Extensible Firmware Interface
Specification

Version 1.10

December 1, 2002

-
Extensible Firmware Interface Specification Intel

Acknowledgements

The UGA Protocol sections of this specification were developed in close consultation with
Microsoft as part of the Universal Graphics Adapter (UGA) initiative. Microsoft has made
significant contributions to the interface definitions presented here to ensure that they will work
well with video adapters supporting the Microsoft UGA specification. These efforts are gratefully
acknowledged.

The EFI Byte Code Virtual Machine sections (Chapter 19) of this specification were developed in
close consultation with Microsoft, LSI, Hewlett Packard, Compaq, and Phoenix Technologies. The
efforts of all contributors to these sections are gratefully acknowledged.

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted herein, except that a license is hereby granted
to copy and reproduce this specification for internal use only.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document contains information on products in the design phase of development. Do not finalize a design with this
information. Revised information will be published when the product is available. Verify with your local sales office that you
have the latest datasheet or specification before finalizing a design.

Intel, the Intel logo, Pentium, ltanium, and MMX are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

T Other names and brands may be claimed as the property of others.
Intel order number: A79614-002

Copyright © 1998-2002 Intel Corporation. All Rights Reserved.

12/01/02 Version 1.10

History

Revision

Revision History

Date

1.0

Official release of EFI 1.10 Specification, revision 1.0.

12/01/02

Version 1.10

12/01/02

in
Extensible Firmware Interface Specification tel

iv 12/01/02 Version 1.10

intel

Contents
1 Introduction
1.1 EF1 Driver Model EXIENSIONS........cccoiiiiiiiiiii e 1-2
1.2 OVBIVIBW ...ttt snnnnnnnee 1-3
1.3 C o= LN 1-6
1.4 Target AUAIENCE.coo oo 1-8
1.5 EFI DeSigN OVEIVIEWccoiiiiiiiiee ettt 1-8
1.6 EFI Driver MOdelcoooiiii 1-9
1.6.1 EFI Driver Model GOAISooiuiiiiiiiei et 1-10
1.6.2 Legacy Option ROM ISSUES........c..uuiiiiiiiiiiiiiiee et 1-11
1.7 Migration ReqUIrEMENTS ... e e e e e e e e e eeees 1-11
1.7.1 Legacy Operating System SUPPOIt.........cooiiiiiiiiiiiiiieeeee e 1-11
1.7.2 Supporting the EFI Specification on a Legacy Platformcccccccee. 1-11
1.8 Conventions Used in This DOCUMENtuuiiiiiiiiiiiieeee e 1-12
1.8.1 Data Structure DesCriptioNS..........ccoiiiiiiiiiiiiiiie e 1-12
1.8.2 Protocol DESCHPLIONScoeviiiiiiiiiiiiieeeeeeeeee e 1-12
1.8.3 Procedure DeSCHPONScviiiiiiiiiiieeieeeeeeeeeee ettt 1-13
1.8.4 INStruction DESCIIPONSeviiiiiiieeeieeeeeeee e 1-13
1.8.5 Pseudo-Code CONVENLIONS...........uuiiiiieeieiiieee e 1-14
1.8.6 Typographic CONVENTIONS........cooiuiiiiiiiee e 1-14
2 Overview

2.1 = To o] 1Y =T g =T [T PP PPPPPPPPP 2-2
2.1.1 EFT IMAQGES...eieeiieeeeeeeeeeeeeeee e 2-2
21.2 (= I o] o] [To7=1 (o] o - TP PPPPPPPPI 2-3
21.3 EF1 OS LOAEIS ...t 2-4
21.4] I 1= £ PP PP PPPPPPPPPPP 2-4
2.2 FIrMWAE COrE ... e e e e e e e nnnnees 2-5
2.21 BRI SEIVICES ... 2-5
222 RUNEIME SEIVICES ... 2-6
2.3 Calling CONVENLIONSeiiiiiieiiiitee ettt e e e e e e e e e e e e aaas 2-7
2.3.1 (D= = Y/ o 1= PRSP PPPPPPPPP 2-7
2.3.2 [A-32 PIAtfOINMS ...ooiiiiiiiiiieeeeeeeeee et 2-9
2.3.2.1 Handoff Stateeueiiiiiie e 2-10
2.3.3 ltanium®-Based PlatfOrmsccceeiieiiriiieiie e 2-11
2.3.3.1 Handoff Stateoviiiiiiiii 2-12
2.4 ProtoCOIS. ... 2-12
2.5 EFI Driver MOdel ... 2-15
251 Legacy Option ROM ISSUES........c..uuiiiiiiiiiiiiiiee et 2-17
2.5.1.1 1A-32 16-Bit Real Mode Binaries........ccccccccvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 2-17
2.5.1.2 Fixed Resources for Working with Option ROMs...............cccoeeee. 2-18
2.5.1.3 Matching Option ROMSs to their Devices.........ccccccvviiiiiiiiiiiiiiiinnnnnn. 2-18
2.5.1.4 Ties to PC-AT System Designccccuuviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 2-19

2.5.1.5 Ambiguities in Specification and Workarounds
Born of EXPEriENCe......cooeiieeeeee e 2-19

Version 1.10 12/01/02 v

intel
Extensible Firmware Interface Specification ’

252 Driver INitializationcoovvviiiiiiiiiieeeeeeeee 2-20
253 HOSt BUS CONEIOIIEIS ... 2-21
254 DEVICE DIIVEIS ...ttt 2-23
255 BUS DIIVEIS...cceiiiiiiiieieeeeeeeeeeee ettt 2-24
25.6 Platform CompoNneNnts.........cooiiiiiiiiiie e 2-26
257 HOt-PIUQ EVENES ... 2-27
2.6 REQUIrEMENTS ... 2-27
2.6.1 Required Elements..........coooiiiiiiiiiiiiiiiieeeeeeeeee e 2-28
2.6.2 Platform-Specific EIEMENtScooiiiiiiiiiii e 2-29
2.6.3 Driver-Specific EIEMENtSoeiiiiiiiiieee e 2-30
3 Boot Manager
3.1 Firmware BOOt MaNager.........uuuiiiiiiiiiiiieieee et 3-1
3.2 Globally-Defined Variables. ... 3-5
3.3 Boot Option Variables Default Behavioroeeveiiiiiiiiiieeece e 3-7
3.4 BOOt MECh@NISMS ...t e e e e ees 3-7
3.4.1 Boot via Simple File ProtoCol..........coooiiiiii e 3-7
3.4.1.1 Removable Media Boot Behavior ... 3-7
3.4.2 Boot via LOAD_FILE ProtocColooeeniiiiiiee et 3-8
3.4.2.1 NetWork BOOtNGccooiiiiieieeeeeeee 3-8
3.4.2.2 Future Boot Media..........coooeiiiiiiiiee 3-8
4 EFl System Table
4.1 EFlImage Entry POiNt........ooooiiiii 4-1
EFI_IMAGE_ENTRY _POINT ..ottt 4-1
4.2 EF1 Table HEAUET e 4-3
EFI_TABLE_HEADER ...t 4-3
4.3 EFI System Table ... 4-4
EFI_SYSTEM_TABLE ... 4-4
4.4 EFI BOOt Services Tableoooiiiiiiiiie e 4-6
EFI_BOOT_SERVICES ...t 4-6
4.5 EFI Runtime Services Table.........coooiiiiiii e 4-11
EFI_RUNTIME_SERVICES ...t 4-11
4.6 EFI Configuration Tablecooiiiii e 4-13
EFI_CONFIGURATION_TABLEcoitiiiiiiie e 4-13
4.7 EFI Image Entry Point EXamples ... 4-14
4.7 .1 EFI Image Entry Point EXamples.........ccoovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeee 4-14
4.7.2 EF1 Driver Model EXample........ooveiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee e 4-16
4.7.3 EFI Driver Model Example (Unloadable)ccccooiiiiiiiiiiiiiiieee 4-17
4.7.4 EFI Driver Model Example (Multiple InStances)ccccveveeiiiiiieeeeeeneee 4-18
5 Services — Boot Services
5.1 Event, Timer, and Task Priority Services..........ccuvuvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 5-2
CrEatEEVENT() ...uveeeeeiie et 5-5
ClOSEEVENT() .evuei e 5-9
SIGNAIEVENT() cooeeeeeeeee 5-10
WaAItFOrEVENT(). ... e 5-11
12/01/02 Version 1.10

vi

intel

Contents

ChECKEVENT() ...ttt a e 5-12

RS T= 10 I 1= (P 5-18

R = 1T I I SRS 5-15
RESTOTETPL() +eeeeeeeiiiee ettt e e e e e e e e e eeas 5-17

5.2 Memory AllOCAtION SEIVICESuuiiiiiiiiiiieeie e 5-18
FN (o or= 1 (=] =T [T | PP UUPPPPPRPPP 5-21

[LT o= o =] | TN 5-24
GEtMEMOIYMAP() e eeeeeeeeieite ettt e e e e e e e e e e 5-25

(e oz= 1 (=] oo To]) O PP UUPPPPPRPPP 5-29

L C=T=Y o o TSRS 5-30

5.3 Protocol Handler SEerviCes.........couuviiiiiiiiii 5-31
5.3.1 Driver Model BOOt SEIVICEScccvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 5-33
InstallProtocollNterface()uuvurueee i 5-36
UninstallProtocollnterface().........cuuveeeeeieiiiiiieeee e 5-38
ReinstallProtocollnterface().......cccoeeeeeiiiiiiiieei e 5-40
RegisterProtOCOINOLIY()uuuruririiiiiiiiiiiiiiiii e 5-42
LoCateHANAIE()oo et 5-43
HaNAIEPTOTOCOI() ...eeeeeeeeiiieee e 5-45
LocateDeviCePath()ccooieeiiiicie e 5-47
OPENPIOTOCOI() .eveeeeeee e ettt e e e 5-49
ClOSEPTOTOCOI() - tvveeeeeeeeeeeitee ettt e e e e e e 5-56
OpenProtocollnformation()............ceee e eei i 5-59

(070 o1 aT=To3 (@70] a1 (o)1 1= o | P 5-61

[DIISTefe] gl g =Te1 (@7 o] g1 1 (0] [=T ¢ | IO PRSPPI 5-66
ProtocolsPerHandle().........oouvuvuiiiii i 5-68
LocateHandIeBUFfEr()........ooeuuiruiii e e e e e 5-70
LOCAtEPIOOCOI() ..ttt 5-73
InstallMultipleProtocollnterfaces()ccoouuiiiiiieiiiieeeieee e 5-74
UninstallMultipleProtocollnterfaces()........ueeeeiieeeiiieiiiciie e 5-75

5.4 IMAJE SEIVICES ... 5-76
oY=V][4 gF=To =T (TP 5-78
SEAMIMAGE() -+ eeeeee ettt 5-80

(@] (o T=Te] g =T LY RN 5-81
EFI_IMAGE_ENTRY _POINTuttiiiiiiiiiiiiiiiiiiieeiiiiiiiieeeeeeeeseeeeeenennneees 5-82

) 5-83
EXItBOOISEIVICES() -.-uuvvveeeeieeieiiiiiiie ettt 5-85

5.5 Miscellaneous BOOt SEIVICEScoooiiiiiiiiii e e 5-86
SetWatchdogTimeEr().......ouv i 5-87

S 2= || R 5-88
COPYMEIM() ettt e e e e e e e e e e e e e e e e 5-89

7= 1YL= 0 T P 5-90
GetNextMonotonNiCCOUNT() ...euvvrueeei i 5-91
InstallConfigurationTable()ueeiiiiii e 5-92

(0721 (o101 £=1 (=107 o3 2 TP 5-93

Version 1.10 12/01/02 vii

-
Extensible Firmware Interface Specification e ’

6 Services — Runtime Services

6.1 VariablE SEIVICESceeeiiiee et e et e e e e e e e e 6-2
GEetVariabIE() ... eee e ——————— 6-3
GetNextVariableNamMe()........uueeii e 6-5
SEIVAIADIE() -ttt 6-7

6.2 THME SBIVICES ...ttt et e e e et e e e e e e e e e e e ran e eeas 6-9
(O 1= 0 I8 4T P 6-10
7= I 1= P 6-13
GEtWaKEUPTIME() «eeeeeeieiiiiiee ettt e e e e e e e e e e e e e 6-14
SetWakKeUPTIME()...oeeeeeeeiieee e e e e e 6-15

6.3 Virtual MEemOrY SEIVICESuuuiiie it e e 6-16
SetVirtualAddreSSMaP() .. . oeee e e e e ————- 6-17
CONVEIPOINTEI() ..veeeeieeeeiiie e e e e e 6-19

6.4 Miscellaneous RUNtIME SEIVICESooeuniiiieiiie e 6-20
RESEISYSIEM() .. 6-21
GetNextHighMonotoniCCOUNT()uuuuiiiiiiiiiiiiiiieieeeeeeeeee e 6-23

7 Protocols — EFl Loaded Image

EFI_LOADED_IMAGE ProtoCOlcouuiiiiiiie et 7-1
LOADED _IMAGE.UNIOAA() ..vvuueeeeeeeiieeeiieeie et e e 7-3

8 Protocols — Device Path Protocol
8.1 DEViCE Path OVEIVIEWcoueiieeieeeee ettt e e e e e e e e e e e e raaas 8-1
8.2 EFI_DEVICE_PATH ProtOCOL.......ciceeiii ettt eee e e e 8-2
EFI_DEVICE_PATH ProtOCOL.........coiiuiiieee e 8-2
8.3 DEVICE Path NOGES ...t e e e 8-3
8.3.1 Generic Device Path StrUCIUIESvieeiiiee e 8-3
8.3.2 Hardware DeVviCe Path ... e 8-5
8.3.2.1 PCIDEVICE Path ...t 8-5
8.3.2.2 PCCARD DeVvice Path........coouuiiieiiee e 8-5
8.3.2.3 Memory Mapped Device Path ... 8-6
8.3.2.4 Vendor Device Path..........c.ooiuiiiiiiii e 8-6
8.3.2.5 Controller Device Path............uoiiiiiii e, 8-6
8.3.3 ACPI DEVICE PaAth... ...t 8-7
8.3.4 Messaging Device Path.............ooooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 8-9
8.3.4.1 ATAPIDevVvice Path.......c.oiuiieiei e 8-9
8.3.4.2 SCSIDeVICe Path......c.u oo 8-10
8.3.4.3 Fibre Channel Device Path..........cooouiiiiiiiiiiieiie e 8-10
8.3.4.4 1394 DeVvice Path.....c.. oo 8-10
8.3.4.5 USB DeViCe Path.......ccuiiieiiiiieeeeeeeee et 8-11
8.3.4.6 USBClass Device Path...........cooouiiiiiiiieee e 8-11
8.3.4.7 1,0 Device Path..........coooooiiii e 8-12
8.3.4.8 MAC Address Device Path...........cooveuiiiiiiiiiee e 8-12
8.3.4.9 IPv4A Device Path.........oooeuiiiiii e 8-12
8.3.4.10 IPVB DevVvice Path.......c.cccuiiiiiiiiee e 8-13
8.3.4.11 InfiniBand Device Pathcoouviiiiiiiii e, 8-13
8.3.4.12 UART Device Pathooiuuiiiiiiiie e 8-14

viii 12/01/02 Version 1.10

I ntel Contents

8.3.4.13 Vendor-Defined Messaging Device Pathccoooeeeiieiieeene 8-14
8.3.4.14 UART Flow Control Messaging Pathcccooiiiiiie, 8-15
8.3.5 Media Device Path ... e 8-16
8.3.5.1 Hard DriVE ... 8-16
8.3.5.2 CD-ROM Media Device Path............ccciiiiiiiiiiiiiieeee, 8-17
8.3.5.3 Vendor-Defined Media Device Path.............cccccooiiiiiiiniiiee, 8-18
8.3.5.4 File Path Media Device Path ..., 8-18
8.3.5.5 Media Protocol Device Pathccccoo i 8-18
8.3.6 BIOS Boot Specification Device Path ..., 8-19
8.4 Device Path Generation RUIESccooiiiiiiiiiii e 8-20
8.4.1 Housekeeping RUIESooooviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 8-20
8.4.2 Rules with ACPI _HID and _UIDoooiiiiiiiiiiieeieeeeee e 8-20
8.4.3 Rules with ACPI _ADR 8-21
8.4.4 Hardware vs. Messaging Device Path Rules............cccccoiii. 8-22
8.4.5 Media Device Path RUIEScooiiiiiiiiiiiiiie 8-22
S G I © 1 1= g 1= 8-22

9 Protocols — EFI Driver Model
9.1 EF1 Driver Binding ProtoCol............ooooiiiiiiiiieeeeee 9-1
EFI_DRIVER_BINDING_PROTOQCOL ...ttt 9-1
EFI_DRIVER_BINDING_PROTOCOL.Supported()cccuvrreeeeerriniiiieneeeaaenn 9-4
EFI_DRIVER_BINDING_PROTOCOL.Start()ccccovvviirrrrieieeeeieiiiieeeeeen 9-10
EFI_DRIVER_BINDING_PROTOCOL.StOP() ++vveeeeeriiiirirreeeieeeeeiiiiiieeeeeen 9-18
9.2 EFI Platform Driver Override ProtOCOlcooiiiiiiiiiiiiiiieeeeee e 9-23
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOLcccvvviiiiiiiiiiieeeenn. 9-23
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver().............. 9-25
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath() 9-27
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()........ 9-29
9.3 EFI Bus Specific Driver Override ProtoCol............ccccuuuiiiiiiiiiiiiiiiieeecee e 9-31
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOLcccccveiiiirreennn. 9-31
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver() 9-32
9.4 EFI Driver Configuration ProtoCol..............ccoiiiiiiiiiiii e 9-33
EFI_DRIVER_CONFIGURATION_PROTOCOLcccccciiiiiiieeeeeeeiieeeeeee 9-33
EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions()ccceveeeeeen. 9-35
EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid().........cccccc.... 9-38
EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults()................. 9-40
9.5 EF1 Driver DiagnostiCS ProtOCOIuuuuiiiiiiiiiiiiiiiieeeeeeeeeeee et 9-43
EFI_DRIVER_DIAGNOSTICS_PROTOCOL......ccccciiiiiiiiiiiieieee e 9-43
EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics()ccceee.... 9-44
9.6 EFI Component Name ProtoCoOlccoovviiiiiiiiciie e 9-47
EFI_COMPONENT_NAME_PROTOCOLoutiiiiiiiiiiiiiiieeee e 9-47
EFI_COMPONENT_NAME_PROTOCOL.GetDriverName()cccceeeeeeenn. 9-48
EFI_COMPONENT_NAME_PROTOCOL.GetControllerName() 9-50

Version 1.10 12/01/02 ix

-
Extensible Firmware Interface Specification e ’

10 Protocols — Console Support

10.1 (O70] 0 1ST0] (=N VL@ N o o (oo o) FN RN 10-1
1011 OVEIVIEW . 10-1
10.1.2 Consoleln Definition ..o 10-2

10.2 Simple INPUL ProtOCOL..........eeeii e e e e e eeeens 10-4

ST 11/ I L 10-4
SIMPLE_INPUT.RESEL() ..ceeeieeeieiiee e 10-5
SIMPLE_INPUT.ReadKeyStroKe() ueeeeieeiiiiiiiiiieeeee e 10-6

10.2.1 ConsoleOut or StandardError...........eevveiiieiieiiieeeeeee e 10-8

10.3 Simple Text Output ProtOCOIcooiiueiiiiiiiie e 10-8

SIMPLE_TEXT_OUTPUT ProtoCOlccoooveiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 10-8
SIMPLE_TEXT_OQUTPUT.RESEL() -oeeeeeeeeeeieeeeeeeee e 10-11
SIMPLE_TEXT_OUTPUT.OUtputString()......ccevveeeiiiiiiieieiieeeeeeeeeeeeeeeeeeeeee 10-12
SIMPLE_TEXT_OUTPUT.TEeStSNG() --oeeeeeeeeeeeeeeeeeeee e 10-16
SIMPLE_TEXT_OUTPUT.QUErYMOE() ..vveeeeeeeaiiiiiieieee e 10-17
SIMPLE_TEXT_OUTPUT.SetMode()coovveeiiiiiiiiiiieeeeeeee 10-18
SIMPLE_TEXT_OUTPUT.SetAttribute()cooooeeeeiii 10-19
SIMPLE_TEXT_OQUTPUT.CIEarSCreeN()ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeens 10-21
SIMPLE_TEXT_OUTPUT.SetCursorPosition()ccccceevvvvuciiiieeeeeeeiiinnnnn, 10-22
SIMPLE_TEXT_OUTPUT.ENableCursor() ... 10-23

10.4 Universal Graphics Adapter ProtoCols...........c..eeeiiiiiiiiiiiiieeieeeee e 10-24
10.4.1 UGA ROM ... 10-24
10.4.2 UGA Draw ProtOCOI.......coooeeiiieiieee e 10-25
10.4.3 Bl BUEr oo 10-25
10.4.4 UGA /O ProtOCOL......ccooie e 10-26
10.4.5 Fallback MO DIVELooiieieieeeeeeeeee e 10-26

10.5 UGA Draw ProtOCOL........ccuviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e eee s 10-27

EFI_UGA_DRAW_PROTOQCOL......uuuuuiiiiiiiiiiiriiiiiiiiiiiiiienereeeenneeneeeeennne. 10-27
EFI_UGA_DRAW_PROTOCOL.GetMOde().......eeeeeeeeeeereieneees 10-28
EFI_UGA_DRAW_PROTOCOL.SetMode()cevverereeieeieeeeiesis 10-29
EFI_UGA_DRAW_PROTOQCOL.BH() ...euvvururnnnmnmnnininnriniiiieieiieiieiinennneennnnene 10-31

10.6 Rules for PCI/AGP DEVICEScceevveeieiieeeeeeeeee ettt 10-34

10.7 (81 7N V@ I o o) (o oo 10-35

EFI_UGA_IO_PROTOQCOLcuutuuiiiiiiiiiiiiiiiiiiniiiininrsesrssensseneeenesneeseeeesee.. 10-35
EFI_UGA_IO_PROTOCOL.CreateDeViCe()uuuuurrmmmmmmmmmrrrnnrrnnnnnnnnnnnnnnns 10-37
EFI_UGA_IO_PROTOCOL.DeleteDeviCe()uurmmmmmmmmmmmmrnnnnrrnnennnnnnnnnnnns 10-38
PUGA_FW_SERVICE_DISPATCH.DispatchService().......ccccccecveeiiiiinnnne 10-39

10.8 Implementation Rules for an EFI UGA Driver.........ccoooviiiiiiiiiieeeeeeeie 10-42

10.9 UGA Draw Protocol to UGA 1/O Protocol Mappingccccoeeeeeeeieeriniinneennenn. 10-43
10.9.1 UGA System RequIremMentscoouiiiiiiiiiiiiiiiieeee e 10-43
10.9.2 System Abstraction Requirementsc.coeeiiiiiiiiiiiiii e 10-44
10.9.3 Firmware to OS Hand-off...........oooooiiiii s 10-44

10.10 Simple Pointer ProtoCOL...........ccoii i 10-46

EFI_SIMPLE_POINTER_PROTOCOL........cuuutiiiiiiiiiiiiiiiiiiiieiiieiieeeenennennnnene. 10-46
EFI_SIMPLE_POINTER.RESE1()....uuuuuuuueurenunnninniiiiiieeiiinieeeneeennnnnnnnnnnnnnnnnnes 10-48
EFI_SIMPLE_POINTER.GetState()uuuverrrrummmeeiiiiiiiiiiniiiniieenieeeiennennnnnnnns 10-49

X 12/01/02 Version 1.10

I ntel Contents

10.11 EFI Simple Pointer Device Pathscoooiiiiiiii e 10-51
10.12 Serial /O ProtOCOL.......cooeeeeee e 10-55
SERIAL_IO_PROTOQCOL.....cciiiiiiiiiiiiiieee et 10-55
SERIAL_IO.RESEI() «o ottt 10-58
SERIAL_IO.SetADULES() ..vvveeeeeeiiiiiiiiiieee et 10-59
SERIAL_1O.SetCONIOI() ...uevvreeeiiaeiiiiiiiiiie et 10-61
SERIAL_IO.GEtCONIIOI()..eeeeeeeeeiiiiiiiieeeee ettt 10-63
SERIAL_IOWIE() «eeeeeeeeeeeee e ettt 10-64
SERIAL_IO.REAA() ++vveeeeeiiiiitiiiieee ettt 10-65

11 Protocols — Bootable Image Support
11.1 LOAD_FILE ProtOCOLcciiiiiiiiiiiiiee ettt 11-1
LOAD _FILE ProtOCOL.......iieeeeeee ettt ettt e e e e e e s e e e 11-1
LOAD_FILE.LOAAFIIE() «.oevveeeeeeeee ettt 11-2
11.2 File System FOormat..........oeeiiiiii e 11-4
11.2.1 System Partition ... 11-4
11.2.1.1 File System FOrmatooooiiiiii e 11-5
11.2.1.2 File NamMES ...coeiiiiiiiiiiieeieeeeeeeeeeeeeeeee et 11-5
11.2.1.3 Directory STrUCIUIE.cooii i 11-5
11.2.2 Partition DISCOVEIYcoooiiieeeeeeeeee e 11-7
11.2.2.1 EFI Partition Header..............uuuiiiiiiiiiiiiiiiieieeeeeeeee e 11-8
11.2.2.2 1S0-9660 and El TOMO......ooiiiiiiieiieeeeeieeeee e 11-12
11.2.2.3 Legacy Master Boot Recordccccccmmmmimmmmmiiniiiiieieeeeeeeeeeeeee 11-13
11.2.2.4 Legacy Master Boot Record and GPT Partitionsccccee... 11-14
11.2.3 Media FOrMaLScoooeeeeeeeeeeeeee 11-15
11.2.3.1 Removable Medi@.........cooeuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 11-15
11.2.3.2 DISKEE ... 11-15
11.2.3.3 Hard DrVE ...cooeiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 11-16
11.2.3.4 CD-ROM and DVD-ROM..........uuiiiiiiiiiiiiiiieee e 11-16
11.2.3.5 NEIWOIK ...eeiiiie i 11-16
11.3 File System ProtoColuuiiiiiiii e 11-17
Simple File System ProtocCol ..o, 11-17
EFI_FILE_IO_INTERFACE.OpenVolume()cuueeieeariiiiiiiieeeeee e 11-19
11.4 EFI_FILE ProtOCOL.......ooiie e 11-20
EFI_FILE ProtocCol...........coociiiiiiiii e 11-20
EFI_FILE.OPEN() oottt 11-22
EFI_FILE.CIOSE() .o atueeteeeeeee ettt 11-24
EFI_FILE.DEIEe() ..ottt 11-25
EFI_FILE.REAA().....c et 11-26
EFI_FILEWIE() ..ottt 11-27
EFI_FILE.SEtPOSIHION() ..vveeeieeiiiiiiiieeeee et 11-28
EFI_FILE.GEtPOSItION() .. veeeiiiiiiiiiieieeee e 11-29
EFI_FILE.GEtINfO() ..uvvriiieiiiiiiiee e 11-30
EFI_FILE.SEtINfO() ...uuetiiiiieieee e 11-31
EFI_FILE.FIUSN() oo 11-32
EFI_FILE_INFO ... 11-33
EFI_FILE_SYSTEM_INFO ...t 11-35

Version 1.10 12/01/02 Xi

intel
Extensible Firmware Interface Specification ’

EFI_FILE_SYSTEM_VOLUME_LABELoooiiiiiiieieeeeeeeen 11-36
11.5 DISK_IO ProtOCOL......ccciiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeteeeee ettt 11-37
D] ES] (G (O 1 od o] (o Yoo IR 11-37
EFI_DISK_[0.ReadDISK()vveeeiiriiieeiiiiiee ettt 11-39
EFI_DISK_[O.WFEDISK() «.-vvveeeeirrreeeiiiriieeeaiieee e et 11-40
11.6 |20 107 QN (O 1 o (o] o ToT o] I 11-41
BLOCK_IO PrOtOCOIuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieebiiieisssbasaseabsaessesesasssssessesnnnnees 11-41
EFI_BLOCK_IO.RESEI().ereteeeiiiiiiiiiiiieiee et 11-44
EFI_BLOCK_IO.ReadBIOCKS()cceeeeeeeeeeieieieieieeeee e 11-45
EFI_BLOCK_IO.WHtEeBIOCKS() ++v e auvvreeeiiriiee ettt 11-47
EFI_BLOCK_IO.FIUShBIOCKS()ceuuveeeeeeaeeeiiiiiieee e 11-49
11.7 UNICODE_COLLATION ProtoColcceeiiiiiiiiiiiieiieee et 11-50
UNICODE_COLLATION ProtoCOIcccuveiieiiiiieee e 11-50
UNICODE_COLLATION.SHCOI() ..vvveeeeeeeiiiiiiiiiieeeee e 11-52
UNICODE_COLLATION.MetaiMatCh()ccooevreeiriiiiieeiiieee e 11-53
UNICODE_COLLATION.SELWI() -.vvveeiiieieeeeiiiiee e 11-55
UNICODE_COLLATION.STIUPI() -evvveeeeeeeeeiiiiiieeeeee e 11-56
UNICODE_COLLATION.FatTOSI() ...couvveeeeiiieee e 11-57
UNICODE_COLLATION.StTOFAt() ...coevveeeeeiieee et 11-58
12 Protocols — PCI Bus Support
12.1 PCIl Root Bridge 1/O SUPPOM.......ceiiiiiiiiiiiiieiieeee ettt 12-1
12.1.1 PCIl Root Bridge /O OVEIVIEWccoeeiiiiiiiieeeeeeeeeeeeeeeeee s 12-1
12.1.1.1 Sample PCI ArchiteCtures............ccccceiiiiiiiiiiiii e 12-4
12.2 PCI Root Bridge I/O ProtOCOIcooiiiiiiiiiice e 12-8
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOLcccctiiiiiiiiiee e 12-8
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PolIMem().......ccceeeeerrniurinnnn. 12-16
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.POIIO().......cuveereeeeaeeriiiiiennne 12-18
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()ccvreerriurnnnn. 12-20
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.lo.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.I0.Write()ccvvvveriirreeeriiinenn. 12-22
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PCI.Wrte()uvvveeeeeeriiiiiinnnn. 12-24
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()cccceevrriuurrnnnn. 12-26
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.MEP()...cveeeerrrrreerinrreaeraienenn 12-28
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.UNMAP() ...uuvreereeeeaeeeiiiiinnne 12-30
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()..................... 12-31
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer().........cccccecerruveenn. 12-33
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FIUSN() ...cccoicurrieiiiiiieieiiiieee. 12-34
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()cccvveuee. 12-35
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()cccuveee. 12-37
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()..............c...... 12-40
12.2.1 PCI Root Bridge Device Paths...........coooiiiiiiiiiiiieee s 12-42

Xii 12/01/02 Version 1.10

intel

Contents
12.3 PCI Driver MOEL.........ccoeeieeeeeeeee e 12-46
12.3.1 PCI Driver Initialization ... 12-46
12.3.1.1 Driver Configuration ProtoCol...........cccooiiiiiiiiiiiiiiiiieeeeee 12-48
12.3.1.2 Driver Diagnostics ProtocColccccccvmmmmmmmmimiiiiiiiieieeeeeeeeeeeeee 12-48
12.3.1.3 Component Name ProtocColcccceiiiiiiiiiiiiieeeeee e 12-48
L T2 o O I U B 1Y o, 12-49
12.3.2.1 Driver Binding Protocol for PCI Bus Drivers...........cccccuveeeieeennns 12-50
12.3.2.2 PCI ENUMEratioNccevvviiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeee e 12-53
12.3.3 PCIDEVICE DIiVEIS ... 12-53
12.3.3.1 Driver Binding Protocol for PCI Device Drivers...........cccccceeenneee 12-53
12.4 EF1 PCI /O ProtoColcccoe e 12-55
EFI_PCI_IO_PROTOCOL......cuutiiiiiiiiniiiiiiiiiiiiniiieniieeeseeeeerseeeseeesaeeenneeee. 12-56
EFI_PCI_IO_PROTOCOL.POIMEM()uuvruunumnnnnnnnnnnnnnnnnnnnnennnnnnnnnnnnnnnnnnnnns 12-65
EFI_PCI_IO_PROTOCOL.POHIO() ...uuuuuurrnrnnnnirinuiiiiiiniiiiiiiieiiiineeanesnneeenenenes 12-67
EFI_PCI_IO_PROTOCOL.Mem.Read() EFI_PCI_IO_PROTOCOL.
IMEMLWIIEE() ettt e e e e 12-69
EFI_PCI_IO_PROTOCOL.lo.Read() EFI_PCI_IO_PROTOCOL.
Lo T AT 1 L= (O 12-71
EFI_PCI_IO_PROTOCOL.Pci.Read() EFI_PCI_IO_PROTOCOL.
oI 1 L= (S 12-73
EFI_PCI_IO_PROTOCOL.COPYMEM()uvuuuuurrnuinniiiiiiiiiiinniieineinnnnnnnnnnnnnnns 12-75
EFI_PCI_IO_PROTOCOL.MAP() +.ervrrrunnsnnnnnns 12-78
EFI_PCI_IO_PROTOCOL.UNMAP() ..uuuerrrnnns 12-80
EFI_PCI_IO_PROTOCOL.AllocateBuffer()ccccuuummmmmmmrmririiiiiriiiinnnannns 12-81
EFI_PCI_IO_PROTOCOL.FreeBuffer()cccccuuummmmmmiiiiiiiiiiiiiiiiiiiieeiiennnns 12-83
EFI_PCI_IO_PROTOCOL.FIUSN() ...vvvurrrrreunnnnnniiiniiieniiienneeneeeneennnnnnnnnnnnnnnn 12-84
EFI_PCI_IO_PROTOCOL.GEetLOCAtION()vvvrrrrrrrrrnrrrrnniiiiiiiiiiiiinieineennennnns 12-85
EFI_PCI_IO_PROTOCOL.ARMDUIES() ...vvvvrrrrrrnrnrnnininiiiiiiiiiiiiieiiinininnnnnennnes 12-86
EFI_PCI_IO_PROTOCOL.GetBarAttributes()ueevremmmmmmmemnrrininnnnnnnnnnnns 12-89
EFI_PCI_IO_PROTOCOL.SetBarAttributes()ueveveemmmmmmeennreniininnnnnnnnnns 12-92
12.4.1 PCIDeVICe Pathscooooeieieeeee 12-94
12.4.2 PCl Option ROMS......ci oottt 12-96
12.4.2.1 PCI Bus Driver Responsibilitiesccccoeeeiviiiiiiiiiciicccceeee e, 12-98
12.4.2.2 PCI Device Driver Responsibilitiescccovvveviiiiiiiciiiiee e, 12-99
12.4.3 Nonvolatile Storage ... 12-101
12.4.4 PCIHOt-PIUG EVENTS ..o 12-102
13 Protocols — SCSI Bus Support
13.1 SCSI Pass Thru ProtOCOLuuuuiiiiiiiiiiiiiiii e eeeeeeeeneeeennees 13-1
EFI_SCSI_PASS_THRU ProtoCOL........coouuiiieeiiee et 13-1
EFI_SCSI_PASS_THRU_PROTOCOL.PaSSTNIU()cvvveereerreinieeiiiiiiiiiens 13-5
EFI_SCSI_PASS_THRU_PROTOCOL.GetNextDevice().....ccccveereereraiannnes 13-10
EFI_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()c..cccceeuneee 13-12
EFI_SCSI_PASS_THRU_PROTOCOL.GetTargetLun().....ccccceeevvrriiiinnnnnns 13-14
EFI_SCSI_PASS_THRU_PROTOCOL.ResetChannel()ccccccceerrreninnnes 13-16
EFI_SCSI_PASS_THRU_PROTOCOL.ResetTarget()cccccceveeeeeerreeiinnnns 13-17
13.2 SCSI Pass Thru Device Pathsuuuuiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeees 13-18
Version 1.10 12/01/02 xiii

intel
Extensible Firmware Interface Specification ’

14 Protocols — USB Support

14.1 USB Host Controller ProtOCOL...........cuiiiiiiiiiiiiiiiiiiiiiiiecieeeeeeeeeeeeeeeeeeeeeee e 14-1
14.1.1 USB Host Controller Protocol OVerviewcccocoeieeiiiieeeeee, 14-1
EFI_USB_HC_PROTOCOLuuuiiiiiiiee ettt e e e e e e snnnneeeeaaa s 14-2
EFI_USB_HC_PROTOCOL.RESEI() +eeeeeeeiiurrriiieiieeeeeiiiiieieee e eieeeeee e 14-4
EFI_USB_HC_PROTOCOL.GEtState()evvvvrvrrmmmmmmmmmnnnnnnrmnnnnnnnnnnnnnnnnnnnnnnnns 14-6
EFI_USB_HC_PROTOCOL.SetState() uuverrrrrmmmmmmmmrrmnnrnrnnrnnnnnnnnnnnnnnnnnnnns 14-8
EFI_USB_HC_PROTOCOL.ControlTransfer().......ccccccueeiiieeeeiieiiiiicceeeeenn, 14-10
EFI_USB_HC_PROTOCOL.BUIKTransfer()ccceeeeeeeiriiiiiiieeeeeee e 14-13
EFI_USB_HC_PROTOCOL.AsyncInterruptTransfer()ccccccceeerriiiinnnnn. 14-16
EFI_USB_HC_PROTOCOL.SynclInterruptTransfer()ccceveevvvvvcnnennnn. 14-19
EFI_USB_HC_PROTOCOL.IsochronousTransfer()ccccccceeveeevvrvunannennn. 14-21
EFI_USB_HC_PROTOCOL.AsynclsochronousTransfer()cccccuvvvenn. 14-23
EFI_USB_HC_PROTOCOL.GetRootHubPortNumber()...........ccccevvveeennnnnns 14-25
EFI_USB_HC_PROTOCOL.GetRootHubPortStatus()ccveeveeereiiinennnee. 14-26
EFI_USB_HC_PROTOCOL.SetRootHubPortFeature()...........cccuvvvveenrnnnnnns 14-30
EFI_USB_HC_PROTOCOL.ClearRootHubPortFeature()coeeuuvnneee. 14-32

14.2 (65T = B 1= T 1Y (oo 1= PP 14-34
L 2 TS o] o1 14-34
14.2.2 USB Driver Model OVEIVIEWccouiviiiiiiiiieieeeeeeee s 14-34
14.2.3 USB BUS DIIVEN ... 14-35
14.2.3.1 USB Bus Driver Entry Point..........ccooiiiiiiiicce e, 14-35
14.2.3.2 Driver Binding Protocol for USB Bus Driverscccccccevvvviviiennnn. 14-35
14.2.3.3 USB Hot-Plug Event.........coooviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 14-36
14.2.3.4 USB Bus ENUMEration...........cccuevviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 14-36
14.2.4 USB DeViCe DIIVEL .cccooeiiieieeeeeeeeeee 14-37
14.2.4.1 USB Device Driver Entry Pointccoovriiiiiiiiie e, 14-37
14.2.4.2 Driver Binding Protocol for USB Device Drivers.............cccevveeeeeee. 14-37
14.2.5 EFI USB I/O Protocol OVEIVIEW........cooovviieiieieeeeeeeeeeeeeeeeeeeeeeeeeeee e 14-37
EF1_USB_1O ProtOCOLceeiiieeeeee ettt e e e eaas 14-38
EFI_USB_IO_PROTOCOL.UsbControlTransfer()ccccceveeeeeveeeiirncaneennnn. 14-40
EFI_USB_IO_PROTOCOL.UsbBUIKTransfer()..........ccccuveerremmmmmmmeeneennnnnnnns 14-43
EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer().......ccccccceeeiuvnnnen. 14-45
EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()cccccvvueenennnn. 14-48
EFI_USB_IO_PROTOCOL.UsblsochronousTransfer()ccceeeeeeennnnns 14-50
EFI_USB_IO_PROTOCOL.UsbAsynclsochronousTransfer()..................... 14-52
EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()ccceeevvvrvueneennn. 14-54
EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()...........ccccouuvuueurmnnnnns 14-56
EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()cccuvveeerrnnnns 14-57
EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()........cccceeereuvvveeenn. 14-59
EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()..............euuveemmeeenennnns 14-61
EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()cccecuvveeenn. 14-62
EFI_USB_IO_PROTOCOL.USbPOMRESEt()......uuuuurmrrrerrnnnrniirnririninieeinnnnnnns 14-63
14.2.6 USB Device Paths.........ooooiiiiiiii 14-64
14.2.6.1 USB Device Path NOdeccooviiiiiiiiiiiiiiiiiiiiiiee 14-64
14.2.6.2 USB Device Path Example..........ccccoiviiiiiiiiiiiccc e, 14-65

