structure, 12-8

PCI root bridge I/O support, 12-1
PCI Root Bridge, definition of, Glossary-11
PCI Segment, definition of, Glossary-11
Pci(), 18-5
Pci.Read(), 12-23, 12-71
Pci.Write(), 12-23, 12-71
PciDevicePath(), 18-7
PE32+ image format, 2-2
platform driver override protocol, 9-22
plug and play option ROMs

and boot services, 2-4
PMBR, See Protective MBR
Poll(), 16-19
PollIo(), 12-17, 12-65

PollMem(), 12-15, 12-63
Pool Memory, definition of, Glossary-12
POP, 19-51
POPn, 19-52
Preboot Execution Environment (PXE),

definition of, Glossary-12
prerequisite specifications, References-5
Protective MBR, 11-15
Protocol

Block I/O, 11-43
Boot Integrity Services, 15-70
Debug Support, 16-3
Debugport, 16-15
Decompress, 17-16
Device I/O, 18-2
Device Path, 8-1
Disk I/O, 11-39
EBC Interpreter, 19-63
File Handle, 11-21
File System, 11-18
Load File, 11-1, 15-40
Loaded Image, 7-1
Network Interface Identifier, 15-26
PCI I/O, 12-54
PCI Root Bridge I/O, 12-7
PXE Base Code, 15-29
PXE Base Code Callback, 15-67
Serial I/O, 10-56
Simple File System, 11-18
Simple Input, 10-2, 10-4
Simple Network, 15-1
Simple Network, 15-29, 15-40
Simple Pointer, 10-47
Simple Text Output, 10-8
UGA Draw, 10-28
UGA I/O, 10-35
Unicode Collation, 11-52

Protocol Handler Services
function list, 5-31
functions, 5-31

CloseProtocol(), 5-56
ConnectController(), 5-60
DisconnectController(), 5-64
HandleProtocol(), 5-45
InstallMultipleProtocolInterfaces(), 5-72
InstallProtocolInterface(), 5-36
LocateDevicePath (), 5-47

 Index

Version 1.10 12/01/02 Index-13

Protocol Handler Services (continued)
functions

LocateHandle(), 5-43
LocateHandleBuffer(), 5-68
LocateProtocol(), 5-71
OpenProtocol(), 5-49
OpenProtocolInformation(), 5-58
ProtocolsPerHandle(), 5-66
RegisterProtocolNotify(), 5-42
ReinstallProtocolInterface(), 5-40
UninstallMutipleProtocolInterfaces(), 5-73
UninstallProtocolInterface(), 5-38

overview, 5-31
Protocol Handler, definition of, Glossary-13
Protocol Interface, definition of, Glossary-13
Protocol Revision Number, definition of,

Glossary-13
Protocol, definition of, Glossary-13
protocols, 2-10

code illustrating, 2-11
construction of, 2-11
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE

_PROTOCOL, 9-30
EFI_COMPONENT_NAME_PROTOCOL,

9-46
EFI_DEVICE_PATH, 8-2
EFI_DRIVER_BINDING_PROTOCOL, 9-1
EFI_DRIVER_CONFIGURATION_PROTO

COL, 9-32
EFI_DRIVER_DIAGNOSTICS_

PROTOCOL, 9-42
EFI_PLATFORM_DRIVER_OVERRIDE_

PROTOCOL, 9-22
EFI_SCSI_PASS_THRU, 13-1
EFI_USB_HC_PROTOCOL, 14-2
EFI_USB_IO Protocol, 14-38
list of, 2-12
UGA protocols, 10-24

ProtocolsPerHandle(), 5-66
PUGA Firmware Service Dispatch

Functions
DispatchService(), 10-40

PUSH, 19-53
PUSHn, 19-54
PXE Base Code Callback Protocol, 15-67

Functions
Callback(), 15-68

GUID, 15-67
Interface Structure, 15-67
Revision Number, 15-67

PXE Base Code Protocol, 15-29
Functions

Arp(), 15-61
Dhcp(), 15-45
Discover(), 15-47
Mtftp(), 15-51
SetIpFilter(), 15-60
SetPackets(), 15-65
SetParameters(), 15-62
SetStationIp(), 15-64
Start(), 15-41
Stop(), 15-44
UdpRead(), 15-57
UdpWrite(), 15-55

GUID, 15-29
Interface Structure, 15-29
Revision Number, 15-29

PXE boot server bootstrap types, 15-48
PXE tag definitions for EFI, 15-39

Q - R

QueryMode(), 10-17
RaiseTPL(), 5-15
Read(), 11-28, 16-18
ReadBlocks(), 11-47
ReadDisk(), 11-41
ReadKeyStroke(), 10-6
Read-Only Memory (ROM), definition of,

Glossary-13
Receive, E-94
Receive Filters, E-70
Receive(), 15-24
ReceiveFilters(), 15-11
ReceiveFilterSetting bit mask values, 15-5
references, References-1
RegisterExceptionCallback(), 16-10
RegisterICacheFlush(), 19-67
RegisterPeriodicCallback(), 16-6
RegisterProtocolNotify(), 5-42
ReinstallProtocolInterface(), 5-40
related information, References-1
Reset(), EFI_SIMPLE_POINTER, 10-49
Reset(), SIMPLE_TEXT_OUTPUT, 10-11

Extensible Firmware Interface Specification

Index-14 12/01/02 Version 1.10

Reset(), USB Host Controller, 14-4
ResetChannel(), 13-16
ResetSystem(), 6-21
ResetTarget(), 13-17
RestoreTPL(), 5-17
RET, 19-55
RunDiagnostics(), 9-43
runtime services, 1-8, 2-5
Runtime Services, 5-1, 6-1

Miscellaneous Runtime Services, 6-20
Time Services, 6-9
Variable Services, 6-2
Virtual Memory Services, 6-16

Runtime Services Driver, definition of,
Glossary-13

Runtime Services Table, definition of, Glossary-
13

Runtime Services Table, EFI, 4-1
Runtime Services, definition of, Glossary-14

S

SAL, definition of, Glossary-14
SCSI Pass Thru device paths, 13-18
SCSI pass-thru protocol, 13-1
Secondary Root PCI Bus with PCI to PCI

Bridge Device Path, C-6
Serial I/O Protocol, 10-56

Functions
GetControl(), 10-65
SetAttributes(), 10-61
SetControl(), 10-63

GUID, 10-56
Interface Structure, 10-56
Revision Number, 10-56

SERIAL_IO_MODE, 10-57
services, 2-4
SetAttribute(), 10-19
SetAttributes(), 10-61, 12-36
SetBarAttributes(), 12-89
SetControl(), 10-63

control bits, 10-63
SetCursorPosition(), 10-22
SetInfo(), 11-33
SetIpFilter(), 15-60
SetMem(), 5-88
SetMode(), 10-18, 10-30

SetOptions(), 9-34
SetPackets(), 15-65
SetParameters(), 15-62
SetPosition(), 11-30
SetRootHubPortFeature (), 14-30
SetState(), 14-8
SetStationIp(), 15-64
SetTime(), 6-13
SetTimer(), 5-13
SetVariable(), 6-7
SetVirtualAddressMap(), 6-17
SetWakeupTime(), 6-15
SetWatchdogTimer(), 5-85
SHL, 19-56
SHR, 19-57
Shutdown(), 15-10, 15-77
SignalEvent(), 5-10
Simple File System Protocol, 11-18

functions
OpenVolume(), 11-20

GUID, 11-18
Interface Structure, 11-18
Revision Number, 11-18

Simple Input Protocol, 10-2, 10-4
Functions

ReadKeyStroke(), 10-6
Reset(), 10-5

GUID, 10-4
Interface Structure, 10-4
Scan Codes for, 10-2

Simple Network Protocol, 15-1, 15-29, 15-40
Functions

GetStatus(), 15-20
Initialize(), 15-8
MCastIPtoMAC(), 15-17
NVData(), 15-18
Receive(), 15-24
ReceiveFilters(), 15-11
Reset(), 15-9
Shutdown(), 15-10
Start(), 15-6
StationAddress(), 15-13
Statistics(), 15-14
Stop(), 15-7
Transmit(), 15-22

GUID, 15-1
Interface Structure, 15-1

 Index

Version 1.10 12/01/02 Index-15

Simple Network Protocol (continued)
Revision Number, 15-1

Simple Pointer Protocol, 10-47
Functions

GetState(), 10-50
Reset(), 10-49

GUID, 10-47
Protocol Interface Structure, 10-47

Simple Text Output Protocol, 10-8
Functions

ClearScreen(), 10-21
EnableCursor(), 10-23
OutputString(), 10-12
Querymode(), 10-17
Reset(), 10-11
SetAttribute(), 10-19
SetCursorPosition(), 10-22
Setmode(), 10-18
TestString(), 10-16

GUID, 10-8
Interface Structure, 10-8

SIMPLE_INPUT protocol, implementation, B-1
SIMPLE_TEXT_OUTPUT implementation

control sequences, B-3
SIMPLE_TEXT_OUTPUT protocol,

implementation, B-1
SIMPLE_TEXT_OUTPUT_MODE, 10-9
SMBIOS, definition of, Glossary-14
specifications, other, References-5
specifications, prerequisite, References-5
Stall(), 5-86
StandardError, 10-8
StandardError, definition of, Glossary-14
Start, E-49
Start(), 9-10, 15-6
Start(), PXE Base Code Protocol, 15-41
StartImage(), 5-78
Station Address, E-73
StationAddress(), 15-13
Statistics, E-75
Statistics(), 15-14
status codes, 0-1
Status Codes, definition of, Glossary-14
Stop, E-54
Stop(), 9-18, 15-7
Stop(), PXE Base Code Protocol, 15-44
STORESP, 19-58

StriColl(), 11-54
String, definition of, Glossary-14
StrLwr(), 11-57
StrToFat(), 11-60
StrUpr(), 11-58
SUB, 19-59
success codes, D-1
Supported(), 9-4
SyncInterruptTransfer(), 14-19
System Abstraction Layer (SAL), definition of,

Glossary-14
System Management BIOS (SMBIOS),

definition of, Glossary-14
system partition, 1-8
System Partition, 11-4, 11-5
System Partition, definition of, Glossary-14
System Table, definition of, Glossary-15
System Table, EFI, 4-1

T

table-based interfaces, 1-8
Task Priority Level (TPL) , definition of,

Glossary-15
task priority levels

general, 5-2
restrictions, 5-3
usage, 5-3

Task Priority Services, 5-2
function list, 5-2
functions

RaiseTPL(), 5-15
RestoreTPL(), 5-17

overview, 5-2
terminology, definitions, Glossary-1
TestString(), 10-16
TFTP error packet, 15-36
Time Format, definition of, Glossary-15
Time Services

function list, 6-9
functions

GetTime(), 6-10
GetWakeupTime(), 6-14
SetTime(), 6-13
SetWakeupTime(), 6-15

overview, 6-9
time, format, A-1

Extensible Firmware Interface Specification

Index-16 12/01/02 Version 1.10

Timer Services, 5-2
function list, 5-2
functions

SetTimer(), 5-13
overview, 5-2

TPL, See task priority levels
TPL restrictions, 5-4
TPL_APPLICATION level, 5-3
TPL_HIGH_LEVEL, 5-3
TPL_NOTIFY level, 5-3
Transmit, E-90
Transmit(), 15-22
Trivial File Transport Protocol (TFTP),

definition of, Glossary-15

U

UDP port filter operation, 15-58
UdpRead(), 15-57
UdpWrite(), 15-55
UGA Draw Protocol, 10-25, 10-28