Xiv 12/01/02 Version 1.10

intel

15.1

15.2

15.3

15.4

15.5

Contents

15 Protocols — Network Support
EFI_SIMPLE_NETWORK ProtOCOIcuuiiiiiiiiiiiiiiiieee e 15-1
EFI_SIMPLE_NETWORK ProtOCOIuuuuuuuuuieiiiiiiiiiieieieneeeenaeennnennennnnnnnnnnes 15-1
EFI_SIMPLE_NETWORK.STAr() . .eeeeeeeeeiiiiiiiiieeee e essiiieeeee e 15-6
EFI_SIMPLE_NETWORK.STOP() ++rvreereeeeiiiinrrrrriereeeeeseiirreeeesaeesssssnnseneeeaees 15-7
EFI_SIMPLE_NETWORK.INIGIAIZE() ..eeeeeeeeeereieiiee e et 15-8
EFI_SIMPLE_NETWORK.RESE() .eveeeieeiiiiiiiiiieieee ettt 15-9
EFI_SIMPLE_NETWORK.ShUtdOWN() ...ceeeiiiiiiiiieie e 15-10
EFI_SIMPLE_NETWORK.ReceiveFilters()ccoooveeiiiiiiiiiieeeie e 15-11
EFI_SIMPLE_NETWORK.StatioNAdAress().......uvveeeeeeeeeriiiineeeeeeeeeesnieeeee 15-13
EFI_SIMPLE_NETWORK.StatiStiCS() +.veeeeeeeererrreiieieeeeesiiiieieeee e e e 15-14
EFI_SIMPLE_NETWORK.MCastIPtOMAC()uuuurrrrmmnmrnrnnrnnneeennenneennnennnns 15-17
EFI_SIMPLE_NETWORK.NVDAA() .. ceeeeeeeiiiiiirieieeeeeeeeeeirieeeee e e e e e e 15-18
EFI_SIMPLE_NETWORK.GetStatus()ccecvvrererireeeeiiiiiieeeee e 15-20
EFI_SIMPLE_NETWORK.TranSmMit()ccoeeevrermereeeeeiiniineeeeeeeeeesssnennens 15-22
EFI_SIMPLE_NETWORK.RECEIVE() .. .uuvuururrrnrnrnnnrnnnnnnnninnenennnnnennnnnnnnnnnnnnes 15-24
NETWORK_INTERFACE_IDENTIFIER ProtocCol.........ccccccueeiiiiiiiiiiieeeeee s 15-26
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL..........cevvrrrrrrrnnns 15-26
PXE Base Code ProtOCOLcooiiiiiiieiiieee ettt 15-29
EFI_PXE_BASE_CODE ProtoCOL.......cuuuutiiiiiiiiiieeeee e 15-29
EFI_PXE_BASE_CODE.Start() «...cceeeeeasiiieeeeeeeeiiiiieeeeeessieeeeeee e s seeeeeeens 15-41
EFI_PXE_BASE_CODE.StOP() .. reeeeeeeeaaarrreereeeaaiirreeeeeeesannreeeeeeessssnneeeeens 15-44
EFI_PXE_BASE_CODE.DRCP()..rrrereeeeaairreeeeeeeaiirrreeeeeeaasnnreeeeesesssnneeeeens 15-45
EFI_PXE_BASE_CODE.DiSCOVEI() ..eeeetiiiurieieiaeiiaiiieeeeaeeenieeeeeeeeesnnneeeeeens 15-47
EFI_PXE_BASE_CODE.MHP() .vveeeeeeiiiiiiiieee e 15-50
EFI_PXE_BASE_CODE.UAPWHIE() ..vvvvrrrereeerrerrirrrrreeeaeaeeeeeeeeesssssssnnnnnnnns 15-54
EFI_PXE_BASE_CODE.UdPREAA() . eeeeeeiurieieeeeeeiiiieeee e 15-56
EFI_PXE_BASE_CODE.SetIpFilter().......cccourereeiiiiiiieee e 15-59
EFI_PXE_BASE_CODE.AIP() ccurreeeeeeeiiiieeieeeeeestieeeeeeeesnnseeeeeeessnnnneeeeas 15-60
EFI_PXE_BASE_CODE.SetParameters()cccoeeeeemeeeieieeeeeeeeeeeeeeeeeeeennns 15-61
EFI_PXE_BASE_CODE.SetStationlp()......ccuveeeeeriiiiiiiieee e e 15-63
EFI_PXE_BASE_CODE.SetPackets()......cccverreriiiiiiiiieeeeiiieeeee e 15-64
PXE Base Code Callback ProtoColcccooiieeeiiiiiiiiieeeeeeeeeee e 15-66
EFI_PXE_BASE_CODE_CALLBACK ProtoCOlccuveveeiiiiiiieee e 15-66
EFI_PXE_BASE_CODE_CALLBACK.Callback()cceeerureeereeiiiiieeeeeeiiene. 15-67
Boot Integrity Services ProtoCOleueviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 15-69
EFI_BIS_PROTOCOL....cciiiii ittt ettt e et e e e e e e e ssnnnraeeeaaa s 15-69
EFI_BIS.INIGIAIZE() 1ot 15-72
EFI_BIS.ShUtAOWN() ...evieieiiieee ettt 15-76
BRI _BIS.FrEE() e eieiiiieieee e 15-78
EFI_BIS.GetBootObjectAuthorizationCertificate()cccvveeeeiieriiiiiinnn. 15-79
EF1_BIS.GetBootObjectAuthorizationCheckFlag()vvvvervrermvererrnnnnnnnns 15-80
EFI_BIS.GetBootObjectAuthorizationUpdate Token()ccuveeeeeeeiiineennnn. 15-81
EFI_BIS.GetSignaturelnfo()cueeeeeeeieiieieeeee e 15-82

Version 1.10

12/01/02 XV

Extensible Firmware Interface Specification Intel
EFI_BIS.UpdateBootObjectAuthorization()ccceveviiiiiiieeeeiieeeiiiieee, 15-87
EFI_BIS.VerifyBootObjeCt() ...cuvvuueiiiieeeiiieeceei et 15-95
EFI_BIS.VerifyObjectWithCredential()cccooveeriiiiiiiiiciiiieeecee e, 15-102

16 Protocols — Debugger Support

16.1 OVBIVIBW ...ttt sennnnnnes 16-1
16.2 EF1 Debug Support ProtoCOIuuuiiiiiiiiiiiiiiiiiieieeeeeeeeeee e 16-2
16.2.1 EFI Debug Support Protocol OVerviewcccceeeeiiiiiieiiiiiiiieeeee e 16-2
EFI_DEBUG_SUPPORT_PROTOCOL.......ccutiiiiiiiiiiiiiieeeee e 16-3
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorindex()....... 16-5
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()............. 16-6
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback() 16-10
EFI_DEBUG_SUPPORT_PROTOCOL.InvalidatelnstructionCache()......... 16-13
16.3 EF1 Debugport ProtOCOL..........uuuiiiiiiiiiieeeeeeeeee et 16-14
16.3.1 EFI Debugport OVEIVIEWeuiiiiiiiiiiiieieee et 16-14
EFI_DEBUGPORT_PROTOCOLcccciiiiiiiiiiiieeee e 16-15
EFI_DEBUGPORT_PROTOCOL.RESE() ...ccuvvvvereerieeiieiiiiieeeee e 16-16
EFI_DEBUGPORT_PROTOCOL.WIE()ccvvverreeieeeeeeiiiiee e 16-17
EFI_DEBUGPORT_PROTOCOL.Read()......cccuvrrereeeeiiiiiiinrieeeee e 16-18
EFI_DEBUGPORT_PROTOCOL.POII() ..cceiiiiiieieeeeeee e 16-19
16.3.2 Debugport Device Path ... 16-20
16.3.3 EFI Debugport Variable ... 16-21
16.4 EFI Debug Support Tableueiiiiie e 16-22
16.4.1 OVEIVIEW ..ottt e et e e e e e e e reneeeaaens 16-22
16.4.2 EFI System Table LoCation ..o 16-24
16.4.3 EFIIMage INfO...cooo 16-24

17 Protocols — Compression Algorithm Specification
171 AlGOrTtNM OVEIVIEW ...t e e 17-1
17.2 Data FOrMaAL.o e 17-3
17.2.1 Bit OFQer e 17-3
17.2.2 Overall STrUCIUIE ... 17-3
17.2.3 BIOCK StUCIUIE ... 17-4
17.2.3.1 BIOCK HEAEN ... 17-4
17.2.3.2 BIOCK BOAY ..ot 17-7
17.3 COMPIreSSOr DESIGN ...ttt e e e e e 17-8
17.3.1 OVEraAll PrOCESS.....eeiiiiiiiiiiee ettt 17-8
17.3.2 StNG INfO LOG ..o i 17-9
17.3.2.1 Data StrUCLUIESooviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 17-10
17.3.2.2 Searching the Tree ... 17-11
17.3.2.3 Adding String INfO.....coiiiiiiiiiiiiiiiiiiii 17-11
17.3.2.4 Deleting String INfO......ccoviiiiiiiiiiiiiiiiie 17-12
17.3.3 Huffman Code Generation.............cooooeeiiiiiiiii i, 17-13
17.3.3.1 Huffman Tree Generation...........ccccuuuueiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeen 17-13
17.3.3.2 Code Length Adjustmentccooviiiiiiiiiiiiiiiiieeeeeeee 17-13
17.3.3.3 Code Generationcuueviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 17-14

Xvi 12/01/02 Version 1.10

18

19

tel" Contents
17.4 DeCOmMPreSSOr DESIGN......cuiiiiiiiiiiieiiieiee ettt 17-15
17.5 DecompPress ProtOCOL.........ceeiiiiiiiiiiiiiiiiieieeeeeeeeeee ettt 17-16
EFI_DECOMPRESS_PROTOQCOLcuutiiiiiiiiiiiiiiiiiiiiieiiiiiiiniiisiennennnseennnenes 17-16
EFI_DECOMPRESS_PROTOCOL.GEetINfO() ...uvvrrrrrerrnnnnniiniieniiiiiiiiiiinnnnnnns 17-17
EFI_DECOMPRESS_PROTOCOL.DecomMpPress()........ccxueruummmmmmnmnnnnnnnnnns 17-19

Protocols — Device I/0 Protocol
18.1 DEVICE I/O OVEIVIEW ...ttt ettt ettt et e aaaeeas 18-1
18.2 DEVICE_IO ProtOCOL......cciiiiiiiiiiiiiiiiiiiiiiiitieeeeeeeeeeeeeeteee ettt 18-2
(D] =AY/ [0 =i (O 2 nd (0 (o oo | IR 18-2
DEVICE_IO.Mem(), .10(), @nd .PCi()uuuummmmiiiiiiiiiiiiiiiiiiiiiiiiviiieiviiveevviiaeeenes 18-5
DEVICE_IO.PcIDeVICePath()cuueieiiieieiiiiieeeee e 18-7
DEVICE_IO.MAP() ..rvvuurnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnsnnnnnsnnssnsnnssnnssnssnsnsnsnnnnnns 18-8
D] VA = (@ 20 1 g1 4 F=T o TR 18-10
DEVICE_IO.AllocateBuffer()ccue e 18-11
D YA i (@ 0 1= o T RN 18-13
DEVICE_IO.FreeBUfer()oouurrueei et 18-14

EFI Byte Code Virtual Machine

19.1 OVBIVIBW ...ttt snnnnnnnen 19-1
19.1.1 Processor Architecture INdependence..........ccccooeevevvviiiiiiiiiicccei e, 19-1
LT B2 O 1S T [T =Y o= g o = o | AP 19-2
19.1.3 EFICompliantoeeiiieeeee e 19-2
19.1.4 Coexistence of Legacy Option ROMS..........cooooiiiiiiiiiii, 19-2
19.1.5 Relocatable IMage ... 19-2
19.1.6 Size Restrictions Based on Memory Available...............cccoeveeviiicinieeeee, 19-3
LRSI IV =10 T VA @] o (=14 o o T 19-3
19.3 Virtual Maching ReQIStErSccooo i 19-3
19.4 Natural INdeXiNg....cooooeeeeeeeeeeeeee e 19-5
19.4.1 SIgN Bil.ooeeeeee s 19-5
19.4.2 Bits Assigned to Natural UNitsccoovvviiiiiiii e 19-6
19.4.3 CONSIANT.....coo i 19-6
19.4.4 Natural Units ... 19-6
19.5 EBC Instruction OPerandsooouuiuiiiiiiieee et 19-7
19.5.1 DireCt OPerandsccoeeiiiiiiiiieii et e e e e e e e e e eneae 19-7
19.5.2 INAIreCt OPErands.......couuuuiiiiiii e 19-7
19.5.83 Indirect with INdex Operands.............ouuuuieiiiiiiiiieiicce e 19-8
19.5.4 Immediate OPerands.........ccceeiieieiiiiiiiiicee e 19-8
19.6 EBC INStruction SYNtaxccooceeeiiiiicie e 19-9
19.7 INStruction ENCOAING ...ccovviviiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 19-9
19.7.1 Instruction Opcode Byte ENCOdingcccoveviiiiiiiiiiiiiiiiiiiiiis 19-10
19.7.2 Instruction Operands Byte ENCOdingcccuvieeiiiiiiiiiiiiiiceeieeeee e 19-10
19.7.3 Index/Immediate Data ENCOAING.......ccccoiiiiiiiiiiiiiiiiiiiieee e 19-11
19.8 EBC INStruCtion Set......ccovvvveeieeieeeeeeeeeee 19-11
I L P 19-12
L 19-13
ASHR L. 19-14
BREAK .. n bbb nn b nnnnnnnnnnes 19-15

Version 1.10 12/01/02 Xvii

intel
Extensible Firmware Interface Specification ’

xviii

CALL e e e e e e e e e e e e e 19-17

VP e 19-20

CIMIPL e 19-22

DIV e e e e e e e 19-24

DIV e e e e e e 19-25
EXTINDB ...t 19-26
EXTINDD ...ttt ettt e e e e e e e e e e e e e e nnn e 19-27
EXTINDWV .ttt e e e e e e e e e e e e s 19-28

I P e 19-29

JIMIPB e 19-31
LOADSP ...ttt e e 19-32

IMIOD e 19-33
IMODMWU ..t 19-34

1Y (@ X TSP P ERTPR PP 19-35

1Y (@ X TSP PRTTPR PP 19-37
IMOVIN <t e e e e e e e 19-39
MOV <t a e e 19-41
IMOVREL ...t 19-43
IMOVSI .ttt e e e e e e e 19-44

MU L e e e e 19-46
IMIULU ettt e e e e e e e e e e e e e e e nnnne s 19-47

] = PSP PRRTPR PP 19-48

N TP PP PRPTPPR PP 19-49

(@ PP UTTTPPPPPPPT 19-50

P O P e e 19-51

P O PN e 19-52
PUSH e 19-53
PUSHIN < 19-54

R T e 19-55

SH L e 19-56

SH R e 19-57
STORESP ... 19-58

SU BB e 19-59

DO = TP PPTP PP 19-60

19.9 Runtime and Software Conventions.............cooiiiiiiiiie e 19-61
19.9.1 Calling OULSIAE VM.t 19-61
19.9.2 Calling INSIAE VM ..o 19-61
19.9.3 Parameter Passing........coooiiiiiiiii i 19-61
19.9.4 Return ValUES ... 19-61
19.9.5 Binary FOMMAL........coooiiii 19-61
19.10 Architectural ReqUIremMentsccoooiiiiieeeeeee e 19-61
19.10.1 EBC Image Requirements............cooii i 19-62
19.10.2 EBC Execution Interfacing Requirements.............cccccviieiiiiiiiiiiiiiineennenn. 19-62
19.10.3 Interfacing Function Parameters Requirements..............cccccoviiiiennenns 19-62
19.10.4 Function Return ReqUiremMents..........coovviiiiiiiiiiiiiiieee s 19-62
19.10.5 Function Return Values Requirements ... 19-62

12/01/02 Version 1.10

Contents
19.11 EBC Interpreter ProtOCol.........ooii i 19-63
EFI_EBC_PROTOGCOLcuiiiie ittt a e 19-63
EFI_EBC_PROTOCOL.Create ThUNK()uuuueummmmmmmennnnnnnnnnnnnnnennnnnnnennnnnnnns 19-65
EFI_EBC_PROTOCOL.UNI0@dIMAgE() -...eveeeervrrreeiniiieeeeiireeeesiieeeesineeeens 19-66
EFI_EBC_PROTOCOL.RegisterlCacheFIush()............cccccuuurumrrrririinnnnnnnnns 19-67
EFI_EBC_PROTOCOL.GEtVErSiON().......uuuuuuuemmummmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 19-69
19.12 EBC TOOIS. ...ttt et e e e e e e e e e e e e e e e e nnnne s 19-70
19.12.1 EBC C COMPIIET ...t 19-70
19.12.2 C Coding CONVENTION ... 19-70
19.12.3 EBC Interface Assembly Instructions...........ccooovviviiiiiiiiicieee e, 19-70
19.12.4 Stack Maintenance and Argument PasSingccccceevveeeeiiiiiiniiiisccces 19-70
19.12.5 Native to EBC Arguments Calling Convention............coooiiviiiiiiiiiiiiinnnnes 19-71
19.12.6 EBC to Native Arguments Calling Convention............ccooeiiiiiiiiiiiiiiinnnes 19-71
19.12.7 EBC to EBC Arguments Calling Convention............cccccoeeeeiiiiiieeeeeee, 19-71
19.12.8 Function REtUMNS ..o 19-71
19.12.9 Function Return Values ... 19-71
191210 ThUNKING coeeeeeeeeeee e 19-72
19.12.10.1 Thunking EBC to Native COodecccoiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 19-72
19.12.10.2 Thunking Native Code t0 EBCccooiiiiiiiiiiieeeeeeeeeeeeeee 19-73
19.12.10.3 Thunking EBC t0 EBCcuiiiiiiiiiiiiiiiieeeeee e 19-73
19.12. 11 EBC LINKEI .. 19-74
19.12.121Mage LOAENcooiiiiiiiiieeeeeee 19-74
19.12.13Debug SUPPOIt.....ooeiiiiiiiiiieee s 19-74
19.13 VM Exception HandliNg......ccoooeeeeeeeeeeeeeeeeeeeeee e 19-75
19.13.1 Divide By O EXCEPLON ...ccoevieiiiiee et 19-75
19.13.2 Debug Break EXCEplion.........cooooiiiiiiiiiii 19-75
19.13.3 Invalid Opcode EXCEPLON......ccoeiiiiiiieeecee e 19-75
19.13.4 Stack Fault EXCEPLioN.........uuuiiieii e 19-75
19.13.5 Alignment EXCEPiON........coooiiiiiiiii 19-75
19.13.6 Instruction Encoding EXCeplion ... 19-75
19.13.7 Bad Break EXCEplioNn........oouvieiiiii e 19-76
19.13.8 Undefined EXCEPLIONcoiiiiiiieeeeece e 19-76
19.14 Option ROM FOIMALS........ccoiiiiiiiiie et e e e e e e eneees 19-76
19.14.1 EFI Drivers for PCl Add-in Cards...........coooeiiiiiiiiiieeeeeeen 19-76
19.14.2 NON-PCI BUS SUPPOIot 19-76
Appendix A GUID and Time FOrmatscccoooieiiiiii e A-1
Appendix B Console
B.1 SIMPLE _INPUT .ottt e e e e e B-1
B.2 SIMPLE_TEXT_OUTPUT ...ttt B-2
Appendix C Device Path Examples
C.1 Example Computer SYSIEM........cooi e C-1
c.2 LegaCY FlOPPY ... e e e e e e C-2
C.3 IDE DiSK. ..ttt ettt ettt e e e e e e e e r e e e e e e e e e e nnen e C-3
C4 Secondary Root PCI Bus with PCI to PCI Bridgeccoooiiiiiiiiiiiieeivieeeeeeee C-5
C.5 A C P T OIS C-6
C.6 EFI Device Path as a Name SpPace.........cocovviviiiiiiiii i C-7

Version 1.10 12/01/02 XiX

Extensible Firmware Interface Specification Intel

Appendix D Status COAES............ccoooiiiiiiiece e D-1
Appendix E 32/64-Bit UNDI Specification

E.1 INEFOAUCTION ...ttt ettt e et e e e et e aeaeas E-1

E.1.1 DEefiNItIONS ..cooviiiiiieieeeeeeeee E-1

E.1.2 Referenced Specifications...........coouuiiiiiiiiiii i E-3

E. 1.3 OS NetWork Stacksccoviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e E-5

E.2 (@ 77T 11 RN E-7

E.2.1 32/64-bit UNDI INterface......ccoueuviiiiiiiiiieeeee s E-7

E.2.2 UNDI Command FOrMaL.........ccccouuummmmiiiiiiiiiiiiiiieiieeeeeeee e E-13

E.3 UNDI C DefiNitiONS ..cceiieiieiiiiieee et e e E-15

E.3.1 Portability MACIOS......cccceeeeeeeec e e aanaes E-15

E.3.2 MiSCellan€ouUS MaACIOS........uuuuuiiiiiiiiiiiiiiiiiiieiee ettt E-18

E.3.3 Portability TYPeS..uuu i i E-18

R S 10] o] (=T N/ 1= T PRSP E-20

E.3.5 COMPOUNA TYPES .coviiiiiiieiieeeeeeeeeteee e e ettt eee s e e e e e e e e e e e e e e e aaaeennnns E-33

E.4 UNDI COMMANGAS ...ttt e e e e e e e e e eeeeeeeeees E-38

E.4.1 Command Linking and QUEUINGceeiiiiiiiiiiiieieiiiiie e E-39

E.4.2 GetState .. E-41

Eid.3 SHar i E-43

| (] o PSP E-48

E.45 GetInit INfO.. E-49

E.4.6 Get Config INfO...cooiiiiiiiii E-53

E.4.7 INHANZE cccooeeeieieeeeee E-56

E.4.8 RSl E-60

E.4.9 ShULOWN ..o E-62

E.4.10 Interrupt ENADIES........ccoomeieee e E-64

E.4.11 ReceiVe FIRErs ... E-66

E.4.12 Station AdAreSS......coooiiiiiiiiii E-69

E.4.13 StaliStiCS..coiiiiiiiiiieeeeeeeeeeeeeee E-71

E.4.14 MCaSt IP TOMAC ...oooeiiii ettt a e e e e s e e e E-74

o T N 1V D - | - TR E-76

E.4.16 Get StatuS...coovveeiiieeeeeeeeee E-80

N A || == o 1= R E-83

N I T I = T 1= o o | SR E-86

N e T o T= Yo T E-90

E.5 UNDI as an EFI RUNTIME DIVEueiie e E-93

Appendix F Using the Simple Pointer Protocolcccoooiiiiiiii e F-1

Appendix G Using the EFI SCSI Pass Thru Protocol..................cccccoiiiiiiiiieinee G-1

Appendix H Compression Source Code.............cccooiiriiieiiiicii e H-1

Appendix | Decompression Source Codeocooiiiiiiiiiii i -1

Appendix J EFl Byte Code Virtual Machine Opcode Summarycccccceenene. J-1

Appendix K Alphabetic Function Lists..................ccocooooiiiiiiiii e K-1

XX 12/01/02 Version 1.10

I ntel Contents

References
Related INformation............oooo References-1
Prerequisite SpecifiCationsoouiiiiiiiiii s References-5
ACPI SPeCIfiCatioNccoe e References-5
WIEM SpecCifiCationccooeeeeeeeeeeeeeeeee e References-5
Additional Considerations for ltanium-Based Platformsccococnee. References-6
GIOSSANY ...ttt ettt sttt et e e me e eae e be et e aneeeneenaeeeens Glossary-1
g Lo (= OSSPSR Index-1
Figures
1-1. EF1 Conceptual OVEIVIEWccooiiiiiiiieii ettt e e e e e e e e e eeeees 9
2-1. BOOtNG SEQUENCE........eiiiiiiii e e e e e e e e e e e e e e e e e eeeas 1
2-2. Stack after AddressOfEntryPoint Called, IA-32.......ccoovveiiiiiiiiiiiiiiieeeeeeieeeeees 10
2-3. Stack after AddressOfEntryPoint Called, ltanium-based Systems.................. 12
2-4. (@761 153 (g0 le11(0] g o) = = (0] (o oo 13
2-5. DESKIOP SYSEM ... 16
2-6. SEIVEE SYSTEIM .ttt e e e e e e e e e e e e e e e e e e ans 16
2-7. Image Handle ... 20
2-8. Driver Image HanNdIEoeeiiiiiieeeeeeeeeeeeeeeeee e 21
2-9. [(oS i = T TS @0 0] 1= = PP 22
2-10. PCI Root Bridge Device Handleoooiiiiiiiiiiiee e 22
2-11. ConNecCting DEVICE DIIVEIS.........uuiiiiiiiiiiiiei ettt e e 23
2-12. CoNNECNG BUS DIVEIS ..cccoiiiiiiiieiei ettt e e e e 25
2-13. Child Device Handle with a Bus Specific Overrideccccooviiiiieniiiiiiiieeeeeee 26
5-1. Device Handle to Protocol Handler Mapping........cccccouuemmmmmimiiiiiieeeeeeeeeeeeeeeeeeeeeen 32
5-2. Handle Database 34
L0 R o V= U= = I = 10)1 (= 25
10-2. FallbaCk MOAE DIIVEL ...t e e e e e e e e eeeeenens 26
11-1. Nesting of Legacy MBR Partition ReCords ... 7
11-2. GUID Partition Table (GPT) SChemecooiiiiiiiiie e 9
12-1. HOSt BUS CONIIOIIEIS ... 2
12-2. Device Handle for a PCl Root Bridge Controller...........cccuveeieiiiiiiiiieeeeiiieeeeen 3
12-3. Desktop System with One PCl RoOt Bridgecc.uuviiiiiiiiiiiiiiieeee e 4
12-4. Server System with Four PCI ROOt Bridges.ccooiiiiiiiiiiiieiiieieeee e 5
12-5. Server System with TWo PCl Segments.........ccoooiiiiiiiiiiiieeeee e 6
12-6. Server System with TWo PCI HOSt BUSES........ccooiiiiiiiiiiiiieiiieeee e 7
12-7. IMAge HaNAIE ... 46
12-8. PCI Driver Image Handleoeiioiii e 47
12-9. PCIHOSt BUS CONIONET ... 49
12-10. Device Handle for a PCl Host Bus Controller ..., 49
12-11. Physical PCl BUS STHUCIUIEcoo it 50

Version 1.10 12/01/02 xXi

intel
Extensible Firmware Interface Specification ’

12-12.
12-13.
12-14.
12-15.

14-1.
14-2.

16-1.

17-1.
17-2.
17-3.
17-4.
17-5.
17-6.

C-1.
C-2.
C-3.

E-1.
E-2.
E-3.
E-4.
E-5.
E-6.
E-7.
E-8.

Tables

XXii

1-1.

2-1.
2-2.

2-4.
2-5.

Connecting @ PCl BUS DIIVET ...t 51
Child Handle Created by @ PCI BUS DFVEr........c..uuiiiiiiiiiieeeee e 51
Connecting @ PCl DEVICE DIVET.........uuiiiiiiiiiiieeee ettt 54
Recommended PCI Driver Image Layout ..o 99
Software Triggered State Transitions of a USB Host Controllerccccvveeeeeeee. 8
USB Bus Controller HAaNAIE............covevviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e e e e e e e e e ee e 34
Debug Support Table Indirection and Pointer Usagecccccvvvveveieieeeeeeeeeeeeeieenes 23
Bit Sequence of Compressed Dataoooiuuiiiiiiiiiiiieieee e 3
Compressed Data STrUCIUNE............ueiiiiiiiiee e 4
= (oTod [(F o1 11 =P 4
= (oTe] Q= T o | PP P PP PPPPPPP 7
String INfo LOg Search Treecoooeeeiiiiiiee e 10
NOAE SPIIT .. e e e e e e e eeeaeens 12
Example Computer SYStem.........oooiiiiiii e 1
Partial ACPI Name Space for Example Systemooooiiiiiiiiiiiiieicie e, 2
EFI Device Path Displayed As a Name Space..........cccovvvviiviiiiiiieeeeeeeiiiees e eeeens 7
Network Stacks with Three Classes Of DIVErS............uuuvuiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeen 5
IPXE Structures for H/W and S/W UNDI ...t 7
IssUING UNDI COMMANGS.......cooiiiiiii ettt a e e e e e 12
UNDI Command Descriptor BIOCK (CDB)ccuvvvviiiiiiiiiiiieeeieeeeeeceee e 13
10T = 1o [T Y/ o= PP 18
UNDI States, Transitions & Valid Commandscevivuiiieiiiieeeeeeiee e e e 38
LINKEA CDBS.....cciiiiiiiiiiiiiiiieeeeeeeeeeee ettt ettt ettt ettt ettt e e e et e e e e e e e e e e e e e e e e e eeeaeeeees 39
QUEUEA CDBS.....cciiiiiiieeeeee ettt e e e e e e e e e e e e e s e e e e e e e e e e e nnnnnnees 40
Organization of the EFIl Specification ... 3
EF1 RUNtIME SEIVICES ..o 6
Common EFI Data TYPES....ccoveiiiiiie ettt e e e e e e e e e e e 7
Modifiers for Common EFI Data TYPES ...ccovvvuiiiiiiiieeeeeeccee e 8
EF1 ProtOCOIS ..o 14
Required EFI Implementation Elements............ccooorriiiiiiiiciiiie e, 28
GIODAI Vari@bIEs.ottt e e e e 5
EF1IMage TYPesS. ..o 8
Event, Timer, and Task Priority FUNCHONS...........coiiiiiiicce e, 2
TPL USAQE .. i 3
TPL RESIHCHONS. ... 4
Memory Allocation FUNCHONSooiiiiiiieeccee e 18
Memory Type Usage before ExitBootServices () ciiiiiiieeeeeeeeeeeeeeen 19

12/01/02 Version 1.10

5-6.

5-8.
5-9.
5-10.

6-1.
6-2.

6-4.

8-2.
8-3.
8-4.

8-6.
8-7.

8-9.

8-10.
8-11.
8-12.
8-13.
8-14.
8-15.
8-16.
8-17.
8-18.
8-19.
8-20.
8-21.
8-22.
8-23.
8-24.
8-25.
8-26.
8-27.
8-28.
8-29.
8-30.
8-31.

9-1.

10-1.
10-2.

Version 1.10

Contents

Memory Type Usage after ExitBootServices () corrriannerrerieeiiiiaaneeeeeeeeeeeenanns 20
Protocol Interface FUNCHONScooveiiiceeeeee e 31
Image Type Differences SUMMary ... 76
IMage FUNCHONS ... 77
Miscellaneous Boot Services FUNCHONScuuiiiiiiiiie e 86
Variable SErvices FUNCHONS..........oiieiii e e eaaas 2
TimMe SErviCeS FUNCHIONS... ... e e e e e e e e s 9
Virtual Memory FUNCHIONSiiiieice e 16
Miscellaneous RUNIME SEIVICEScoovuniiiiiiie e 20
Generic Device Path NOde StruCtUIeueiiiveiiiiie e 3
Device Path ENd StrUCIUIEiieeiieeeee e 4
PCIDEVICE Path......cceeiiieeiiee et e e e e e e e e e e eaa s 5
PCCARD DEVICE Path.......ceeiiieieeeeee ettt e e 5
Memory Mapped DevVvice Pathooeviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 6
Vendor-Defined Device Path.........oo e 6
Controller DEVICE Pathoouueiii et r e ean 6
J A O o B B LYY (ot =1 1 8
Expanded ACPI Device Pathcooo e 8
ATAPI DEVICE PaAth ...ceeeeiieiee et e e e e e e e e e 9
SCSIDEVICE Path ... e a e 10
Fibre Channel Device Path ... e e e 10
1394 DEVICE Path. ... e e e e 10
USB DEVICE Path . ..ceeieeeeeeeee et e e e e 11
USB Class DeVviCe Pathcooouiiiiie e 11
1,O Device Path............cccoiiiiii 12
MAC Address Device Path..........ooue e 12
Rz B AV o] Y = 1 o N 12
RV ST DA (o1 Y = 1 o N 13
INfINIBAN DEVICE Path......c.ueiiieiiee ettt e era e eeas 13
UART DeVICE Path.....eeceeee et e a e 14
Vendor-Defined Messaging Device Path............ooovie 14
UART Flow Control Messaging Device Path ..., 15
Hard Drive Media Device Path..........ooeieii e 16
CD-ROM Media DeVvice Pathooeeeiiieiieeee et 17
Vendor-Defined Media Device Path ... 18
File Path Media Device Path..........oou e 18
Media Protocol Media Device Pathcoouiieiiiiiie e 18
BIOS Boot Specification Device Path..............coooiiiiiii e 19
ACPI _CRS to EFI Device Path Mapping.........ccouuuuemieiieiiiniiiiieeee e 20
ACPI _ADR to EFI Device Path Mapping..........cooouueeeeiiiiiiiiiieieee e 21
EFI Driver Configuration Default Type.......ccooviiiiiiiiiiieeeeee 41
Supported Unicode Control Characters.............eeiiiiiiiiiiiieeeccee e 2
EFI Scan Codes for SIMPLE INPUT INTERFACE ...ccttiiiiiiiiiirrrreiieeessaannnnnnneeeeeens 3
12/01/02 xxiii

intel
Extensible Firmware Interface Specification ’

XXiv

10-3.
10-4.
10-5.
10-6.
10-7.

111,
11-2,
11-3,
11-4.,
11-5.
11-6.
11-7.

12-1.
12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
12-8.
12-9.

12-10.
12-11.
12-12.
12-13.
12-14.
12-15.
12-16.
12-17.
12-18.

13-1.
13-2.
13-3.

14-1.
14-2.
14-3.
14-4.
14-5.

15-1.
15-2.
15-3.
15-4.
15-5.

EFI Cursor Location/Advance RUIESccooiiiiiiiiiiiiieeeiieeee e 14
Blt Operation TabIeccoi i 33
PS/2 Mouse Device Pathoooo e 51
Serial Mouse Device Path...........c.ueeiiiiiii e 52
USB Mouse Device Path.............ooiiiiiiiiii e 54
GUID Partition Table Headerueiiiiiiieee e 9
GUID Partition ENTIYeoeiiioiiiiee e e e 11
Defined GUID Partition Entry - Partition Type GUIDS.........ccooooiiiiiiiiiiiiiiiiieeeee. 12
Defined GUID Partition Entry - AHFDULESeeeiiiiiii e 12
Legacy Master BoOt RECOIM...........uuuuiiiiiiiiiiiiiiiiiieie e e e e e e e e e e e e 13
Legacy Master Boot Record Partition Recordcccoooiiiiiiiieeeeeeeeeeeeeee 14
PMBR Entry to Precede a GUID Partition Table Headercccocovveiiinininnnnn. 15
PCI Configuration AQAreSS.......couaaeiiiiiiieiieie et a e 25
ACPI 2.0 QWORD Address Space DesSCriptorcccooaiiiiiiiiiiieeeieiiiiieeeee e 41
PN @7 o B2 O I =1 o To I - Vo TP 41
PCI Root Bridge Device Path for a Desktop System ..., 42
PCI Root Bridge Device Path for Bridge #0 in a Server Systemccccceevvenenn. 43
PCI Root Bridge Device Path for Bridge #1 in a Server Systemccccceeeeenennn. 43
PCI Root Bridge Device Path for Bridge #2 in a Server Systemccccceevveeennn. 44
PCI Root Bridge Device Path for Bridge #3 in a Server Systemccccceevvenenn. 44
PCI Root Bridge Device Path Using Expanded ACPI Device Path.............ccc........ 45
ACPI1 2.0 QWORD Address Space DesCrptorcoooveeeeeeeeieieeeeeeeeeeeeeeeeeeeeeee e 90
JAX @ o B2 O I =1 o To I I Vo TR 90
PCI Device 7, Function 0 on PCl Root Bridge 0uuuviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeen 94
PCI Device 7, Function 0 behind PCI to PCI bridgecccccuuviiiiiiiiiiiieiiieeeeeeeeennn 95
Standard PCI Expansion ROM Headerooovvuceiiiiiiiiieeeeceee e 97
PCIR Data StruCIUrecoooiiiiiii e 97
PCI Expansion ROM COdE TYPESccciiiiiiiiiiei i e eeeeeeeeeetetees e e e e e e e e e e e e e e e 97
EFI PCI Expansion ROM HeaAdErcoeeiiiiiiiicii et 98
Recommended PCI Device Driver Layout...........cooooiviiiiiiiiiiiiieeeee e 100
Single Channel PCI SCSI Controller..........ooooooiiiiiieiieeeee e 18
Single Channel PCI SCSI Controller behind a PCI Bridge...........ccccccviiiiiiiieeeeeenn. 19
Channel #3 of a PCI SCSI Controller behind a PCI Bridge............cccccciivviviiieeneen. 20
USB Hub Port Status BitmMapeiiiiiiiiceeees et 27
Hub Port Change Status Bitmapccoooiii e 28
USB POt FEALUNE.....cceiiiiiiiiiiiiiiieeeeeeeeee ettt 31
USB Device Path EXamPIEs..........ooeiii it 65
Another USB Device Path EXampleccooooiiriiiiiiice e 66
PXE Tag Definitions for EF 1 ... 39
Destination IP Filter Operationcoooiiiiiiiiii i 57
Destination UDP Port Filter Operation............cccoooeviiiiiiiiiciiieeecieeecee e, 57
Source IP Filter Operation..............eeiiiiiii e 58
Source UDP Port Filter Operationoooiiiiiiiiiiieeiieieee e 58

12/01/02 Version 1.10

Contents
16-1. Debugport Messaging Device Path ... 20
17-1. Block Header Fields.........ooviiiiiiiiiiiiieeeeeee e 5
LRSS R o O Yo (o [£ TP RP U PPPPPPPR 6
19-1. General Purpose VM RegIStErs.ooii i 3
19-2. Dedicated VM ReQiSIErScooeiieeeeeeeeeeeeeeeee e 4
19-3. VM Flags RegiSter ... 4
19-4. INAeX ENCOAING .coiiiiiiiiiiiiieieeeeee e 5
19-5. Index Size in INdeX ENCOTINGuuiiiiiiiiiiiie e 6
19-6. Opcode Byte ENCOAINGcoiiiiiiiiiieee e 10
19-7. Operand Byte ENCOTINGuuuiiiiiiiiiiiiiiiee e 10
19-8. ADD Instruction ENCOAINGccooiiiiiiieeeeeeeeeeeeeeeeeee e 12
19-9. AND Instruction ENCOAINGccooiiiiiieeeeeeeeeee e 13
19-10. ASHR Instruction ENCOAING........coooiiiiiiiieeeee 14
19-11. VM Version formatccuuiiiiiii e 15
19-12. BREAK Instruction ENCOAING........ccoiiiiiiiiiiiiiiitiie ettt 16
19-13. CALL Instruction ENCOAING......coooieiiiieeeeeeeeeeeeeeeeee 18
19-14. CMP Instruction ENCOAING.......coooieiiiieeeeeeeeeeeeeee 21
19-15. CMPI Instruction ENCOAING.....ccooiiiiiiieeeeeeeeeeeeeeeee 23
19-16. DIV Instruction ENCOAING.......cooieiieeeeeeeeeeee e 24
19-17. DIVU Instruction ENCOAINGccoeiiiiieeeeeeeeeeeeeeeeeeeee e 25
19-19. EXTNDD Instruction ENCOAINGccooiiiiiiiiiiiiiiiiiiiee et 27
19-20. EXTNDW Instruction ENCOAINGccoooeiieiieeeeeeeeeeeeeeeeeeeeee e 28
19-21. JMP Instruction ENCOAINGcoooeeiiiiiieeeeeeeeee e 30
19-22. JMP8 Instruction ENCOAING ...coeeeeeeieeieeeee e 31
19-23. LOADSP INStruction ENCOTINGooeieieiieeieeeeeeeee e 32
19-24. MOD Instruction ENCOAINGcooeeeiieieeeeeeeeeeeeeeeee e 33
19-25. MODU Instruction ENCOAING......ccooiiiiieeeeeeeeeeeeeeeeeee e 34
19-26. MOV InStruction ENCOAINGcooeeeeeiieeeeeeeeeeeeeeeeeeeeeeeee e 36
19-27. MOVI InStruction ENCOAING ...cooeeeieeeeeeeeeeeeeeeeeeeeeee e 37
19-28. MOVIn INStruction ENCOTING......coeeiiieeeeeeeeeeeeeeeee e 39
19-29. MOVN INStruction ENCOAING ...cooeeeeieeeeee e 41
19-30. MOVREL Instruction ENCOAING......cccoiiiiiiieieeeeeeeceeeeeee e 43
19-31. MOVsn Instruction ENCOAING.....coooeiiiiieieeeee e 44
19-32. MUL Instruction ENCOAINGcooeiiiiiieeeeeeeeeeeeeeeeeeee 46
19-33. MULU InStruction ENCOTING ...coeeeeeeieeeeeeeeeeeeeeeeeeeeee e 47
19-34. NEG InStruction ENCOTINGccooeeiieieeeeeeeeeeeeeeeeeeeeeeeeeee e 48
19-35. NOT Instruction ENCOAINGcoooiiiiiiieeeeeeeeeeeeeeeee 49
19-36. OR INStruction ENCOTING......cooieieieeeeeeeeeeeeeeeee e 50
19-37. POP Instruction ENCOAINGcoooeiiieeeeeeeeeeeeeeeeeeeeeeee e 51
19-38. POPN Instruction ENCOAINGcoooeeeiiieeeeeeeeeeeeeeeeeeeeeee 52
19-39. PUSH Instruction ENCOAINGccoooiiiiieeeeeeeeeeeeeee 53
19-40. PUSHN Instruction ENCOAINGcooeiiiiiiiee e 54
19-41. RET InStruction ENCOINGcooieiieeeeeeeeee e 55
19-42. SHL INStruction ENCOTINGuieiiiiiiiiiieieie e 56

Version 1.10

12/01/02 XXV

intel
Extensible Firmware Interface Specification ’

XXVi

19-43. SHR INStruction ENCOAINGeeiiiiiiiiiiiiiiiiiie e 57
19-44. STORESP Instruction ENCOAINGc..uuiiiiiiiiiiiii et 58
19-45. SUB INStruction ENCOING.uuiiiiiiiiiiieeeee et 59
19-46. XOR INStruction ENCOAINGuviiiiiiiiiiiiee e 60
A-1. L I G0 1| N o g = PP 1
B-1. EFI Scan Codes fOr STMPLE TINPUT ...uuttttttaaaeaaaiunreneeeeaeessaaansssseeesaessaaannssseeeeeees 1
B-2. Control Sequences That Can Be Used to Implement SIMPLE TEXT OUTPUT...... 2
C-1. Legacy Floppy Device Path..........oooo i 3
C-2. IDE Disk Device Path..........ccouuiiiiiiiiiiiii 4
C-3. Secondary Root PCI Bus with PCI to PCI Bridge Device Pathccccccciiiininnnes 5
D-1. EFI_STATUS COUES RANQGES......uuuuiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeees 1
D-2. EFI_STATUS Success Codes (High Bit Clear) ..., 1
D-3. EFI_STATUS Error Codes (High Bit Set)ccovvvviiiiiiiiiiiie, 1
D-4. EFI_STATUS Warning Codes (High Bit Clear).........cccccccuumrimiiiiiiiiiiiiiieeeeeeeeeeeeeeeen 2
E-1. DefiNitiONS....ccoieeeee 1
E-2. Referenced SpecCifiCationsciiiiiii i 3
E-3. Driver Types: Pros and CONSccoiiiiiiiiiiiiiies ettt e e 6
E-4. 'PXE Structure Field DefinitionsS ... 8
E-5. UNDI CDB Field Definitionscc.evuiiiiii ettt 13
J-1. EBC Virtual Machine Opcode SUMMAIY........cciiiiiiiiiiiiieeiciee e 1
K-1. Functions Listed in Alphabetic Ordercoooi i 1
K-2. Functions Listed Alphabetically within a Service or Protocolccoovvvmviiiiiinnnnnnnnn. 19

12/01/02 Version 1.10

1
Introduction

This Extensible Firmware Interface (hereafter known as EFI) Specification describes an interface
between the operating system (OS) and the platform firmware. The interface is in the form of
data tables that contain platform-related information, and boot and runtime service calls that are
available to the OS loader and the OS. Together, these provide a standard environment for
booting an OS.