Functions
Blt(), 10-32
GetMode(), 10-29
SetMode(), 10-30

GUID, 10-28
protocol interface structure, 10-28

UGA I/O protocol, 10-26
UGA I/O Protocol, 10-35

Functions
CreateDevice(), 10-37
DeleteDevice(), 10-39

GUID, 10-35
Protocol Interface Structure, 10-35

UGA protocols, 10-24
UGA ROM, 10-24
UGA_IO_REQUEST_CODE, 10-42
UNDI as an EFI Runtime Driver, E-96
UNDI C definitions, E-15
UNDI CDB, E-13
UNDI CDB field definitions, E-13
UNDI command descriptor block, E-13
UNDI command format, E-13
UNDI commands, E-45

Fill Header, E-87
Get Config Info, E-59
Get Init Info, E-55

Get State, E-47
Get Status, E-84
Initialize, E-61
Interrupt Enables, E-68
issuing, E-12
linking & queuing, E-46
MCast IP To MAC, E-79
NvData, E-80
Receive, E-94
Receive Filters, E-70
Start, E-49
Station Address, E-73
Statistics, E-75
Stop, E-54
Transmit, E-90

UNDI Specification
Definitions, E-1, E-2
driver types, E-5, E-6

UNDI Specification, 32/64-Bit, E-1
Unicode Collation Protocol, 11-52

Functions
FatToStr(), 11-59
MetaiMatch(), 11-55
StriColl(), 11-54
StrLwr(), 11-57
StrToFat(), 11-60
StrUpr(), 11-58

GUID, 11-52
Interface Structure, 11-52

Unicode control characters, supported, 10-2
UNICODE DRAWING CHARACTERS, 10-13
Unicode, definition of, Glossary-15
UninstallMultipleProtocolInterfaces(), 5-73
UninstallProtocolInterface(), 5-38
Universal Graphics Adapter protocols, 10-24
Universal Network Device Interface (UNDI),

definition of, Glossary-16
Universal Serial Bus (USB), definition of,

Glossary-16
Unload(), 7-3
UnloadImage(), 5-79, 19-66
Unmap(), 12-29, 12-77, 18-10
UpdateBootObjectAuthorization(), 15-88

 Index

Version 1.10 12/01/02 Index-17

USB Bus Driver, 14-35
Bus Enumeration, 14-36
Driver Binding Protocol, 14-35
Entry Point, 14-35
Hot-Plug Event, 14-36

USB Bus Driver, definition of, Glossary-16
USB Bus, definition of, Glossary-16
USB Controller, definition of, Glossary-16
USB Device Driver, 14-37

Driver Binding Protocol, 14-37
Entry Point, 14-37

USB Device Driver, definition of, Glossary-16
USB device path node, 14-66
USB Device, definition of, Glossary-16
USB Driver Model, 14-34
USB Enumeration, definition of, Glossary-16
USB host controller protocol, 14-2
USB Host Controller Protocol, 14-1

GUID, 14-2
Interface Structure, 14-2

USB Host Controller, definition of, Glossary-16
USB hub port change status bitmap, 14-29
USB hub port status bitmap, 14-28
USB Hub, definition of, Glossary-16
USB I/O protocol, 14-38

GUID, 14-38
Interface Structure, 14-38

USB I/O Protocol
functions

UsbAsyncInterruptTransfer (), 14-45
UsbAsyncIsochronousTransfer (), 14-52
UsbBulkTransfer (), 14-43
UsbControlTransfer(), 14-40
UsbGetConfigDescriptor (), 14-56
UsbGetDeviceDescriptor (), 14-54
UsbGetEndpointDescriptor(), 14-60
UsbGetInterfaceDescriptor (), 14-58
UsbGetStringDescriptor(), 14-62
UsbGetSupportedLanguages(), 14-64
UsbIsochronousTransfer (), 14-50
UsbPortReset(), 14-65
UsbSyncInterruptTransfer (), 14-48

USB Interface, definition of, Glossary-17
USB port feature, 14-31
USB transfer result error codes, 14-41
UsbAsyncInterruptTransfer(), 14-45
UsbAsyncIsochronousTransfer (), 14-52

UsbBulkTransfer(), 14-43
UsbControlTransfer(), 14-40
UsbGetConfigDescriptor(), 14-56
UsbGetDeviceDescriptor (), 14-54
UsbGetEndpointDescriptor(), 14-60
UsbGetInterfaceDescriptor(), 14-58
UsbGetStringDescriptor(), 14-62
UsbGetSupportedLanguages(), 14-64
UsbIsochronousTransfer(), 14-50
UsbPortReset(), 14-65
UsbSyncInterruptTransfer(), 14-48
UTC, A-1

V

Variable Attributes, 6-3
Variable Services

function list, 6-2
functions

GetNextVariableName(), 6-5
GetVariable(), 6-3
SetVariable(), 6-7

overview, 6-2
variables

global, 3-5
non-volatile, 3-5

VerifyBootObject(), 15-96
Manifest Syntax, 15-96

VerifyObjectWithCredential(), 15-103
virtual machine, 19-1
Virtual Memory Services

function list, 6-16
functions

ConvertPointer(), 6-19
SetVirtualAddressMap (), 6-17

overview, 6-16
VM, definition of, Glossary-17

W - X

WaitForEvent(), 5-11
warning codes, D-2
Watchdog timer, definition of, Glossary-17
web sites, References-1
WfM, See Wired for Management specification
Wired for Management (WfM), definition of,

Glossary-17

Extensible Firmware Interface Specification

Index-18 12/01/02 Version 1.10

Wired for Management specification,
References-5. See also related information

Write(), 11-29, 16-17
WriteBlocks(), 11-49
WriteDisk(), 11-42
XOR, 19-60

	Extensible Firmware Interface Specification
	Disclaimer
	Revision History
	Contents
	1 Introduction
	1.1 EFI Driver Model Extensions
	1.2 Overview
	1.3 Goals
	1.4 Target Audience
	1.5 EFI Design Overview
	1.6 EFI Driver Model
	1.6.1 EFI Driver Model Goals
	1.6.2 Legacy Option ROM Issues

	1.7 Migration Requirements
	1.7.1 Legacy Operating System Support
	1.7.2 Supporting the EFI Specification on a Legacy Platform

	1.8 Conventions Used in This Document
	1.8.1 Data Structure Descriptions
	1.8.2 Protocol Descriptions
	1.8.3 Procedure Descriptions
	1.8.4 Instruction Descriptions
	1.8.5 Pseudo-Code Conventions
	1.8.6 Typographic Conventions

	2 Overview
	2.1 Boot Manager
	2.1.1 EFI Images
	2.1.2 EFI Applications
	2.1.3 EFI OS Loaders
	2.1.4 EFI Drivers

	2.2 Firmware Core
	2.2.1 EFI Services
	2.2.2 Runtime Services

	2.3 Calling Conventions
	2.3.1 Data Types
	2.3.2 IA-32 Platforms
	2.3.2.1 Handoff State

	2.3.3 Itanium®-Based Platforms
	2.3.3.1 Handoff State

	2.4 Protocols
	2.5 EFI Driver Model
	2.5.1 Legacy Option ROM Issues
	2.5.1.1 IA-32 16-Bit Real Mode Binaries
	2.5.1.2 Fixed Resources for Working with Option ROMs
	2.5.1.3 Matching Option ROMs to their Devices
	2.5.1.4 Ties to PC-AT System Design
	2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience

	2.5.2 Driver Initialization
	2.5.3 Host Bus Controllers
	2.5.4 Device Drivers
	2.5.5 Bus Drivers
	2.5.6 Platform Components
	2.5.7 Hot-Plug Events

	2.6 Requirements
	2.6.1 Required Elements
	2.6.2 Platform-Specific Elements
	2.6.3 Driver-Specific Elements

	3 Boot Manager
	3.1 Firmware Boot Manager
	3.2 Globally-Defined Variables
	3.3 Boot Option Variables Default Behavior
	3.4 Boot Mechanisms
	3.4.1 Boot via Simple File Protocol
	3.4.1.1 Removable Media Boot Behavior

	3.4.2 Boot via LOAD_FILE Protocol
	3.4.2.1 Network Booting
	3.4.2.2 Future Boot Media

	4 EFI System Table
	4.1 EFI Image Entry Point
	EFI_IMAGE_ENTRY_POINT

	4.2 EFI Table Header
	EFI_TABLE_HEADER

	4.3 EFI System Table
	EFI_SYSTEM_TABLE

	4.4 EFI Boot Services Table
	EFI_BOOT_SERVICES

	4.5 EFI Runtime Services Table
	EFI_RUNTIME_SERVICES

	4.6 EFI Configuration Table
	EFI_CONFIGURATION_TABLE

	4.7 EFI Image Entry Point Examples
	4.7.1 EFI Image Entry Point Examples
	4.7.2 EFI Driver Model Example
	4.7.3 EFI Driver Model Example (Unloadable)
	4.7.4 EFI Driver Model Example (Multiple Instances)

	5 Services - Boot Services
	5.1 Event, Timer, and Task Priority Services
	CreateEvent()
	CloseEvent()
	SignalEvent()
	WaitForEvent()
	CheckEvent()
	SetTimer()
	RaiseTPL()
	RestoreTPL()

	5.2 Memory Allocation Services
	AllocatePages()
	FreePages()
	GetMemoryMap()
	AllocatePool()
	FreePool()

	5.3 Protocol Handler Services
	5.3.1 Driver Model Boot Services
	InstallProtocolInterface()
	UninstallProtocolInterface()
	ReinstallProtocolInterface()
	RegisterProtocolNotify()
	LocateHandle()
	HandleProtocol()
	LocateDevicePath()
	OpenProtocol()
	CloseProtocol()
	OpenProtocolInformation()
	ConnectController()
	DisconnectController()
	ProtocolsPerHandle()
	LocateHandleBuffer()
	LocateProtocol()
	InstallMultipleProtocolInterfaces()
	UninstallMultipleProtocolInterfaces()

	5.4 Image Services
	LoadImage()
	StartImage()
	UnloadImage()
	EFI_IMAGE_ENTRY_POINT
	Exit()
	ExitBootServices()

	5.5 Miscellaneous Boot Services
	SetWatchdogTimer()
	Stall()
	CopyMem()
	SetMem()
	GetNextMonotonicCount()
	InstallConfigurationTable()
	CalculateCrc32()

	6 Services - Runtime Services
	6.1 Variable Services
	GetVariable()
	GetNextVariableName()
	SetVariable()

	6.2 Time Services
	GetTime()
	SetTime()
	GetWakeupTime()
	SetWakeupTime()

	6.3 Virtual Memory Services
	SetVirtualAddressMap()
	ConvertPointer()

	6.4 Miscellaneous Runtime Services
	ResetSystem()
	GetNextHighMonotonicCount()

	7 Protocols - EFI Loaded Image
	EFI_LOADED_IMAGE Protocol
	LOADED_IMAGE.Unload()

	8 Protocols - Device Path Protocol
	8.1 Device Path Overview
	8.2 EFI_DEVICE_PATH Protocol
	EFI_DEVICE_PATH Protocol

	8.3 Device Path Nodes
	8.3.1 Generic Device Path Structures
	8.3.2 Hardware Device Path
	8.3.2.1 PCI Device Path
	8.3.2.2 PCCARD Device Path
	8.3.2.3 Memory Mapped Device Path
	8.3.2.4 Vendor Device Path
	8.3.2.5 Controller Device Path