The EFI specification is designed as a pure interface specification. As such, the specification
defines the set of interfaces and structures that platform firmware must implement. Similarly, the
specification defines the set of interfaces and structures that the OS may use in booting. How either
the firmware developer chooses to implement the required elements or the OS developer chooses to
make use of those interfaces and structures is an implementation decision left for the developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate
only information necessary to support the OS boot process. This is accomplished through a formal
and complete abstract specification of the software-visible interface presented to the OS by the
platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on Intel® architecture-based
platforms will be able to boot on a variety of system designs without further platform or OS
customization. The definition will also allow for platform innovation to introduce new features and
functionality that enhance platform capability without requiring new code to be written in the OS
boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code
over time. New device types and associated code can provide equivalent functionality through the
same defined abstract interface, again without impact on the OS boot support code.

The EFI specification is primarily intended for the next generation of 32-bit Intel architecture
(IA-32) and Itanium®-based computers. Thus, the specification is applicable to a full range of
hardware platforms from mobile systems to servers. The specification provides a core set of
services along with a selection of protocol interfaces. The selection of protocol interfaces can
evolve over time to be optimized for various platform market segments. At the same time the
specification allows maximum extensibility and customization abilities for OEMs to allow
differentiation. In this, the purpose of EFI is to define an evolutionary path from the traditional
“PC-AT”-style boot world into a legacy-API free environment.

Version 1.10 12/01/02 1-1

-
Extensible Firmware Interface Specification Intel

1.1 EFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. The EFI 1.02 Specification
describes these protocol interfaces in detail. However, it does not describe how these protocol
interfaces are produced by the system firmware. The EFI 1.10 Specification includes extensions to
the EFT 1.02 Specification that describe the EFI Driver Model along with additional protocol
interfaces that provide access to a richer set of boot devices. One purpose of the EFI Driver Model
is to provide a replacement for “PC-AT”-style option ROMs. It is important to point out that
drivers written to the EFI Driver Model are designed to access boot devices in the preboot
environment. They are not designed to replace the high performance OS specific drivers. The
EFI 1.10 Specification is designed to be backward compatible with the EFI 1.02 Specification.
This means that any EFI applications or drivers written to the EFI 1.02 Specification will continue
to function on system firmware that complies with the EFI 1.10 Specification.

The EFI Driver Model is designed to support the execution of modular pieces of code, also known
as drivers that run in the preboot environment. These drivers may manage or control hardware
buses and devices on the platform or they may provide some software derived platform specific
service.

The EFI Driver Model is designed to extend the EFI Specification in a way that supports device
drivers and bus drivers. These extensions are provided in the form of new protocols, new boot
services, and updated EFI boot services that are backward compatible with their original versions.
The EFI Driver Model also contains information required by EFI driver writers to design and
implement any combination of bus drivers and device drivers that a platform may need to boot an
EFI compliant OS.

The EFI Driver Model is designed to be generic and can be adapted to any type of bus or device.
The EFI 1.10 Specification describes how to write PCI bus drivers, PCI device drivers, USB bus
drivers, USB device drivers, and SCSI drivers. Additions details are provided that allow EFI
drivers to be stored in PCI option ROMs while maintaining compatibility with legacy option
ROM images.

One of the design goals in the EFT 1.10 Specification is to keep the driver images as small as
possible. However, if a driver is required to support multiple processor architectures, a driver
object file would have to be shipped for each supported processor architecture. To address this
space issue, the EFT 1.10 Specification also defines the EFI Byte Code Virtual Machine. An EFI
driver can be compiled into a single EFI Byte Code Virtual Machine object file. EFI 1.10
complaint firmware must contain an EFI Byte Code interpreter. This allows a single EFI Byte
Code object file to be shipped that supports multiple processor architectures. Another space saving
technique is the use of compression. The EFI 1.10 Specification defines compression and
decompression algorithms that may be used to reduce the size of EFI drivers, and thus reduce the
overhead when EFI drivers are stored in ROM devices.

The information contained in the EFT .10 Specification can be used by OSVs, IHVs, OEMs, and
firmware vendors to design and implement EFI firmware, EFI drivers that produce standard
protocol interfaces, and EFI operating system loaders that can be used to boot EFI compliant
operating systems.

1-2 12/01/02 Version 1.10

intel

1.2 Overview

Introduction

This EFI 1.10 Specification is organized as listed in Table 1-1.

Table 1-1. Organization of the EFIl Specification

Chapter/Appendix

Description

1. Introduction

Introduces the EFI Specification and topics related to using the
specification.

2. Overview

Describes the major components of EFI, including the boot
manager, firmware core, calling conventions, protocols, and
requirements.

3. Boot Manager

Describes the boot manager, which is used to load EFI drivers
and EFI applications.

4. EFI System Table

Describes the EF| System Table that is passed to every EFI
driver and EFI application.

5. Services — Boot Services

Contains the definitions of the fundamental services that are
present in an EFl-compliant system before an OS is booted.

6. Services — Runtime Services

Contains definitions for the fundamental services that are
present in an EFl-compliant system before and after an OS is
booted.

7. Protocols — EFI Loaded Image

Defines the EFI Loaded Image Protocol that describes an EFI
Image that has been loaded into memory.

8. Protocols — Device Path Protocol

Defines the device path protocol and provides the information
needed to construct and manage device paths in the EFI
environment.

9. Protocols — EFI Driver Model

Describes a generic driver model for EFIl. This includes the set
of services and protocols that apply to every bus and device
type. These protocols include the Driver Binding Protocol, the
Platform Driver Override Protocol, the Bus Specific Driver
Override Protocol, the Driver Diagnostics Protocol, the Driver
Configuration Protocol, and the Component Name Protocol.

10. Protocols — Console Support

Defines the Console 1/O protocols, which handle input and output
of text-based information intended for the system user while
executing in the EFI boot services environment. These protocols
include the Simple Input Protocol, the Simple Text Output
Protocol, the Universal Graphics Adapter (UGA) Protocol, the
Simple Pointer Protocol, and the Serial I/O Protocol.

Version 1.10

continued

12/01/02 1-3

Extensible Firmware Interface Specification

Table 1-1.

intel

Organization of the EFI Specification (continued)

Chapter/Appendix

Description

11.

Protocols — Bootable Image
Support

Defines the protocols that provide access to bootable images
while executing in the EFI boot services environment. It also
describes the supported disk layouts including MBR, El Torito,
and the Guided Partition Table (GPT). These protocols include
the Load File Protocol, the Simple File System Protocol, the Disk
I/0 Protocol, the Block I/O Protocol, and the Unicode Collation
Protocol.

12.

Protocols — PCI Bus Support

Defines PCI Bus Drivers, PCI Device Drivers, and PCI Option
ROM layouts. The protocols described include the PCI Root
Bridge 1/0 Protocol and the PCI I/O Protocol.

13.

Protocols — SCSI Bus Support

Defines the SCSI Pass Thru Protocol that is used to abstract
access to a SCSI channel that is produced by a SCSI host
controller.

14.

Protocols — USB Support

Defines USB Bus Drivers and USB Device Drivers. The
protocols described include the USB Host Controller Protocol
and the USB /O Protocol.

15.

Protocols — Network Support

Defines the protocols that provide access to network devices
while executing in the EFI boot services environment. These
protocols include the Simple Network Protocol, the PXE Base
Code Protocol, and the Boot Integrity services (BIS) Protocol.

16.

Protocols — Debugger Support

An optional set of protocols that provide the services required to
implement a source level debugger for the EFI environment.

The EFI DebugPort Protocol provides services to communicate
with a remote debug host. The Debug Support Protocol provides
services to hook processor exceptions, save the processor
context, and restore the processor context. These protocols can
be used in the implementation of a debug agent on the target
system that interacts with the remote debug host.

17.

Protocols — Compression
Algorithm Specification

Describes in detail the EFI compression/decompression
algorithm, as well as the EFI Decompress Protocol. The EFI
Decompress Protocol provides a standard decompression
interface for use at boot time. The EFI Decompress Protocol is
used by a PCI Bus Driver to decompress EFI drivers stored in
PCI Option ROMs.

18.

Protocols — Device 1/0 Protocol

Defines the Device I/O protocol, which is used by code running
in the EFI boot services environment to access memory and 1/O.

continued

12/01/02 Version 1.10

intel

Table 1-1.

Introduction

Organization of the EFI Specification (continued)

Chapter/Appendix

Description

19. EFI Byte Code Virtual Machine

Defines the EFI Byte Code virtual processor and its instruction
set. It also defines how EBC object files are loaded into
memory, and the mechanism for transitioning from native code to
EBC code and back to native code. The information in this
document is sufficient to implement an EFI Byte Code
interpreter, an EF| Byte Code compiler, and an EFI Byte Code
linker.

GUID and Time Formats

Explains format of EFI GUIDs (Guaranteed Unique Identifiers).

B. Console Describes the requirements for a basic text-based console
required by EFl-conformant systems to provide communication
capabilities.

C. Device Path Examples Examples of use of the data structures that defines various
hardware devices to the EFI boot services.

D. Status Codes Lists success, error, and warning codes returned by EFI
interfaces.

E. 32/64-Bit UNDI Specification This appendix defines the 32/64-bit H/W and S/W Universal
Network Driver Interfaces (UNDIs).

F. Using the Simple Pointer Protocol This appendix provides the suggested usage of the Simple
Pointer Protocol.

G. Using the EFI SCSI Pass Thru This appendix provides an example on how the SCSI Pass Thru

Protocol Protocol can be used.

H. Compression Source Code The C source code to an implementation of the EFI Compression
Algorithm.

. Decompression Source Code The C source code to an implementation of the EFI
Decompression Algorithm.

J. EFI Byte Code Virtual Machine A summary of the opcodes in the instruction set of the EFI Byte

Opcode Summary Code Virtual Machine.

K. Alphabetic Function List Lists all EFI interface functions alphabetically.

References Lists all necessary and/or useful specifications, web sites, and
other documentation that is referenced in this EF| Specification.

Glossary Briefly describes terms defined or referenced by this
specification.

Index Provides an index to the key terms and concepts in the

specification.

Version 1.10

12/01/02 1-5

-
Extensible Firmware Interface Specification Intel

1.3 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the industry.
Each new platform capability or hardware innovation requires firmware developers to craft
increasingly complex solutions, and often requires OS developers to make changes to their boot
code before customers can benefit from the innovation. This can be a time-consuming process
requiring a significant investment of resources.

The primary goal of the EFI specification is to define an alternative boot environment that can
alleviate some of these considerations. In this goal, the specification is similar to other existing
boot specifications. The main properties of this specification and similar solutions can be
summarized by these attributes:

Coherent, scalable platform environment. The specification defines a complete solution
for the firmware to completely describe platform features and surface platform capabilities
to the OS during the boot process. The definitions are rich enough to cover the full range
of contemporary Intel architecture-based system designs.

Abstraction of the OS from the firmware. The specification defines interfaces to platform
capabilities. Through the use of abstract interfaces, the specification allows the OS loader
to be constructed with far less knowledge of the platform and firmware that underlie those
interfaces. The interfaces represent a well-defined and stable boundary between the
underlying platform and firmware implementation and the OS loader. Such a boundary
allows the underlying firmware and the OS loader to change provided both limit their
interactions to the defined interfaces.

Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces
require the OS loader to have specific knowledge of the workings of certain hardware
devices. This specification provides OS loader developers with something different—
abstract interfaces that make it possible to build code that works on a range of underlying
hardware devices without having explicit knowledge of the specifics for each device in
the range.

Abstraction of Option ROMs from the firmware. This specification defines interfaces to
platform capabilities including standard bus types such as PCI, USB, and SCSI. The list
of supported bus types may grow over time, so a mechanism to extend to future bus types
is included. These defined interfaces and the ability to extend to future bus types are
components of the EFI Driver Model. One purpose of the EFI Driver Model is to solve a
wide range of issues that are present in existing “PC-AT” option ROMs. Like OS loaders,
drivers use the abstract interfaces so device drivers and bus drivers can be constructed
with far less knowledge of the platform and firmware that underlie those interfaces.
Architecturally shareable system partition. Initiatives to expand platform capabilities and
add new devices often require software support. In many cases, when these platform
innovations are activated before the OS takes control of the platform, they must be
supported by code that is specific to the platform rather than to the customer’s choice of
OS. The traditional approach to this problem has been to embed code in the platform
during manufacturing (for example, in flash memory devices). Demand for such
persistent storage is increasing at a rapid rate. This specification defines persistent store
on large mass storage media types for use by platform support code extensions to
supplement the traditional approach. The definition of how this works is made clear in the

12/01/02 Version 1.10

intel

Introduction

specification to ensure that firmware developers, OEMs, operating system vendors, and
perhaps even third parties can share the space safely while adding to platform capability.

Defining a boot environment that delivers these attributes could be accomplished in many ways.
Indeed several alternatives, perhaps viable from an academic point of view, already existed at the
time this specification was written. These alternatives, however, typically presented high barriers
to entry given the current infrastructure capabilities surrounding Intel architecture platforms. This
specification is intended to deliver the attributes listed above while also recognizing the unique
needs of an industry that has considerable investment in compatibility and a large installed base of
systems that cannot be abandoned summarily. These needs drive the requirements for the
additional attributes embodied in this specification:

Version 1.10

Evolutionary, not revolutionary. The interfaces and structures in the specification are
designed to reduce the burden of an initial implementation as much as possible. While
care has been taken to ensure that appropriate abstractions are maintained in the interfaces
themselves, the design also ensures that reuse of BIOS code to implement the interfaces is
possible with a minimum of additional coding effort. In other words, on [A-32 platforms
the specification can be implemented initially as a thin interface layer over an underlying
implementation based on existing code. At the same time, introduction of the abstract
interfaces provides for migration away from legacy code in the future. Once the
abstraction is established as the means for the firmware and OS loader to interact during
boot, developers are free to replace legacy code underneath the abstract interfaces at
leisure. A similar migration for hardware legacy is also possible. Since the abstractions
hide the specifics of devices, it is possible to remove underlying hardware, and replace it
with new hardware that provides improved functionality, reduced cost, or both. Clearly
this requires that new platform firmware be written to support the device and present it to
the OS loader via the abstract interfaces. However, without the interface abstraction,
removal of the legacy device might not be possible at all.

Compatibility by design. The design of the system partition structures also preserves all
the structures that are currently used in the “PC-AT” boot environment. Thus it is a
simple matter to construct a single system that is capable of booting a legacy OS or an
EFI-aware OS from the same disk.

Simplifies addition of OS-neutral platform value-add. The specification defines an open
extensible interface that lends itself to the creation of platform “drivers.” These may be
analogous to OS drivers, providing support for new device types during the boot process,
or they may be used to implement enhanced platform capabilities like fault tolerance or
security. Furthermore this ability to extend platform capability is designed into the
specification from the outset. This is intended to help developers avoid many of the
frustrations inherent in trying to squeeze new code into the traditional BIOS environment.
As a result of the inclusion of interfaces to add new protocols, OEMs or firmware
developers have an infrastructure to add capability to the platform in a modular way. Such
drivers may potentially be implemented using high level coding languages because of the
calling conventions and environment defined in the specification. This in turn may help to
reduce the difficulty and cost of innovation. The option of a system partition provides an
alternative to nonvolatile memory storage for such extensions.

Built on existing investment. Where possible, the specification avoids redefining
interfaces and structures in areas where existing industry specifications provide adequate
coverage. For example, the ACPI specification provides the OS with all the information

12/01/02 1-7

-
Extensible Firmware Interface Specification Intel

necessary to discover and configure platform resources. Again, this philosophical choice
for the design of the specification is intended to keep barriers to its adoption as low as
possible.

1.4 Target Audience

This document is intended for the following readers:

IHVs and OEMs who will be implementing EFI drivers.

OEMs who will be creating Intel architecture-based platforms intended to boot shrink-
wrap operating systems.

BIOS developers, either those who create general-purpose BIOS and other firmware
products or those who modify these products for use in Intel architecture-based products.
Operating system developers who will be adapting their shrink-wrap operating system
products to run on Intel architecture-based platforms.

1.5 EFI Design Overview

The design of EFI is based on the following fundamental elements:

1-8

Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing
specifications that are commonly implemented on Intel architecture platforms must be
implemented on platforms wishing to comply with the EFI specification. (See the
References appendix for additional information.)

System partition. The System partition defines a partition and file system that are
designed to allow safe sharing between multiple vendors, and for different purposes. The
ability to include a separate sharable system partition presents an opportunity to increase
platform value-add without significantly growing the need for nonvolatile platform
memory.

Boot services. Boot services provide interfaces for devices and system functionality that
can be used during boot time. Device access is abstracted through “handles” and
“protocols.” This facilitates reuse of investment in existing BIOS code by keeping
underlying implementation requirements out of the specification without burdening the
consumer accessing the device.

Runtime services. A minimal set of runtime services is presented to ensure appropriate
abstraction of base platform hardware resources that may be needed by the OS during its
normal operations.

12/01/02 Version 1.10

|]
Intel Introduction

1.6

Figure 1-1 shows the principal components of EFI and their relationship to platform hardware and
OS software.

OPERATING SYSTEM

EFI OS LOADER

EFI BOOT SERVICES EFI RUNTIME
SERVICES

INTERFACES
FROM
OTHER
REQUIRED
SPECS

PLATFORM HARDWARE

EFI SYSTEM PARTITION

EFI OS
LOADER

OM13141

Figure 1-1. EFIl Conceptual Overview

This diagram illustrates the interactions of the various components of an EFI specification-
compliant system that are used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the EFI System Partition. The
specification provides for a variety of mass storage device types including disk, CD-ROM and
DVD as well as remote boot via a network. Through the extensible protocol interfaces, it is
possible to envision other boot media types being added, although these may require OS loader
modifications if they require use of protocols other than those defined in this document

Once started, the OS loader continues to boot the complete operating system. To do so, it may use
the EFI boot services and interfaces defined by this or other required specifications to survey,
comprehend and initialize the various platform components and the OS software that manages
them. EFI runtime services are also available to the OS loader during the boot phase.

EFI Driver Model

This section describes the goals of a driver model for EFI firmware. The goal is for this driver
model to provide a mechanism for implementing bus drivers and device drivers for all types of
buses and devices. At the time of writing, the bus types that must be covered include PCI, USB,
SCSI, InfiniBandT, and so on.

As hardware architectures continue to evolve, the number and types of buses present in platforms
are increasing. This trend is especially true in high-end servers. However, a more diverse set of

Version 1.10 12/01/02 1-9

-
Extensible Firmware Interface Specification Intel

1.6.1

bus types is being designed into desktop and mobile systems and even some embedded systems.
This increasing complexity means that a simple method for describing and managing all the buses
and devices in a platform is required in the preboot environment. The EFI Driver Model provides
this simple method in the form of protocols services and boot services.

EFI Driver Model Goals
The EFI Driver Model has the following goals:

Compatible — The EFI Driver Model must maintain compatibility with the EFT 1.02
Specification. This means that the EFI Driver Model must take advantage of the
extensibility mechanisms in the EFT 1.02 Specification to add the required functionality
Simple — Drivers written to the EFI Driver Model must be simple to implement and
simple to maintain. The EFI Driver Model must allow a driver writer to concentrate on
the specific device for which the driver is being developed. A driver should not be
concerned with platform policy or platform management issues. These considerations
should be left to the system firmware.

Scalable — The EFI Driver Model must be able to adapt to all types of platforms. These
platforms would include embedded systems; mobile and desktop systems, as well as
workstations; and servers.

Flexible — The EFI Driver Model must support the ability to enumerate all the devices, or
to enumerate only those devices required to boot the required OS. The minimum device
enumeration provides support for more rapid boot capability, and the full device
enumeration provides the ability to perform OS installations, system maintenance, or
system diagnostics on any boot device present in the system.

Extensible — The EFI Driver Model must be able to extend to future bus types as they are
defined.

Portable — Drivers written to the EFI Driver Model must portable between platforms and
between processor architectures. Initially this is limited to platforms with [A-32 family
and Itanium® processors, but no processor-specific assumptions are made.

Interoperable — Drivers must coexist with other drivers and system firmware and must do
so without generating resource conflicts.

Describe Complex Bus Hierarchies — The EFI Driver Model must be able to describe a
variety of bus topologies from very simple single bus platforms to very complex platforms
containing many buses of various types.

Small Driver Footprint — The size of executables produced by the EFI Driver Model must
be minimized to reduce the overall platform cost. While flexibility and extensibility are
goals, the additional overhead required to support these must be kept to a minimum to
prevent the size of firmware components from becoming unmanageable.

Address Legacy Option ROM Issues — The EFI Driver Model must directly address and
solve the constraints and limitations of legacy option ROMs. Specifically it must be
possible to build add-in cards that support both EFI drivers and legacy option ROMs
where such cards can execute in both legacy BIOS systems and EFI conforming platforms
without modifications to the code carried on the card. The solution must provide an
evolutionary path to migrate from legacy option ROMs driver to EFI drivers.

12/01/02 Version 1.10

|]
Intel Introduction

1.6.2 Legacy Option ROM Issues

1.7

1.71

This idea of supporting a driver model came from feedback on the EFI Specification that provided a
clear, market-driven requirement for an alternative to the legacy option ROM (sometimes also
referred to as an expansion ROM). The perception is that the advent of the EFI Specification
represents a chance to escape the limitations implicit to the construction and operation of legacy
option ROM images by replacing them with an alternative mechanism that works within the
framework of the EFI Specification.

Migration Requirements

Migration requirements cover the transition period from initial implementation of this specification
to a future time when all platforms and operating systems implement to this specification. During
this period, two major compatibility considerations are important:

1. The ability to continue booting legacy operating systems;
and

2. The ability to implement EFI on existing platforms by reusing as much existing firmware code
to keep development resource and time requirements to a minimum.

Legacy Operating System Support

The EFI specification represents the preferred means for a shrink-wrap OS and firmware to
communicate during the Intel architecture platform boot process. However, choosing to make a
platform that complies with this specification in no way precludes a platform from also supporting
existing legacy OS binaries that have no knowledge of the EFI specification.

The EFI specification does not restrict a platform designer who chooses to support both the EFI
specification and a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is
to be implemented it should be developed in accordance with existing industry practice that is
defined outside the scope of this specification. The choice of legacy operating systems that are
supported on any given platform is left to the manufacturer of that platform.

1.7.2 Supporting the EFI Specification on a Legacy Platform

The EFI specification has been carefully designed to allow for existing systems to be extended to
support it with a minimum of development effort. In particular, the abstract structures and services
defined in the EFI specification can all be supported on legacy platforms.

For example, to accomplish such support on an existing [A-32 platform that uses traditional BIOS
to support operating system boot, an additional layer of firmware code would need to be provided.
This extra code would be required to translate existing interfaces for services and devices into
support for the abstractions defined in this specification.

Version 1.10 12/01/02 1-11

-
Extensible Firmware Interface Specification Intel

1.8 Conventions Used in This Document

This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions

Intel architecture processors of the [A-32 family are “little endian” machines. This distinction
means that the low-order byte of a multibyte data item in memory is at the lowest address, while the
high-order byte is at the highest address. Intel Itanium processors may be configured for both
“little endian” and “big endian” operation. All implementations designed to conform to this
specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

1.8.2 Protocol Descriptions

A protocol description generally has the following format:

P I’OtO COI . The formal name of the protocol interface.
Summary: A brief description of the protocol interface.
GUID: The 128-bit unique identifier for the protocol interface.
Revision Number: The revision of the protocol interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the
procedures and data fields produced by this protocol

interface.

Parameters: A brief description of each field in the protocol interface
structure.

Related Definitions: The type declarations and constants that are used in the
protocol interface structure or any of its procedures.

Description: A description of the functionality provided by the

protocol interface including any limitations and caveats
of which the caller should be aware.

1-12 12/01/02 Version 1.10

|]
Intel Introduction

1.8.3 Procedure Descriptions

A procedure description generally has the following format:

P I’OCEd ure N am e() = The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling
sequence.

Parameters: The parameters defined in the template are described in
further detail.

Related Definitions: The type declarations and constants that are only used by
this procedure.

Description: A description of the functionality provided by the

interface including any limitations and caveats the caller
of which should be aware.

Status Codes Returned: A description of the codes returned by the interface.
Any status codes listed in this table are required to be
implemented by the procedure. Additional error codes
may be returned, but they will not be tested by standard
compliance tests, and any software that uses the
procedure cannot depend on any of the extended error
codes that an implementation may provide.

1.8.4 Instruction Descriptions

An instruction description for EBC instructions generally has the following format:

I n St ru Cti on N dame The formal name of the EBC Instruction.

SYNTAX: A brief description of the EBC Instruction.

DESCRIPTION: A description of the functionality provided by the EBC
Instruction accompanied by a table that details the
instruction encoding.

OPERATION: Details the operations performed on operands.
BEHAVIORS AND RESTRICTIONS: Anitem by item description of the behavior

of each operand involved in the instruction
and any restrictions that apply to the
operands or the instruction.

Version 1.10 12/01/02 1-13

-
Extensible Firmware Interface Specification Intel

1.8.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a /ist is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the EFI Specification.

1.8.6 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Plain text (blue) In the electronic version of this specification, any plain text
underlined and in blue indicates an active link to the cross-reference.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an /talic typeface can be used as emphasis to introduce a new

term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate
paragraphs, though words or segments can also be embedded in a
normal text paragraph.

BOLD Monospace In the electronic version of this specification, words in a BOLD
Monospace typeface that is underlined and in a dark red color
indicate an active hyperlink to the definition for that function or type
definition. Click on the word to follow the hyperlink.

NOTE

Due to management and file size considerations, only the first occurrence of the reference on each
page is an active link. Subsequent references on the same page will not be actively linked to the
definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the first
instance of the name (in the underlined BOLD Monospace fypeface) on the page and click on the
word to jump to the function or type definition.

Italic Monospace Incode orin text, words in Ttalic Monospace indicate
placeholder names for variable information that must be supplied
(i.e., arguments).

12/01/02 Version 1.10

2
Overview

EFT allows the extension of platform firmware by loading EFI driver and EFI application images.
When EFI drivers and EFI applications are loaded they have access to all EFI defined runtime and
boot services. See Figure 2-1.

EFI e M
Application Bootcode Ig OS Loader

Retry Filurep | EFIAPI

Standard Drivers and Boot from Operation
firmware applications ordered list handed off
platform loaded of EFIOS to OS loader
initilization iteratively loaders

—» APl specified ---» Value add implementation

I:I Boot Manager . EFI binaries

OM13144

Figure 2-1. Booting Sequence

EFTI allows the consolidation of boot menus from the OS loader and platform firmware into a single
platform firmware menu. These platform firmware menus will allow the selection of any EFI OS
loader from any partition on any boot medium that is supported by EFI boot services. An EFI OS
loader can support multiple options that can appear on the user interface. It is also possible to
include legacy boot options, such as booting from the A: or C: drive in the platform firmware

boot menus.

EFI supports booting from media that contain an EFI OS loader or an EFI-defined System Partition.
An EFI-defined System Partition is required by EFI to boot from a block device. EFI does not
require any change to the first sector of a partition, so it is possible to build media that will boot on
both legacy Intel architecture and EFI platforms.

Version 1.10 12/01/02 21

-
Extensible Firmware Interface Specification Intel

2.1

211

2-2

Boot Manager

EFI contains a boot manager that allows the loading of EFI applications (including OS 1st stage
loader) or EFI drivers from any file on an EFI defined file system or through the use of an EFI
defined image loading service. EFI defines NVRAM variables that are used to point to the file to
be loaded. These variables also contain application specific data that are passed directly to the EFI
application. The variables also contain a human readable Unicode string that can be displayed to
the user in a menu.

The variables defined by EFI allow the system firmware to contain a boot menu that can point to all
the operating systems, and even multiple versions of the same operating systems. The design goal
of EFI was to have one set of boot menus that could live in platform firmware. EFI only specifies
the NVRAM variables used in selecting boot options. EFI leaves the implementation of the menu
system as value added implementation space.

EFTI greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first floppy,
hard drive, CD-ROM, or network card attached to the system. Booting from a common hard drive
can cause lots of interoperability problems between operating systems, and different versions of
operating systems from the same vendor.

EFl Images

EFI Images are a class of files defined by EFI that contain executable code. The most
distinguishing feature of EFI Images is that the first set of bytes in the EFI Image file contains an
image header that defines the encoding of the executable image.

EFT uses a subset of the PE32+ image format with a modified header signature. The modification
to signature value in the PE32+ image is done to distinguish EFI images from normal PE32
executables. The “+” addition to PE32 provides the 64-bit relocation fix-up extensions to standard
PE32 format.

For images with the EFI image signature, the Subsystem values in the PE image header are
defined below. The major differences between image types are the memory type that the firmware
will load the image into, and the action taken when the image’s entry point exits or returns. An
application image is always unloaded when control is returned from the image’s entry point. A
driver image is only unloaded if control is passed back with an EFT error code.

// PE32+ Subsystem type for EFI images

#define EFI_ IMAGE SUBSYSTEM EFI APPLICATION 10
#define EFI IMAGE SUBSYSTEM EFI BOOT SERVICE DRIVER 11
#define EFI_IMAGE SUBSYSTEM EFI_RUNTIME DRIVER 12

12/01/02 Version 1.10

I ntel ' Overview

The Machine value that is found in the PE image file header is used to indicate the machine code
type of the image. The machine code types defined for images with the EFI image signature are
defined below. A given platform must implement the image type native to that platform and the
image type for EFI Byte Code (EBC). Support for other machine code types are optional to the
platform.

// PE32+ Machine type for EFI images

#define EFI IMAGE MACHINE IA32 0x014c
#define EFI_IMAGE MACHINE IA64 0x0200
#define EFI_ IMAGE MACHINE EBC 0x0EBC

An EFI image is loaded into memory through the LoadImage () Boot Service. This service loads
an image with a PE32+ format into memory. This PE32+ loader is required to load all the sections
of the PE32+ image into memory. Once the image is loaded into memory, and the appropriate
“fix-ups” have been performed, control is transferred to a loaded image at the
AddressOfEntryPoint reference according to the normal indirect calling conventions of
IA-32 or Itanium-based applications. All other linkage to and from an EFI image is done
programmatically.

2.1.2 EFI Applications

EFI Applications are loaded by the EFI Boot Manager or by other EFI applications. To load an
application the firmware allocates enough memory to hold the image, copies the sections within the
application to the allocated memory and applies the relocation fix-ups needed. Once done, the
allocated memory is set to be the proper type for code and data for the image. Control is then
transferred to the application’s entry point. When the application returns from its entry point, or
when it calls the Boot Service Exit (), the application is unloaded from memory and control is
returned to the EFI component that loaded the application.

When the EFI Boot Manager loads an application, the image handle may be used to locate the “load
options” for the application. The load options are stored in nonvolatile storage and are associated
with the application being loaded and executed by the EFI Boot Manager.

Version 1.10 12/01/02 2-3

In

-
Extensible Firmware Interface Specification tel

2.1.3 EFI OS Loaders

An EFI OS loader is a special type of EFI application that normally takes over control of the system
from the EFI firmware. When loaded, the OS loader behaves like any other EFI application in that
it must only use memory it has allocated from the firmware and can only use EFI services and
protocols to access the devices that the firmware exposes. If the OS Loader includes any boot
service style driver functions, it must use the proper EFI interfaces to obtain access to the bus
specific-resources. That is, I/O and memory-mapped device registers must be accessed through the
proper bus specific I/O calls like those that an EFI driver would perform.

If the OS loader experiences a problem and cannot load its operating system correctly, it can release
all allocated resources and return control back to the firmware via the Boot Service Exit () call.
The Exit () call allows both an error code and ExitData to be returned. The ExitData
contains both a Unicode string and OS loader-specific data to be returned.

If the OS loader successfully loads its operating system, it can take control of the system by using
the Boot Service ExitBootServices (). After successfully calling ExitBootServices (),
all boot services in the system are terminated, including memory management, and the OS loader is
responsible for the continued operation of the system.

2.1.4 EFI Drivers

EFI Drivers are loaded by the EFI Boot Manager, the EFI firmware, or by other EFI applications.
To load an EFI Driver the firmware allocates enough memory to hold the image, copies the sections
within the driver to the allocated memory and applies the relocation fix-ups needed. Once done, the
allocated memory is set to be the proper type for code and data for the image. Control is then
transferred to the driver’s entry point. When the driver returns from its entry point, or when it calls
the Boot Service Exit (), the driver is optionally unloaded from memory and control is returned
to the EFI component that loaded the driver. A driver is not unloaded from memory if it returns a
status code of EFI_SUCCESS. If the driver’s return code is an error status code, then the driver is
unloaded from memory.

There are two types of EFI Drivers. These are Boot Service Drivers and Runtime Drivers. The
only difference between these two driver types is that Runtime Drivers are available after an OS
Loader has taken control of the platform with the Boot Service ExitBootServices (). Boot
Service Drivers are terminated when ExitBootServices () is called, and all the memory
resources consumed by the Boot Service Drivers are released for use in the operating system
environment.

24 12/01/02 Version 1.10

I ntel ' Overview

2.2 Firmware Core

This section provides an overview of the services defined by EFI. These include boot services and
runtime services.

2.21 EFI Services

The purpose of the EFI interfaces is to define a common boot environment abstraction for use by
loaded EFI images, which include EFI drivers, EFI applications, and EFI OS loaders. The calls are
defined with a full 64-bit interface, so that there is headroom for future growth. The goal of this set
of abstracted platform calls is to allow the platform and OS to evolve and innovate independently of
one another. Also, a standard set of primitive runtime services may be used by operating systems.

Platform interfaces defined in this chapter allow the use of standard Plug and Play Option ROMs as
the underlying implementation methodology for the boot services. The PC industry has a huge
investment in Intel Architecture Option ROM technology, and the obsolescence of this installed
base of technology is not practical in the first generation of EFI-compliant systems. The interfaces
have been designed in such as way as to map back into legacy interfaces. These interfaces have in
no way been burdened with any restrictions inherent to legacy Option ROMs.

The EFI platform interfaces are intended to provide an abstraction between the platform and the OS
that is to boot on the platform. The EFI specification also provides abstraction between diagnostics
or utility programs and the platform; however, it does not attempt to implement a full diagnostic OS
environment. It is envisioned that a small diagnostic OS-like environment can be easily built on
top of an EFI system. Such a diagnostic environment is not described by this specification.

Interfaces added by this specification are divided into the following categories and are detailed later
in this document:
e Runtime services
e Boot services interfaces, with the following subcategories:
— Global boot service interfaces
— Device handle-based boot service interfaces
— Device protocols
— Protocol services

Version 1.10 12/01/02 2-5

-
Extensible Firmware Interface Specification Intel

2.2.2 Runtime Services

2-6

This section describes EFI runtime service functions. The primary purpose of the EFI runtime
services is to abstract minor parts of the hardware implementation of the platform from the OS.

EFI runtime service functions are available during the boot process and also at runtime provided the
OS switches into flat physical addressing mode to make the runtime call. However, if the OS
loader or OS uses the Runtime Service SetVirtualAddressMap () service, the OS will only
be able to call EFI runtime services in a virtual addressing mode. All runtime interfaces are
nonblocking interfaces and can be called with interrupts disabled if desired.

In all cases memory used by the EFI runtime services must be reserved and not used by the OS.
EFI runtime services memory is always available to an EFI function and will never be directly
manipulated by the OS or its components. EFI is responsible for defining the hardware resources
used by runtime services, so the OS can synchronize with those resources when runtime service
calls are made, or guarantee that the OS never uses those resources.

Table 2-1 lists the Runtime Services functions.

Table 2-1. EFI Runtime Services

Name Description

GetTime () Returns the current time, time context, and time keeping
capabilities.

SetTime () Sets the current time and time context.

GetWakeupTime () Returns the current wakeup alarm settings.

SetWakeupTime () Sets the current wakeup alarm settings.

GetVariable () Returns the value of a named variable.

GetNextVariableName () Enumerates variable names.

SetVariable () Sets, and if needed creates, a variable.

SetVirtualAddressMap () Switches all runtime functions from physical to virtual addressing.

ConvertPointer () Used to convert a pointer from physical to virtual addressing.

GetNextHighMonotonicCount () Subsumes the platform's monotonic counter functionality.

ResetSystem() Resets all processors and devices and reboots the system.

12/01/02 Version 1.10

I ntel ' Overview

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the EFI specification are called through pointers in
common, architecturally defined, calling conventions found in C compilers. Pointers to the various
global EFI functions are found in the EFI_RUNTIME SERVICES and EFI_BOOT SERVICES
tables that are located via the EFI system table. Pointers to other functions defined in this
specification are located dynamically through device handles. In all cases, all pointers to EFI
functions are cast with the word EFIAPI. This allows the compiler for each architecture to supply
the proper compiler keywords to achieve the needed calling conventions. When passing pointer
arguments to Boot Services, Runtime Services, and Protocol Interfaces, the caller has the following
responsibilities:

1. It is the caller’s responsibility to pass pointer parameters that reference physical memory
locations. If a pointer is passed that does not point to a physical memory location(i.e. a
memory mapped 1/O region), the results are unpredictable and the system may halt.

2. It is the caller’s responsibility to pass pointer parameters with correct alignment. If an
unaligned pointer is passed to a function, the results are unpredictable and the system may halt.

3. It is the caller’s responsibility to not pass in a NULL parameter to a function unless it is
explicitly allowed. If a NULL pointer is passed to a function, the results are unpredictable and
the system may hang.