	8.3.3 ACPI Device Path
	8.3.4 Messaging Device Path
	8.3.4.1 ATAPI Device Path
	8.3.4.2 SCSI Device Path
	8.3.4.3 Fibre Channel Device Path
	8.3.4.4 1394 Device Path
	8.3.4.5 USB Device Path
	8.3.4.6 USB Class Device Path
	8.3.4.7 IO Device Path
	8.3.4.8 MAC Address Device Path
	8.3.4.9 IPv4 Device Path
	8.3.4.10 IPv6 Device Path
	8.3.4.11 InfiniBand Device Path
	8.3.4.12 UART Device Path
	8.3.4.13 Vendor-Defined Messaging Device Path
	8.3.4.14 UART Flow Control Messaging Path

	8.3.5 Media Device Path
	8.3.5.1 Hard Drive
	8.3.5.2 CD-ROM Media Device Path
	8.3.5.3 Vendor-Defined Media Device Path
	8.3.5.4 File Path Media Device Path
	8.3.5.5 Media Protocol Device Path

	8.3.6 BIOS Boot Specification Device Path

	8.4 Device Path Generation Rules
	8.4.1 Housekeeping Rules
	8.4.2 Rules with ACPI _HID and _UID
	8.4.3 Rules with ACPI _ADR
	8.4.4 Hardware vs. Messaging Device Path Rules
	8.4.5 Media Device Path Rules
	8.4.6 Other Rules

	9 Protocols - EFI Driver Model
	9.1 EFI Driver Binding Protocol
	EFI_DRIVER_BINDING_PROTOCOL
	EFI_DRIVER_BINDING_PROTOCOL.Supported()
	EFI_DRIVER_BINDING_PROTOCOL.Start()
	EFI_DRIVER_BINDING_PROTOCOL.Stop()

	9.2 EFI Platform Driver Override Protocol
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

	9.3 EFI Bus Specific Driver Override Protocol
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

	9.4 EFI Driver Configuration Protocol
	EFI_DRIVER_CONFIGURATION_PROTOCOL
	EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions()
	EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid()
	EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults()

	9.5 EFI Driver Diagnostics Protocol
	EFI_DRIVER_DIAGNOSTICS_PROTOCOL
	EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics()

	9.6 EFI Component Name Protocol
	EFI_COMPONENT_NAME_PROTOCOL
	EFI_COMPONENT_NAME_PROTOCOL.GetDriverName()
	EFI_COMPONENT_NAME_PROTOCOL.GetControllerName()

	10 Protocols - Console Support
	10.1 Console I/O Protocol
	10.1.1 Overview
	10.1.2 ConsoleIn Definition

	10.2 Simple Input Protocol
	SIMPLE_INPUT
	SIMPLE_INPUT.Reset()
	SIMPLE_INPUT.ReadKeyStroke()

	10.2.1 ConsoleOut or StandardError

	10.3 Simple Text Output Protocol
	SIMPLE_TEXT_OUTPUT Protocol
	SIMPLE_TEXT_OUTPUT.Reset()
	SIMPLE_TEXT_OUTPUT.OutputString()
	SIMPLE_TEXT_OUTPUT.TestString()
	SIMPLE_TEXT_OUTPUT.QueryMode()
	SIMPLE_TEXT_OUTPUT.SetMode()
	SIMPLE_TEXT_OUTPUT.SetAttribute()
	SIMPLE_TEXT_OUTPUT.ClearScreen()
	SIMPLE_TEXT_OUTPUT.SetCursorPosition()
	SIMPLE_TEXT_OUTPUT.EnableCursor()

	10.4 Universal Graphics Adapter Protocols
	10.4.1 UGA ROM
	10.4.2 UGA Draw Protocol
	10.4.3 Blt Buffer
	10.4.4 UGA I/O Protocol
	10.4.5 Fallback Mode Driver

	10.5 UGA Draw Protocol
	EFI_UGA_DRAW_PROTOCOL
	EFI_UGA_DRAW_PROTOCOL.GetMode()
	EFI_UGA_DRAW_PROTOCOL.SetMode()
	EFI_UGA_DRAW_PROTOCOL.Blt()

	10.6 Rules for PCI/AGP Devices
	10.7 UGA I/O Protocol
	EFI_UGA_IO_PROTOCOL
	EFI_UGA_IO_PROTOCOL.CreateDevice()
	EFI_UGA_IO_PROTOCOL.DeleteDevice()
	PUGA_FW_SERVICE_DISPATCH.DispatchService()

	10.8 Implementation Rules for an EFI UGA Driver
	10.9 UGA Draw Protocol to UGA I/O Protocol Mapping
	10.9.1 UGA System Requirements
	10.9.2 System Abstraction Requirements
	10.9.3 Firmware to OS Hand-off

	10.10 Simple Pointer Protocol
	EFI_SIMPLE_POINTER_PROTOCOL
	EFI_SIMPLE_POINTER.Reset()
	EFI_SIMPLE_POINTER.GetState()

	10.11 EFI Simple Pointer Device Paths
	10.12 Serial I/O Protocol
	SERIAL_IO_PROTOCOL
	SERIAL_IO.Reset()
	SERIAL_IO.SetAttributes()
	SERIAL_IO.SetControl()
	SERIAL_IO.GetControl()
	SERIAL_IO.Write()
	SERIAL_IO.Read()

	11 Protocols - Bootable Image Support
	11.1 LOAD_FILE Protocol
	LOAD_FILE Protocol
	LOAD_FILE.LoadFile()

	11.2 File System Format
	11.2.1 System Partition
	11.2.1.1 File System Format
	11.2.1.2 File Names
	11.2.1.3 Directory Structure

	11.2.2 Partition Discovery
	11.2.2.1 EFI Partition Header
	11.2.2.2 ISO-9660 and El Torito
	11.2.2.3 Legacy Master Boot Record
	11.2.2.4 Legacy Master Boot Record and GPT Partitions