Calling conventions for [A-32 or Itanium-based applications are described in more detail below.
Any function or protocol may return any valid return code.

2.3.1 Data Types

Table 2-2 lists the common data types that are used in the interface definitions, and Table 2-3 lists
their modifiers. Unless otherwise specified all data types are naturally aligned. Structures are
aligned on boundaries equal to the largest internal datum of the structure and internal data are
implicitly padded to achieve natural alignment.

Table 2-2. Common EFI Data Types

Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a O for FALSE or a 1 for TRUE. Other
values are undefined.

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium processor
instructions)

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium processor
instructions)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

continued

Version 1.10 12/01/02 2-7

-
Extensible Firmware Interface Specification tel

Table 2-2. Common EFI Data Types (continued)

Mnemonic Description

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.

UINT64 8-byte unsigned value.

CHARS8 1-byte Character.

CHAR16 2-byte Character. Unless otherwise specified all strings are stored in the
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards.

VOID Undeclared type.

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64-bit boundary.

EFI_STATUS Status code. Type INTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure. Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN.

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Control address.
EFI_IPv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.
EFI_IPv6_ADDRESS 16-byte buffer. An IPv6 internet protocol address.

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol
address.

<Enumerated Type> Element of a standard ANSI C enum type declaration. Type INTN.

Table 2-3. Modifiers for Common EFI Data Types

Mnemonic Description

IN Datum is passed to the function.

ouT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be

passed if the value is not supplied.

EFIAPI Defines the calling convention for EFI interfaces.

2-8 12/01/02 Version 1.10

intel

2.3.2
All

Overview

IA-32 Platforms

functions are called with the C language calling convention. The general-purpose registers that

are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are
nonvolatile and are preserved by the target function. In addition, unless otherwise specified by the
function definition, all other registers are preserved. For example, this would include the entire
floating point and Intel® MMX™ technology state.

During boot services time the processor is in the following execution mode:

Uniprocessor

Protected mode

Paging mode not enabled

Selectors are set to be flat and are otherwise not used

Interrupts are enabled—though no interrupt services are supported other than the EFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)
Direction flag in EFLAGS is clear

Other general purpose flag registers are undefined

128 KB, or more, of available stack space

an operating system to use any EFI runtime services, it must:

Preserve all memory in the memory map marked as runtime code and runtime data

Call the runtime service functions, with the following conditions:

— Called from the boot processor

— In protected mode

— Paging not enabled

— All selectors set to be flat with virtual = physical address. If the OS Loader or OS used
SetVirtualAddressMap () to relocate the runtime services in a virtual address
space, then this condition does not have to be met.

— Direction flag in EFLAGs clear

— 4 KB, or more, of available stack space

— Interrupts disabled

Synchronize processor access to the legacy CMOS registers (if there are multiple processors).

Only one processor can access the registers at any given time.

ACPI Tables loaded at boot time must be contained in memory of type

EfiACPIReclaimMemory.

The system firmware must not request a virtual mapping for any memory descriptor of type

EfiACPIReclaimMemory or EEiACPIMemoryNVS.

EFI memory descriptors of type EE1ACPIReclaimMemory and EfiACPIMemoryNVS

must be aligned on a 4 KB boundary and must be a multiple of 4 KB in size.

Any EFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY DESCRIPTOR having the EFI_MEMORY RUNTIME bit set must be aligned
on a 4 KB boundary and must be a multiple of 4 KB in size.

Version 1.10 12/01/02 29

-
Extensible Firmware Interface Specification In e '

e An ACPI Memory Op-region must inherit cacheability attributes from the EFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be noncacheable.

e ACPI tables loaded at runtime must be contained in memory of type E£1iACPIMemoryNVS or
EfiFirmareReserved. The cacheability attributes for ACPI tables loaded at runtime (via
ACPI LoadTable) should be defined in the EFI memory map. If no information about the table
location exists in the EFI memory map, the table is assumed to be noncached.

2.3.2.1 Handoff State

2-10

When an [A-32 EFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit
mode. All descriptors are set to their 4 GB limits so that all of memory is accessible from all
segments. The address of the IDT is not defined and thus it cannot be manipulated directly during
boot services.

Figure 2-2 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has been
called on TA-32 systems. All EFI image entry points take two parameters. These are the image
handle of the EFI image, and a pointer to the EFI System Table.

Stack Location

EFI_SYSTEM_TABLE * ESP + 8
EFI_HANDLE ESP + 4
<return address> ESP

OM13145

Figure 2-2. Stack after AddressOfEntryPoint Called, IA-32

12/01/02 Version 1.10

intel

233

Overview

Itanium®-Based Platforms

EFI executes as an extension to the SAL execution environment with the same rules as laid out by
the SAL specification.

During boot services time the processor is in the following execution mode:

Uniprocessor

Physical mode

128 KB, or more, of available stack space

16 KB, or more, of available backing store space
May only use the lower 32 floating point registers

The EFI Image may invoke both SAL and EFI procedures. Once in virtual mode, the EFI OS must
switch back to physical mode to call any boot services. If SetVirtualAddressMap () has
been used, then runtime service calls are made in virtual mode.

ACPI Tables loaded at boot time must be contained in memory of type
EfiACPIReclaimMemory.

The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

EFI memory descriptors of type EfEiACPIReclaimMemory and Ef i ACPIMemoryNVS
must be aligned on an 8 KB boundary and must be a multiple of 8 KB in size.

Any EFI memory descriptor that requests a virtual mapping via the

EFI_MEMORY DESCRIPTOR having the EFI_MEMORY RUNTIME bit set must be aligned
on a 8 KB boundary and must be a multiple of 8 KB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the EFI memory map. If
the system memory map does not contain cacheability attributes the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to
be noncacheable.

ACPI tables loaded at runtime must be contained in memory of type Ef iACPIMemoryNVS or
EfiFirmareReserved. The cacheability attributes for ACPI tables loaded at runtime (via
ACPI LoadTable) should be defined in the EFI memory map. If no information about the table
location exists in the EFI memory map, the table is assumed to be noncached.

Refer to the 14-64 System Abstraction Layer Specification (see the References appendix) for details.

EFI procedures are invoked using the P64 C calling conventions defined for Itanium-based
applications. Refer to the document 64 Bit Runtime Architecture and Software Conventions
for I14-64 (see the References appendix) for more information.

Version 1.10 12/01/02 2-11

-
Extensible Firmware Interface Specification Intel

2.3.3.1 Handoff State

24

2-12

EFI uses the standard P64 C calling conventions that are defined for Itanium-based operating
systems. Figure 2-3 shows the stack after ImageEntryPoint has been called on Itanium-based
systems. The arguments are also stored in registers: out0 contains EFI _HANDLE and outl
contains the address of the EFI_SYSTEM TABLE. The gp for the EFI Image will have been
loaded from the plabel pointed to by the AddressOfEntryPoint in the image’s PE32+
header. All EFI image entry points take two parameters. These are the image handle of the EFI
image, and a pointer to the EFI System Table.

Stack Location Register

EFI_SYSTEM_TABLE * SP +8 out1
EFI_HANDLE SP out0

OM13146

Figure 2-3. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see the References appendix) defines the state of the system registers at
boot handoff. The SAL specification also defines which system registers can only be used after
EFI boot services have been properly terminated.

Protocols

The protocols that a device handle supports are discovered through the HandleProtocol ()
Boot Service or the OpenProtocol () Boot Service. Each protocol has a specification that
includes the following:

e The protocol’s globally unique ID (GUID)

e The Protocol Interface structure

e The Protocol Services

To determine if the handle supports any given protocol, the protocol’s GUID is passed to
HandleProtocol () or OpenProtocol (). Ifthe device supports the requested protocol, a
pointer to the defined Protocol Interface structure is returned. The Protocol Interface structure links
the caller to the protocol-specific services to use for this device.

12/01/02 Version 1.10

intel

Overview

Figure 2-4 shows the construction of a protocol. The EFI driver contains functions specific to one
or more protocol implementations, and registers them with the Boot Service
InstallProtocolInterface (). The firmware returns the Protocol Interface for the

protocol that is then used to invoke the protocol specific services. The EFI driver keeps private,

device-specific context with protocol interfaces.

HandleProtocol (GUID, ...)
<« Handle

EFI Driver

| EEEN |

; Protocol Interface Protocol
Invoking one of specific

the protocol Function Pointer functions
services Function Pointer

A

H ——> Device, or

m next Driver

Protocol
specific
functions

OM13147

Figure 2-4. Construction of a Protocol

The following C code fragment illustrates the use of protocols:

Version 1.10

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_ PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;

Status = HandleProtocol (
EffectsDevice.EFIHandle,
&IllustrationProtocolGuid,
&EffectgDevice.IllustrationProtocol
)i

// Use the EffectsDevice illustration protocol’s “MakeEffects”
// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (
EffectsDevice.IllustrationProtocol,
TheFlashyAndNoisyEffect
)i

12/01/02

2-13

Extensible Firmware Interface Specification

Table 2-4 lists the EFI protocols defined by this specification.

Table 2-4. EFI Protocols

Protocol

Description

LOADED IMAGE

Provides information on the image.

DEVICE PATH

Provides the location of the device.

DRIVER BINDING

Provides services to determine if an EFI driver supports a given
controller, and services to start and stop a given controller.

PLATFORM DRIVER OVERRIDE

Provide a platform specific override mechanism for the selection
of the best driver for a given controller.

BUS SPECIFIC DRIVER OVERRIDE

Provides a bus specific override mechanism for the selection of
the best driver for a given controller.

DRIVER CONFIGURATION

Provides user configuration options for EFI drivers and the
controllers that the EFI drivers are managing.

DRIVER DIAGNOSTICS

Provides diagnostics services for the controllers that EFI drivers
are managing.

COMPONENT NAME

Provides human readable names for EFI| Drivers and the
controllers that the EFI drivers are managing.

SIMPLE INPUT

Protocol interfaces for devices that support simple console style
text input.

SIMPLE TEXT OUTPUT

Protocol interfaces for devices that support console style text
displaying.

UGA DRAW

Protocol interfaces for devices that support graphical output.

SIMPLE POINTER

Protocol interfaces for devices such as mice and trackballs.

SERIAL IO Protocol interfaces for devices that support serial character
transfer.
LOAD FILE Protocol interface for reading a file from an arbitrary device.

SIMPLE FILE SYSTEM

Protocol interfaces for opening disk volume containing an EFI file
system.

FILE HANDLE

Provides access to supported file systems.

DISK IO

A protocol interface that layers onto any BLOCK_|O interface.

BLOCK IO

Protocol interfaces for devices that support block I/O style
accesses.

UNICODE COLLATION

Protocol interfaces for Unicode string comparison operations.

PCI ROOT BRIDGE IO

Protocol interfaces to abstract memory, I/O, PCI configuration,
and DMA accesses to a PCI root bridge controller.

PCI IO

Protocol interfaces to abstract memory, I/O, PCI configuration,
and DMA accesses to a PCI controller on a PCI bus.

continued

12/01/02 Version 1.10

I ntel ' Overview

Table 2-4. EFI Protocols (continued)

Protocol Description

SCSI PASS THRU Protocol interfaces for a SCSI channel that allow SCSI Request
Packets to be sent to SCSI devices.

USB HC Protocol interfaces to abstract access to a USB Host Controller.

USB IO Protocol interfaces to abstract access to a USB controller.

SIMPLE NETWORK Provides interface for devices that support packet based
transfers.

PXE BC Protocol interfaces for devices that support network booting.

BIS Protocol interfaces to validate boot images before they are
loaded and invoked.

DEBUG SUPPORT Protocol interfaces to save and restore processor context and
hook processor exceptions.

DEBUG PORT Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.

DECOMPRESS Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

DEVICE IO Protocol interfaces for performing device 1/O.

EBC Protocols interfaces required to support an EFI Byte Code
interpreter.

2.5 EFI Driver Model

The EFI Driver Model is intended to simplify the design and implementation of device drivers, and
produce small executable image sizes. As a result, some complexity has been moved into bus
drivers and in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image handle on
which the driver was loaded. It then waits for the system firmware to connect the driver to a
controller. When that occurs, the device driver is responsible for producing a protocol on the
controller’s device handle that abstracts the I/O operations that the controller supports. A bus
driver performs these exact same tasks. In addition, a bus driver is also responsible for discovering
any child controllers on the bus, and creating a device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more
processors connected to one or more core chipsets. The core chipsets are responsible for producing
one or more 1/O buses. The EFI Driver Model does not attempt to describe the processors or the
core chipsets. Instead, the EFI Driver Model describes the set of I/O buses produced by the core
chipsets, and any children of these I/O buses. These children can either be devices or additional
I/O buses. This can be viewed as a tree of buses and devices with the core chipsets at the root

of that tree.

Version 1.10 12/01/02 2-15

-
Extensible Firmware Interface Specification tel

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This could
include keyboards, displays, disks, network, etc. The nonleaf nodes are the buses that move data
between devices and buses, or between different bus types. Figure 2-5 shows a sample desktop
system with four buses and six devices.

P <> Keyboard
CPU «»m 5B Bus eyboar
I IDE Bus -
<> Mouse
North - Hard
Bridge Drive
<>| CD-ROM
<« VGA
PCI Bus |Device Controller |
PCI-ISA 1.44 MB
o A —
ISA Bus

OM13142

Figure 2-5. Desktop System

Figure 2-6 is an example of a more complex server system. The idea is to make the EFI Driver
Model simple and extensible so more complex systems like the one below can be described and
managed in the preboot environment. This system contains six buses and eight devices.

PCI-IBA IBA-PCI
LN TBA Bus ‘_’ SCS!
PCI Bus A
USB Bus
Hard
«>| KBD Drive
Hard
Hard
Drive
PCI Bus
PCI-ISA 1.44 MB
W | Floppy Sﬁ‘rg -
ISA Bus
OM13143

Figure 2-6. Server System

2-16 12/01/02 Version 1.10

I ntel ' Overview

The combination of firmware services, bus drivers, and device drivers in any given platform is
likely to be produced by a wide variety of vendors including OEMs, IBVs, and IHVs. These
different components from different vendors are required to work together to produce a protocol for
an I/O device than can be used to boot an EFI compliant operating system. As a result, the EF/
Driver Model is described in great detail in order to increase the interoperability of these
components.

This remainder of this section is a brief overview of the EFI Driver Model. 1t describes the legacy
option ROM issues that the EFI Driver Model is designed to address, the entry point of a driver,
host bus controllers, properties of device drivers, properties of bus drivers, and how the EFI Driver
Model can accommodate hot-plug events.

251 Legacy Option ROM Issues

Legacy option ROMs have a number of constraints and limitations that restrict innovation on the
part of platform designers and adapter vendors. At the time of writing, both ISA and PCI adapters
use legacy option ROMs. For the purposes of this discussion, only PCI option ROMs will be
considered; legacy ISA option ROMs are not supported as part of the EFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For each
issue, the design considerations that went into the design of the EFT Driver Model are also listed.
Thus, the design of the EFI Driver Model directly addresses the requirements for a solution to
overcome the limitations implicit to PC-AT-style legacy option ROMs.

2.51.1 1A-32 16-Bit Real Mode Binaries

Legacy option ROMs typically contain 16-bit real mode code for an IA-32 processor. This means
that the legacy option ROM on a PCI card cannot be used in platforms that do not support the
execution of IA-32 real mode binaries. Also, 16-bit real mode only allows the driver to access
directly the lower 1 MB of system memory. It is possible for the driver to switch the processor into
modes other than real mode in order to access resources above 1 MB, but this requires a lot of
additional code, and causes interoperability issues with other option ROMs and the system BIOS.
Also, option ROMs that switch the processor into to alternate execution modes are not compatible
with Itanium Processors.

EFI Driver Model design considerations:

e Drivers need flat memory mode with full access to system components.

e Drivers need to be written in C so they are portable between processor architectures.

e Drivers may be compiled into a virtual machine executable, allowing a single binary driver to
work on machines using different processor architectures.

Version 1.10 12/01/02 2-17

-
Extensible Firmware Interface Specification Intel

2.51.2 Fixed Resources for Working with Option ROMs

Since legacy option ROMs can only directly address the lower 1 MB of system memory, this means
that the code from the legacy option ROM must exist below 1 MB. In a PC-AT platform, memory
from 0x00000-0x9FFFF is system memory. Memory from 0xA0000-0xBFFFF is VGA memory,
and memory from 0xFO000-0xFFFFF is reserved for the system BIOS. Also, since system BIOS
has become more complex over the years, many platforms also use 0xXE0000-OxEFFFF for system
BIOS. This leaves 128 KB of memory from 0xC0000-0xDFFFF for legacy option ROMs. This
limits how many legacy option ROMs can be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are to
allocate memory from Extended BIOS Data Area (EBDA), allocate memory through a Post
Memory Manager (PMM), or search for free memory based on a heuristic. Of these, only EBDA is
standard, and the others are not used consistently between adapters, or between BIOS vendors,
which adds complexity and the potential for conflicts.

EFI Driver Model design considerations:

e Drivers need flat memory mode with full access to system components.

e Drivers need to be relocatable, so they can be loaded anywhere in memory (PE/COFF Images)

e Drivers should allocate memory through the EFI boot services. These are well-specified
interfaces, and can be guaranteed to function as expected across a wide variety of platform
implementations.

2.5.1.3 Matching Option ROMs to their Devices

It is not clear which controller may be managed by a particular legacy option ROM. Some legacy
option ROMs search the entire system for controllers to manage. This can be a lengthy process
depending on the size and complexity of the platform. Also, due to limitation in BIOS design, all
the legacy option ROMs must be executed, and they must scan for all the peripheral devices before
an operating system can be booted. This can also be a lengthy process, especially if SCSI buses
must be scanned for SCSI devices. This means that legacy option ROMs are making policy
decision about how the platform is being initialized, and which controllers are managed by which
legacy option ROMs. This makes it very difficult for a system designer to predict how legacy
option ROMs will interact with each other. This can also cause issues with on-board controllers,
because a legacy option ROM may incorrectly choose to manage the on-board controller.

EFI Driver Model design considerations:

e Driver to controller matching must be deterministic

e Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol

e [t must be possible to start only the drivers and controllers required to boot an operating system.

2-18 12/01/02 Version 1.10

I ntel ' Overview

2.5.1.4 Ties to PC-AT System Design

Legacy option ROMs assume a PC-AT-like system architecture. Many of them include code that
directly touches hardware registers. This can make them incompatible on legacy-free and headless
platforms. Legacy option ROMs may also contain setup programs that assume a PC-AT-like
system architecture to interact with a keyboard or video display. This makes the setup application
incompatible on legacy-free and headless platforms.

EFI Driver Model design considerations:

e Drivers should use well-defined protocols to interact with system hardware, system input
devices, and system output devices.

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience

Many legacy option ROMs and BIOS code contain workarounds because of incompatibilities
between legacy option ROMs and system BIOS. These incompatibilities exist in part because there
are no clear specifications on how to write a legacy option ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs. It is not
always clear which device will be the boot device for the OS.

EFI Driver Model design considerations:

e EFI Drivers and EFI firmware is written to follow the EFI Specification. Since both
components have a clearly defined specification, compliance tests can be developed to prove
that drivers and system firmware are compliant. This should eliminate the need to build
workarounds into either drivers or system firmware (other than those that might be required to
address specific hardware issues).

e Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol and other OEM value-add components to manage the boot device selection process.

Version 1.10 12/01/02 2-19

-
Extensible Firmware Interface Specification Intel

2.5.2 Driver Initialization

The file for a driver image must be loaded from some type of media. This could include ROM,
FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a driver image
has been found, it can be loaded into system memory with the boot service LoadImage ().
LoadImage () loads a PE/COFF formatted image into system memory. A handle is created for
the driver, and a Loaded Image Protocol instance is placed on that handle. A handle that contains a
Loaded Image Protocol instance is called an /mage Handle. At this point, the driver has not been
started. It is just sitting in memory waiting to be started. Figure 2-7 shows the state of an image
handle for a driver after LoadImage () has been called.

Image Handle

EFI_LOADED_IMAGE_PROTOCOL m

OM13148

Figure 2-7. Image Handle

After a driver has been loaded with the boot service LoadImage (), it must be started with the
boot service StartImage (). This is true of all types of EFI Applications and EFI Drivers that
can be loaded and started on an EFI-compliant system. The entry point for a driver that follows the
EFI Driver Model must follow some strict rules. First, it is not allowed to touch any hardware.
Instead, the driver is only allowed to install protocol instances onto its own Image Handle. A
driver that follows the EFI Driver Model is required to install an instance of the Driver Binding
Protocol onto its own /mage Handle. 1t may optionally install the Driver Configuration Protocol,
the Driver Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver wishes
to be unloadable it may optionally update the Loaded Image Protocol to provide its own

Unload () function. Finally, if a driver needs to perform any special operations when the boot
service ExitBootServices () is called, it may optionally create an event with a notification
function that is triggered when the boot service ExitBootServices () iscalled. An Image
Handle that contains a Driver Binding Protocol instance is known as a Driver Image Handle.
Figure 2-8 shows a possible configuration for the /mage Handle from Figure 2-7 after the boot
service StartImage () has been called.

2-20 12/01/02 Version 1.10

I ntel ' Overview

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional C__> | = EFI_DRIVER_CONFIGURATION_PROTOCOL

Optional > EFI_DRIVER_DIAGNOSTICS_PROTOCOL

Optional >

EFI_COMPONENT_NAME_PROTOCOL

OM13149

Figure 2-8. Driver Image Handle

2.5.3 Host Bus Controllers

Drivers are not allowed to touch any hardware in the driver’s entry point. As a result, drivers will
be loaded and started, but they will all be waiting to be told to manage one or more controllers in
the system. A platform component, like the EFI Boot Manager, is responsible for managing the
connection of drivers to controllers. However, before even the first connection can be made, there
has to be some initial collection of controllers for the drivers to manage. This initial collection of
controllers is known as the Host Bus Controllers. The 1/O abstractions that the Host Bus
Controllers provide are produced by firmware components that are outside the scope of the EF/
Driver Model. The device handles for the Host Bus Controllers and the 1/0 abstraction for each
one must be produced by the core firmware on the platform, or an EFI Driver that may not follow
the EFI Driver Model. See the PCI Root Bridge 1/0 Protocol Specification for an example of an
I/O abstraction for PCI buses.

Version 1.10 12/01/02 2-21

-
Extensible Firmware Interface Specification Intel

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 2-9 shows a platform with n processors (CPUs), and a set
of core chipset components that produce m host bridges.

CPU1 CPU 2 « » u| CPUnN

10 C

Front Side Bus

J L

Core Chipset Components

HB 1 HB 2 " . om HB m

~ ~

=
<= I B ==

OM13150

Figure 2-9. Host Bus Controllers

Each host bridge is represented in EFI as a device handle that contains a Device Path Protocol
instance, and a protocol instance that abstracts the I/O operations that the host bus can perform.
For example, a PCI Host Bus Controller supports one or more PCI Root Bridges that are abstracted
by the PCI Root Bridge I/O Protocol. Figure 2-10 shows an example device handle for a PCI

Root Bridge.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

OM15221

Figure 2-10. PCI Root Bridge Device Handle

2-22 12/01/02 Version 1.10

I ntel ' Overview

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each of the
PCI devices in the system. PCI Device Drivers should then be connected to these child handles,
and produce I/O abstractions that may be used to boot an EFI compliant OS. The following section
describes the different types of drivers that can be implemented within the EFT Driver Model. The
EFI Driver Model is very flexible, so all the possible types of drivers will not be discussed here.
Instead, the major types will be covered that can be used as a starting point for designing and
implementing additional driver types.

2.5.4 Device Drivers

A device driver is not allowed to create any new device handles. Instead, it installs additional
protocol interfaces on an existing device handle. The most common type of device driver will
attach an I/O abstraction to a device handle that was created by a bus driver. This I/O abstraction
may be used to boot an EFI compliant OS. Some example I/O abstractions would include Simple
Text Output, Simple Input, Block I/O, and Simple Network Protocol. Figure 2-11 shows a device
handle before and after a device driver is connected to it. In this example, the device handle is a
child of the XYZ Bus, so it contains an XYZ I/O Protocol for the I/O services that the XYZ bus
supports. It also contains a Device Path Protocol that was placed there by the XYZ Bus Driver.
The Device Path Protocol is not required for all device handles. It is only required for device
handles that represent physical devices in the system. Handles for virtual devices will not contain a
Device Path Protocol.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

Stop() Start()

Device Handle

EFI_DEVICE_PATH_PROTOCOL

= | EFI_XYZ_I/O_PROTOCOL

Installed by Start()
Uninstalled by Stop() _)‘ EFI_BLOCK_I/O_PROTOCOL

OM13152

Figure 2-11. Connecting Device Drivers

Version 1.10 12/01/02 2-23

-
Extensible Firmware Interface Specification Intel

The device driver that connects to the device handle in Figure 2-11 must have installed a Driver
Binding Protocol on its own image handle. The Driver Binding Protocol contains three functions
called Supported (), Start (), and Stop (). The Supported () function tests to see if the
driver supports a given controller. In this example, the driver will check to see if the device handle
supports the Device Path Protocol and the XYZ I/O Protocol. If a driver’s Supported ()
function passes, then the driver can be connected to the controller by calling the driver’s Start ()
function. The Start () function is what actually adds the additional I/O protocols to a device
handle. In this example, the Block I/O Protocol is being installed. To provide symmetry, the
Driver Binding Protocol also has a Stop () function that forces the driver to stop managing a
device handle. This will cause the device driver to uninstall any protocol interfaces that were
installed in Start ().

The Supported (), Start (), and Stop () functions of the EFI Driver Binding Protocol are
required to make use of the boot service OpenProtocol () to get a protocol interface and the
boot service CloseProtocol () to release a protocol interface. OpenProtocol () and
CloseProtocol () update the handle database maintained by the system firmware to track
which drivers are consuming protocol interfaces. The information in the handle database can be
used to retrieve information about both drivers and controllers. The new boot service
OpenProtocolInformation () can be used to get the list of components that are currently
consuming a specific protocol interface.

2.5.5 Bus Drivers

Bus drivers and device drivers are virtually identical from the EFT Driver Model’s point of view.
The only difference is that a bus driver creates new device handles for the child controllers that the
bus driver discovers on its bus. As a result, bus drivers are slightly more complex than device
drivers, but this in turn simplifies the design and implementation of device drivers. There are two
major types of bus drivers. The first creates handles for all child controllers on the first call to
Start (). The other type allows the handles for the child controllers to be created across multiple
calls to Start (). This second type of bus driver is very useful in supporting a rapid boot
capability. It allows a few child handles or even one child handle to be created. On buses that take
a long time to enumerate all of their children (e.g. SCSI), this can lead to a very large timesaving in
booting a platform. Figure 2-12 shows the tree structure of a bus controller before and after
Start () is called. The dashed line coming into the bus controller node represents a link to the
bus controller’s parent controller. If the bus controller is a Host Bus Controller, then it will not
have a parent controller. Nodes A, B, C,D, and E represent the child controllers of the bus
controller.

2-24 12/01/02 Version 1.10

I ntel ' Overview

Y
@s Controller> Bus Controller
Start()
D gg

Figure 2-12. Connecting Bus Drivers

OM13153

A bus driver that supports creating one child on each call to Start () might choose to create child
C first, and then child E, and then the remaining children A, B, and D. The Supported (),
Start (), and Stop () functions of the Driver Binding Protocol are flexible enough to allow this
type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a minimum,
it must install a protocol interface that provides an I/O abstraction of the bus’s services to the child
controllers. If the bus driver creates a child handle that represents a physical device, then the bus
driver must also install a Device Path Protocol instance onto the child handle. A bus driver may
optionally install a Bus Specific Driver Override Protocol onto each child handle. This protocol is
used when drivers are connected to the child controllers. The boot service
ConnectController () uses architecturally defined precedence rules to choose the best set of
drivers for a given controller. The Bus Specific Driver Override Protocol has higher precedence
than a general driver search algorithm, and lower precedence than platform overrides. An example
of a bus specific driver selection occurs with PCI. A PCI Bus Driver gives a driver stored in a PCI
controller’s option ROM a higher precedence than drivers stored elsewhere in the platform.

Figure 2-13 shows an example child device handle that was created by the XYZ Bus Driver that
supports a bus specific driver override mechanism.

Version 1.10 12/01/02 2-25

-
Extensible Firmware Interface Specification Intel

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

Optional I:>

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

OM13154

Figure 2-13. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components

2-26

Under the EFT Driver Model, the act of connecting and disconnecting drivers from controllers in a
platform is under the platform firmware’s control. This will typically be implemented as part of the
EFI Boot Manager, but other implementations are possible. The boot services
ConnectController () and DisconnectController () can be used by the platform
firmware to determine which controllers get started and which ones do not. If the platform wishes
to perform system diagnostics or install an operating system, then it may choose to connect drivers
to all possible boot devices. If a platform wishes to boot a preinstalled operating system, it may
choose to only connect drivers to the devices that are required to boot the selected operating
system. The EFI Driver Model supports both these modes of operation through the boot services
ConnectController () and DisconnectController (). Inaddition, since the platform
component that is in charge of booting the platform has to work with device paths for console
devices and boot options, all of the services and protocols involved in the EFT Driver Model are
optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce consoles
and gain access to a boot device, the OS present device drivers cannot assume that an EFI driver for
a device has been executed. The presence of an EFI driver in the system firmware or in an option
ROM does not guarantee that the EFI driver will be loaded, executed, or allowed to manage any
devices in a platform. All OS present device drivers must be able to handle devices that have been
managed by an EFI driver and devices that have not been managed by an EFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override Protocol.
This is similar to the Bus Specific Driver Override Protocol, but it has higher priority. This gives
the platform firmware the highest priority when deciding which drivers are connected to which
controllers. The Platform Driver Override Protocol is attached to a handle in the system. The boot
service ConnectController () will make use of this protocol if it is present in the system.

12/01/02 Version 1.10

I ntel ' Overview

2.5.7 Hot-Plug Events

2.6

In the past, system firmware has not had to deal with hot-plug events in the preboot environment.
However, with the advent of buses like USB, where the end user can add and remove devices at any
time, it is important to make sure that it is possible to describe these types of buses in the EF/
Driver Model. 1t is up to the bus driver of a bus that supports the hot adding and removing of
devices to provide support for such events. For these types of buses, some of the platform
management is going to have to move into the bus drivers. For example, when a keyboard is hot
added to a USB bus on a platform, the end user would expect the keyboard to be active. A USB
Bus driver could detect the hot-add event and create a child handle for the keyboard device.
However, because drivers are not connected to controllers unless ConnectController () is
called, the keyboard would not become an active input device. Making the keyboard driver active
requires the USB Bus driver to call ConnectController () when a hot-add event occurs. In
addition, the USB Bus Driver would have to call DisconnectController () when a hot-
remove event OCcurs.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can be
removed without any notice. This means that the Stop () functions of USB device drivers will
have to deal with shutting down a driver for a device that is no longer present in the system. As a
result, any outstanding I/O requests will have to be flushed without actually being able to touch the
device hardware.

In general, adding support for hot-plug events greatly increases the complexity of both bus drivers
and device drivers. Adding this support is up to the driver writer, so the extra complexity and size
of the driver will need to be weighed against the need for the feature in the preboot environment.

Requirements

This document is an architectural specification. As such, care has been taken to specify
architecture in ways that allow maximum flexibility in implementation. However, there are certain
requirements on which elements of this specification must be implemented to ensure that operating
system loaders and other code designed to run with EFI boot services can rely upon a consistent
environment.

For the purposes of describing these requirements, the specification is broken up into required and
optional elements. In general, an optional element is completely defined in the section that matches
the element name. For required elements however, the definition may in a few cases not be entirely
self contained in the section that is named for the particular element. In implementing required
elements, care should be taken to cover all the semantics defined in this specification that relate to
the particular element.

Version 1.10 12/01/02 2-27

-
Extensible Firmware Interface Specification Intel

2.6.1

2-28

Required Elements

Table 2-5 lists the required elements. Any system that is designed to conform to the EFI
specification must provide a complete implementation of all these elements. This means that all the
required service functions and protocols must be present and the implementation must deliver the
full semantics defined in the specification for all combinations of calls and parameters.
Implementers of EFI applications, drivers or operating system loaders that are designed to run on a
broad range of systems conforming to the EFI specification may assume that all such systems
implement all the required elements.

A system vendor may choose not to implement all the required elements, for example on
specialized system configurations that do not support all the services and functionality implied by
the required elements. However, since most EFI applications, drivers and operating system loaders
are written assuming all the required elements are present on a system that implements the EFI
specification; any such code is likely to require explicit customization to run on a less than
complete implementation of the required elements in the EFI specification.

Table 2-5. Required EFl Implementation Elements

Element Description
EFI System Table Provides access to EFI Boot Services, EFI Runtime Services,

consoles, firmware vendor information, and the system
configuration tables.

EFI Boot Services All functions defined as boot services.

EFI Runtime Services All functions defined as runtime services.

LOADED IMAGE protocol Provides information on the image.

DEVICE PATH protocol Provides the location of the device.

DECOMPRESS protocol Protocol interfaces to decompress an image that was

compressed using the EFlI Compression Algorithm.

EBC Interpreter An EFI Byte Code Interpreter is required so EFl images compiled
to EFI Byte Code executables are guaranteed to function on all
EFI compliant platforms. The EBC Interpreter must also produce
the EBC protocol.

12/01/02 Version 1.10

intel

Overview

2.6.2 Platform-Specific Elements

There are a number of EFI elements that can be added or removed depending on the specific
features that a platform requires. Platform firmware developers are required to implement EFI
elements based upon the features included. The following is a list of potential platform features
and the EFI elements that are required for each feature type:

1.

10.

11.

Version 1.10

If a platform includes console devices, the Simple Input Protocol and Simple Text Output
Protocol must be implemented.

If a platform includes graphical console devices, then the UGA Draw Protocol and the UGA
I/O Protocol must be implemented. In order to support UGA, a platform must contain a
driver to consume UGA Draw Protocol and produce Simple Text Output Protocol even if the
UGA Draw Protocol is produced by an external driver.

If a platform includes a pointer device as part of its console support, the Simple Pointer
Protocol must be implemented.

If a platform includes the ability to boot from a disk device, then the Block I/O Protocol, the
Disk 1/0 Protocol, the Simple File System Protocol, and the Unicode Collation Protocol are

required. In addition, partition support for MBR, GPT, and El Torito must be implemented.

An external driver may produce the Block I/0 Protocol. All other protocols required to boot
from a disk device must be carried as part of the platform.

If a platform includes the ability to boot from a network device, then the UNDI interface, the
Simple Network Protocol, and the PXE Base Code Protocol are required. If a platform
includes the ability to validate a boot image received through a network device, the Boot
Integrity Services Protocol is also required. An external driver may produce the UNDI
interface. All other protocols required to boot from a network device must be carried by the
platform.

If a platform includes a byte-stream device such as a UART, then the Serial I/O Protocol
must be implemented.

If a platform includes PCI bus support, then the PCI Root Bridge 1/O Protocol, the PCI I/O
Protocol, and the Device 1/O Protocol must be implemented.

If a platform includes USB bus support, then the USB Host Controller Protocol and the USB
I/O Protocol must be implemented. An external device can support USB by producing a
USB Host Controller Protocol.

If a platform includes an I/O subsystem that uses SCSI command packets, the SCSI Pass
Thru Protocol must be implemented.

If a platform includes debugging capabilities, then the Debug Support Protocol, the Debug
Port Protocol, and the Debug Image Info Table must be implemented.

If a platform includes the ability to override the default driver to the controller matching
algorithm provided by the EFI Driver Model, then the Platform Driver Override Protocol
must be implemented.

12/01/02 2-29

-
Extensible Firmware Interface Specification Intel

2.6.3

There are a number of EFI elements that can be added or removed depending on the features that a
specific driver requires. Drivers can be implemented by platform firmware developers to support
buses and devices in a specific platform. Drivers can also be implemented by add-in card vendors
for devices that might be integrated into the platform hardware or added to a platform through an
expansion slot. The following list includes possible driver features, and the EFI elements that are
required for each feature type:

2-30

1.

10.
11.

12.

13.

14.

15.

Driver-Specific Elements

If a driver follows the EFI 1.10 Driver Model, the EFI Driver Binding Protocol must be
implemented. It is strongly recommended that all drivers that follow the EFI Driver Model
also implement the Component Name Protocol.

If a driver requires configuration information, the Driver Configuration Protocol must be
implemented. A driver is not allowed to interact with the user unless the Driver
Configuration Protocol is invoked.

If a driver requires diagnostics, the Driver Diagnostics Protocol must be implemented. In
order to support low boot times, limit diagnostics during normal boots. Time consuming
diagnostics should be deferred until the Driver Diagnostics Protocol is invoked.

If a bus supports devices that are able to provide containers for EFI drivers (e.g. option
ROMs), then the bus driver for that bus type must implement the Bus Specific Driver
Override Protocol.

If a driver is written for a console output device, then the Simple Text Output Protocol must
be implemented.

If a driver is written for a graphical console output device, then the UGA Draw Protocol and
the UGA I/O Protocol must be implemented.

If a driver is written for a console input device, then the Simple Input Protocol must be
implemented.

If a driver is written for a pointer device, then the Simple Pointer Protocol must be
implemented.

If a driver is written for a network device, then the UNDI interface must be implemented.

If a driver is written for a disk device, then the Block I/O Protocol must be implemented.

If a driver is written for a device that is not a block oriented device but one that can provide a
file system-like interface, then the Simple File System Protocol must be implemented.

If a driver is written for a PCI root bridge, then the PCI Root Bridge I/O Protocol, the PCI I/O
Protocol, and the Device I/0O Protocol must be implemented.

If a driver is written for a USB host controller, then the USB Host Controller Protocol must
be implemented.

If a driver is written for a SCSI controller, then the SCSI Pass Thru Protocol must be
implemented.

If a driver is written for a boot device that is not a block-oriented device, a file system-based
device, or a console device, then the Load File Protocol must be implemented.

12/01/02 Version 1.10

3
Boot Manager

3.1

The EFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load EFI
drivers and EFI applications (including EFI OS boot loaders) in an order defined by the global
NVRAM variables. The platform firmware must use the boot order specified in the global
NVRAM variables for normal boot. The platform firmware may add extra boot options or remove
invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an
exceptional condition is discovered in the firmware boot process. One example of a value added
feature would be not loading an EFI driver if booting failed the first time the driver was loaded.
Another example would be booting to an OEM-defined diagnostic environment if a critical error
was discovered in the boot process.

The boot sequence for EFI consists of the following:

e The boot order list is read from a globally defined NVRAM variable. The boot order list
defines a list of NVRAM variables that contain information about what is to be booted. Each
NVRAM variable defines a Unicode name for the boot option that can be displayed to a user.

e The variable also contains a pointer to the hardware device and to a file on that hardware device
that contains the EFI image to be loaded.

e The variable might also contain paths to the OS partition and directory along with other
configuration specific directories.

The NVRAM can also contain load options that are passed directly to the EFI image. The platform
firmware has no knowledge of what is contained in the load options. The load options are set by
higher level software when it writes to a global NVRAM variable to set the platform firmware boot
policy. This information could be used to define the location of the OS kernel if it was different
than the location of the EFI OS loader.

Firmware Boot Manager

The boot manager is a component in the EFI firmware that determines which EFI drivers and EFI
applications should be explicitly loaded and when. Once the EFI firmware is initialized, it passes
control to the boot manager. The boot manager is then responsible for determining what to load
and any interactions with the user that may be required to make such a decision. Much of the
behavior of the boot manager is left up to the firmware developer to decide, and details of boot
manager implementation are outside the scope of this specification. In particular, likely
implementation options might include any console interface concerning boot, integrated platform
management of boot selections, possible knowledge of other internal applications or recovery
drivers that may be integrated into the system through the boot manager.

Version 1.10 12/01/02 3-1

intel
Extensible Firmware Interface Specification ’

Programmatic interaction with the boot manager is accomplished through globally defined
variables. On initialization the boot manager reads the values which comprise all of the published
load options among the EFI environment variables. By using the SetVariable () function the
data that contain these environment variables can be modified.

Each load option entry resides in a Boot #### variable or a Driver#### variable where the
is replaced by a unique option number in printable hexadecimal representation using the
digits 0-9, and the upper case versions of the characters A—F (0000-FFFF). The #### must
always be four digits, so small numbers must use leading zeros. The load options are then logically
ordered by an array of option numbers listed in the desired order. There are two such option
ordering lists. The first is DriverOrder that orders the Driver#### load option variables into
their load order. The second is BootOrder that orders the Boot#### load options variables into
their load order.

For example, to add a new boot option, a new Boot #### variable would be added. Then the
option number of the new Boot #### variable would be added to the Boot Order ordered list and
the BootOrder variable would be rewritten. To change boot option on an existing Boot ####,
only the Boot #### variable would need to be rewritten. A similar operation would be done to
add, remove, or modify the driver load list.

If the boot via Boot #### returns with a status of EFI_SUCCESS the boot manager will stop
processing the Boot Order variable and present a boot manager menu to the user. If a boot via
Boot #### returns a status other than EFI_SUCCESS, the boot has failed and the next
Boot#### in the BootOrder variable will be tried until all possibilities are exhausted.

The boot manager may perform automatic maintenance of the database variables. For example, it
may remove unreferenced load option variables, any unparseable or unloadable load option
variables, and rewrite any ordered list to remove any load options that do not have corresponding
load option variables. In addition, the boot manager may automatically update any ordered list to
place any of its own load options where it desires. The boot manager can also, at its own
discretion, provide for manual maintenance operations as well. Examples include choosing the
order of any or all load options, activating or deactivating load options, etc.

The boot manager is required to process the Driver load option entries before the Boot load option
entries. The boot manager is also required to initiate a boot of the boot option specified by the
BootNext variable as the first boot option on the next boot, and only on the next boot. The boot
manager removes the BootNext variable before transferring control to the BootNext boot
option. If the boot from the Boot Next boot option fails the boot sequence continues utilizing the
BootOrder variable. If the boot from the BootNext boot option succeeds by returning

EFI_ SUCCESS the boot manager will not continue to boot utilizing the BootOrder variable.

The boot manager must call LoadImage () which supports at least SIMPLE FILE PROTOCOL
and LOAD FILE PROTOCOL for resolving load options. If LoadImage () succeeds, the boot
manager must enable the watchdog timer for 5 minutes by using the SetWatchdogTimer ()
boot service prior to calling StartImage (). If a boot option returns control to the boot manager,

the boot manager must disable the watchdog timer with an additional call to the
SetWatchdogTimer () boot service.

12/01/02 Version 1.10

L]
Intel Boot Manager

If the boot image is not loaded via LoadImage () the boot manager is required to check for a
default application to boot. Searching for a default application to boot happens on both removable
and fixed media types. This search occurs when the device path of the boot image listed in any boot
option points directly to a SIMPLE FILE SYSTEM device and does not specify the exact file to
load. The file discovery method is explained in “Boot Option Variables Default Behavior” starting
on page 2-7 of this chapter. The default media boot case of a protocol other than
SIMPLE FILE SYSTEM is handled by the LOAD FILE PROTOCOL for the target device path
and does not need to be handled by the boot manager.

The boot manager must also support booting from a short-form device path that starts with the first
element being a hard drive media device path (see Table 8-24, “Hard Drive Media Device Path” in
Chapter 8). The boot manager must use the GUID or signature and partition number in the hard
drive device path to match it to a device in the system. If the drive supports the GPT partitioning
scheme the GUID in the hard drive media device path is compared with the
UniquePartitionGuid field of the GUID Partition Entry (see Table 11-2 in Chapter 11). If
the drive supports the PC-AT MBR scheme the signature in the hard drive media device path is
compared with the UniqueMBRSignature in the Legacy Master Boot Record (see Table 11-5 in
Chapter 11). If a signature match is made, then the partition number must also be matched. The
hard drive device path can be appended to the matching hardware device path and normal boot
behavior can then be used. If more than one device matches the hard drive device path, the boot
manager will pick one arbitrarily. Thus the operating system must ensure the uniqueness of the
signatures on hard drives to guarantee deterministic boot behavior.

Each load option variable contains an EFI_LOAD OPTION descriptor that is a byte packed buffer
of variable length fields. Since some of the fields are variable length, an EFI_LOAD OPTION

cannot be described as a standard C data structure. Instead, the fields are listed below in the order
that they appear in an EFI_LOAD OPTION descriptor:

Descriptor
UINT32 Attributes;
UINT16 FilePathListLength;
CHAR16 Description/[] ;
EFI DEVICE PATH FilePathList/[];
UINTS OptionalDatal];
Parameters
Attributes The attributes for this load option entry. All unused bits must be

zero and are reserved by the EFI specification for future growth.
See “Related Definitions.”

FilePathListLength Length in bytes of the FilePathList. OptionalData
starts at offset sizeof (UINT32) + sizeof (UINT16) +
StrSize (Description) + FilePathListLength of
the EFI_LOAD OPTION descriptor.

Description The user readable description for the load option. This field ends
with a Null Unicode character.

Version 1.10 12/01/02 3-3

intel
Extensible Firmware Interface Specification ’

FilePathList A packed array of EFI device paths. The first element of the
array is an EFI device path that describes the device and location
of the Image for this load option. The FilePathList [0] is
specific to the device type. Other device paths may optionally
existin the FilePathList, but their usage is OSV specific.
Each element in the array is variable length, and ends at the
device path end structure. Because the size of Description
is arbitrary, this data structure is not guaranteed to be aligned on
a natural boundary. This data structure may have to be copied to
an aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a binary
data buffer that is passed to the loaded image. If the field is zero
bytes long, a Null pointer is passed to the loaded image. The
number of bytes in Opt ionalData can be computed by
subtracting the starting offset of Opt ionalData from total
size in bytes of the EFI_LOAD OPTION.

Related Definitions

//***

// Attributes
//***

#define LOAD OPTION ACTIVE 0x00000001
#define LOAD OPTION FORCE RECONNECT 0x00000002

Description

Calling SetVariable () creates a load option. The size of the load option is the same as the size
of the DataSize argument to the SetVariable () call that created the variable. When
creating a new load option, all undefined attribute bits must be written as zero. When updating a
load option, all undefined attribute bits must be preserved. If a load option is not marked as

LOAD OPTION ACTIVE, the boot manager will not automatically load the option. This
provides an easy way to disable or enable load options without needing to delete and re-add them.
If any Driver#### load option is marked as LOAD OPTION FORCE RECONNECT, then all of
the EFI drivers in the system will be disconnected and reconnected after the last Driver####
load option is processed. This allows an EFI driver loaded with a Driver#### load option to
override an EFI driver that was loaded prior to the execution of the EFI Boot Manager.

3-4 12/01/02 Version 1.10

In

tel

3.2 Globally-Defined Variables

Boot Manager

This section defines a set of variables that have architecturally defined meanings. In addition to the
defined data content, each such variable has an architecturally defined attribute that indicates when
the data variable may be accessed. The variables with an attribute of NV are nonvolatile. This
means that their values are persistent across resets and power cycles. The value of any environment
variable that does not have this attribute will be lost when power is removed from the system and
the state of firmware reserved memory is not otherwise preserved. The variables with an attribute of
BS are only available before ExitBootServices () is called. This means that these
environment variables can only be retrieved or modified in the preboot environment. They are not
visible to an operating system. Environment variables with an attribute of RT are available before
and after ExitBootServices () is called. Environment variables of this type can be retrieved
and modified in the preboot environment, and from an operating system. All architecturally
defined variables use the EFI_GLOBAL VARIABLE VendorGuid:

#define EFI_GLOBAL VARIABLE

\

{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}

To prevent name collisions with possible future globally defined variables, other internal firmware
data variables that are not defined here must be saved with a unique VendorGuid other than
EFI_GLOBAL VARIABLE. Table 3-1 lists the global variables.

Table 3-1 Global Variables

Variable Name Attribute Description

LangCodes BS, RT The language codes that the firmware supports.

Lang NV, BS, RT The language code that the system is configured for.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds,
before initiating the default boot selection.

Conln NV, BS, RT The device path of the default input console.

ConOut NV, BS, RT The device path of the default output console.

ErrOut NV, BS, RT The device path of the default error output device.

ConInDev BS, RT The device path of all possible console input devices.

ConOutDev BS, RT The device path of all possible console output devices.

ErrOutDev BS, RT The device path of all possible error output devices.

Boot#### NV, BS, RT A boot load option. #### is a printed hex value. No 0x
or his included in the hex value.

BootOrder NV, BS, RT The ordered boot option load list.

BootNext NV, BS, RT The boot option for the next boot only.

BootCurrent BS, RT The boot option that was selected for the current boot.

Driver#### NV, BS, RT A driver load option. #### is a printed hex value.

DriverOrder NV, BS, RT The ordered driver load option list.

Version 1.10

12/01/02

intel
Extensible Firmware Interface Specification ’

The LangCodes variable contains an array of 3-character (8-bit ASCII characters)

ISO-639-2 language codes that the firmware can support. At initialization time the firmware
computes the supported languages and creates this data variable. Since the firmware creates this
value on each initialization, its contents are not stored in nonvolatile memory. This value is
considered read-only.

The Lang variable contains the 3-character (8-bit ASCII characters) [ISO-639-2 language code that
the machine has been configured for. This value may be changed to any value supported by
LangCodes; however, the change does not take effect until the next boot. If the language code is
set to an unsupported value, the firmware will choose a supported default at initialization and set
Langto a supported value.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the
firmware will wait before initiating the original default boot selection. A value of 0 indicates that
the default boot selection is to be initiated immediately on boot. If the value is not present, or
contains the value of OxFFFF then firmware will wait for user input before booting. This means the
default boot selection is not automatically started by the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI DEVICE PATH descriptor
that defines the default device to use on boot. Changes to these values do not take effect until the
next boot. If the firmware cannot resolve the device path, it is allowed to automatically replace the
value(s) as needed to provide a console for the system.

The ConInDev, ConOutDev, and ErrOutDev variables each contain an EFI_DEVICE PATH
descriptor that defines all the possible default devices to use on boot. These variables are volatile,
and are set dynamically on every boot. ConIn, ConOut, and ErrOut are always proper subsets
of ConInDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD OPTION. Each Boot#### variable is the

name “Boot” appended with a unique four digit hexadecimal number. For example, Boot0001,
Boot0002, Boot0A02, etc.

The BootOrder variable contains an array of UINT16 s that make up an ordered list of the
Boot#### options. The first element in the array is the value for the first logical boot option, the
second element is the value for the second logical boot option, etc. The BootOrder order list is
used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried
first on the next boot. After the BootNext boot option is tried the normal BootOrder list is
used. To prevent loops, the boot manager deletes this variable before transferring control to the
preselected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot #### option that was
selected on the current boot.

Each Driver#### variable contains an EFI_LOAD OPTION. Each load option variable is
appended with a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of the
Driver#### variable. The first element in the array is the value for the first logical driver load
option, the second element is the value for the second logical driver load option, etc. The
DriverOrder list is used by the firmware’s boot manager as the default load order for EFI
drivers that it should explicitly load.

12/01/02 Version 1.10

L]
Intel Boot Manager

3.3

3.4

Boot Option Variables Default Behavior

The default state of globally-defined variables is firmware vendor specific. However the boot
options require a standard default behavior in the exceptional case that valid boot options are not
present on a platform. The default behavior must be invoked any time the Boot Order variable
does not exist or only points to nonexistent boot options.

If no valid boot options exist, the boot manager will enumerate all removable EFI media devices
followed by all fixed EFI media devices. The order within each group is undefined. These new
default boot options are not saved to non volatile storage. The boot manger will then attempt to
boot from each boot option. If the device supports the SIMPLE FILE SYSTEM protocol then
the removable media boot behavior (see section 3.4.1.1) is executed. Otherwise the firmware will
attempt to boot the device via the LOAD FILE protocol .

It is expected that this default boot will load an operating system or a maintenance utility. If this is
an operating system setup program it is then responsible for setting the requisite environment
variables for subsequent boots. The platform firmware may also decide to recover or set to a
known set of boot options.

Boot Mechanisms

EFI can boot from a device using the SIMPLE FILE SYSTEM protocol or the LOAD FILE
protocol. A device that supports the SIMPLE FILE SYSTEM protocol must materialize a file
system protocol for that device to be bootable. If a device does not wish to support a complete file
system it may produce a LOAD FILE protocol which allows it to materialize an image directly.
The Boot Manager will attempt to boot using the SIMPLE FILE SYSTEM protocol first. If that
fails, then the LOAD FILE protocol will be used.

3.4.1 Boot via Simple File Protocol

When booting via the SIMPLE FILE SYSTEM protocol, the FilePath will start with a
device path that points to the device that “speaks” the SIMPLE FILE SYSTEM protocol. The
next part of the FFi 1ePath will point to the file name, including sub directories that contain the
bootable image. If the file name is a null device path, the file name must be discovered on the
media using the rules defined for removable media devices with ambiguous file names (see
section 3.4.1.1 below).

The format of the file system specified by EFI is contained in Chapter 11. While the firmware must
produce a SIMPLE FILE SYSTEM protocol that understands the EFI file system, any file system
can be abstracted with the SIMPLE FILE SYSTEM protocol interface.

3.4.1.1 Removable Media Boot Behavior

On a removable media device it is not possible for the Fi1ePath to contain a file name, including
sub directories. The FilePath is stored in non volatile memory in the platform and cannot
possibly be kept in sync with a media that can change at any time. A FilePath for a removable
media device will point to a device that “speaks” the SIMPLE FILE SYSTEM protocol. The
FilePath will not contain a file name or sub directories.

Version 1.10 12/01/02 3-7

intel
Extensible Firmware Interface Specification ’

The system firmware will attempt to boot from a removable media FilePath by adding a default
file name in the form \EFI\BOOT\BOOT{machine type short-name }.EFI. Where machine type
short-name defines a PE32+ image format architecture. Each file only contains one EFI image
type, and a system may support booting from one or more images types. Table 3-2 lists the EFI
image types.

Table 3-2 EFlImage Types

Architecture File name convention PE Executable machine type *
IA-32 BOOTIA32.EFI Ox14c
Itanium architecture BOOTIA64.EFI 0x200

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification,
Revision 6.0

A media may support multiple architectures by simply having a \EFNBOOT\BOOT {machine type
short-name }.EFI file of each possible machine type.

3.4.2 Bootvia LOAD FILE Protocol

When booting via the LOAD FILE protocol, the FilePath is a device path that points to a
device that “speaks” the LOAD FILE protocol. The image is loaded directly from the device that
supports the LOAD FILE protocol. The remainder of the FilePath will contain information that
is specific to the device. EFI firmware passes this device-specific data to the loaded image, but
does not use it to load the image. If the remainder of the FilePath is a null device path it is the
loaded image's responsibility to implement a policy to find the correct boot device.

The LOAD FILE protocol is used for devices that do not directly support file systems. Network

devices commonly boot in this model where the image is materialized without the need of a file
system.

3.4.2.1 Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE specifies UDP,
DHCP, and TFTP network protocols that a booting platform can use to interact with an intelligent
system load server. EFI defines special interfaces that are used to implement PXE. These
interfaces are contained in the PXE_BASE_CODE protocol (Chapter 15).

3.4.2.2 Future Boot Media

3-8

Since EFI defines an abstraction between the platform and the OS and its loader it should be
possible to add new types of boot media as technology evolves. The OS loader will not necessarily
have to change to support new types of boot. The implementation of the EFI platform services
may change, but the interface will remain constant. The OS will require a driver to support the
new type of boot media so that it can make the transition from EFI boot services to OS control of
the boot media.

12/01/02 Version 1.10

4
EFl System Table

This chapter describes the entry point to an EFI image and the parameters that are passed to that
entry point. There are three types of EFI images that can be loaded and executed by EFI firmware.
These are EFI Applications, EFI OS Loaders, and EFI Drivers. There are no differences in the
entry point for these three image types.

4.1 EFI Image Entry Point

The most significant parameter that is passed to an EFI image is a pointer to the EFI System Table.
This pointer is EFI_IMAGE ENTRY POINT (see definition immediately below), the main entry
point for an EFI Image. The EFI System Table contains pointers to the active console devices, a
pointer to the EFI Boot Services Table, a pointer to the EFI Runtime Services Table, and a pointer
to the list of system configuration tables such as ACPI, SMBIOS, and the SAL System Table. This
chapter describes the EFI System Table in detail.

EFl_IMAGE_ENTRY_POINT

Summary

This is the main entry point for an EFI Image. This entry point is the same for EFI Applications,
EFI OS Loaders, and EFI Drivers including both device drivers and bus drivers.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI IMAGE ENTRY POINT) (

IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)
Parameters
ImageHandle The firmware allocated handle for the EFI image.
SystemTable A pointer to the EFI System Table.
Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system
memory by the EFI Boot Service LoadImage (). An EFI image is invoked through the EFI Boot
Service StartImage ().

Version 1.10 12/01/02 4-1

intel
Extensible Firmware Interface Specification ’

4-2

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the
EFI BOOT SERVICES and EFI RUNTIME SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the EFI system table
contains pointers to other standard tables that a loaded image may use if the associated pointers are
initialized to nonzero values. Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images
support the EFI LOADED IMAGE protocol that returns the source location of the image, the

memory location of the image, the load options for the image, etc. The exact
EFI_LOADED IMAGE structure is defined in Chapter 7.

If the EFI image is an EFI Application, then the EFI Application executes and either returns or calls
the EFI Boot Services Exit (). An EFI Application is always unloaded from memory when it

exits, and its return status is returned to the component that started the EFI Application.

If the EFI image is an EFI OS Loader, then the EFI OS Loader executes and either returns, calls the
EFI Boot Service Exit () , or calls the EFI Boot Service ExitBootServices (). If the EFI
OS Loader returns or calls Exit (), then the load of the OS has failed, and the EFI OS Loader is
unloaded from memory and control is returned to the component that attempted to boot the EFI OS
Loader. If ExitBootServices () is called, then the OS Loader has taken control of the
platform, and EFI will not regain control of the system until the platform is reset. One method of
resetting the platform is through the EFI Runtime Service ResetSystem ().

If the EFI image is an EFI Driver, then the EFI Driver executes and either returns or calls the EFI
Boot Service Exit (). If an EFI driver returns an error, then the driver is unloaded from memory.
If the EFI driver returns EFI_SUCCESS, then it stays resident in memory. If the EFI Driver does
not follow the EFI Driver Model, then it performs any required initialization and installs its
protocol services before returning. If the EFI driver does follow the EFI Driver Model, then the
entry point is not allowed to touch any device hardware. Instead, the entry point is required to
create and install the EFI DRIVER BINDING PROTOCOL (Chapter 9) on the TmageHandle
of the EFI Driver. If this process is completed, then EFI_SUCCESS is returned. If the resources
are not available to complete the driver initialization, then EFI_OUT OF RESOURCES

is returned.

Status Codes Returned

EFI_SUCCESS The driver was initialized.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

12/01/02 Version 1.10

intel

EFI System Table

4.2 EFI Table Header

The data type EFI_TABLE HEADER is the data structure that precedes all of the standard EFI
table types. It includes a signature that is unique for each table type, a revision of the table that may
be updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an
EFI table type can validate the contents of the EFI table.

EFI_TABLE_HEADER

Summary

Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {

UINT64
UINT32
UINT32
UINT32
UINT32

Signature;
Revision;
HeaderSize;
CRC32;
Reserved;

} EFI_TABLE HEADER;

Parameters

Signature

Revision

HeaderSize

CRC32

Reserved

NOTE

A 64-bit signature that identifies the type of table that follows.

Unique signatures have been generated for the EFI System Table,
the EFI Boot Services Table, and the EFI Runtime Services Table.

The revision of the EFI Specification to which this table conforms.
The upper 16 bits of this field contain the major revision value, and
the lower 16 bits contain the minor revision value. The minor
revision values are limited to the range of 00..99.

The size, in bytes, of the entire table including the
EFI TABLE HEADER.

The 32-bit CRC for the entire table. This value is computed by
setting this field to 0, and computing the 32-bit CRC for
HeaderSize bytes.

Reserved field that must be set to 0.

The size of the EFI system table, runtime services table, and boot services table may increase over
time. It is very important to always use the HeaderSize field of the EFI_TABLE HEADER to

determine the size of these tables.

Version 1.10

12/01/02 4-3

Extensible Firmware Interface Specification

4.3 EFI System Table

intel

The EFI System Table contains pointers to the runtime and boot services tables. The definition for
this table is shown in the following code fragments. Except for the table header, all elements in the
service tables are prototypes of function pointers to functions as defined in Chapters 5 and 6. Prior
to a call to ExitBootServices (), all of the fields of the EFI System Table are valid. After an

operating system has taken control of the platform with a call to ExitBootServices (), only
the Hdr, FirmwareVendor, FirmwareRevision, RuntimeServices,
NumberOfTableEntries, and ConfigurationTable fields are valid.

EFI_SYSTEM_TABLE

Summary

Contains pointers to the runtime and boot services tables.

Related Definitions

EFI_HANDLE

SIMPLE TEXT OUTPUT INTERFACE
EFI_RUNTIME SERVICES
EFI_BOOT SERVICES

UINTN
EFI_CONFIGURATION TABLE

} EFI_SYSTEM TABLE;

12/01/02

#define EFI_SYSTEM TABLE SIGNATURE 0x5453595320494249
#define EFI_SYSTEM TABLE REVISION ((1<<16) | (10))
#define EFI_1 10 SYSTEM TABLE REVISION ((1<<16) | (10))
#define EFI 1 02 SYSTEM TABLE REVISION ((1<<16) | (02))
typedef struct {

EFI_TABLE HEADER Hdr;

CHAR16 *FirmwareVendor;

UINT32 FirmwareRevision;

EFI HANDLE ConsoleInHandle;

SIMPLE INPUT INTERFACE *ConIn;

EFI HANDLE ConsoleOutHandle;

SIMPLE TEXT OUTPUT_ INTERFACE *ConOut;

StandardErrorHandle;
*StdErr;
*RuntimeServices;
*BootServices;
NumberOfTableEntries;
*ConfigurationTable;

Version 1.10

tel

Parameters

Hdr

FirmwareVendor

FirmwareRevision

ConsoleInHandle

ConIn

ConsoleOutHandle

ConOut

StandardErrorHandle

StdErr

RuntimeServices
BootServices

NumberOfTableEntries

ConfigurationTable

Version 1.10

EFI System Table

The table header for the EFI System Table. This header contains
the EFI_SYSTEM TABLE SIGNATURE and
EFI_SYSTEM TABLE REVISION values along with the size
of the EFI_SYSTEM TABLE structure and a 32-bit CRC to
verify that the contents of the EFI System Table are valid.

A pointer to a null terminated Unicode string that identifies the
vendor that produces the system firmware for the platform.

A firmware vendor specific value that identifies the revision of
the system firmware for the platform.

The handle for the active console input device. This handle must
support the SIMPLE INPUT PROTOCOL.

A pointer to the SIMPLE INPUT PROTOCOL interface that is
associated with ConsoleInHandle.

The handle for the active console output device. This handle
must support the SIMPLE TEXT OUTPUT PROTOCOL.

A pointer to the SIMPLE TEXT OUTPUT PROTOCOL
interface that is associated with ConsoleOutHandle.

The handle for the active standard error console device. This
handle must support the
SIMPLE TEXT OUTPUT PROTOCOL.

A pointer to the SIMPLE TEXT OUTPUT PROTOCOL
interface that is associated with StandardErrorHandle.

A pointer to the EFI Runtime Services Table. See Section 4.5.
A pointer to the EFI Boot Services Table. See Section 4.4.

The number of system configuration tables in the buffer
ConfigurationTable.

A pointer to the system configuration tables. The number of
entries in the table is NumberOfTableEntries.

12/01/02

Extensible Firmware Interface Specification

intel

4.4 EFI Boot Services Table

The EFI Boot Services Table contains a table header and pointers to all of the boot services. The
definition for this table is shown in the following code fragments. Except for the table header, all
elements in the EFI Boot Services Tables are prototypes of function pointers to functions as defined
in Chapters 5. The function pointers in this table are not valid after the operating system has taken
control of the platform with a call to ExitBootServices ().

EFI_BOOT_SERVICES

4-6

Summary

Contains a table header and pointers to all of the boot services.

Related Definitions

EFI_FREE POOL

##define EFI BOOT SERVICES SIGNATURE 0x56524553544f£4€£42
#define EFI_BOOT SERVICES REVISION ((1<<16) | (10))
typedef struct {

EFI TABLE HEADER Hdr;

//

// Task Priority Services

//

EFI RAISE TPL RaiseTPL;

EFI RESTORE TPL RestoreTPL;

//

// Memory Services

//

EFI ALLOCATE PAGES AllocatePages;

EFI _FREE PAGES FreebPages;

EFI GET MEMORY MAP GetMemoryMap ;

EFI_ALLOCATE POOL AllocatePool ;

FreePool ;

//

// Event & Timer Services

//

EFI CREATE EVENT CreateEvent;
EFI_SET TIMER SetTimer;
EFI_WAIT FOR EVENT WaitForEvent;
EFI_SIGNAL EVENT SignalEvent;
EFI CLOSE EVENT CloseEvent;
EFI_CHECK_ EVENT CheckEvent ;

12/01/02

Version 1.10

Version 1.10

tal

//

// Protocol Handler Services

//

EFI INSTALL PROTOCOL INTERFACE
EFI REINSTALL PROTOCOL INTERFACE
EFI UNINSTALL PROTOCOL INTERFACE

EFI_HANDLE PROTOCOL
VOID

EFI_REGISTER PROTOCOL NOTIFY
EFI_LOCATE HANDLE

EFI_LOCATE DEVICE PATH

EFI INSTALL CONFIGURATION TABLE

//

// Image Services

//

EFI_IMAGE LOAD
EFI_IMAGE START

EFI EXIT

EFI_IMAGE UNLOAD

EFI EXIT BOOT SERVICES

//

// Miscellaneous Services

//
EFI_GET NEXT MONOTONIC COUNT
EFI_STALL

EFI_SET WATCHDOG TIMER

//

// DriverSupport Services

//
EFI CONNECT CONTROLLER
EFI DISCONNECT CONTROLLER

//

EFI System Table

InstallProtocolInterface;

ReinstallProtocolInterface;
UninstallProtocolInterface;

HandleProtocol;

*Reserved;
RegisterProtocolNotify;
LocateHandle;
LocateDevicePath;
InstallConfigurationTable;

LoadImage;
StartImage;

Exit;
UnloadImage;
ExitBootServices;

GetNextMonotonicCount;
Stall;
SetWatchdogTimer;

ConnectController;
DisconnectController;

// Open and Close Protocol Services

//
EFI_OPEN PROTOCOL
EFI_CLOSE PROTOCOL

EFI OPEN PROTOCOL INFORMATION

//

// Library Services

//

EFI PROTOCOLS PER HANDLE
EFI LOCATE HANDLE BUFFER
EFI LOCATE PROTOCOL

12/01/02

OpenProtocol;
CloseProtocol;
OpenProtocolInformation;

ProtocolsPerHandle;
LocateHandleBuffer;
LocateProtocol ;

Extensible Firmware Interface Specification

4-8

intel

EFI INSTALL MULTIPLE PROTOCOL INTERFACES

InstallMultipleProtocolInterfaces;

EFI UNINSTALL MULTIPLE PROTOCOL INTERFACES

//

// 32-bit CRC Services

//

EFI CALCULATE CRC32

//

IninstallMultipleProtocolInterfaces;

CalculateCrc32;

// Memory Utility Services

//

EFI_COPY MEM
EFI_SET MEM

} EFI_BOOT SERVICES;

Parameters

Hdr

RaiseTPL
RestoreTPL
AllocatePages
FreePages

GetMemoryMap

AllocatePool
FreePool
CreateEvent
SetTimer
WaitForEvent
SignalEvent

CloseEvent

CopyMem;
SetMem;

The table header for the EFI Boot Services Table. This
header contains the EFI_BOOT_ SERVICES
SIGNATURE and EFI_BOOT SERVICES
REVISION values along with the size of the
EFI_BOOT SERVICES TABLE structure and a 32-bit
CRC to verify that the contents of the EFI Boot Services
Table are valid.

Raises the task priority level.
Restores/lowers the task priority level.
Allocates pages of a particular type.
Frees allocated pages.

Returns the current boot services memory map and
memory map key.

Allocates a pool of a particular type.

Frees allocated pool.

Creates a general-purpose event structure.

Sets an event to be signaled at a particular time.
Stops execution until an event is signaled.
Signals an event.

Closes and frees an event structure.

12/01/02 Version 1.10

tel

CheckEvent
InstallProtocolInterface
ReinstallProtocolInterface
UninstallProtocolInterface

HandleProtocol

Reserved

RegisterProtocolNotify

LocateHandle

LocateDevicePath

InstallConfigurationTable

LoadImage
StartImage

Exit

UnloadImage
ExitBootServices

GetNextMonotonicCount

Stall

SetWatchdogTimer

ConnectController

DisconnectController

OpenProtocol

CloseProtocol

Version 1.10

EFI System Table

Checks whether an event is in the signaled state.
Installs a protocol interface on a device handle.
Reinstalls a protocol interface on a device handle.
Removes a protocol interface from a device handle.

Queries a handle to determine if it supports a specified
protocol.

Reserved. Must be NULL.

Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

Returns an array of handles that support a specified
protocol.

Locates all devices on a device path that support a
specified protocol and returns the handle to the device
that is closest to the path.

Adds, updates, or removes a configuration table from the
EFI System Table.

Loads an EFI image into memory.

Transfers control to a loaded image’s entry point.
Exits the image’s entry point.

Unloads an image.

Terminates boot services.

Returns a monotonically increasing count for the
platform.

Stalls the processor.

Resets and sets a watchdog timer used during boot
services time.

Uses a set of precedence rules to find the best set of
drivers to manage a controller.

Informs a set of drivers to stop managing a controller.

Adds elements to the list of agents consuming a protocol
interface.

Removes elements from the list of agents consuming a
protocol interface.

12/01/02 4-9

Extensible Firmware Interface Specification

4-10

OpenProtocolInformation

ProtocolsPerHandle

LocateHandleBuffer

LocateProtocol

intel

Retrieve the list of agents that are currently consuming a
protocol interface.

Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

Finds the first handle in the handle database the supports
the requested protocol.

InstallMultipleProtocolInterfaces

Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces

CalculateCrc32
CopyMem

SetMem

Uninstalls one or more protocol interfaces from a
handle.

Computes and returns a 32-bit CRC for a data buffer.
Copies the contents of one buffer to another buffer.

Fills a buffer with a specified value.

12/01/02 Version 1.10

intel

45 EFI Runtime Services Table

EFI System Table

The EFI Runtime Services Table contains a table header and pointers to all of the runtime services.
The definition for this table is shown in the following code fragments. Except for the table header,
all elements in the EFI Runtime Services Tables are prototypes of function pointers to functions as
defined in Chapters 6. Unlike the EFI Boot Services Table, this table, and the function pointers it
contains are valid after the operating system has taken control of the platform with a call to
ExitBootServices (). Ifacall to SetvVirtualAddressMap () is made by the OS, then

the function pointers in this table are fixed up to point to the new virtually mapped entry points.

EFI_RUNTIME_SERVICES

Summary

Contains a table header and pointers to all of the runtime services.

Related Definitions

#define EFI RUNTIME SERVICES SIGNATURE
#define EFI RUNTIME SERVICES REVISION

typedef struct {

Version 1.10

EFI TABLE HEADER

//

// Time Services

//

EFI_GET TIME
EFI_SET TIME
EFI_GET WAKEUP TIME
EFI_SET WAKEUP TIME

//

// Virtual Memory Services

//
EFI_SET VIRTUAL ADDRESS MAP

EFI CONVERT POINTER

//

// Variable Services

//
EFI_GET VARIABLE

EFI_GET NEXT VARIABLE NAME
EFI_SET VARIABLE

12/01/02

0x56524553544e5552
((1<<16) | (10))

Hdr;

GetTime;
SetTime;
GetWakeupTime;
SetWakeupTime;

SetVirtualAddressMap;
ConvertPointer;

GetVariable;
GetNextVariableName;
SetVariable;

Extensible Firmware Interface Specification

intel

//

// Miscellaneous Services

//

EFI_GET NEXT HIGH MONO COUNT GetNextHighMonotonicCount ;

EFI_RESET SYSTEM
} EFI_RUNTIME SERVICES;

Parameters

Hdr

GetTime

SetTime
GetWakeupTime
SetWakeupTime

SetVirtualAddressMap
ConvertPointer

GetVariable
GetNextVariableName
SetVariable

GetNextHighMonotonicCount

ResetSystem

ResetSystem;

The table header for the EFI Runtime Services Table.
This header contains the EFI_RUNTIME SERVICES
SIGNATURE and EFI RUNTIME SERVICES
REVISION values along with the size of the
EFI_RUNTIME SERVICES TABLE structure and a
32-bit CRC to verify that the contents of the EFI
Runtime Services Table are valid.

Returns the current time and date, and the time-keeping
capabilities of the platform.

Sets the current local time and date information.
Returns the current wakeup alarm clock setting.
Sets the system wakeup alarm clock time.

Used by an OS loader to convert from physical
addressing to virtual addressing.

Used by EFI components to convert internal pointers
when switching to virtual addressing.

Returns the value of a variable.
Enumerates the current variable names.
Sets the value of a variable.

Returns the next high 32 bits of the platform’s
monotonic counter.

Resets the entire platform.

12/01/02 Version 1.10

-
IntQI EFI System Table

4.6 EFI Configuration Table

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by the

EFI_ CONFIGURATION TABLE structure below. The number of types of configuration tables is
expected to grow over time. This is why a GUID is used to identify the configuration table type.
The EFI Configuration Table may contain at most once instance of each table type. The list of
current configuration table types is also listed below.

EFI_CONFIGURATION_TABLE

Summary

Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI
System Table.

Related Definitions

typedef struct{
EFI_GUID VendorGuid;
VOID *VendorTable;
} EFI CONFIGURATION TABLE;

Parameters
VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.
VendorTable A pointer to the table associated with VendorGuid.

#define ACPI 20 TABLE GUID \
{0x8868e871, 0xe4f1l, 0x11d3, 0xbc, 0x22, 0x0,0x80, 0xc7, 0x3c, 0x88, 0x81}

#define ACPI_TABLE GUID \
{0xeb9d2d30, 0x2d88, 0x11d3, 0x9a, 0x16, 0x0,0x90, 0x27,0x3 £, Oxcl, 0x4d}

#define SAL SYSTEM TABLE GUID \
{0xeb9d2d32, 0x2d88, 0x11d3, 0x9a, 0x16,0x0, 0x90, 0x27, 0x3 £, Oxcl, 0x4d}

#define SMBIOS TABLE GUID \
{0xeb9d2d31, 0x2d88, 0x11d3, 0x9a, 0x16, 0x0,0x90, 0x27,0x3 £, Oxcl, 0x4d}

#define MPS TABLE GUID \
{0xeb9d2d2f, 0x2d88, 0x11d3, 0x9a, 0x16, 0x0, 0x90, 0x27, 0x3 £, Oxcl, 0x4d}

Version 1.10 12/01/02 4-13

intel
Extensible Firmware Interface Specification ’

4.7 EFlImage Entry Point Examples

The examples in the following sections show how the various table examples are presented in
the EFI environment.

4.7.1 EFlImage Entry Point Examples

The following example shows the EFI image entry point for an EFI Application. This
application makes use of the EFI System Table, the EFI Boot Services Table, and the EFI
Runtime Services Table.

EFI_SYSTEM TABLE *gST;
EFI_BOOT_SERVICES TABLE *gBS;
EFI _RUNTIME SERVICES TABLE *gRT;

EfiApplicationEntryPoint (
IN EFI_ HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

EFI_STATUS Status;

EFI_TIME *Time;
gST = SystemTable;
gBS = gST->BootServices;

gRT = gST->RuntimeServices;

//
// Use EFI System Table to print “Hello World” to the active console output
// device.
//
Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”) ;
if (EFI_ERROR (Status)) ({
return Status;
}

//

// Use EFI Boot Services Table to allocate a buffer to store the current time

// and date.

//

Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time
)i

if (EFI_ERROR (Status)) ({

return Status;
}

4-14 12/01/02 Version 1.10

//

EFI System Table

// Use the EFI Runtime Services Table to get the current time and date.

//
Status = gRT->GetTime (&Time, NULL)
if (EFI_ERROR (Status)) {

return Status;

}

return Status;

The following example shows the EFI image entry point for an EFI Driver that does not follow the
EFI Driver Model. Since this driver returns EFI_SUCCESS, it will stay resident in memory after

it exits.
EFI_SYSTEM TABLE *gST;
EFI_BOOT SERVICES TABLE *gBS;
EFI_RUNTIME SERVICES TABLE *gRT;

EfiDriverEntryPoint (
IN EFI_ HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)

gST SystemTable;
gBS gST->BootServices;
gRT = gST->RuntimeServices;

//

// Implement driver initialization here.

//

return EFI_SUCCESS;

The following example shows the EFI image entry point for an EFI Driver that also does not follow
the EFI Driver Model. Since this driver returns EFI_DEVICE ERROR, it will not stay resident in

memory after it exits.

EFI_SYSTEM TABLE *gST;
EFI_BOOT_SERVICES TABLE *gBS;
EFI _RUNTIME SERVICES TABLE *gRT;

EfiDriverEntryPoint (
IN EFI_ HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)

gST = SystemTable;
gBS gST->BootServices;
gRT = gST->RuntimeServices;

Version 1.10 12/01/02

intel
Extensible Firmware Interface Specification ’

//
// Implement driver initialization here.

//

return EFI_DEVICE ERROR;

4.7.2 EFI Driver Model Example

4-16

The following is an EFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI DRIVER BINDING PROTOCOL is
defined in Chapter 9. The function prototypes for the AbcSupported (), AbcStart (), and
Abcstop () functions are defined in Section 9.1. This function saves the driver’s image handle
and a pointer to the EFI boot services table in global variables, so the other functions in the same
driver can have access to these values. It then creates an instance of the

EFI_DRIVER BINDING PROTOCOL and installs it onto the driver's image handle.

extern EFI GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES TABLE *gBS;
static EFI DRIVER BINDING PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
1 ’
NULL,
NULL

AbcEntryPoint (
IN EFI HANDLE ImageHandle,

IN EFI SYSTEM TABLE *SystemTable
)

EFI_STATUS Status;

gBS = SystemTable->BootServices;

mAbcDriverBinding->ImageHandle
mAbcDriverBinding->DriverBindingHandle

ImageHandle;
ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces (
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
) ;

return Status;

12/01/02 Version 1.10

intel

4.7.3

EFI Driver Model Example (Unloadable)

EFI System Table

The following is the same EFI Driver Model example as above, except it also includes the code
required to allow the driver to be unloaded through the boot service Unload (). Any protocols
installed or memory allocated in AbcEntryPoint () must be uninstalled or freed in the

AbcUnload().

extern EFI_GUID
extern EFI_GUID

EFI_BOOT_SERVICES TABLE *gBS;
static EFI_DRIVER_ BINDING PROTOCOL mAbcDriverBinding =

}i

AbcSupported,
AbcStart,
AbcStop,

1 ’

NULL,

NULL

EFI_STATUS
AbcUnload (

IN EFI_HANDLE ImageHandle
)i

AbcEntryPoint (

IN EFI_ HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)

EFI_STATUS Status;
EFI LOADED IMAGE PROTOCOL *LoadedImage;

gBS = SystemTable->BootServices;

Status = gBS->OpenProtocol (
ImageHandle,
&gEfilLoadedImageProtocolGuid,
&LoadedImage,
ImageHandle,
NULL,
EFI_OPEN_PROTOCOL_ GET_ PROTOCOL
)

if (EFI_ERROR (Status)) {

return Status;
}

LoadedImage->Unload = AbcUnload;

ImageHandle;
ImageHandle;

mAbcDriverBinding->ImageHandle
mAbcDriverBinding->DriverBindingHandle

Status = gBS->InstallMultipleProtocolInterfaces (

&mAbcDriverBinding->DriverBindingHandle,

gEfiloadedImageProtocolGuid;
gEfiDriverBindingProtocolGuid;

&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,

NULL
)i

return Status;

Version 1.10 12/01/02

Extensible Firmware Interface Specification

4.7.4

4-18

EFI_STATUS

AbcUnload (
IN EFI_HANDLE ImageHandle
)

EFI_STATUS Status;

Status = gBS->UninstallMultipleProtocolInterfaces (

ImageHandle,

&gEfiDriverBindingProtocolGuid,

NULL
)i

return Status;

EFI Driver Model Example (Multiple Instances)

&mAbcDriverBinding,

The following is the same as the first EFI Driver Model example, except it produces three
EFI DRIVER BINDING PROTOCOL instances. The first one is installed onto the driver’s
image handle. The other two are installed onto newly created handles.

extern EFI_GUID
EFI_BOOT_SERVICES_ TABLE

static EFI_DRIVER BINDING PROTOCOL
AbcSupportedA,
AbcStarta,
AbcStopA,
1,
NULL,
NULL

Vi

static EFI DRIVER BINDING PROTOCOL
AbcSupportedB,
AbcStartB,
AbcStopB,
1,
NULL,
NULL

Vi

static EFI DRIVER BINDING PROTOCOL
AbcSupportedC,
AbcStartC,
AbcStopC,
1 ’
NULL,
NULL

gEfiDriverBindingProtocolGuid;
*gBS;

mAbcDriverBindingA =

mAbcDriverBindingB = {

mAbcDriverBindingC = {

12/01/02

Version 1.10

-
Int9| EFI System Table

AbcEntryPoint (
IN EFI_ HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)

EFI_STATUS Status;

gBS = SystemTable->BootServices;

//

// Install mAbcDriverBindingA onto ImageHandle

//

mAbcDriverBindingA->ImageHandle = ImageHandle;
mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
NULL
) ;

if (EFI_ERROR (Status)) {

return Status;
}

//

// Install mAbcDriverBindingB onto a newly created handle
//

mAbcDriverBindingB->ImageHandle = ImageHandle;
mAbcDriverBindingB->DriverBindingHandle = NULL;

Status = gBS->InstallMultipleProtocolInterfaces (
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL
)i

if (EFI_ERROR (Status)) ({

return Status;
}

//

// Install mAbcDriverBindingC onto a newly created handle
//

mAbcDriverBindingC->ImageHandle = ImageHandle;
mAbcDriverBindingC->DriverBindingHandle = NULL;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL
)i

return Status;

Version 1.10 12/01/02 4-19

Version 1.10 12/01/02 4-20

5
Services — Boot Services

This chapter discusses the fundamental boot services that are present in an EFI-compliant system.
The services are defined by interface functions that may be used by code running in the EFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as EFI applications running in the preboot environment and EFI OS loaders.