	11.2.3 Media Formats
	11.2.3.1 Removable Media
	11.2.3.2 Diskette
	11.2.3.3 Hard Drive
	11.2.3.4 CD-ROM and DVD-ROM
	11.2.3.5 Network

	11.3 File System Protocol
	Simple File System Protocol
	EFI_FILE_IO_INTERFACE.OpenVolume()

	11.4 EFI_FILE Protocol
	EFI_FILE Protocol
	EFI_FILE.Open()
	EFI_FILE.Close()
	EFI_FILE.Delete()
	EFI_FILE.Read()
	EFI_FILE.Write()
	EFI_FILE.SetPosition()
	EFI_FILE.GetPosition()
	EFI_FILE.GetInfo()
	EFI_FILE.SetInfo()
	EFI_FILE.Flush()
	EFI_FILE_INFO
	EFI_FILE_SYSTEM_INFO
	EFI_FILE_SYSTEM_VOLUME_LABEL

	11.5 DISK_IO Protocol
	DISK_IO Protocol
	EFI_DISK_IO.ReadDisk()
	EFI_DISK_IO.WriteDisk()

	11.6 BLOCK_IO Protocol
	BLOCK_IO Protocol
	EFI_BLOCK_IO.Reset()
	EFI_BLOCK_IO.ReadBlocks()
	EFI_BLOCK_IO.WriteBlocks()
	EFI_BLOCK_IO.FlushBlocks()

	11.7 UNICODE_COLLATION Protocol
	UNICODE_COLLATION Protocol
	UNICODE_COLLATION.StriColl()
	UNICODE_COLLATION.MetaiMatch()
	UNICODE_COLLATION.StrLwr()
	UNICODE_COLLATION.StrUpr()
	UNICODE_COLLATION.FatToStr()
	UNICODE_COLLATION.StrToFat()

	12 Protocols - PCI Bus Support
	12.1 PCI Root Bridge I/O Support
	12.1.1 PCI Root Bridge I/O Overview
	12.1.1.1 Sample PCI Architectures

	12.2 PCI Root Bridge I/O Protocol
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

	12.2.1 PCI Root Bridge Device Paths

	12.3 PCI Driver Model
	12.3.1 PCI Driver Initialization
	12.3.1.1 Driver Configuration Protocol
	12.3.1.2 Driver Diagnostics Protocol
	12.3.1.3 Component Name Protocol

	12.3.2 PCI Bus Drivers
	12.3.2.1 Driver Binding Protocol for PCI Bus Drivers
	12.3.2.2 PCI Enumeration

	12.3.3 PCI Device Drivers
	12.3.3.1 Driver Binding Protocol for PCI Device Drivers

	12.4 EFI PCI I/O Protocol
	EFI_PCI_IO_PROTOCOL
	EFI_PCI_IO_PROTOCOL.PollMem()
	EFI_PCI_IO_PROTOCOL.PollIo()
	EFI_PCI_IO_PROTOCOL.Mem.Read() EFI_PCI_IO_PROTOCOL.Mem.Write()
	EFI_PCI_IO_PROTOCOL.Io.Read() EFI_PCI_IO_PROTOCOL.Io.Write()
	EFI_PCI_IO_PROTOCOL.Pci.Read() EFI_PCI_IO_PROTOCOL.Pci.Write()
	EFI_PCI_IO_PROTOCOL.CopyMem()
	EFI_PCI_IO_PROTOCOL.Map()
	EFI_PCI_IO_PROTOCOL.Unmap()
	EFI_PCI_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_IO_PROTOCOL.Flush()
	EFI_PCI_IO_PROTOCOL.GetLocation()
	EFI_PCI_IO_PROTOCOL.Attributes()
	EFI_PCI_IO_PROTOCOL.GetBarAttributes()
	EFI_PCI_IO_PROTOCOL.SetBarAttributes()

	12.4.1 PCI Device Paths
	12.4.2 PCI Option ROMs
	12.4.2.1 PCI Bus Driver Responsibilities
	12.4.2.2 PCI Device Driver Responsibilities

	12.4.3 Nonvolatile Storage
	12.4.4 PCI Hot-Plug Events

	13 Protocols - SCSI Bus Support
	13.1 SCSI Pass Thru Protocol
	EFI_SCSI_PASS_THRU Protocol
	EFI_SCSI_PASS_THRU_PROTOCOL.PassThru()
	EFI_SCSI_PASS_THRU_PROTOCOL.GetNextDevice()
	EFI_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()
	EFI_SCSI_PASS_THRU_PROTOCOL.ResetChannel()
	EFI_SCSI_PASS_THRU_PROTOCOL.ResetTarget()

	13.2 SCSI Pass Thru Device Paths

	14 Protocols - USB Support
	14.1 USB Host Controller Protocol
	14.1.1 USB Host Controller Protocol Overview
	EFI_USB_HC_PROTOCOL
	EFI_USB_HC_PROTOCOL.Reset()
	EFI_USB_HC_PROTOCOL.GetState()
	EFI_USB_HC_PROTOCOL.SetState()
	EFI_USB_HC_PROTOCOL.ControlTransfer()
	EFI_USB_HC_PROTOCOL.BulkTransfer()
	EFI_USB_HC_PROTOCOL.AsyncInterruptTransfer()
	EFI_USB_HC_PROTOCOL.SyncInterruptTransfer()
	EFI_USB_HC_PROTOCOL.IsochronousTransfer()
	EFI_USB_HC_PROTOCOL.AsyncIsochronousTransfer()
	EFI_USB_HC_PROTOCOL.GetRootHubPortNumber()
	EFI_USB_HC_PROTOCOL.GetRootHubPortStatus()
	EFI_USB_HC_PROTOCOL.SetRootHubPortFeature()
	EFI_USB_HC_PROTOCOL.ClearRootHubPortFeature()