Two types of services apply in an EFI-compliant system:

e Boot Services. Functions that are available before a successful call to
ExitBootServices (). These functions are described in this chapter.

¢ Runtime Services. Functions that are available before and after any call to
ExitBootServices (). These functions are described in Chapter 6.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms
(since some devices are not available on some platforms). Protocols are created dynamically. This
chapter discusses the “global” functions and runtime functions; subsequent chapters discuss the
“handle-based.”

EFT applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an EFI Image is provided a pointer to an EFI system table which
contains the Boot Services dispatch table and the default handles for accessing the console. All
boot services functionality is available until an EFI OS loader loads enough of its own environment
to take control of the system’s continued operation and then terminates boot services with a call to
ExitBootServices().

In principle, the ExitBootServices () call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing
to boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS
loader, however, may or may not choose to call ExitBootServices (). This choice may in
part depend upon whether or not such code is designed to make continued use of EFI boot services
or the boot services environment.

Version 1.10 12/01/02 5-1

-
Extensible Firmware Interface Specification Intel

5.1

The rest of this chapter discusses individual functions. Global boot services functions fall into
these categories:

e Event, Timer, and Task Priority Services (Section 5.1)

e Memory Allocation Services (Section 5.2)

e Protocol Handler Services (Section 5.3)

e Image Services (Section 5.4)

e Miscellaneous Services (Section 5.5)

Event, Timer, and Task Priority Services

The functions that make up the Event, Timer, and Task Priority Services are used during preboot to
create, close, signal, and wait for events; to set timers; and to raise and restore task priority levels.
See Table 5-1.

Table 5-1. Event, Timer, and Task Priority Functions

Name Type Description

CreateEvent Boot Creates a general-purpose event structure.
CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.
CheckEvent Boot Checks whether an event is in the signaled state.
SetTimer Boot Sets an event to be signaled at a particular time.
RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.

Execution in the boot services environment occurs at different task priority levels, or TPLs. The
boot services environment exposes only three of these levels to EFT applications and drivers:

e TPL APPLICATION, the lowest priority level

e TPL CALLBACK, an intermediate priority level

e TPL NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority
level. For example, tasks that run at the TPL. NOTIFY level may interrupt tasks that run at the
TPL_APPLICATION or TPL CALLBACK level. While TPL._ NOTIFY is the highest level
exposed to the boot services applications, the firmware may have higher task priority items it deals
with. For example, the firmware may have to deal with tasks of higher priority like timer ticks and
internal devices. Consequently, there is a fourth TPL, TPL HIGH LEVEL, designed for use
exclusively by the firmware.

12/01/02 Version 1.10

in
tel' Services — Boot Services

The intended usage of the priority levels is shown in Table 5-2 from the lowest level
(TPL_APPLICATION) to the highest level (TPL. HIGH LEVEL). As the level increases, the
duration of the code and the amount of blocking allowed decrease. Execution generally occurs at
the TPL. APPLICATION level. Execution occurs at other levels as a direct result of the triggering
of an event notification function(this is typically caused by the signaling of an event). During timer
interrupts, firmware signals timer events when an event’s “trigger time” has expired. This allows
event notification functions to interrupt lower priority code to check devices (for example). The
notification function can signal other events as required. After all pending event notification
functions execute, execution continues at the TPL. APPLICATION level.

Table 5-2. TPL Usage

Task Priority Level Usage

TPL APPLICATION Thisis the lowest priority level. It is the level of execution which occurs when
no event notifications are pending and which interacts with the user. User I/O
(and blocking on User 1/0) can be performed at this level. The boot manager
executes at this level and passes control to other EFI applications at this level.

TPL CALLBACK Interrupts code executing below TPL CALLBACK level. Long term
operations (such as file system operations and disk 1/0) can occur at this level.
TPL NOTIFY Interrupts code executing below TPL._ NOTIFY level. Blocking is not

allowed at this level. Code executes to completion and returns. If code
requires more processing, it needs to signal an event to wait to reobtain
control at whatever level it requires. This level is typically used to process low
level 10 to or from a device.

(Firmware Interrupts) This level is internal to the firmware. It is the level at which internal interrupts
occur. Code running at this level interrupts code running at the
TPL NOTIFY level (or lower levels). If the interrupt requires extended time
to complete, firmware signals another event (or events) to perform the longer
term operations so that other interrupts can occur.

TPL HIGH LEVEL Interrupts code executing below TPL HIGH LEVEL. This is the highest
priority level. It is not interruptable (interrupts are disabled) and is used
sparingly by firmware to synchronize operations that need to be accessible
from any priority level. For example, it must be possible to signal events while
executing at any priority level. Therefore, firmware manipulates the internal
event structure while at this priority level.

Version 1.10 12/01/02 5-3

Extensible Firmware Interface Specification

intel

Executing code can temporarily raise its priority level by calling the RaiseTPL () function.
Doing this masks event notifications from code running at equal or lower priority levels until the
RestoreTPL () function is called to reduce the priority to a level below that of the pending event
notifications. There are restrictions on the TPL levels at which many EFI service functions and

protocol interface functions can execute. Table 5-3 summarizes the restrictions.

Table 5-3. TPL Restrictions

Name Restriction Task Priority Level
Memory Allocation Services <= TPL NOTIFY
Variable Services <= TPL CALLBACK
ExitBootServices() = TPL APPLICATION
LoadIlmage() < TPL CALLBACK
Startimage() < TPL CALLBACK
Unloadlmage() <= TPL CALLBACK
Exit() <= TPL CALLBACK
Time Services <= TPL CALLBACK
WaitForEvent() = TPL APPLICATION
SignalEvent() <= TPL HIGH LEVEL
Event Notification Levels > TPL APPLICATION
<= TPL HIGH LEVEL
Protocol Interface Functions <= TPL:NOTIEFY
Block I/0 Protocol <= TPL CALLBACK
Disk I/0 Protocol <= TPL CALLBACK
Simple File System Protocol <= TPL CALLBACK
Simple Input Protocol <= TPL APPLICATION
Simple Text Output Protocol <= TPL NOTIFY
Serial 1/O Protocol <= TPL CALLBACK
PXE Base Code Protocol <= TPL CALLBACK
Simple Network Protocol <= TPL CALLBACK

12/01/02

Version 1.10

in
tel' Services — Boot Services

CreateEvent()
Summary

Creates an event.

Prototype

EFI_STATUS
CreateEvent (

IN UINT32 Type,
IN EFI_TPL NotifyTpl,
IN EFI EVENT NOTIFY NotifyFunction,
IN VOID *NotifyContext,
OUT EFI EVENT *Event

);

Parameters
Type The type of event to create and its mode and attributes. The

#define statements in “Related Definitions” can be used to
specify an event’s mode and attributes.

NotifyTpl The task priority level of event notifications. See RaiseTPL().

NotifyFunction Pointer to the event’s notification function. See “Related
Definitions.”

NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Related Definitions

//***

// EFI_EVENT
[/ *kx kR Ehkhkkhkkhkkhhkhhhkhhhkhhhhhhhkhhhkhhkkhhkhhhkhhkkhk

typedef VOID *EFI_EVENT

//***

// Event Types
//***

// These types can be “ORed” together as needed - for example,
// EVT TIMER might be “Ored” with EVT NOTIFY WAIT or

// EVT NOTIFY SIGNAL.

#define EVT TIMER 0x80000000
#define EVT RUNTIME 0x40000000
#define EVT RUNTIME CONTEXT 0x20000000

Version 1.10 12/01/02 5-5

-
Extensible Firmware Interface Specification Intel

#define EVT NOTIFY WAIT 0x00000100
#define EVT NOTIFY SIGNAL 0x00000200
#define EVT SIGNAL EXIT BOOT SERVICES 0x00000201

#define EVT SIGNAL VIRTUAL ADDRESS CHANGE 0x60000202

EVT TIMER

EVT RUNTIME

The event is a timer event and may be passed to SetTimer ().
Note that timers only function during boot services time.

The event is allocated from runtime memory. If an event is to be
signaled after the call to ExitBootServices (), the event’s data
structure and notification function need to be allocated from runtime
memory. For more information, see

SetVirtualAddressMap () in Chapter 6.

EVT RUNTIME CONTEXT

EVT NOTIFY WAIT

The event’s Not 1 fyContext pointer points to a runtime memory
address. See the discussion of EVT RUNTIME above.

The event’s NotifyFunction isto be invoked whenever the
event is being waited on via WaitForEvent () or
CheckEvent ().

EVT NOTIFY SIGNAL

The event’s Not i fyFunction is to be invoked whenever the
event is signaled via SignalEvent ().

EVT_ SIGNAL EXIT BOOT SERVICES

This event is to be notified by the system when
ExitBootServices () isinvoked. This type cannot be used
with any other EVT bit type. The notification function for this
event is not allowed to use the Memory Allocation Services, or call
any functions that use the Memory Allocation Services, because
these services modify the current memory map.

EVT SIGNAL VIRTUAL ADDRESS CHANGE

The event is to be notified by the system when
SetVirtualAddressMap () is performed. This type cannot be
used with any other EVT bit type. See the discussion of

EVT RUNTIME.

12/01/02 Version 1.10

in
tel' Services — Boot Services

//***

// EFI_EVENT NOTIFY
[/ kRRhkkkkkkhhkkhhhhhhhkhhhhhhhkhhkkhhkhhhkhhhhkhhhkhhhkk

typedef
VOID
(EFIAPI *EFI EVENT NOTIFY) (
IN EFI EVENT Event,
IN VOID *Context
)
Event Event whose notification function is being invoked.
Context Pointer to the notification function’s context, which is
implementation-dependent. Context corresponds to
NotifyContext in CreateEvent ().
Description

The CreateEvent () function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created, firmware puts
it in the “waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EVT NOTIFY SIGNAL is specified, places a call to its notification function in a FIFO queue.
There is a queue for each of the “basic” task priority levels defined in Section 5.1
(TPL_APPLICATION, TPL CALLBACK, and TPL NOTIFY). The functions in these queues are
invoked in FIFO order, starting with the highest priority level queue and proceeding to the lowest
priority queue that is unmasked by the current TPL. If the current TPL is equal to or greater than
the queued notification, it will wait until the TPL is lowered via RestoreTPL ().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of
program execution. This capability is typically used with device drivers. For example, a network
device driver that needs to poll for the presence of new packets could create an event whose type
includes EVT TIMER and then call the SetTimer () function. When the timer expires, the
firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the ExitBootServices () function.
ExitBootServices () can clean up the firmware since it understands firmware internals, but it
cannot clean up on behalf of drivers that have been loaded into the system. The drivers have to do
that themselves by creating an event whose type is EVT_SIGNAL EXIT BOOT SERVICES and
whose notification function is a function within the driver itself. Then, when
ExitBootServices () has finished its cleanup, it signals each event of type

EVT SIGNAL EXIT BOOT SERVICES

Another example of the use of synchronous events occurs when an event of type
EVT SIGNAL VIRTUAL ADDRESS CHANGE is used in conjunction with the
SetVirtualAddressMap () function in Chapter 6.

Version 1.10 12/01/02 5-7

-
Extensible Firmware Interface Specification Intel

The EVT NOTIFY WAIT and EVT NOTIFY SIGNAL flags are exclusive. If neither flag is
specified, the caller does not require any notification concerning the event and the Not i fyTpl,
NotifyFunction, and NotifyContext parameters are ignored. If EVT NOTIFY WAIT is
specified, then the event is signaled and its notify function is queued whenever a consumer of the
event is waiting for it (via WaitForEvent () or CheckEvent ()). Ifthe

EVT NOTIFY SIGNAL flag is specified then the event’s notify function is queued whenever the
event is signaled.

NOTE

Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Status Codes Returned

EFI_SUCCESS The event structure was created.
EFI_INVALID_PARAMETER One of the parameters has an invalid value.
EFI_OUT_OF_RESOURCES The event could not be allocated.

5-8 12/01/02 Version 1.10

in
tel' Services — Boot Services

CloseEvent()
Summary

Closes an event.

Prototype

EFI_STATUS
CloseEvent (

IN EFI EVENT Event
)i
Parameters
Event The event to close. Type EFI_EVENT is defined in the

CreateEvent () function description.

Description

The CloseEvent () function removes the caller’s reference to the event and closes it. Once the
event is closed, the event is no longer valid and may not be used on any subsequent function calls.

Status Codes Returned
‘ EFI_SUCCESS ‘ The event has been closed.

Version 1.10 12/01/02 5-9

-
Extensible Firmware Interface Specification Intel

SignalEvent()

5-10

Summary
Signals an event.

Prototype

EFI_STATUS
SignalEvent (

IN EFI EVENT Event
) ;
Parameters
Event The event to signal. Type EFI_EVENT is defined in the

CreateEvent () function description.

Description

The supplied Event is signaled and, if the event has a signal notification function, it is scheduled
to be invoked at the event’s notification task priority level. SignalEvent () may be invoked
from any task priority level.

Status Codes Returned
\ EFI_SUCCESS \ The event was signaled.

12/01/02 Version 1.10

in
tel' Services — Boot Services

WaitForEvent()
Summary

Stops execution until an event is signaled.

Prototype

EFI_STATUS
WaitForEvent (

IN UINTN NumberOfEvents,
IN EFI EVENT *Event,
OUT UINTN *Tndex
)
Parameters
NumberOfEvents The number of events in the Event array.
Event An array of EFI_EVENT. Type EFI_EVENT is defined in the
CreateEvent () function description.
Index Pointer to the index of the event which satisfied the wait condition.
Description

The WaitForEvent () function waits for any event in the Event array to be signaled. On
success, the signaled state of the event is cleared and execution is returned with Index indicating
which event caused the return. It is possible for an event to be signaled before being waited on. In
this case, the next wait operation for that event would immediately return with the signaled event.
Waiting on an event of type EVT NOTIFY SIGNAL is not permitted. If any event in Event is of
type EVT _NOTIFY SIGNAL, WaitForEvent () returns EFI_INVALID PARAMETER and
sets Index to indicate which event caused the failure. This function must be called at priority
level TPL. APPLICATION. Ifan attempt is made to call it at any other priority level,

EFI_ UNSUPPORTED is returned.

To wait for a specified time, a timer event must be included in the Event array.

WaitForEvent () will always check for signaled events in order, with the first event in the array
being checked first. To check if an event is signaled without waiting, an already signaled event can
be used as the last event in the list being checked, or the CheckEvent () interface may be used.

Status Codes Returned
EFI_SUCCESS The event indicated by Trndex was signaled.

EFI_INVALID_PARAMETER The event indicated by ITndex has a notification function or
Event was not a valid type.

EFI_UNSUPPORTED The current TPL is not TPL. APPLICATION.

Version 1.10 12/01/02 5-11

-
Extensible Firmware Interface Specification Intel

CheckEvent()

Summary
Checks whether an event is in the signaled state.

Prototype

EFI_STATUS
CheckEvent (

IN EFI EVENT Event
)i
Parameters
Event The event to check. Type EFI_EVENT is defined in the

CreateEvent () function description.

Description

The CheckEvent () function checks to see whether Event is in the signaled state. If Event is
of type EVT_NOTIFY SIGNAL,then EFI_INVALID PARAMETER is returned. Otherwise,
there are three possibilities:

e If Event is in the signaled state, it is cleared and EFI_SUCCESS is returned.

e If Event is not in the signaled state and has no notification function, EFI_NOT READY is
returned.

e If Event is not in the signaled state but does have a notification function, the function is
executed. If that causes Event to be signaled, it is cleared and EFI_SUCCESS is returned; if
it does not cause Event to be signaled, EFI_NOT READY is returned.

Status Codes Returned

EFI_SUCCESS The event is in the signaled state.
EFI_NOT_READY The event is not in the signaled state.
EFI_INVALID_PARAMETER | Event is of type EVT NOTIFY SIGNAL.

12/01/02 Version 1.10

in
tel' Services — Boot Services

SetTimer()
Summary

Sets the type of timer and the trigger time for a timer event.

Prototype

EFI_STATUS
SetTimer (

IN EFI EVENT Event,
IN EFI TIMER DELAY Type,
IN UINT64 TriggerTime
);
Parameters
Event The timer event that is to be signaled at the specified time. Type
EFI EVENT is defined in the CreateEvent () function
description.
Type The type of time that is specified in TriggerTime. See the

timer delay types in “Related Definitions.”
TriggerTime The number of 100ns units until the timer expires.
Related Definitions

//***

//EFI TIMER DELAY
[/ kRRkkkkkkhkhdkkkhhkdhhkhhkhhdhkhkkkhhkkhhk ok hhhhhhhkk

typedef enum {
TimerCancel,
TimerPeriodic,
TimerRelative

} EFI_TIMER DELAY;

TimerCancel The event’s timer setting is to be cancelled and no timer trigger is
to be set. TriggerTime is ignored when canceling a timer.

TimerPeriodic The event is to be signaled periodically at TriggerTime
intervals from the current time. This is the only timer trigger
Type for which the event timer does not need to be reset for each
notification. All other timer trigger types are “one shot.”

TimerRelative The event is to be signaled in TriggerTime 100ns units.

Version 1.10 12/01/02 5-13

-
Extensible Firmware Interface Specification Intel

Description

The SetTimer () function cancels any previous time trigger setting for the event, and sets the
new trigger time for the event. This function can only be used on events of type EVT TIMER.

Status Codes Returned

EFI_SUCCESS The event has been set to be signaled at the requested time.
EFI_INVALID_PARAMETER Event or Typeis not valid.

5-14 12/01/02 Version 1.10

in
tel' Services — Boot Services

RaiseTPL()
Summary

Raises a task’s priority level and returns its previous level.

Prototype

EFI_TPL

RaiseTPL (
IN EFI TPL NewTpl
)i

Parameters

NewTpl The new task priority level. It must be greater than or equal to the
current task priority level. See “Related Definitions.”
Related Definitions
//***

// EFI_TPL

//***
typedef UINTN EFI TPL

//***

// Task Priority Levels
//***

#define TPL APPLICATION 4
#define TPL CALLBACK 8
#define TPL NOTIFY 16
#define TPL HIGH LEVEL 31

Version 1.10 12/01/02 5-15

-
Extensible Firmware Interface Specification Intel

Description

The RaiseTPL () function raises the priority of the currently executing task and returns its
previous priority level.

Only three task priority levels are exposed outside of the firmware during EFI boot services
execution. The first is TPL. APPLICATION where all normal execution occurs. That level may
be interrupted to perform various asynchronous interrupt style notifications, which occur at the
TPL CALLBACK or TPL NOTIFY level. By raising the task priority level to TPL. NOTIFY such
notifications are masked until the task priority level is restored, thereby synchronizing execution
with such notifications. Synchronous blocking I/O functions execute at TPL. NOTIFY.

TPL CALLBACK is the typically used for application level notification functions. Device drivers
will typically use TPL. CALLBACK or TPL._NOTIFY for their notification functions. Applications
and drivers may also use TPL. NOTIFY to protect data structures in critical sections of code.

The caller must restore the task priority level with RestoreTPL () to the previous level before
returning,.

NOTE

If NewTpl is below the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL APPLICATION, TPL CALLBACK, TPL NOTIFY, and TPL HIGH LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL. APPLICATION must be minimized. Executing at TPL
levels above TPL._APPLICATION for extended periods of time may also result in unpredictable
behavior.

Status Codes Returned

Unlike other EFI interface functions, RaiseTPL () does not return a status code. Instead, it

returns the previous task priority level, which is to be restored later with a matching call to
RestoreTPL().

12/01/02 Version 1.10

intel

RestoreTPL()
Summary

Services — Boot Services

Restores a task’s priority level to its previous value.

Prototype

VOID

RestoreTPL (
IN EFI TPL 01dTpl
)

Parameters
01dTpl The previous task priority level to restore (the value from a
previous, matching call to RaiseTPL()). Type EFI_TPL is
defined in the RaiseTPL () function description.
Description

The RestoreTPL () function restores a task’s priority level to its previous value. Calls to
RestoreTPL () are matched with calls to RaiseTPL ().

NOTE

If 01dTpl is above the current TPL level, then the system behavior is indeterminate.
Additionally, only TPL APPLICATION, TPL CALLBACK, TPL NOTIFY, and

TPL HIGH LEVEL may be used. All other values are reserved for use by the firmware; using
them will result in unpredictable behavior. Good coding practice dictates that all code should
execute at its lowest possible TPL level, and the use of TPL levels above TP, APPLICATION
must be minimized. Executing at TPL levels above TPL._APPLICATION for extended periods of
time may also result in unpredictable behavior.

Status Codes Returned

None.

Version 1.10 12/01/02 5-17

-
Extensible Firmware Interface Specification Intel

5.2 Memory Allocation Services

The functions that make up Memory Allocation Services are used during preboot to allocate and
free memory, and to obtain the system’s memory map. See Table 5-4.

Table 5-4. Memory Allocation Functions

Name Type Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory map key.
AllocatePool Boot Allocates a pool of a particular type.

FreePool Boot Frees allocated pool.

The way in which these functions are used is directly related to an important feature of EFI memory
design. This feature, which stipulates that EFI firmware owns the system’s memory map during
preboot, has three major consequences:

1. During preboot, all components (including executing EFI images) must cooperate with the
firmware by allocating and freeing memory from the system with the functions
AllocatePages (),AllocatePool (), FreePages (), and FreePool (). The
firmware dynamically maintains the memory map as these functions are called.

2. During preboot, an executing EFI Image must only use the memory it has allocated.

3. Before an executing EFI image exits and returns control to the firmware, it must free all
resources it has explicitly allocated. This includes all memory pages, pool allocations, open file
handles, etc. Memory allocated by the firmware to load an image is freed by the firmware
when the image is unloaded.

When EFI memory is allocated, it is “typed” according to the values in EFI_MEMORY TYPE (see
the description for AllocatePages ()). Some of the types have a different usage before
ExitBootServices () is called than they do afterwards. Table 5-5 lists each type and its
usage before the call; Table 5-6 lists each type and its usage after the call. The system firmware
must follow the processor-specific rules outlined in sections 2.3.2 and 2.3.3 in the layout of the EFI
memory map to enable the OS to make the required virtual mappings.

5-18 12/01/02 Version 1.10

In

tel

Services — Boot Services

Table 5-5. Memory Type Usage before ExitBootServices ()
Mnemonic Description
EfiReservedMemoryType Not used.
EfiLoaderCode The code portions of a loaded EFI application. (Note that EFI OS
loaders are EFI applications.)
EfiLoaderData The data portions of a loaded EFI application and the default data

allocation type used by an EFI application to allocate pool memory.

EfiBootServicesCode

The code portions of a loaded Boot Services Driver.

EfiBootServicesData

The data portions of a loaded Boot Serves Driver, and the default data
allocation type used by a Boot Services Driver to allocate pool memory.

EfiRuntimeServicesCode

The code portions of a loaded Runtime Services Driver.

EfiRuntimeServicesData

The data portions of a loaded Runtime Services Driver and the default
data allocation type used by a Runtime Services Driver to allocate pool
memory.

EfiConventionalMemory

Free (unallocated) memory.

EfiUnusableMemory

Memory in which errors have been detected.

EfiACPIReclaimMemory

Memory that holds the ACPI tables.

EfiACPIMemoryNVS

Address space reserved for use by the firmware.

EfiMemoryMappedIO

Used by system firmware to request that a memory-mapped IO region
be mapped by the OS to a virtual address so it can be accessed by EFI
runtime services.

EfiMemoryMappedIOPortSpace

System memory-mapped IO region that is used to translate memory
cycles to 10 cycles by the processor.

EfiPalCode

Address space reserved by the firmware for code that is part of the
processor.

NOTE

There is only one region of type Ef iMemoryMappedIoPortSpace defined in the architecture

for Itanium-based platforms. As a result, there should be one and only one region of type

EfiMemoryMappedIoPortSpace in the EFI memory map of an Itanium-based platform.

Version 1.10

12/01/02 5-19

Extensible Firmware Interface Specification

5-20

intel

Table 5-6. Memory Type Usage after ExitBootServices ()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices () is utilizing one or
more Ef iLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices () is utilizing one or
more Ef iLoaderData ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode

The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1-S3 states.

EfiRuntimeServicesData

The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1-S3 states.

EfiConventionalMemory

Memory available for general use.

EfiUnusableMemory

Memory that contains errors and is not to be used.

EfiACPIReclaimMemory

This memory is to be preserved by the loader and OS until ACPI is
enabled. Once ACPI is enabled, the memory in this range is available
for general use.

EfiACPIMemoryNVS

This memory is to be preserved by the loader and OS in the working
and ACPI S1-S3 states.

EfiMemoryMappedIO

This memory is not used by the OS. All system memory-mapped IO
information should come from ACPI tables.

EfiMemoryMappedIOPortSpace

This memory is not used by the OS. All system memory-mapped 10
port space information should come from ACPI tables.

EfiPalCode This memory is to be preserved by the loader and OS in the working
and ACPI S1-S3 states. This memory may also have other attributes
that are defined by the processor implementation.

NOTE

An image that calls ExitBootServices() first calls GetMemoryMap () fo obtain the current

memory map. Following the ExitBootServices() call, the image implicitly owns all unused
memory in the map. This includes memory types EfiLoaderCode, EfiLoaderData,

EfiBootServicesCode, EfiBootServicesData, and EfiConventionalMemory. An EFI-compatible

loader and operating system must preserve the memory marked as EfiRuntimeServicesCode and

EfiRuntimeServicesData.

12/01/02 Version 1.10

intel

AllocatePages()

Summary

Services — Boot Services

Allocates memory pages from the system.

Prototype

EFI_STATUS

AllocatePages (

IN EFI ALLOCATE TYPE Type,
IN EFI MEMORY TYPE MemoryType,
IN UINTN Pages,

IN OUT EFI PHYSICAL ADDRESS *Memory

) ;
Parameters

Type
MemoryType

Pages

Memory

Version 1.10

The type of allocation to perform. See “Related Definitions.”

The type of memory to allocate. The type EFI_MEMORY TYPE is
defined in “Related Definitions” below. These memory types are also
described in more detail in Table 5-5 and Table 5-6. Normal allocations
(that is, allocations by any EFI application) are of type
EfiLoaderData. MemoryType values in the range
0x80000000..0xFFFFFFFF are reserved for use by EFI OS loaders that
are provided by operating system vendors. The only illegal memory type
values are those in the range Ef iMaxMemoryType..0x7FFFFFFF.

The number of contiguous 4 KB pages to allocate.

Pointer to a physical address. On input, the way in which the address is
used depends on the value of Type. See “Description” for more
information. On output the address is set to the base of the page range
that was allocated. See “Related Definitions.”

12/01/02 5-21

-
Extensible Firmware Interface Specification Intel

5-22

Related Definitions

//***

//EFI_ALLOCATE_TYPE
//***
// These types are discussed in the “Description” section below.
typedef enum (
AllocateAnyPages,
AllocateMaxAddress,
AllocateAddress,
MaxAllocateType
} EFI_ALLOCATE TYPE;

//***

//EFI_MEMORY_TYPE
//***
// These type values are discussed in Table 5-5 and Table 5-6.
typedef enum {

EfiReservedMemoryType,

EfiLoaderCode,

EfiLoaderData,

EfiBootServicesCode,

EfiBootServicesData,

EfiRuntimeServicesCode,

EfiRuntimeServicesData,

EfiConventionalMemory,

EfiUnusableMemory,

EfiACPIReclaimMemory,

EfiACPIMemoryNVS,

EfiMemoryMappedIO,

EfiMemoryMappedIOPortSpace,

EfiPalCode,

EfiMaxMemoryType

} EFI_MEMORY TYPE;

//***

//EFI_PHYSICAL ADDRESS
[/ *rhkEhkhkkhkkhhkhhhkhhhkhhhhhhhhhhhkhhhkhhkhhhkhhhkhhkkhk

typedef UINT64 EFI PHYSICAL ADDRESS;

12/01/02 Version 1.10

in
tel' Services — Boot Services

Description

The AllocatePages () function allocates the requested number of pages and returns a pointer
to the base address of the page range in the location referenced by Memory. The function scans the
memory map to locate free pages. When it finds a physically contiguous block of pages that is
large enough and also satisfies the value of Type, it changes the memory map to indicate that the
pages are now of type MemoryType.

In general, EFI OS loaders and EFI applications should allocate memory (and pool) of type
EfiLoaderData. Boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. Runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot services
time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages
whose uppermost address is less than or equal to the address pointed to by Memoxry on input.
Allocation requests of Type AllocateAddress allocate pages at the address pointed to by
Memory on input.

Status Codes Returned

EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Typeis not AllocateAnyPages or
AllocateMaxAddress orAllocateAddress.

EFI_INVALID_PARAMETER MemoryType s in the range
EfiMaxMemoryType..0OX7TFFFFFFF.

EFI_NOT_FOUND The requested pages could not be found.

Version 1.10 12/01/02 5-23

-
Extensible Firmware Interface Specification Intel

FreePages|)
Summary

Frees memory pages.

Prototype

EFI_STATUS
FreePages (
IN EFI PHYSICAL ADDRESS Memory,
IN UINTN Pages
) ;
Parameters

Memory The base physical address of the pages to be freed. Type
EFI PHYSICAL ADDRESS is defined in the AllocatePages ()
function description.

Pages The number of contiguous 4 KB pages to free.
Description
The FreePages () function returns memory allocated by AllocatePages () to the firmware.
Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages ().

EFI_INVALID_PARAMETER | Memory is not a page-aligned address or Pages is invalid.

5-24 12/01/02 Version 1.10

intel

GetMemoryMap()
Summary

Services — Boot Services

Returns the current memory map.

Prototype

EFI_STATUS
GetMemoryMap (

IN OUT UINTN *MemoryMapSize,
IN OUT EFI_ MEMORY DESCRIPTOR *MemoryMap,
OUT UINTN *MapKey,
OUT UINTN *DescriptorSize,
OUT UINT32 *DescriptorVersion
)i
Parameters
MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On
input, this is the size of the buffer allocated by the caller. On
output, it is the size of the buffer returned by the firmware if the
buffer was large enough, or the size of the buffer needed to contain
the map if the buffer was too small.
MemoryMap A pointer to the buffer in which firmware places the current
memory map. The map is an array of
EFI_MEMORY DESCRIPTORs. See “Related Definitions.”
MapKey A pointer to the location in which firmware returns the key for the
current memory map.
DescriptorSize A pointer to the location in which firmware returns the size, in

DescriptorVersion

Version 1.10

bytes, of an individual EFI_MEMORY DESCRIPTOR.

A pointer to the location in which firmware returns the version
number associated with the EFI_MEMORY DESCRIPTOR. See
“Related Definitions.”

12/01/02 5-25

Extensible Firmware Interface Specification

Related Definitions

//***

//EFI_MEMORY DESCRIPTOR
[/ KxhRkEdkhkkkkkkkkhkkkhhhkhhkkhkhkhkhkhhkkhhkkkdkhhdkhkkkkkk

typedef struct {
UINT32

EFI PHYSICAL ADDRESS

EFI VIRTUAL ADDRESS
UINT64
UINT64

Type;
PhysicalStart;
VirtualStart;
NumberOfPages;
Attribute;

} EFI_MEMORY DESCRIPTOR;

Type

PhysicalStart

VirtualStart

NumberOfPages
Attribute

Type of the memory region. Type EFI_MEMORY TYPE is
defined in the AllocatePages () function description.

Physical address of the first byte in the memory region. Physical
start must be aligned on a 4 KB boundary. Type
EFI_PHYSICAL ADDRESS is defined in the
AllocatePages () function description.

Virtual address of the first byte in the memory region. Virtual start
must be aligned on a 4 KB boundary. Type
EFI_VIRTUAL ADDRESS is defined in “Related Definitions.”

Number of 4 KB pages in the memory region.

Attributes of the memory region that describe the bit mask of
capabilities for that memory region, and not necessarily the current
settings for that memory region. See the following “Memory
Attribute Definitions.”

//***

// Memory Attribute Definitions
//***

// These types can be “ORed” together as needed.

#define EFI MEMORY UC 0x0000000000000001
#define EFI_ MEMORY WC 0x0000000000000002
#define EFI MEMORY WT 0x0000000000000004
#define EFI_ MEMORY WB 0x0000000000000008
#define EFI_MEMORY UCE 0x0000000000000010
#define EFI_ MEMORY WP 0x0000000000001000
#define EFI_ MEMORY RP 0x0000000000002000
#define EFI_MEMORY XP 0x0000000000004000
#define EFI_MEMORY RUNTIME 0x8000000000000000

12/01/02 Version 1.10

EFI_MEMORY UC

EFI_MEMORY WC

EFI_MEMORY WT

EFI_MEMORY WB

EFI MEMORY UCE

EFI_MEMORY WP

EFI_MEMORY RP

EFI_MEMORY XP

EFI MEMORY RUNTIME

Services — Boot Services

Memory cacheability attribute: The memory region supports
being configured as not cacheable.

Memory cacheability attribute: The memory region supports
being configured as write combining.

Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write through” policy.
Writes that hit in the cache will also be written to main memory.
Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write back” policy. Reads
and writes that hit in the cache do not propagate to main memory.
Dirty data is written back to main memory when a new cache line
is allocated.

Memory cacheability attribute: The memory region supports
being configured as not cacheable, exported, and supports the
“fetch and add” semaphore mechanism.

Physical memory protection attribute: The memory region
supports being configured as write-protected by system hardware.

Physical memory protection attribute: The memory region
supports being configured as read-protected by system hardware.

Physical memory protection attribute: The memory region
supports being configured so it is protected by system hardware
from executing code.

Runtime memory attribute: The memory region needs to be given
a virtual mapping by the operating system when
SetVirtualAddressMap () is called (described in

Chapter 6).

//***

//EFI_VIRTUAL ADDRESS

//***

typedef UINT64

EFI VIRTUAL ADDRESS;

//***

// Memory Descriptor Version Number
//***

#define EFI_MEMORY DESCRIPTOR VERSION 1

Version 1.10

12/01/02 5-27

-
Extensible Firmware Interface Specification Intel

5-28

Description

The GetMemoryMap () function returns a copy of the current memory map. The map is an array
of memory descriptors, each of which describes a contiguous block of memory. The map describes
all of memory, no matter how it is being used. That is, it includes blocks allocated by
AllocatePages () and AllocatePool (), as well as blocks that the firmware is using for its
own purposes. The memory map is only used to describe memory that is present in the system.
Memory descriptors are never used to describe holes in the system memory map.

Until ExitBootServices () is called, the memory map is owned by the firmware and the
currently executing EFI Image should only use memory pages it has explicitly allocated.

If the MemoryMap buffer is too small, the EFI_BUFFER TOO SMALL error code is returned and
the MemoryMapSi ze value contains the size of the buffer needed to contain the current

memory map.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is
changed every time something in the memory map changes. In order to successfully invoke
ExitBootServices () the caller must provide the current memory map key.

The GetMemoryMap () function also returns the size and revision number of the

EFI_MEMORY DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY DESCRIPTOR array element returned in MemoryMap. The size is returned to
allow for future expansion of the EFI_MEMORY DESCRIPTOR in response to hardware
innovation. The structure of the EFI_MEMORY DESCRIPTOR may be extended in the future but
it will remain backwards compatible with the current definition. Thus OS software must use the
DescriptorsSize to find the start of each EFI_MEMORY DESCRIPTOR inthe MemoryMap
array.

Status Codes Returned

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL | The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER | One of the parameters has an invalid value.

12/01/02 Version 1.10

in
tel' Services — Boot Services

AllocatePool()
Summary

Allocates pool memory.

Prototype

EFI_STATUS
AllocatePool (

IN EFI MEMORY TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
)i
Parameters
PoolType The type of pool to allocate. Type EFI_MEMORY TYPE is defined in

the AllocatePages () function description. PoolType values in
the range 0x80000000..0xFFFFFFFF are reserved for use by EFI OS
loaders that are provided by operating system vendors. The only illegal
memory type values are those in the range
EfiMaxMemoryType..0x7FFFFFFF.

Size The number of bytes to allocate from the pool.
Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.
Description

The AllocatePool () function allocates a memory region of Size bytes from memory of type
PoolType and returns the address of the allocated memory in the location referenced by Buf fer.
This function allocates pages from EfiConventionalMemory as needed to grow the requested
pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the FreePool () function.
Status Codes Returned
EFI_SUCCESS The requested number of bytes was allocated.
EFI_OUT_OF_RESOURCES | The pool requested could not be allocated.
EFI_INVALID_PARAMETER PoolType was invalid.

Version 1.10 12/01/02 5-29

-
Extensible Firmware Interface Specification Intel

FreePool()
Summary

Returns pool memory to the system.
Prototype
EFI_STATUS
FreePool (
IN VOID *Buffer
);
Parameters
Buffer Pointer to the buffer to free.
Description

The FreePool () function returns the memory specified by Buffer to the system. On return,
the memory’s type is EfiConventionalMemory. The Buf fer that is freed must have been
allocated by AllocatePool ().

Status Codes Returned

EFI_SUCCESS The memory was returned to the system.
EFI_INVALID_PARAMETER | Buffer was invalid.

5-30 12/01/02 Version 1.10

in
tel' Services — Boot Services

5.3 Protocol Handler Services

In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a Protocol
Interface structure. The structure contains the functions and instance data that are used to access a
device. The functions that make up Protocol Handler Services allow applications to install a
protocol on a handle, identify the handles that support a given protocol, determine whether a handle
supports a given protocol, and so forth. See Table 5-7.

Table 5-7. Protocol Interface Functions

Name Type Description

InstallProtocollnterface Boot Installs a protocol interface on a device handle.

UninstallProtocollnterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolInterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified
protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

LocateDevicePath Boot Locates all devices on a device path that support a

specified protocol and returns the handle to the device
that is closest to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocollnformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The

return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Boot Finds the first handle in the handle database the
supports the requested protocol.

InstallMultipleProtocolinterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolinterfaces Boot Uninstalls one or more protocol interfaces from a handle.

Version 1.10 12/01/02 5-31

-
Extensible Firmware Interface Specification Intel

The Protocol Handler boot services have been modified to take advantage of the information that is
now being tracked with the OpenProtocol () and CloseProtocol () boot services. Since
the usage of protocol interfaces is being tracked with these new boot services, it is now possible to
safely uninstall and reinstall protocol interfaces that are being consumed by EFI drivers.

As depicted in Figure 5-1, the firmware is responsible for maintaining a “data base” that shows
which protocols are attached to each device handle. (The figure depicts the “data base” as a linked
list, but the choice of data structure is implementation-dependent.) The “data base” is built
dynamically by calling the InstallProtocolInterface () function. Protocols can only be
installed by EFI drivers or the firmware itself. In the figure, a device handle (EFI_HANDLE) refers
to a list of one or more registered protocol interfaces for that handle. The first handle in the system
has four attached protocols, and the second handle has two attached protocols. Each attached
protocol is represented as a GUID/Interface pointer pair. The GUID is the name of the protocol,
and Interface points to a protocol instance. This data structure will typically contain a list of
interface functions, and some amount of instance data.

Access to devices is initiated by calling the HandleProtocol () function, which determines
whether a handle supports a given protocol. Ifit does, a pointer to the matching Protocol Interface
structure is returned.

When a protocol is added to the system, it may either be added to an existing device handle or it
may be added to create a new device handle. Figure 5-1 shows that protocol handlers are listed for
each device handle and that each protocol handler is logically an EFI driver.

First Handle ~—
Device Handle
v ¥ v ¥
GUID GUID GUID GUID
Interface Interface Interface Interface
Protocol Protocol Protocol Protocol
Interface Interface Interface Interface
Instance Instance Instance Instance
Data Data Data Data

| De'vice Handle |

v

GUID GUID
Interface Interface
Protocol Protocol
Interface Interface
Instance Instance
Data Data

OM13155

Figure 5-1. Device Handle to Protocol Handler Mapping

5-32 12/01/02 Version 1.10

in
tel' Services — Boot Services

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces
provides great flexibility. Layering makes it possible to add a new protocol that builds on a
device’s basic protocols. An example of this might be to layer on a SIMPLE TEXT OUTPUT
protocol support that would build on the handle’s underlying SERIAL IO protocol.