	14.2 USB Driver Model
	14.2.1 Scope
	14.2.2 USB Driver Model Overview
	14.2.3 USB Bus Driver
	14.2.3.1 USB Bus Driver Entry Point
	14.2.3.2 Driver Binding Protocol for USB Bus Drivers
	14.2.3.3 USB Hot-Plug Event
	14.2.3.4 USB Bus Enumeration

	14.2.4 USB Device Driver
	14.2.4.1 USB Device Driver Entry Point
	14.2.4.2 Driver Binding Protocol for USB Device Drivers

	14.2.5 EFI USB I/O Protocol Overview
	EFI_USB_IO Protocol
	EFI_USB_IO_PROTOCOL.UsbControlTransfer()
	EFI_USB_IO_PROTOCOL.UsbBulkTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()
	EFI_USB_IO_PROTOCOL.UsbPortReset()

	14.2.6 USB Device Paths
	14.2.6.1 USB Device Path Node
	14.2.6.2 USB Device Path Example

	15 Protocols - Network Support
	15.1 EFI_SIMPLE_NETWORK Protocol
	EFI_SIMPLE_NETWORK Protocol
	EFI_SIMPLE_NETWORK.Start()
	EFI_SIMPLE_NETWORK.Stop()
	EFI_SIMPLE_NETWORK.Initialize()
	EFI_SIMPLE_NETWORK.Reset()
	EFI_SIMPLE_NETWORK.Shutdown()
	EFI_SIMPLE_NETWORK.ReceiveFilters()
	EFI_SIMPLE_NETWORK.StationAddress()
	EFI_SIMPLE_NETWORK.Statistics()
	EFI_SIMPLE_NETWORK.MCastIPtoMAC()
	EFI_SIMPLE_NETWORK.NvData()
	EFI_SIMPLE_NETWORK.GetStatus()
	EFI_SIMPLE_NETWORK.Transmit()
	EFI_SIMPLE_NETWORK.Receive()

	15.2 NETWORK_INTERFACE_IDENTIFIER Protocol
	EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

	15.3 PXE Base Code Protocol
	EFI_PXE_BASE_CODE Protocol
	EFI_PXE_BASE_CODE.Start()
	EFI_PXE_BASE_CODE.Stop()
	EFI_PXE_BASE_CODE.Dhcp()
	EFI_PXE_BASE_CODE.Discover()
	EFI_PXE_BASE_CODE.Mtftp()
	EFI_PXE_BASE_CODE.UdpWrite()
	EFI_PXE_BASE_CODE.UdpRead()
	EFI_PXE_BASE_CODE.SetIpFilter()
	EFI_PXE_BASE_CODE.Arp()
	EFI_PXE_BASE_CODE.SetParameters()
	EFI_PXE_BASE_CODE.SetStationIp()
	EFI_PXE_BASE_CODE.SetPackets()

	15.4 PXE Base Code Callback Protocol
	EFI_PXE_BASE_CODE_CALLBACK Protocol
	EFI_PXE_BASE_CODE_CALLBACK.Callback()

	15.5 Boot Integrity Services Protocol
	EFI_BIS_PROTOCOL
	EFI_BIS.Initialize()
	EFI_BIS.Shutdown()
	EFI_BIS.Free()
	EFI_BIS.GetBootObjectAuthorizationCertificate()
	EFI_BIS.GetBootObjectAuthorizationCheckFlag()
	EFI_BIS.GetBootObjectAuthorizationUpdateToken()
	EFI_BIS.GetSignatureInfo()
	EFI_BIS.UpdateBootObjectAuthorization()
	EFI_BIS.VerifyBootObject()
	EFI_BIS.VerifyObjectWithCredential()

	16 Protocols - Debugger Support
	16.1 Overview
	16.2 EFI Debug Support Protocol
	16.2.1 EFI Debug Support Protocol Overview
	EFI_DEBUG_SUPPORT_PROTOCOL
	EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

	16.3 EFI Debugport Protocol
	16.3.1 EFI Debugport Overview
	EFI_DEBUGPORT_PROTOCOL
	EFI_DEBUGPORT_PROTOCOL.Reset()
	EFI_DEBUGPORT_PROTOCOL.Write()
	EFI_DEBUGPORT_PROTOCOL.Read()
	EFI_DEBUGPORT_PROTOCOL.Poll()

	16.3.2 Debugport Device Path
	16.3.3 EFI Debugport Variable

	16.4 EFI Debug Support Table
	16.4.1 Overview
	16.4.2 EFI System Table Location
	16.4.3 EFI Image Info

	17 Protocols - Compression Algorithm Specification
	17.1 Algorithm Overview
	17.2 Data Format
	17.2.1 Bit Order
	17.2.2 Overall Structure
	17.2.3 Block Structure
	17.2.3.1 Block Header
	17.2.3.2 Block Body

	17.3 Compressor Design
	17.3.1 Overall Process
	17.3.2 String Info Log
	17.3.2.1 Data Structures
	17.3.2.2 Searching the Tree
	17.3.2.3 Adding String Info
	17.3.2.4 Deleting String Info

	17.3.3 Huffman Code Generation
	17.3.3.1 Huffman Tree Generation
	17.3.3.2 Code Length Adjustment
	17.3.3.3 Code Generation

	17.4 Decompressor Design
	17.5 Decompress Protocol
	EFI_DECOMPRESS_PROTOCOL
	EFI_DECOMPRESS_PROTOCOL.GetInfo()
	EFI_DECOMPRESS_PROTOCOL.Decompress()

	18 Protocols - Device I/O Protocol
	18.1 Device I/O Overview
	18.2 DEVICE_IO Protocol
	DEVICE_IO Protocol
	DEVICE_IO.Mem(), .Io(), and .Pci()
	DEVICE_IO.PciDevicePath()
	DEVICE_IO.Map()
	DEVICE_IO.Unmap()
	DEVICE_IO.AllocateBuffer()
	DEVICE_IO.Flush()
	DEVICE_IO.FreeBuffer()

	19 EFI Byte Code Virtual Machine
	19.1 Overview
	19.1.1 Processor Architecture Independence
	19.1.2 OS Independent
	19.1.3 EFI Compliant
	19.1.4 Coexistence of Legacy Option ROMs
	19.1.5 Relocatable Image
	19.1.6 Size Restrictions Based on Memory Available

	19.2 Memory Ordering
	19.3 Virtual Machine Registers
	19.4 Natural Indexing
	19.4.1 Sign Bit
	19.4.2 Bits Assigned to Natural Units
	19.4.3 Constant
	19.4.4 Natural Units

	19.5 EBC Instruction Operands
	19.5.1 Direct Operands
	19.5.2 Indirect Operands
	19.5.3 Indirect with Index Operands
	19.5.4 Immediate Operands

	19.6 EBC Instruction Syntax
	19.7 Instruction Encoding
	19.7.1 Instruction Opcode Byte Encoding
	19.7.2 Instruction Operands Byte Encoding
	19.7.3 Index/Immediate Data Encoding

	19.8 EBC Instruction Set
	ADD
	AND
	ASHR
	BREAK
	CALL
	CMP
	CMPI
	DIV
	DIVU
	EXTNDB
	EXTNDD
	EXTNDW
	JMP
	JMP8
	MOD
	MODU
	MOV
	MOVI
	MOVIn
	MOVn
	MOVREL
	MOVsn
	MUL
	MULU
	NEG
	NOT
	OR
	POP
	POPn
	PUSH
	PUSHn
	RET
	SHL
	SHR
	STORESP
	SUB
	XOR

	19.9 Runtime and Software Conventions
	19.9.1 Calling Outside VM
	19.9.2 Calling Inside VM
	19.9.3 Parameter Passing
	19.9.4 Return Values
	19.9.5 Binary Format

	19.10 Architectural Requirements
	19.10.1 EBC Image Requirements
	19.10.2 EBC Execution Interfacing Requirements
	19.10.3 Interfacing Function Parameters Requirements
	19.10.4 Function Return Requirements
	19.10.5 Function Return Values Requirements

	19.11 EBC Interpreter Protocol
	EFI_EBC_PROTOCOL
	EFI_EBC_PROTOCOL.CreateThunk()
	EFI_EBC_PROTOCOL.UnloadImage()
	EFI_EBC_PROTOCOL.RegisterICacheFlush()
	EFI_EBC_PROTOCOL.GetVersion()

	19.12 EBC Tools
	19.12.1 EBC C Compiler
	19.12.2 C Coding Convention
	19.12.3 EBC Interface Assembly Instructions
	19.12.4 Stack Maintenance and Argument Passing
	19.12.5 Native to EBC Arguments Calling Convention
	19.12.6 EBC to Native Arguments Calling Convention
	19.12.7 EBC to EBC Arguments Calling Convention
	19.12.8 Function Returns
	19.12.9 Function Return Values
	19.12.10 Thunking
	19.12.10.1 Thunking EBC to Native Code
	19.12.10.2 Thunking Native Code to EBC
	19.12.10.3 Thunking EBC to EBC

	19.12.11 EBC Linker
	19.12.12 Image Loader
	19.12.13 Debug Support

	19.13 VM Exception Handling
	19.13.1 Divide By 0 Exception
	19.13.2 Debug Break Exception
	19.13.3 Invalid Opcode Exception
	19.13.4 Stack Fault Exception
	19.13.5 Alignment Exception
	19.13.6 Instruction Encoding Exception
	19.13.7 Bad Break Exception
	19.13.8 Undefined Exception

	19.14 Option ROM Formats
	19.14.1 EFI Drivers for PCI Add-in Cards
	19.14.2 Non-PCI Bus Support

	Appendix A GUID and Time Formats
	Appendix B Console
	B.1 SIMPLE_INPUT
	B.2 SIMPLE_TEXT_OUTPUT

	Appendix C Device Path Examples
	C.1 Example Computer System
	C.2 Legacy Floppy
	C.3 IDE Disk
	C.4 Secondary Root PCI Bus with PCI to PCI Bridge
	C.5 ACPI Terms
	C.6 EFI Device Path as a Name Space

	Appendix D Status Codes
	Appendix E 32/64-Bit UNDI Specification
	E.1 Introduction
	E.1.1 Definitions
	E.1.2 Referenced Specifications
	E.1.3 OS Network Stacks

	E.2 Overview
	E.2.1 32/64-bit UNDI Interface
	E.2.2 UNDI Command Format

	E.3 UNDI C Definitions
	E.3.1 Portability Macros
	E.3.2 Miscellaneous Macros
	E.3.3 Portability Types
	E.3.4 Simple Types
	E.3.5 Compound Types

	E.4 UNDI Commands
	E.4.1 Command Linking and Queuing
	E.4.2 Get State
	E.4.3 Start
	E.4.4 Stop
	E.4.5 Get Init Info
	E.4.6 Get Config Info
	E.4.7 Initialize
	E.4.8 Reset
	E.4.9 Shutdown
	E.4.10 Interrupt Enables
	E.4.11 Receive Filters
	E.4.12 Station Address
	E.4.13 Statistics
	E.4.14 MCast IP To MAC
	E.4.15 NvData
	E.4.16 Get Status
	E.4.17 Fill Header
	E.4.18 Transmit
	E.4.19 Receive

	E.5 UNDI as an EFI Runtime Driver

	Appendix F Using the Simple Pointer Protocol
	Appendix G Using the EFI SCSI Pass Thru Protocol
	Appendix H Compression Source Code
	Appendix I Decompression Source Code
	Appendix J EFI Byte Code Virtual Machine Opcode Summary
	Appendix K Alphabetic Function Lists
	References
	Glossary
	Index