The ability to add new handles can be used to generate new devices as they are found, or even to
generate abstract devices. An example of this might be to add a multiplexing device that replaces
ConsoleOut with a virtual device that multiplexes the SIMPLE TEXT OUTPUT protocol onto
multiple underlying device handles.

5.3.1 Driver Model Boot Services

This section provides a detailed description of the new EFI boot services that are required by the
EFI Driver Model. These boot services are being added to reduce the size and complexity of the
bus drivers and device drivers. This, in turn, will reduce the amount of ROM space required by
drivers that are programmed into ROMs on adapters or into system FLASH, and reduce the
development and testing time required by driver writers.

These new services fall into two categories. The first group is used to track the usage of protocol
interfaces by different agents in the system. Protocol interfaces are stored in a handle database.
The handle database consists of a list of handles, and on each handle there is a list of one or more
protocol interfaces. The boot services InstallProtocolInterface(),
UninstallProtocolInterface (), and ReinstallProtocolInterface () are used
to add, remove, and replace protocol interfaces in the handle database. The boot service
HandleProtocol () isused to look up a protocol interface in the handle database. However,
agents that call HandleProtocol () are not tracked, so it is not safe to call
UninstallProtocolInterface () or ReinstallProtocolInterface () because an
agent may be using the protocol interface that is being removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To accomplish
this, each protocol interface includes a list of agents that are consuming the protocol interface.
Figure 5-2 shows an example handle database with these new agent lists. An agent consists of an
image handle, a controller handle, and some attributes. The image handle identifies the driver or
application that is consuming the protocol interface. The controller handle identifies the controller
that is consuming the protocol interface. Since a driver may manage more than one controller, the
combination of a driver's image handle and a controller's controller handle uniquely identifies the
agent that is consuming the protocol interface. The attributes show how the protocol interface is
being used.

Version 1.10 12/01/02 5-33

-
Extensible Firmware Interface Specification Intel

First Handle
\
Device Handle
7 7 o« o
GUID \ GUID \
< Interface Image Handle Interface Image Handle
Controller Handle Controller Handle
IF;nrt%trcf):gé Attributes Protocol Attributes
v Interface 7
instance | IMmage Handle Instance e
Controller Handle Data
Attributes
17
| Device Handle | Image Handle
@ Controller Handle
GUID Attributes
(Interface \
Protocol Image Handle
Interface Controller Handle
Instance Attrlbu+tes
Data
Image Handle
Controller Handle
\ Attributes

OM13156

Figure 5-2. Handle Database

In order to maintain these agent lists in the handle database, some new boot services are required.
These are OpenProtocol (), CloseProtocol (), and OpenProtocolInformation ().
OpenProtocol () adds elements to the list of agents consuming a protocol interface.
CloseProtocol () removes elements from the list of agents consuming a protocol interface,
and OpenProtocolInformation () retrieves the entire list of agents that are currently using a

protocol interface.

5-34 12/01/02 Version 1.10

in
tel' Services — Boot Services

The second group of boot services is used to deterministically connect and disconnect drivers to
controllers. The boot services in this group are ConnectController () and
DisconnectController (). These services take advantage of the new features of the handle
database along with the new protocols described in this document to manage the drivers and
controllers present in the system. ConnectController () uses a set of strict precedence rules
to find the best set of drivers for a controller. This provides a deterministic matching of drivers to
controllers with extensibility mechanisms for OEMs, IBVs, and IHVs.
DisconnectController () allows drivers to be disconnected from controllers in a controlled
manner, and by using the new features of the handle database it is possible to fail a disconnect
request because a protocol interface cannot be released at the time of the disconnect request.

The third group of boot services is designed to help simplify the implementation of drivers, and
produce drivers with smaller executable footprints. The LocateHandleBuffer () is a new
version of LocateHandle () that allocates the required buffer for the caller. This eliminates two
calls to LocateHandle () and a call to AllocatePool () from the caller's code.
LocateProtocol () searches the handle database for the first protocol instance that matches the
search criteria. The InstallMultipleProtocolInterfaces () and
UninstallMutipleProtocolInterfaces () are very useful to driver writers. These boot
services allow one or more protocol interfaces to be added or removed from a handle. In addition,
InstallMultipleProtocolInterfaces () guarantees that a duplicate device path is
never added to the handle database. This is very useful to bus drivers that can create one child
handle at a time, because it guarantees that the bus driver will not inadvertently create two instances
of the same child handle.

Version 1.10 12/01/02 5-35

-
Extensible Firmware Interface Specification Intel

InstallProtocolinterface()

5-36

Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created and added
to the list of handles in the system.

Prototype

EFI STATUS

InstallProtocolInterface (

IN OUT EFI HANDLE *Handle,
IN EFI GUID *Protocol,
IN EFI INTERFACE TYPE InterfaceType,
IN VOID *Interface
)i
Parameters
Handle A pointer to the EFI_HANDLE on which the interface is to be installed.

Protocol

InterfaceType

Interface

If *Handle is NULL on input, a new handle is created and returned on
output. If *Handle is not NULL on input, the protocol is added to the
handle, and the handle is returned unmodified. The type EFI HANDLE
is defined in “Related Definitions.” If *Handle is not a valid handle,
then EFI_INVALID PARAMETER is returned.

The numeric ID of the protocol interface. The type EFI_GUID is
defined in “Related Definitions.” It is the callers responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values.

Indicates whether Tnterface is supplied in native form. This value
indicates the original execution environment of the request. See
“Related Definitions.”

A pointer to the protocol interface. The ITnterface must adhere to the
structure defined by Protocol. NULL can be used if a structure is not
associated with Protocol.

12/01/02 Version 1.10

In

tel

Related Definitions

//***

//EFI HANDLE
[/ KxhRkEdkhkkkkkkkkhkkkhhhkhhkkhkhkhkhkhhkkhhkkkdkhhdkhkkkkkk

typedef VOID *EFI HANDLE;

//***

//EFI_GUID
//***
typedef struct {

UINT32 Datal;

UINT1l6 Data2;

UINT16 Data3;

UINTS8 Data4 [8];
} EFI_GUID;

//***

//EFI_INTERFACE_TYPE
//***
typedef enum {

EFI NATIVE INTERFACE
} EFI INTERFACE TYPE;

Description

Services — Boot Services

The InstallProtocolInterface () function installs a protocol interface (a GUID/Protocol
Interface structure pair) on a device handle. The same GUID cannot be installed more than once
onto the same handle. If the same GUID is installed more than once onto the same handle, then the

results are not predictable.

Installing a protocol interface allows other components to locate the Hand1e, and the interfaces

installed on it. A protocol interface is always installed at the head of the device handle’s queue.

When a protocol interface is installed, the firmware calls all notification functions that have

registered to wait for the installation of Protocol. For more information, see the
RegisterProtocolNotify () function description.

Status Codes Returned

EFI_SUCCESS The protocol interface was installed.
EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.
EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Version 1.10 12/01/02

5-37

-
Extensible Firmware Interface Specification Intel

UninstallProtocolinterface()
Summary

Removes a protocol interface from a device handle.

Prototype
typedef
EFI_STATUS
UninstallProtocolInterface (
IN EFI HANDLE Handle,

IN EFI_GUID *Protocol,
IN VOID *Interface
)
Parameters
Handle The handle on which the interface was installed. If HandIeis nota

valid handle, then EFI_INVALID PARAMETER is returned. Type
EFI_ HANDLE is defined in the InstallProtocolInterface ()
function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface () function description.

Interface A pointer to the interface. NULL can be used if a structure is not
associated with Protocol.

Description

The UninstallProtocolInterface () function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has
been removed. In some cases, outstanding reference information is not available in the protocol, so
the protocol, once added, cannot be removed. Examples include Console I/O, Block 1/0, Disk /O,
and (in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.
EFI1 1.10 Extension

The extension to this service directly addresses the limitations described in the section above.

There may be some drivers that are currently consuming the protocol interface that needs to be
uninstalled, so it may be dangerous to just blindly remove a protocol interface from the system.
Since the usage of protocol interfaces is now being tracked for components that use the
OpenProtocol () and CloseProtocol () boot services, a safe version of this function can be
implemented. Before the protocol interface is removed, an attempt is made to force all the drivers
that are consuming the protocol interface to stop consuming that protocol interface. This is done by
looping through all the drivers that currently have the protocol interface open with an attribute of
EFI OPEN PROTOCOL BY DRIVER or EFI OPEN PROTOCOL BY DRIVER |

5-38 12/01/02 Version 1.10

in
tel' Services — Boot Services

EFI OPEN PROTOCOL EXCLUSIVE and calling the boot service

DisconnectController () for each of them. If the disconnect succeeds, then those agents
will have called the boot service CloseProtocol () to release the protocol interface. Lastly, all
of the agents that have the protocol interface open with an attribute of

EFI_OPEN PROTOCOL BY HANDLE PROTOCOL,

EFI_OPEN PROTOCOL GET PROTOCOL, or EFI_OPEN PROTOCOL TEST PROTOCOL are
closed. If there are any agents remaining that still have the protocol interface open, the protocol
interface is not removed from the handle and EFI_ACCESS DENIED is returned. In addition, all
of the drivers that were disconnected with the boot service DisconnectController () earlier,
are reconnected with the boot service ConnectController (). If there are no agents remaining
that are consuming the protocol interface, then the protocol interface is removed from the handle as
described above.

Status Codes Returned

EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface
is still being used by a driver.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Version 1.10 12/01/02 5-39

-
Extensible Firmware Interface Specification Intel

ReinstallProtocolinterface()

5-40

Summary

Reinstalls a protocol interface on a device handle.

Prototype

typedef

EFI_STATUS

ReinstallProtocolInterface (
IN EFI HANDLE Handle,

IN EFI_GUID *Protocol,
IN VOID *OldInterface,
IN VOID *NewInterface
)i
Parameters
Handle Handle on which the interface is to be reinstalled. If Handle is not a

valid handle, then EFI INVALID PARAMETER is returned. Type
EFI_ HANDLE is defined in the InstallProtocolInterface ()
function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface () function description.

OldInterface A pointer to the old interface. NULL can be used if a structure is not
associated with Protocol.

NewInterface A pointer to the new interface. NULL can be used if a structure is not
associated with Protocol.

Description

The ReinstallProtocolInterface () function reinstalls a protocol interface on a device
handle. The Ol1dInterface for Protocol is replaced by the NewInterface.
NewInterface may be the same as OldInterface. Ifitis, the registered protocol notifies
occur for the handle without replacing the interface on the handle.

As with InstallProtocolInterface (), any process that has registered to wait for the
installation of the interface is notified.

The caller is responsible for ensuring that there are no references to the 0O1dInterface thatis
being removed.

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above.

There may be some number of drivers currently consuming the protocol interface that is being
reinstalled. In this case, it may be dangerous to replace a protocol interface in the system. It could
result in an unstable state, because a driver may attempt to use the old protocol interface after a new
one has been reinstalled. Since the usage of protocol interfaces is now being tracked for

12/01/02 Version 1.10

tel' Services — Boot Services

components that use the OpenProtocol () and CloseProtocol () boot services, a safe
version of this function can be implemented.

When this function is called, a call is first made to the boot service
UninstallProtocolInterface (). This will guarantee that all of the agents are currently
consuming the protocol interface O1dInterface will stop using OldInterface. If
UninstallProtocolInterface () returns EFI_ACCESS DENIED, then this function
returns EFI_ACCESS DENIED, OldInterface remains on Handle, and the protocol notifies
are not processed because NewInterface was never installed.

If UninstallProtocolInterface () succeeds, then a call is made to the boot service
InstallProtocolInterface () to putthe NewInterface onto Handle.

Finally, the boot service ConnectController () is called so all agents that were forced to
release OldInterface with UninstallProtocolInterface () can now consume the
protocol interface NewInterface that was installed with InstallProtocolInterface ().
After O1dInterface has been replaced with NewInterface, any process that has registered
to wait for the installation of the interface is notified.

Status Codes Returned

EFI_SUCCESS The protocol interface was reinstalled.
EFI_NOT_FOUND The O1ldInterface on the handle was not found.
EFI_ACCESS_DENIED The protocol interface could not be reinstalled,

because OldInterfaceis still being used by a
driver that will not release it.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Version 1.10 12/01/02 5-41

-
Extensible Firmware Interface Specification Intel

RegisterProtocolNotify()
Summary

Creates an event that is to be signaled whenever an interface is installed for a specified protocol.

Prototype

EFI_STATUS
RegisterProtocolNotify (

IN EFI GUID *Protocol,
IN EFI EVENT Event,
OUT VOID **Registration
);
Parameters
Protocol The numeric ID of the protocol for which the event is to be registered.

Type EFI_GUID is defined in the
InstallProtocolInterface () function description.

Event Event that is to be signaled whenever a protocol interface is registered
for Protocol. The type EFI_EVENT is defined in the
InstallProtocolInterface () function description. The same
EFI_EVENT may be used for multiple protocol notify registrations.

Registration A pointer to a memory location to receive the registration value. This
value must be saved and used by the notification function of Event to
retrieve the list of handles that have added a protocol interface of type
Protocol.

Description

The RegisterProtocolNotify () function creates an event that is to be signaled whenever a
protocol interface is installed for Protocol by InstallProtocolInterface() or
ReinstallProtocolInterface ().

Once Event has been signaled, the LocateHandle () function can be called to identify the
newly installed, or reinstalled, handles that support Protocol. The Registration parameter
in RegisterProtocolNotify () corresponds to the SearchKey parameter in
LocateHandle (). Note that the same handle may be returned multiple times if the handle
reinstalls the target protocol ID multiple times. This is typical for removable media devices,
because when such a device reappears, it will reinstall the Block I/O protocol to indicate that the
device needs to be checked again. In response, layered Disk I/O and Simple File System protocols
may then reinstall their protocols to indicate that they can be re-checked, and so forth.

Status Codes Returned

EFI_SUCCESS The notification event has been registered.
EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.
EFI_INVALID_PARAMETER One of the parameters has an invalid value.

5-42 12/01/02 Version 1.10

in
tel' Services — Boot Services

LocateHandle()
Summary

Returns an array of handles that support a specified protocol.
Prototype
EFI_STATUS

LocateHandle (
IN EFI LOCATE SEARCH TYPE SearchType,

IN EFI GUID *Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *BufferSize,
OUT EFI HANDLE *Buffer
)i
Parameters
SearchType Specifies which handle(s) are to be returned. Type

EFI_LOCATE SEARCH TYPE is defined in “Related Definitions.”

Protocol Specifies the protocol to search by. This parameter is only valid if
SearchType is ByProtocol. Type EFI_GUID is defined in the
InstallProtocolInterface () function description.

SearchKey Specifies the search key. This parameter is ignored if SearchType is
AllHandles or ByProtocol. If SearchType is
ByRegisterNotify, the parameter must be the Registration
value returned by function RegisterProtocolNotify ().

BufferSize On input, the size in bytes of Buffer. On output, the size in bytes of
the array returned in Buf fer (if the buffer was large enough) or the
size, in bytes, of the buffer needed to obtain the array (if the buffer was
not large enough).

Buffer The buffer in which the array is returned. Type EFI_HANDLE is
defined in the InstallProtocolInterface () function
description.

Version 1.10 12/01/02 5-43

-
Extensible Firmware Interface Specification Intel

Related Definitions

//***

// EFI_LOCATE SEARCH TYPE
//***

typedef enum {
AllHandles,
ByRegisterNotify,
ByProtocol

} EFI LOCATE SEARCH TYPE;

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration value returned by
RegisterProtocolNotify (). The function returns the
next handle that is new for the registration. Only one handle is
returned at a time, and the caller must loop until no more handles
are returned. Protocol is ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.
Description

The LocateHandle () function returns an array of handles that match the SearchType
request. If the input value of BufferSize is too small, the function returns
EFI_BUFFER_TOO SMALL and updates BufferSize to the size of the buffer needed to obtain

the array.
Status Codes Returned

EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSizeis too small for the result.
BufferSize has been updated with the size needed to
complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

5-44 12/01/02 Version 1.10

in
tel' Services — Boot Services

HandleProtocol()
Summary

Queries a handle to determine if it supports a specified protocol.

Prototype

typedef
EFI_STATUS
HandleProtocol (
IN EFI HANDLE Handle,

IN EFI GUID *Protocol,
OUT VOID **Interface
)i
Parameters
Handle The handle being queried. If Handle is not a valid EFI_HANDLE, then

EFI INVALID PARAMETER is returned. Type EFI HANDLE is
defined in the InstallProtocolInterface () function
description.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For Management
Baseline” for a description of valid GUID values. Type EFI_GUID is
defined in the InstallProtocolInterface () function
description.

Interface Supplies the address where a pointer to the corresponding Protocol
Interface is returned. NULL will be returned in *Interfaceifa
structure is not associated with Protocol.

Description

The HandleProtocol () function queries Handle to determine if it supports Protocol. Ifit
does, then on return Interface points to a pointer to the corresponding Protocol Interface.
Interface can then be passed to any protocol service to identify the context of the request.

Version 1.10 12/01/02 5-45

Extensible Firmware Interface Specification

5-46

EFI 1.10 Extension

The HandleProtocol () function is still available for use by old EFI applications and drivers.
However, all new applications and drivers should use OpenProtocol () in place of
HandleProtocol (). The following code fragment shows a possible implementation of

HandleProtocol () using OpenProtocol (). The variable EfiCoreImageHandle is the
image handle of the EFI core.

EFI STATUS

HandleProtocol (

IN EFI HANDLE Handle,
IN EFI GUID *Protocol,
OUT VOID **Interface
‘)
return OpenProtocol (
Handle,
Protocol,
Interface,
EfiCoreImageHandle,
NULL,
EFI_OPEN PROTOCOL BY HANDLE PROTOCOL
) ;
}

Status Codes Returned

intel

EFI_SUCCESS

The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

12/01/02

Version 1.10

in
tel' Services — Boot Services

LocateDevicePath()

Summary
Locates the handle to a device on the device path that supports the specified protocol.
Prototype

EFI_STATUS
LocateDevicePath (

IN EFI GUID *Protocol,
IN OUT EFI DEVICE PATH **DevicePath,
OUT EFI_HANDLE *Device
);
Parameters
Protocol The protocol to search for. Type EFI_GUID is defined in the

InstallProtocolInterface () function description.

DevicePath On input, a pointer to a pointer to the device path. On output, the device
path pointer is modified to point to the remaining part of the device
path—that is, when the function finds the closest handle, it splits the
device path into two parts, stripping off the front part, and returning the
remaining portion. Type EFI_DEVICE PATH is defined in “Related
Definitions.”

Device A pointer to the returned device handle. Type EFI_HANDLE is defined
in the InstallProtocolInterface () function description.

Related Definitions

//***

// EFI_DEVICE PATH
//***

typedef struct EFI DEVICE PATH {

UINTS Type;
UINTS SubType;
UINTS Length[2];

} EFI_DEVICE PATH;

Version 1.10 12/01/02 5-47

-
Extensible Firmware Interface Specification Intel

Description

The LocateDevicePath () function locates all devices on DevicePath that support
Protocol and returns the handle to the device that is closest to DevicePath. DevicePathis
advanced over the device path nodes that were matched.

This function is useful for locating the proper instance of a protocol interface to use from a logical
parent device driver. For example, a target device driver may issue the request with its own device
path and locate the interfaces to perform I/O on its bus. It can also be used with a device path that
contains a file path to strip off the file system portion of the device path, leaving the file path and
handle to the file system driver needed to access the file.

If the handle for DevicePath supports the protocol (a direct match), the resulting device path is
advanced to the device path terminator node.

Status Codes Returned

EFI_SUCCESS The resulting handle was returned.
EFI_NOT_FOUND No handles matched the search.
EFI_INVALID_PARAMETER One of the parameters has an invalid value.

5-48 12/01/02 Version 1.10

in
tel' Services — Boot Services

OpenProtocol()

Summary

Queries a handle to determine if it supports a specified protocol. If the protocol is supported by the
handle, it opens the protocol on behalf of the calling agent. This is an extended version of the EFI
boot service HandleProtocol ().

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI OPEN PROTOCOL) (

IN EFI HANDLE Handle,
IN EFI GUID *Protocol,
OUT VOID **Interface OPTIONAL,
IN EFI HANDLE AgentHandle,
IN EFI HANDLE ControllerHandle,
IN TUINT32 Attributes
)i
Parameters
Handle The handle for the protocol interface that is being opened.
Protocol The published unique identifier of the protocol. It is the callers

responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

Interface Supplies the address where a pointer to the corresponding
Protocol Interface is returned. NULL will be returned in
*Interface if a structure is not associated with Protocol.
This parameter is optional, and will be ignored if At tributes
is EFI OPEN PROTOCOL TEST PROTOCOL.

AgentHandle The handle of the agent that is opening the protocol interface
specified by Protocol and Interface. For agents that
follow the EFI Driver Model, this parameter is the handle that
contains the EFI_DRIVER BINDING PROTOCOL instance
that is produced by the EFI Driver that is opening the protocol
interface. For EFI Applications, this is the image handle of the
EFI Application that is opening the protocol interface. For EFI
Applications that use HandleProtocol () to open a protocol
interface, this parameter is the image handle of the EFI firmware.

Version 1.10 12/01/02 5-49

-
Extensible Firmware Interface Specification Intel

5-50

ControllerHandle If the agent that is opening a protocol is a driver that follows the
EFI Driver Model, then this parameter is the controller handle
that requires the protocol interface. If the agent does not follow
the EFI Driver Model, then this parameter is optional and may

be NULL.

Attributes The open mode of the protocol interface specified by Handle
and Protocol. See "Related Definitions" for the list of legal
attributes.

Description

This function opens a protocol interface on the handle specified by HandIe for the protocol
specified by Protocol. The first three parameters are the same as HandleProtocol (). The
only difference is that the agent that is opening a protocol interface is tracked in EFI's internal
handle database. The tracking is used by the EFI Driver Model, and also used to determine if it is
safe to uninstall or reinstall a protocol interface.

The agent that is opening the protocol interface is specified by AgentHandle,
ControllerHandle, and Attributes. If the protocol interface can be opened, then
AgentHandle, ControllerHandle, and Attributes are added to the list of agents that
are consuming the protocol interface specified by Handle and Protocol. In addition, the
protocol interface is returned in Interface, and EFI_SUCCESS is returned. If Attributes
is TEST PROTOCOL, then Interface is optional, and can be NULL.

There are a number of reasons that this function call can return an error. If an error is returned, then
AgentHandle, ControllerHandle, and Attributes are not added to the list of agents
consuming the protocol interface specified by Handle and Protocol, and Interface s
returned unmodified. The following is the list of conditions that must be checked before this
function can return EFI_SUCCESS.

If Protocol is NULL, then EFI_INVALID PARAMETER is returned.

If Interfaceis NULL and Attributes is not TEST PROTOCOL, then
EFI_INVALID PARAMETER is returned.

If Handle is not a valid EFI_HANDLE, then EFI_INVALID PARAMETER is returned.

If Handle does not support Protocol, then EFI_UNSUPPORTED is returned.

If Attributes is not a legal value, then EFI_INVALID PARAMETER is returned. The legal
values are listed in “Related Definitions.”

If Attributesis BY CHILD CONTROLLER,BY DRIVER, EXCLUSIVE, or

BY DRIVER|EXCULSIVE, and AgentHandle is not a valid EFI_HANDLE, then

EFI INVALID PARAMETER is returned.

If Attributesis BY CHILD CONTROLLER, BY DRIVER, or BY DRIVER | EXCULSIVE,
and ControllerHandleis nota valid EFI_HANDLE, then EFI_INVALID PARAMETER
is returned.

If Attributesis BY CHILD CONTROLLER and Handle is identical to
ControllerHandle,then EFI _INVALID PARAMETER is returned.

12/01/02 Version 1.10

in
tel' Services — Boot Services

If Attributesis BY DRIVER,BY DRIVER|EXCLUSIVE, or EXCLUSIVE, and there are any
items on the open list of the protocol interface with an attribute of EXCLUSIVE or
BY DRIVER|EXCLUSIVE, then EFI_ACCESS DENIED is returned

If Attributesis BY DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY DRIVER, and AgentHandle is the same agent handle in the open list
item, then EFI_ALREADY STARTED is returned.

If Attributes is BY DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY DRIVER, and AgentHandle is different than the agent handle in the
open list item, then EFI_ACCESS DENIED is returned.

If Attributes is BY DRIVER |EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY DRIVER | EXCLUSIVE, and AgentHandle is the
same agent handle in the open list item, then EFI_ALREADY STARTED is returned

If Attributesis BY DRIVER |EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY DRIVER | EXCLUSIVE, and AgentHandle is different
than the agent handle in the open list item, then EFI_ACCESS DENIED is returned.

If Attributesis BY DRIVER |EXCLUSIVE or EXCLUSIVE, and there are any items on
the open list of the protocol interface with an attribute of BY DRIVER, then the boot service
DisconnectController () is called for each of these drivers on the open list. If there are
any items in the open list of the protocol interface with an attribute of BY DRIVER remaining
after all the DisconnectController () calls have been made, EFI_ACCESS DENIED
is returned.

Related Definitions
#define EF I_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001

#define EFI_OPEN PROTOCOL GET PROTOCOL 0x00000002
#define EFI OPEN PROTOCOL TEST PROTOCOL 0x00000004
#define EFI_OPEN PROTOCOL BY CHILD CONTROLLER 0x00000008
#define EFI_OPEN PROTOCOL BY DRIVER 0x00000010
#define EFI OPEN PROTOCOL EXCLUSIVE 0x00000020

The following is the list of legal values for the At tributes parameter, and how each value is
used.

BY HANDLE PROTOCOL Used in the implementation of HandleProtocol (). Since
OpenProtocol () performs the same function as
HandleProtocol () with additional functionality,
HandleProtocol () can simply call OpenProtocol ()
with this At tributes value.

GET PROTOCOL Used by a driver to get a protocol interface from a handle. Care
must be taken when using this open mode because the driver that
opens a protocol interface in this manner will not be informed if
the protocol interface is uninstalled or reinstalled. The caller is
also not required to close the protocol interface with
CloseProtocol ().

Version 1.10 12/01/02 5-51

-
Extensible Firmware Interface Specification Intel

TEST PROTOCOL

BY CHILD CONTROLLER

BY DRIVER

BY DRIVER|EXCLUSIVE

EXCLUSIVE

Status Codes Returned

Used by a driver to test for the existence of a protocol interface
on a handle. Interface is optional for this attribute value, so
it is ignored, and the caller should only use the return status
code. The caller is also not required to close the protocol
interface with CloseProtocol ().

Used by bus drivers to show that a protocol interface is being
used by one of the child controllers of a bus. This information is
used by the boot service ConnectController () to
recursively connect all child controllers and by the boot service
DisconnectController () to get the list of child
controllers that a bus driver created.

Used by a driver to gain access to a protocol interface. When
this mode is used, the driver’s Stop () function will be called
by DisconnectController () if the protocol interface is
reinstalled or uninstalled. Once a protocol interface is opened by
a driver with this attribute, no other drivers will be allowed to
open the same protocol interface with the BY DRIVER attribute.

Used by a driver to gain exclusive access to a protocol interface.
If any other drivers have the protocol interface opened with an
attribute of BY DRIVER, then an attempt will be made to
remove them with DisconnectController ().

Used by applications to gain exclusive access to a protocol
interface. If any drivers have the protocol interface opened with
an attribute of BY DRIVER, then an attempt will be made to
remove them by calling the driver’s Stop () function.

EFI_SUCCESS

An item was added to the open list for the protocol interface, and the
protocol interface was returned in Interface.

EFI_INVALID_PARAMETER

Protocol is NULL.

EFI_INVALID_PARAMETER

Interfaceis NULL,and Attributesis not
TEST PROTOCOL.

EFI_INVALID_PARAMETER

Handleis notavalid EFI_HANDLE.

EFI_UNSUPPORTED

Hand1e does not support Protocol.

EFI_INVALID_PARAMETER

Attributes is not alegal value.

EFI_INVALID_PARAMETER

Attributesis BY CHILD CONTROLLER and
AgentHandleis notavalid EFI_HANDLE.

EFI_INVALID_PARAMETER

Attributesis BY DRIVER and AgentHandleis not a valid
EFI HANDLE.

EFI_INVALID_PARAMETER

Attributesis BY DRIVER |EXCLUSIVE and
AgentHandleis notavalid EFI_HANDLE.

5-62

continued

12/01/02 Version 1.10

In

tel

Status Codes Returned (continued)

Services — Boot Services

EFI_INVALID_PARAMETER

Attributesis EXCLUSIVE and AgentHandle is not a valid
EFI HANDLE.

EFI_INVALID_PARAMETER

Attributesis BY CHILD CONTROLLER and
ControllerHandleisnotavalid EFI_HANDLE.

EFI_INVALID_PARAMETER

Attributesis BY DRIVER and ControllerHandleisnota
valid EFI HANDLE.

EFI_INVALID_PARAMETER

Attributesis BY DRIVER|EXCLUSIVE and
ControllerHandleis notavalid EFI_HANDLE.

EFI_INVALID_PARAMETER

Attributesis BY CHILD CONTROLLER and Handleis
identical to ControllerHandle.

EFI_ACCESS_DENIED

Attributesis BY DRIVER and there is an item on the open list
with an attribute of BY DRIVER | EXCLUSIVE or EXCLUSIVE.

EFI_ACCESS_DENIED

Attributesis BY DRIVER |EXCLUSIVE and there is an item
on the open list with an attribute of EXCLUSIVE.

EFI_ACCESS_DENIED

Attributesis EXCLUSIVE and there is an item on the open list
with an attribute of BY DRIVER | EXCLUSIVE or EXCLUSIVE.

EFI_ALREADY_STARTED

Attributesis BY DRIVER and there is an item on the open list
with an attribute of BY DRIVER whose agent handle is the same as
AgentHandle.

EFI_ACCESS_DENIED

Attributesis BY DRIVER and there is an item on the open list
with an attribute of BY DRIVER whose agent handle is different than
AgentHandle.

EFI_ALREADY_STARTED

Attributesis BY DRIVER |EXCLUSIVE and there is an item
on the open list with an attribute of BY DRIVER | EXCLUSIVE whose
agent handle is the same as AgentHandle.

EFI_ACCESS_DENIED

Attributesis BY DRIVER | EXCLUSIVE and there is an item
on the open list with an attribute of BY DRIVER | EXCLUSIVE whose
agent handle is different than AgentHandle.

EFI_ACCESS_DENIED

Attributesis BY DRIVER | EXCLSUIVE or EXCLUSIVE and
there are items in the open list with an attrioute of BY DRIVER that
could not be removed when DisconnectController () was
called for that open item.

Version 1.10

12/01/02 5-53

-
Extensible Firmware Interface Specification In e '

Examples
EFI_BOOT_SERVICES TABLE *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER BINDING PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI GUID gEfiXyzIoProtocol;
EFI_XYZ IO PROTOCOL *XyzIo;
EFI_STATUS Status;
//

// EFI_OPEN PROTOCOL BY HANDLE PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The application that is opening the protocol is identified by ImageHandle

// Possible return status codes:
// EFI SUCCESS : The protocol was opened and returned in XyzIo
// EFI_ UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (

ControllerHandle,

&gEfiXyzIoProtocol,

&XyzIo,

ImageHandle,

NULL,

EFI_OPEN PROTOCOL BY HANDLE PROTOCOL
)i

//

// EFI_OPEN PROTOCOL GET PROTOCOL example

// Retrieves the XYZ I/O Protocol instance from ControllerHandle

// The driver that is opening the protocol is identified by the

// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.

// Possible return status codes:

// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (

ControllerHandle,

&gEfiXyzIoProtocol,

&XyzIo,

This->DriverBindingHandle,

ControllerHandle,

EFI_OPEN_PROTOCOL GET_ PROTOCOL
)i

//

// EFI_OPEN PROTOCOL TEST PROTOCOL example

// Tests to see if the XYZ I/O Protocol is present on ControllerHandle
// The driver that is opening the protocol is identified by the

// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.

// EFI SUCCESS : The protocol was opened and returned in XyzIo
// EFI UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (

ControllerHandle,

&gEfiXyzIoProtocol,

5-54 12/01/02 Version 1.10

intel

//
//
/7
//
//
//
//
/7
//
//
//
/7
//

Services — Boot Services

NULL,
This->DriverBindingHandle,
ControllerHandle,

EFI_OPEN_ PROTOCOL_TEST_ PROTOCOL
)

EFI_OPEN PROTOCOL BY DRIVER example

Opens the XYZ I/O Protocol on ControllerHandle

The driver that is opening the protocol is identified by the

Driver Binding Protocol instance This. This->DriverBindingHandle

identifies the agent that is opening the protocol interface, and it

is opening this protocol on behalf of ControllerHandle.

Possible return status codes:
EFI SUCCESS The protocol was opened and returned in XyzIo
EFI UNSUPPORTED The protocol is not present on ControllerHandle
EFI ALREADY STARTED The protocol is already opened by the driver
EFI_ACCESS_DENIED The protocol is managed by a different driver

Status = gBS->OpenProtocol (

//
//
/7
//
//
//
/7
/7
//
//
/7
/7
/7
/7
/7
/7
/!
//

ControllerHandle,
&gEfiXyzIoProtocol,

&XyzIo,
This->DriverBindingHandle,
ControllerHandle,

EFI_OPEN PROTOCOL BY DRIVER
)

EFI_OPEN PROTOCOL BY DRIVER | EFI_OPEN PROTOCOL EXCLUSIVE example

Opens the XYZ I/O Protocol on ControllerHandle
The driver that is opening the protocol is identified by the
Driver Binding Protocol instance This. This->DriverBindingHandle
identifies the agent that is opening the protocol interface, and it
is opening this protocol on behalf of ControllerHandle.
Possible return status codes:
EFI_ SUCCESS : The protocol was opened and returned in XyzIo. If
a different driver had the XYZ I/O Protocol opened
BY DRIVER, then that driver was disconnected to
allow this driver to open the XYZ I/O Protocol.
EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
EFI_ALREADY STARTED : The protocol is already opened by the driver
EFI_ACCESS DENIED : The protocol is managed by a different driver that
already has the protocol opened with an EXCLUSIVE
attribute.

Status = gBS->OpenProtocol (

Version 1.10

ControllerHandle,

&gEfiXyzIoProtocol,

&XyzTo,

This->DriverBindingHandle,

ControllerHandle,

EFI_OPEN PROTOCOL BY DRIVER | EFI OPEN PROTOCOL EXCLUSIVE
)

12/01/02 5-55

-
Extensible Firmware Interface Specification Intel

CloseProtocol()

5-56

Summary

Closes a protocol on a handle that was opened using OpenProtocol ().

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI CLOSE PROTOCOL) (

IN EFI_HANDLE
IN EFI_GUID
IN EFI HANDLE
IN EFI_HANDLE
)

Parameters

Handle

Protocol

AgentHandle

ControllerHandle

Handle,
*Protocol,
AgentHandle,
ControllerHandle

The handle for the protocol interface that was previously opened
with OpenProtocol (), and is now being closed.

The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

The handle of the agent that is closing the protocol interface.
For agents that follow the EFI Driver Model, this parameter is
the handle that contains the

EFI_DRIVER BINDING PROTOCOL instance that is
produced by the EFI Driver that is opening the protocol
interface. For EFI Applications, this is the image handle of the
EFI Application. For EFI Applications that used
HandleProtocol () to open the protocol interface, this will
be the image handle of the EFI firmware.

If the agent that opened a protocol is a driver that follows the
EFI Driver Model, then this parameter is the controller handle
that required the protocol interface. If the agent does not follow
the EFI Driver Model, then this parameter is optional and may
be NULL.

12/01/02 Version 1.10

in
tel' Services — Boot Services

Description

This function updates the handle database to show that the protocol instance specified by Handle
and Protocol is no longer required by the agent and controller specified AgentHandle and
ControllerHandle.

If Handle or AgentHandle 1s not a valid EFI HANDLE, then EFI INVALID PARAMETER
is returned. If ControllerHandle is not NULL, and ControllerHandle is not a valid
EFI HANDLE, then EFI INVALID PARAMETER is returned. If Protocol is NULL, then
EFI_INVALID PARAMETER is returned.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then a
check is made to see if the protocol instance specified by Protocol and Handle was opened by
AgentHandle and ControllerHandle with OpenProtocol (). If the protocol instance
was not opened by AgentHandle and ControllerHandle, then EFI_NOT FOUND is
returned. If the protocol instance was opened by AgentHandle and ControllerHandle,
then all of those references are removed from the handle database, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The protocol instance was closed.

EFI_INVALID_PARAMETER Handleis notavalid EFI_HANDLE.

EFI_INVALID_PARAMETER AgentHandleis notavalid EFI_HANDLE.

EFI_INVALID_PARAMETER ControllerHandleis not NULL and ControllerHandleis
not avalid EFI HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.
EFI_NOT_FOUND Hand1e does not support the protocol specified by Protocol.

EFI_NOT_FOUND The protocol interface specified by Handle and Protocol is not
currently open by AgentHandle and ControllerHandle.

Version 1.10 12/01/02 5-57

-
Extensible Firmware Interface Specification Intel

Examples

EFI_BOOT_SERVICES TABLE *gBS;

EFI_HANDLE ImageHandle;
EFI_DRIVER BINDING PROTOCOL *This;

IN EFI_HANDLE ControllerHandle,
extern EFI GUID gEfiXyzIoProtocol;
EFI_STATUS Status;

//
// Close the XYZ I/O Protocol that was opened on behalf of ControllerHandle
//
Status = gBS->CloseProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
This->DriverBindingHandle,
ControllerHandle

)i

//
// Close the XYZ I/O Protocol that was opened with BY HANDLE PROTOCOL
//
Status = gBS->CloseProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
ImageHandle,
NULL
)i

5-58 12/01/02 Version 1.10

intel

OpenProtocolinformation()

Summary

Services — Boot Services

Retrieves the list of agents that currently have a protocol interface opened.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI OPEN PROTOCOL INFORMATION) (

IN EFI HANDLE
IN EFI GUID

Handle,
*Protocol,

OUT EFI OPEN PROTOCOL INFORMATION ENTRY **EntryBuffer,

OUT UINTN
) ;
Parameters

Handle

Protocol

EntryBuffer

EntryCount

Related Definitions

typedef struct {
EFI HANDLE
EFI HANDLE
UINT32
UINT32

*EntryCount

The handle for the protocol interface that is being queried.

The published unique identifier of the protocol. It is the callers
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

A pointer to a buffer of open protocol information in the form of
EFI OPEN PROTOCOL INFORMATION ENTRY structures.
See "Related Definitions" for the declaration of this type. The
buffer is allocated by this service, and it is the caller's
responsibility to free this buffer when the caller no longer
requires the buffer's contents.

A pointer to the number of entries in EntryBuffer.

AgentHandle;
ControllerHandle;
Attributes;
OpenCount;

} EFI_OPEN PROTOCOL INFORMATION ENTRY;

Version 1.10

12/01/02 5-59

-
Extensible Firmware Interface Specification Intel

Description

This function allocates and returns a buffer of EFI_OPEN PROTOCOL INFORMATION ENTRY
structures. The buffer is returned in Ent ryBuf fer, and the number of entries is returned in
EntryCount.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Hand1e, then
EntryBuf fer is allocated with the boot service AllocatePool (), and EntryCount is set
to the number of entries in EntryBuffer. Each entry of EntryBuffer is filled in with the
image handle, controller handle, and attributes that were passed to OpenProtocol () when the
protocol interface was opened. The field OpenCount shows the number of times that the protocol
interface has been opened by the agent specified by ImageHandle, ControllerHandle, and
Attributes. After the contents of EntryBuffer have been filled in, EFI_SUCCESS is
returned. It is the caller’s responsibility to call FreePool () on EntryBuffer when the caller
no longer required the contents of EntryBuffer.

If there are not enough resources available to allocate Ent ryBuf fer, then
EFI_OUT OF RESOURCES is returned.

Status Codes Returned

5-60

EFI_SUCCESS The open protocol information was returned in Ent ryBuffer, and the
number of entries was returned Ent ryCount.

EFI_NOT_FOUND Hand1 e does not support the protocol specified by Protocol.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate EntryBuffer.

Examples

See example in the LocateHandleBuffer () function description for an example on how
LocateHandleBuffer (), ProtocolsPerHandle (), OpenProtocol (), and
OpenProtocolInformation () can be used to traverse the entire handle database.

12/01/02 Version 1.10

in
tel' Services — Boot Services

ConnectController()

Summary
Connects one or more drivers to a controller.
Prototype
typedef
EFI STATUS
ConnectController (
IN EFI HANDLE ControllerHandle,
IN EFI HANDLE *DriverImageHandle OPTIONAL,
IN EFI DEVI CE_PATH_PROTOCOL *Rema iningDevi cePath OPTIONAL,
IN BOOLEAN Recursive
) ;
Parameters
ControllerHandle The handle of the controller to which driver(s) are to be
connected.
DriverImageHandle A pointer to an ordered list of driver image handles. The list is

terminated by a NULL image handle. These driver image
handles are candidates for the driver(s) that will manage the
controller specified by ControllerHandle. This is an
optional parameter that may be NULL. This parameter is
typically used to debug new drivers.

RemainingDevicePath A pointer to the device path that specifies a child of the
controller specified by ControllerHandle. Thisis an
optional parameter that may be NULL. If it is NULL, then
handles for all the children of ControllerHandle will be
created. This parameter is passed unchanged to the
Supported () and Start () services of the
EFI DRIVER BINDING PROTOCOL attached to
ControllerHandle.

Recursive If TRUE, then ConnectController () is called recursively
until the entire tree of controllers below the controller specified
by ControllerHandle have been created. If FALSE, then
the tree of controllers is only expanded one level.

Version 1.10 12/01/02 5-61

-
Extensible Firmware Interface Specification Intel

5-62

Description

This function connects one or more drivers to the controller specified by ControllerHandle.
If ControllerHandle is not a valid EFI_HANDLE, then EFI INVALID PARAMETER is
returned. If there are no EFI_DRIVER BINDING PROTOCOL instances present in the system,
then return EFI_NOT FOUND. If there are not enough resources available to complete this
function, then EFI_OUT OF RESOURCES is returned.

If Recursive is FALSE, then this function returns after all drivers have been connected to
ControllerHandle. If Recursive is TRUE, then ConnectController () is called
recursively on all of the child controllers of ControllerHandle. The child controllers can be
identified by searching the handle database for all the controllers that have opened
ControllerHandle with an attribute of EFI_OPEN PROTOCOL BY CHILD
CONTROLLER.

This functions uses four precedence rules when deciding the order that drivers are tested against
controllers. These four rules from highest precedence to lowest precedence are as follows:

1. Context Override : DriverImageHandle is an ordered list of image handles. The highest
priority image handle is the first element of the list, and the lowest priority image handle is the
last element of the list. The list is terminated with a NULL image handle.

2. Platform Driver Override : If an EFI_PLATFORM DRIVER OVERRIDE PROTOCOL
instance is present in the system, then the GetDriver () service of this protocol is used to
retrieve an ordered list of image handles for ControllerHandle. The first image handle
returned from GetDriver () has the highest precedence, and the last image handle returned
from GetDriver () has the lowest precedence. The ordered list is terminated when
GetDriver () returns EFI_NOT FOUND. It is legal for no image handles to be returned by
GetDriver (). There can be at most a single instance in the system of the
EFI_PLATFORM DRIVER OVERRIDE PROTOCOL. If there is more than one, then the
system behavior is not deterministic.

3. Bus Specific Driver Override : If there is an instance of the
EFI_BUS SPECIFIC DRIVER OVERRIDE PROTOCOL attached to
ControllerHandle, then the GetDriver () service of this protocol is used to retrieve an
ordered list of image handle for ControllerHandle. The first image handle returned from
GetDriver () has the highest precedence, and the last image handle returned from
GetDriver () has the lowest precedence. The ordered list is terminated when
GetDriver () returns EFI_NOT FOUND. It is legal for no image handles to be returned by
GetDriver ().

4. Driver Binding Search : The list of available driver image handles can be found by using the
boot service LocateHandle () with a SearchType of ByProtocol for the GUID of the
EFI_DRIVER BINDING PROTOCOL. From this list, the image handles found in rules (1),
(2), and (3) above are removed. The remaining image handles are sorted from highest to lowest
based on the Version field of the EFI_DRIVER BINDING PROTOCOL instance
associated with each image handle.

12/01/02 Version 1.10

in
tel' Services — Boot Services

Each of the four groups of image handles listed above is tested against ControllerHandle in
order by using the EFI_DRIVER BINDING PROTOCOL service Supported ().
RemainingDevicePath is passed into Supported () unmodified. The first image handle
whose Supported () service returns EFI_SUCCESS is marked so the image handle will not be
tried again during this call to ConnectController (). Then, the Start () service of the
EFI_DRIVER BINDING PROTOCOL is called for ControllerHandle. Once again,
RemainingDevicePath is passed in unmodified. Every time Supported () returns
EFI_SUCCESS, the search for drivers restarts with the highest precedence image handle. This
process is repeated until no image handles pass the Supported () check.

If at least one image handle returned EFI_SUCCESS from its Start () service, then
EFI_SUCCESS is returned.

If no image handles returned EFI_SUCCESS from their Start () service then

EFI_NOT FOUND is returned unless RemainingDevicePath is not NULL, and
RemainingDevicePathis an End Node. In this special case, EFI_SUCCESS is returned
because it is not an error to fail to start a child controller that is specified by an End Device Path

Node.
Status Codes Returned

EFI_SUCCESS One or more drivers were connected to ControllerHandle.

EFI_SUCCESS No drivers were connected to ControllerHandle, but
RemainingDevicePathis not NULL, and it is an End Device
Path Node.

EFI_INVALID_PARAMETER ControllerHandleis notavalid EFI_HANDLE.

EFI_NOT_FOUND There are no EFI_DRIVER BINDING PROTOCOL instances
present in the system.

EFI_NOT_FOUND No drivers were connected to ControllerHandle.

Version 1.10 12/01/02 5-63

-
Extensible Firmware Interface Specification In e '

5-64

Examples
//

// Connect All Handles Example
// The following example recusively connects all controllers in a platform.

//

EFI_STATUS Status;
EFI_BOOT_SERVICES TABLE *gBS;

UINTN HandleCount;
EFI HANDLE *HandleBuffer;
UINTN HandleIndex;
//

// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
AllHandles,
NULL,
NULL,
&HandleCount,
&HandleBuffer
)i
if (!EFI_ERROR (Status)) {
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
Status = gBS->ConnectController (
HandleBuffer [HandleIndex],
NULL,
NULL,
TRUE
)i
}

gBS->FreePool (HandleBuffer) ;

}
//

// Connect Device Path Example

// The following example walks the device path nodes of a device path, and

// connects only the drivers required to force a handle with that device path
// to be present in the handle database. This algorithms guarantees that

// only the minimum number of devices and drivers are initialized.
//
EFI_STATUS Status;

EFI_DEVICE PATH PROTOCOL *DevicePath;
EFI_DEVICE PATH PROTOCOL *RemainingDevicePath;
EFI_ HANDLE Handle;

12/01/02 Version 1.10

intel
' Services — Boot Services

do {
//
// Find the handle that best matches the Device Path. If it is only a
// partial match the remaining part of the device path is returned in
// RemainingDevicePath.
//
RemainingDevicePath = DevicePath;
Status = gBS->LocateDevicePath (
&gEfiDevicePathProtocolGuid,
&RemainingDevicePath,
&Handle
)
if (EFI_ERROR (Status)) {
return EFI_NOT FOUND;

}
//

// Connect all drivers that apply to Handle and RemainingDevicePath
// If no drivers are connected Handle, then return EFI_NOT FOUND
// The Recursive flag is FALSE so only one level will be expanded.

//

Status = gBS->ConnectController (
Handle,
NULL,
RemainingDevicePath,
FALSE

)i
if (EFI_ERROR (Status)) {
return EFI_NOT_ FOUND;

}

//
// Loop until RemainingDevicePath is an empty device path
//
} while (!IsDevicePathEnd (RemainingDevicePath)) ;
//
// A handle with DevicePath exists in the handle database
//

return EFI_SUCCESS;

Version 1.10 12/01/02

5-65

-
Extensible Firmware Interface Specification Intel

DisconnectController()
Summary

Disconnects one or more drivers from a controller.

Prototype

typedef
EFI_STATUS
DisconnectController (
IN EFI HANDLE ControllerHandle,
IN EFI HANDLE DriverImageHandle OPTIONAL,

IN EFI HANDLE ChildHandle OPTIONAL
)i
Parameters
ControllerHandle The handle of the controller from which driver(s) are to be
disconnected.
DriverImageHandle The driver to disconnect from ControllerHandle. If

DriverImageHandle is NULL, then all the drivers currently
managing ControllerHandle are disconnected from
ControllerHandle.

ChildHandle The handle of the child to destroy. If ChildHandle is NULL,
then all the children of ControllerHandle are destroyed
before the drivers are disconnected from
ControllerHandle.

Description

This function disconnects one or more drivers from the controller specified by
ControllerHandle. If DriverImageHandle is NULL, then all of the drivers currently
managing ControllerHandle are disconnected from ControllerHandle. If
DriverImageHandle is not NULL, then only the driver specified by DriverImageHandle
is disconnected from ControllerHandle. If ChildHandle is NULL, then all of the children
of ControllerHandle are destroyed before the drivers are disconnected from
ControllerHandle. If ChildHandle is not NULL, then only the child controller specified
by ChildHandle is destroyed. If ChildHandle is the only child of ControllerHandle,
then the driver specified by DriverImageHandle will be disconnected from
ControllerHandle. A driver is disconnected from a controller by calling the Stop () service
of the EFI DRIVER BINDING PROTOCOL. The EFI DRIVER BINDING PROTOCOL is on
the driver image handle, and the handle of the controller is passed into the Stop () service. The
list of drivers managing a controller, and the list of children for a specific controller can be
retrieved from the handle database with the boot service OpenProtocolInformation (). If
all the required drivers are disconnected from ControllerHandle, then EFI_SUCCESS is
returned.

If ControllerHandle is nota valid EFI_HANDLE, then EFI_INVALID PARAMETER is

returned. If no drivers are managing ControllerHandle, then EFI_SUCCESS is returned. If
DriverImageHandle is not NULL, and DriverImageHandle is not a valid EFI_HANDLE,

5-66 12/01/02 Version 1.10

in
tel' Services — Boot Services

then EFI INVALID PARAMETER isreturned. If DriverImageHandle is not NULL, and
DriverImageHandle is not currently managing ControllerHandle, then EFI_SUCCESS
is returned. If ChildHandle is not NULL, and ChildHandle is not a valid EFI_HANDLE,
then EFI_INVALID PARAMETER is returned. If there are not enough resources available to
disconnect drivers from ControllerHandle,then EFI_OUT OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS One or more drivers were disconnected from the controller.
EFI_SUCCESS On entry, no drivers are managing ControllerHandle.
EFI_SUCCESS DriverImageHandle is not NULL, and on entry

DriverImageHandle is not managing ControllerHandle.
EFI_INVALID_PARAMETER ControllerHandleisnotavalid EFI_HANDLE.

EFI_INVALID_PARAMETER DriverImageHandle is not NULL, and it is not a valid
EFI HANDLE.

EFI_INVALID_PARAMETER ChildHandleis not NULL, and it is not a valid EFI HANDLE.
EFI_OUT_OF_RESOURCES There are not enough resources available to disconnect any drivers from

ControllerHandle.
EFI_DEVICE_ERROR The controller could not be disconnected because of a device error.
Examples
//

// Disconnect All Handles Example
// The following example recusively disconnects all drivers from all
// controllers in a platform.

//
EFI_STATUS Status;
EFI_BOOT SERVICES_TABLE *gBS;
UINTN HandleCount;
EFI_ HANDLE *HandleBuffer;
UINTN HandleIndex;
//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

AllHandles,

NULL,

NULL,

&HandleCount,

&HandleBuffer

)i
if (!EFI_ERROR (Status)) {
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
Status = gBS->DisconnectController (
HandleBuffer [HandleIndex],
NULL,
NULL
)i
}

gBS->FreePool (HandleBuffer) ;

Version 1.10 12/01/02 5-67

-
Extensible Firmware Interface Specification Intel

ProtocolsPerHandle()
Summary

Retrieves the list of protocol interface GUIDs that are installed on a handle in a buffer allocated
from pool.

Prototype
typedef
EFI_STATUS
ProtocolsPerHandle (
IN EFI HANDLE Handle,

OUT EFI GUID ***ProtocolBuffer,
OUT UINTN *ProtocolBufferCount
)i
Parameters
Handle The handle from which to retrieve the list of protocol interface
GUIDs.
ProtocolBuffer A pointer to the list of protocol interface GUID pointers that are

installed on Handle. This buffer is allocated with a call to the
Boot Service AllocatePool (). Itis the caller's
responsibility to call the Boot Service FreePool () when the
caller no longer requires the contents of ProtocolBuffer.

ProtocolBufferCount A pointer to the number of GUID pointers present in
ProtocolBuffer.
Description

The ProtocolsPerHandle () function retrieves the list of protocol interface GUIDs that are
installed on Handle. The list is returned in ProtocolBuffer, and the number of GUID
pointers in ProtocolBuffer is returned in ProtocolBufferCount.

If Handle is NULL or Handle is not a valid EFI HANDLE, then EFI INVALID PARAMETER
is returned.

If ProtocolBufferis NULL, then EFI INVALID PAREMETER is returned.
If ProtocolBufferCount is NULL, then EFI_INVALID PARAMETER is returned.

If there are not enough resources available to allocate ProtocolBuf fer, then
EFI OUT OF RESOURCES is returned.

5-68 12/01/02 Version 1.10

in
tel' Services — Boot Services

Status Codes Returned

EFI_SUCCESS The list of protocol interface GUIDs installed on Hand1 e was returned in
ProtocolBuf fer. The number of protocol interface GUIDs was
returned in ProtocolBuf ferCount.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Handleis notavalid EFI_HANDLE.
EFI_INVALID_PARAMETER ProtocolBufferis NULL.
EFI_INVALID_PARAMETER ProtocolBufferCount is NULL.
EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results.
Examples

See example in the LocateHandleBuffer () function description for an example on how
LocateHandleBuffer (), ProtocolsPerHandle (), OpenProtocol (), and
OpenProtocolInformation () can be used to traverse the entire handle database.

Version 1.10 12/01/02 5-69

-
Extensible Firmware Interface Specification Intel

LocateHandleBuffer()
Summary

Returns an array of handles that support the requested protocol in a buffer allocated from pool.

Prototype

typedef
EFI_STATUS
LocateHandleBuffer (
IN EFI_LOCATE SEARCH TYPE SearchType,

IN EFI_GUID *Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *NoHandles,
OUT EFI HANDLE **Buffer
)i
Parameters
SearchType Specifies which handle(s) are to be returned.
Protocol Provides the protocol to search by. This parameter is only valid for a
SearchType of ByProtocol.
SearchKey Supplies the search key depending on the SearchType.
NoHandles The number of handles returned in Buffer.
Buffer A pointer to the buffer to return the requested array of handles that

support Protocol. This buffer is allocated with a call to the Boot
Service AllocatePool (). Itis the caller's responsibility to call the
Boot Service FreePool () when the caller no longer requires the
contents of Buffer.

Description

The LocateHandleBuffer () function returns one or more handles that match the
SearchType request. Buffer is allocated from pool, and the number of entries in Buffer is
returned in NoHandles. Each SearchType is described below:

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration returned by
RegisterProtocolNotify (). The function returns the
next handle that is new for the Registration. Only one handle is
returned at a time, and the caller must loop until no more handles
are returned. Protocol is ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

5-70 12/01/02 Version 1.10

intel

Services — Boot Services

If NoHandles is NULL, then EFI_INVALID PARAMETER is returned.
If Buffer is NULL, then EFI_INVALID PARAMETER is returned.

If there are no handles in the handle database that match the search criteria, then

EFI_NOT FOUND is returned.

If there are not enough resources available to allocate Buf fer, then EFI_OUT OF RESOURCES

1s returned.

Status Codes Returned

EFI_SUCCESS

The array of handles was returned in Buf fer, and the number of
handles in Buf fer was returned in NoHandles.

EFI_INVALID_PARAMETER

NoHandles is NULL

EFI_INVALID_PARAMETER

Bufferis NULL

EFI_NOT_FOUND

No handles match the search.

EFI_OUT_OF_RESOURCES

There is not enough pool memory to store the matching results.

Examples
//

// The following example traverses the entire handle database.

// the handles in the handle database are retrieved by using

// LocateHandleBuffer ().

Then it uses ProtocolsPerHandle() to retrieve the
// list of protocol GUIDs attached to each handle.

// to get the protocol instance associated with each protocol GUID on the
// handle. Finally, it uses OpenProtocolInformation() to retrieve the list of

// agents that have opened the protocol on the handle. The caller of these
// functions must make sure that they free the return buffers with

// when they are done.

//

EFI_STATUS Status;
EFI_BOOT SERVICES TABLE *gBS;
EFI_HANDLE ImageHandle;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;
EFI_GUID **ProtocolGuidArray;
UINTN ArrayCount;
UINTN ProtocolIndex;
EFI_OPEN_ PROTOCOL_ INFORMATION ENTRY * OpeniInfo;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;
//

// Retrieve the list of all handles from the handle database

//

Status = gBS->LocateHandleBuffer (
AllHandles,

NULL,
NULL,

&HandleCount,
&HandleBuffer

) .

if (!EFI_ERROR (Status)) {

for (HandleIndex = 0;

Version 1.10

HandleIndex < HandleCount; HandleIndex++) {

12/01/02

First all of

FreePool ()

Then it uses OpenProtocol ()

5-71

-
Extensible Firmware Interface Specification In e '

//
// Retrieve the list of all the protocols on each handle
//
Status = gBS->ProtocolsPerHandle (
HandleBuffer [HandleIndex],

&ProtocolGuidArray,
&ArrayCount
)i
if (!EFI_ERROR (Status)) {
for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++) {

//

// Retrieve the protocol instance for each protocol

//

Status = gBS->OpenProtocol (
HandleBuffer [HandleIndex],
ProtocolGuidArray [ProtocolIndex],
&Instance,
ImageHandle,
NULL,
EFI_OPEN_PROTOCOL GET PROTOCOL
)i

//
// Retrieve the list of agents that have opened each protocol
//
Status = gBS->OpenProtocolInformation (
HandleBuffer [HandleIndex],
ProtocolGuidArray [ProtocolIndex],
&OpenInfo,
&OpenInfoCount
)
if (!EFI_ERROR (Status)) {
for (OpenInfolndex=0;OpenInfolndex<OpenInfoCount;OpenInfolndex++) {
//
// HandleBuffer [HandleIndex] is the handle
// ProtocolGuidArray [ProtocolIndex] is the protocol GUID
// Instance is the protocol instance for the protocol
// OpenInfo[OpenInfolndex] is an agent that has opened a protocol
//
}

if (OpenInfo != NULL) ({
gBS->FreePool (OpenInfo) ;

}
}
}

if (ProtocolGuidArray != NULL)
gBS->FreePool (ProtocolGuidArray) ;

}
}

if (HandleBuffer != NULL) ({
gBS->FreePool (HandleBuffer) ;

}
}

5-72 12/01/02 Version 1.10

in
tel' Services — Boot Services

LocateProtocol()
Summary

Returns the first protocol instance that matches the given protocol.

Prototype

typedef
EFI_STATUS
LocateProtocol (
IN EFI GUID *Protocol,

IN VOID *Registration OPTIONAL,
OUT VOID **Interface
)i
Parameters
Protocol Provides the protocol to search for.
Registration Optional registration key returned from

RegisterProtocolNotify (). If Registration is NULL, then
it is ignored.

Interface On return, a pointer to the first interface that matches Protocol and
Registration.

Description

The LocateProtocol () function finds the first device handle that support Protocol, and
returns a pointer to the protocol interface from that handle in Tnterface. If no protocol
instances are found, then Tnterface is set to NULL.

If Interfaceis NULL, then EFI_INVALID PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support
Protocol, then EFI_NOT_ FOUND is returned.

If Registration is not NULL, and there are no new handles for Registration, then
EFI_NOT FOUND is returned.

Status Codes Returned

EFI_SUCCESS A protocol instance matching Protocol was found and returned in
Interface.

EFI_INVALID_PARAMETER Interfaceis NULL.

EFI_NOT_FOUND No protocol instances were found that match Protocol.

Version 1.10 12/01/02 5-73

-
Extensible Firmware Interface Specification Intel

InstallMultipleProtocolinterfaces()

5-74

Summary
Installs one or more protocol interfaces into the boot services environment.

Prototype
typedef
EFI_STATUS
InstallMultipleProtocolInterfaces (
IN OUT EFI HANDLE *Handle,

)i

Parameters
Handle The handle to install the new protocol interfaces on, or NULL if a new
handle is to be allocated.
A variable argument list containing pairs of protocol GUIDs and protocol
interfaces.
Description

This function installs a set of protocol interfaces into the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs
are used to call the boot service InstallProtocolInterface () to add a protocol interface
to Handle. If Handle is NULL on entry, then a new handle will be allocated. The pairs of
arguments are removed in order from the variable argument list until a NULL protocol GUID value
is found. If any errors are generated while the protocol interfaces are being installed, then all the
protocols installed prior to the error will be uninstalled with the boot service
UninstallProtocolInterface () before the error is returned. The same GUID cannot be
installed more than once onto the same handle. If the same GUID is installed more than once onto
the same handle, then the results are not predictable.

It is illegal to have two handles in the handle database with identical device paths. This service
performs a test to guarantee a duplicate device path is not inadvertently installed on two different
handles. Before any protocol interfaces are installed onto Handle, the list of GUID/pointer pair
parameters are searched to see if a Device Path Protocol instance is being installed. If a Device
Path Protocol instance is going to be installed onto Handle, then a check is made to see if a handle
is already present in the handle database with an identical Device Path Protocol instance. If an
identical Device Path Protocol instance is already present in the handle database, then no protocols
are installed onto Handle, and EFI_ALREADY STARTED is returned.

Status Codes Returned

EFI_SUCCESS All the protocol interfaces were installed.

EFI_ALREADY_STARTED A Device Path Protocol instance was passed in that is already present in
the handle database.

EFI_OUT_OF_RESOURCES There was not enough memory in pool to install all the protocols.

12/01/02 Version 1.10

in
tel' Services — Boot Services

UninstallMultipleProtocolinterfaces()
Summary

Removes one or more protocol interfaces into the boot services environment.

Prototype

typedef

EFI_STATUS

UninstallMultipleProtocolInterfaces (
IN EFI HANDLE Handle,

)i

Parameters
Handle The handle to remove the protocol interfaces from.
A variable argument list containing pairs of protocol GUIDs and
protocol interfaces.
Description

This function removes a set of protocol interfaces from the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs
are used to call the boot service UninstallProtocolInterface () toremove a protocol
interface from Handle. The pairs of arguments are removed in order from the variable argument
list until a NULL protocol GUID value is found. If all of the protocols are uninstalled from
Handle, then EFI_SUCCESS is returned. If any errors are generated while the protocol
interfaces are being uninstalled, then the protocols uninstalled prior to the error will be reinstalled
with the boot service InstallProtocolInterface () and the status code

EFI_INVALID PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS All the protocol interfaces were removed.
EFI_INVALID_PARAMETER One of the protocol interfaces was not previously installed on
Handle.

Version 1.10 12/01/02 5-75

Extensible Firmware Interface Specification

5.4

5-76

Image Services

Three types of images can be loaded: EFI Applications, EFI Boot Services Drivers, and EFI
Runtime Services Drivers. An EFI OS Loader is a type of EFI Application. The most significant
difference between these image types is the type of memory into which they are loaded by the
firmware’s loader. Table 5-8 summarizes the differences between images.

intel

Table 5-8. Image Type Differences Summary
EFI Application EFI Boot Services Driver EFIl Runtime Services Driver
Description A transient application A program that is loaded into boot A program that is loaded into
that is loaded during boot | services memory and stays resident runtime services memory and
services time. EFI until boot services terminates. stays resident during runtime. The
applications are either memory required for a Runtime
unloaded when they Services Driver must be performed
complete, or they take in a single memory allocation, and
responsibility for the marked as
continued operation of the EfiRuntimeServicesData.
system via (Note that the memory only stays
ExitBootServices() . resident when booting an EFI-
The applications are compatible operating system.
loaded in sequential order Legacy operating systems will
by the boot manager, but reuse the memory.)
one application may
dynamically load another.
Loaded into EfiLoaderCode, EfiBootServicesCode, EfiRuntimeServicesCode,
memory type | EfiLoaderData EfiBootServicesData EfiRuntimeServicesData
Default pool EfiLoaderData EfiBootServicesData EfiRuntimeServicesData
allocations

from memory
type

Exit behavior

Notes

When an application
exits, firmware frees the
memory used to hold its
image.

This type of image would
not install any protocol
interfaces or handles.

When a boot services driver exits with
an error code, firmware frees the
memory used to hold its image.
When a boot services driver’s entry
point completes with EFI_SUCCESS,
the image is retained in memory.

This type of image would typically use

InstallProtocolInterface().

When a runtime services driver
exits with an error code, firmware
frees the memory used to hold its
image.

When a runtime services driver's
entry point completes with
EFI_SUCCESS, the image is
retained in memory.

A runtime driver can only allocate
runtime memory during boot
services time. Due to the
complexity of performing a virtual
relocation for a runtime image, this
driver type is discouraged unless it
is absolutely required.

12/01/02

Version 1.10

in
tel' Services — Boot Services

Most images are loaded by the boot manager. When an EFI application or driver is installed, the
installation procedure registers itself with the boot manager for loading. However, in some cases
an application or driver may want to programmatically load and start another EFI image. This can
be done with the LoadImage () and StartImage () interfaces. Drivers may only load
applications during the driver’s initialization entry point. Table 5-9 lists the functions that make up
Image Services.

Table 5-9. Image Functions

Name Type Description

Loadlmage Boot Loads an EFl image into memory.

Startimage Boot Transfers control to a loaded image’s entry point.
Unloadlmage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI Image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

The Image boot services have been modified to take advantage of the information that is now being
tracked with the OpenProtocol () and CloseProtocol () boot services. Since the usage of

protocol interfaces is being tracked with these new boot services, it is now possible to automatically
close protocol interfaces when an EFI Application or an EFI Driver is unloaded or exited.

Version 1.10 12/01/02 5-77

in
Extensible Firmware Interface Specification tel

Loadimage()
Summary

Loads an EFI image into memory.

Prototype

EFI_STATUS
LoadImage (

IN BOOLEAN BootPolicy,

IN EFI HANDLE ParentImageHandle,

IN EFI DEVICE PATH *FilePath,

IN VOID *SourceBuffer OPTIONAL,
IN UINTN SourceSize,

OUT EFI HANDLE *TImageHandle

) ;
Parameters
BootPolicy

ParentImageHandle

FilePath

SourceBuffer

SourceSize

ImageHandle

5-78

If TRUE, indicates that the request originates from the boot
manager, and that the boot manager is attempting to load
FilePath as a boot selection. Ignored if SourceBufferis
not NULL.

The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface () function description.
This field is used to initialize the ParentHandle field of the
EFI LOADED IMAGE protocol for the image that is being
loaded.

The DeviceHandle specific file path from which the image is
loaded. Type EFI_DEVICE PATH is defined in the
LocateDevicePath () function description.

If not NULL, a pointer to the memory location containing a copy
of the image to be loaded.

The size in bytes of SourceBuffer. Ignored if
SourceBuffer is NULL,

Pointer to the returned image handle that is created when the
image is successfully loaded. Type EFI_HANDLE is defined in
the InstallProtocolInterface () function description.

12/01/02 Version 1.10

in
tel' Services — Boot Services

Description

The LoadImage () function loads an EFI image into memory and returns a handle to the image.
The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a
memory-to-memory load in which SourceBuffer points to the image to be loaded and
SourceS1ize indicates the image’s size in bytes. In this case, the caller has copied the image into
SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the

SIMPLE FILE SYSTEM protocol and then the LOAD FILE protocol on the DeviceHandle to
access the file referred to by FilePath. In this case, the Boot Policy flag is passed to the
LOAD FILE.LoadFile () function and is used to load the default image responsible for booting
when the Fi 1ePath only indicates the device. For more information see the discussion of the
Load File Protocol in Chapter 11.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the EFI LOADED IMAGE protocol. The caller may fill in the image’s “load
options” data, or add additional protocol support to the handle before passing control to the newly
loaded image by calling StartImage (). Also, once the image is loaded, the caller either starts it
by calling StartImage () or unloads it by calling UnloadImage ().

Status Codes Returned

EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND The FilePath was not found.
EFI_INVALID_PARAMETER | One of the parameters has an invalid value.
EFI_UNSUPPORTED The image type is not supported, or the device path cannot be

parsed to locate the proper protocol for loading the file.
EFI_OUT_OF_RESOURCES | Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.
EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

Version 1.10 12/01/02 5-79

-
Extensible Firmware Interface Specification Intel

Startimage()
Summary

Transfers control to a loaded image’s entry point.

Prototype

EFI_STATUS
StartImage (

IN EFI HANDLE ImageHandle,
OUT UINTN *ExitDataSize,
OUT CHAR16 **ExitData OPTIONAL
)
Parameters
ImageHandle Handle of image to be started. Type EFI_HANDLE is defined in the
InstallProtocolInterface () function description.
ExitDataSize Pointer to the size, in bytes, of ExitData. If ExitData is NULL,

then this parameter is ignored and the contents of ExitDataSize are
not modified.

ExitData Pointer to a pointer to a data buffer that includes a Null-terminated
Unicode string, optionally followed by additional binary data. The string
is a description that the caller may use to further indicate the reason for
the image’s exit.

Description

The StartImage () function transfers control to the entry point of an image that was loaded by
LoadImage (). The image may only be started one time.

Control returns from StartImage () when the loaded image calls Exit (). When that call is
made, the ExitData buffer and ExitDataSize from Exit () are passed back through the
ExitData buffer and ExitDatasSize in this function. The caller of this function is responsible
for returning the ExitData buffer to the pool by calling FreePool () when the buffer is no
longer needed.

EFI 1.10 Extension

To maintain compatibility with EFI drivers that are written to the EFT 1.02 Specification,
StartImage () must monitor the handle database before and after each image is started. If any
handles are created or modified when an image is started, then ConnectController () must be
called for each of the newly created or modified handles before StartImage () returns.

Status Codes Returned
EFI_INVALID_PARAMETER ImageHandle is not a handle to an unstarted image.

Exit code from image Exit code from image.

5-80 12/01/02 Version 1.10

in
tel' Services — Boot Services

Unloadimage()
Summary

Unloads an image.

Prototype

typedef
EFI_STATUS
UnloadImage (
IN EFI HANDLE ImageHandle
) ;
Parameters

ImageHandle Handle that identifies the image to be unloaded.
Description
The UnloadImage () function unloads a previously loaded image.

There are three possible scenarios. If the image has not been started, the function unloads the
image and returns EFI_SUCCESS.

If the image has been started and has an Unload () entry point, control is passed to that entry
point. If the image’s unload function returns EFI_SUCCESS, the image is unloaded; otherwise,
the error returned by the image’s unload function is returned to the caller. The image unload

function is responsible for freeing all allocated memory and ensuring that there are no references to
any freed memory, or to the image itself, before returning EFI_SUCCESS.

If the image has been started and does not have an Unload () entry point, the function returns
EFI UNSUPPORTED.

EFI 1.10 Extension

All of the protocols that were opened by ITmageHand1e using the boot service

OpenProtocol () are automatically closed with the boot service CloseProtocol (). Ifall of
the open protocols are closed, then EFI_SUCCESS is returned. If any call to

CloseProtocol () fails, then the error code from CloseProtocol () is returned.

Status Codes Returned
EFI_SUCCESS The image has been unloaded.

EFI_UNSUPPORTED The image has been started, and does not support unload.
EFI_INVALID_PARAMETER ImageHandle is not a valid image handle.

Exit code from Unload handler | Exit code from the image’s unload function.

Version 1.10 12/01/02 5-81

-
Extensible Firmware Interface Specification Intel

EFI_IMAGE_ENTRY_POINT

Summary

This is the declaration of an EFI image entry point. This can be the entry point to an EFI
application, an EFI boot service driver, or an EFI runtime driver.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_IMAGE ENTRY POINT) (

IN EFI_ HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)i
Parameters
ImageHandle Handle that identifies the loaded image. Type EFI_HANDLE is defined
inthe InstallProtocolInterface () function description.
SystemTable System Table for this image. Type EFI_SYSTEM TABLE is defined in
Chapter 4.
Description

An image’s entry point is of type EFI_IMAGE ENTRY POINT. After firmware loads an image
into memory, control is passed to the image’s entry point. The entry point is responsible for
initializing the image. The image’s TmageHandle is passed to the image. The ImageHandle
provides the image with all the binding and data information it needs. This information is available
through protocol interfaces. However, to access the protocol interfaces on TmageHandle
requires access to boot services functions. Therefore, LoadImage () passes to the
EFI_IMAGE ENTRY POINT a SystemTable that is inherited from the current scope of
LoadImage().

All image handles support the EFI LOADED IMAGE protocol. This protocol can be used to
obtain information about the loaded image’s state—for example, the device from which the image
was loaded and the image’s load options. In addition, the TmageHand1e may support other
protocols provided by the parent image.

If the image supports dynamic unloading, it must supply an unload function in the
EFI_LOADED IMAGE structure before returning control from its entry point.

In general, an image returns control from its initialization entry point by calling Exit () or by
returning control from its entry point. If the image returns control from its entry point, the
firmware passes control to Exit () using the return code as the ExitStatus parameter to
Exit ().

See Exit () below for entry point exit conditions.

5-82 12/01/02 Version 1.10

in
tel' Services — Boot Services

Exit()
Summary

Terminates the currently loaded EFI image and returns control to boot services.

Prototype

typedef

EFI_ STATUS

Exit (
IN EFI HANDLE ImageHandle,
IN EFI_STATUS ExitStatus,

IN UINTN ExitDataSize,
IN CHAR16 *ExitData OPTIONAL
)i
Parameters
ImageHandle Handle that identifies the image. This parameter is passed to the image
on entry.
ExitStatus The image’s exit code.
ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatusis

EFI_SUCCESS.

ExitData Pointer to a data buffer that includes a Null-terminated Unicode string,
optionally followed by additional binary data. The string is a description
that the caller may use to further indicate the reason for the image’s exit.
ExitData is only valid if ExitStatus is something other than
EFI_ SUCCESS. The ExitData buffer must be allocated by calling
AllocatePool ().

Description

The Exit () function terminates the image referenced by ImageHand1e and returns control to
boot services. This function can only be called by the currently executing image. This function
may not be called if the image has already returned from its entry point

(EFI IMAGE ENTRY POINT) or if it has loaded any child images that have not exited (all child
images must exit before this image can exit).

Using Exit () is similar to returning from the image’s EFI_IMAGE ENTRY POINT except that
Exit () may also return additional ExitData.

Version 1.10 12/01/02 5-83

-
Extensible Firmware Interface Specification Intel

5-84

When an EFI application exits, firmware frees the memory used to hold the image. The firmware
also frees its references to the ImageHand1e and the handle itself. Before exiting, the application
is responsible for freeing any resources it allocated. This includes memory (pages and/or pool),
open file system handles, and so forth. The only exception to this rule is the Exi tData buffer,
which must be freed by the caller of StartImage (). (If the buffer is needed, firmware must
allocate it by calling AllocatePool () and must return a pointer to it to the caller of
StartImage().)

When an EFI boot service driver or runtime service driver exits, firmware frees the image only if
the ExitStatus is an error code; otherwise the image stays resident in memory. The driver must
not return an error code if it has installed any protocol handlers or other active callbacks into the
system that have not (or cannot) be cleaned up. If the driver exits with an error code, it is
responsible for freeing all resources before exiting. This includes any allocated memory (pages
and/or pool), open file system handles, and so forth.

It is valid to call Exit () or Unload () for an image that was loaded by LoadImage () before
calling StartImage (). This will free the image from memory without having started it.

EFI 1.10 Extension

If ImageHand]1e is an EFI Application, then all of the protocols that were opened by
ImageHandle using the boot service OpenProtocol () are automatically closed with the boot
service CloseProtocol (). If ImageHandle is an EFI boot services driver or runtime service
driver, and ExitStatus is an error code, then all of the protocols that were opened by
ImageHand]le using the boot service OpenProtocol () are automatically closed with the boot
service CloseProtocol (). If ImageHandle is an EFI boot services driver or runtime service
driver, and ExitStatus is not an error code, then no protocols are automatically closed by this
service.

Status Codes Returned

(Does not return.) Image exit. Control is returned to the startImage () call that
invoked the image.

EFI_SUCCESS The image was unloaded. Exit () only returns success if the

image has not been started; otherwise, the exit returns to the
StartImage () call that invoked the image.

EFI_INVALID_PARAMETER | The specified image is not the current image.

12/01/02 Version 1.10

in
tel' Services — Boot Services

ExitBootServices()
Summary

Terminates all boot services.

Prototype

EFI_STATUS
ExitBootServices (

IN EFI HANDLE ImageHandle,
IN UINTN MapKey
)
Parameters
ImageHandle Handle that identifies the exiting image. Type EFI_HANDLE is defined
inthe InstallProtocolInterface () function description.
MapKey Key to the latest memory map.
Description

The ExitBootServices () function is called by the currently executing EFI OS loader image
to terminate all boot services. On success, the loader becomes responsible for the continued
operation of the system.

An EFI OS loader must ensure that it has the system’s current memory map at the time it calls
ExitBootServices (). This is done by passing in the current memory map’s MapKey value
as returned by GetMemoryMap (). Care must be taken to ensure that the memory map does not
change between these two calls. It is suggested that GetMemoryMap () be called immediately
before calling ExitBootServices ().

On success, the EFI OS loader owns all available memory in the system. In addition, the loader can
treat all memory in the map marked as EfiBootServicesCode and
EfiBootServicesData as available free memory. No further calls to boot service functions or
EFT device-handle-based protocols may be used, and the boot services watchdog timer is disabled.
On success, several fields of the EFI System Table should be set to NULL. These include
ConsoleInHandle, ConIn, ConsoleOutHandle, ConOut, StandardErrorHandle,
StdErr, and BootServicesTable. In addition, since fields of the EFI System Table are
being modified, the 32-bit CRC for the EFI System Table must be recomputed.

Status Codes Returned

EFI_SUCCESS Boot services have been terminated.
EFI_INVALID_PARAMETER | MapKey is incorrect.

Version 1.10 12/01/02 5-85

Extensible Firmware Interface Specification

intel

5.5 Miscellaneous Boot Services

This section contains the remaining function definitions for boot services not defined elsewhere but
which are required to complete the definition of the EFI environment. Table 5-10 lists the
Miscellaneous Boot Services Functions.

5-86

Table 5-10. Miscellaneous Boot Services Functions

Name Type Description

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services time.

Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the EFI
System Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.

The CalculateCre32 () service was added because there are several places in EFI that 32-bit
CRCs are used. These include the EFI System Table, the EFI Boot Services Table, the EFI

Runtime Services Table, and the Guided Partition Table (GPT) structures. The
CalculateCrc32 () service allows new 32-bit CRCs to be computed, and existing 32-bit CRCs

to be validated.

12/01/02 Version 1.10

intel

SetWatchdogTimer()

Summary

Services — Boot Services

Sets the system’s watchdog timer.

Prototype

EFI_STATUS

SetWatchdogTimer (

IN UINTN
IN UINT64
IN UINTN
IN CHAR1G6
) ;
Parameters

Timeout

WatchdogCode

DataSize
WatchdogData

Description

Timeout,

WatchdogCode,

DataSize,

*WatchdogData OPTIONAL

The number of seconds to set the watchdog timer to. A value of zero
disables the timer.

The numeric code to log on a watchdog timer timeout event. The
firmware reserves codes 0x0000 to OxFFFF. Loaders and operating
systems may use other timeout codes.

The size, in bytes, of WatchdogData.

A data buffer that includes a Null-terminated Unicode string, optionally
followed by additional binary data. The string is a description that the
call may use to further indicate the reason to be logged with a watchdog
event.

The SetWatchdogTimer () function sets the system’s watchdog timer.

If the watchdog timer expires, the event is logged by the firmware. The system may then either
reset with the Runtime Service ResetSystem (), or perform a platform specific action that must
eventually cause the platform to be reset. The watchdog timer is armed before the firmware's boot
manager invokes an EFI boot option. The watchdog must be set to a period of 5 minutes. The EFI
Image may reset or disable the watchdog timer as needed. If control is returned to the firmware's
boot manager, the watchdog timer must be disabled.

The watchdog timer is only used during boot services. On successful completion of
ExitBootServices () the watchdog timer is disabled.

The accuracy of the watchdog timer is +/- 1 second from the requested Timeout.
Status Codes Returned

EFI_SUCCESS

The timeout has been set.

EFl_INVALID_PARAMETER | The supplied WatchdogCode is invalid.

EFI_UNSUPPORTED

The system does not have a watchdog timer.

EFI_DEVICE_ERROR

The watch dog timer could not be programmed due to a hardware
error.

Version 1.10

12/01/02 5-87

-
Extensible Firmware Interface Specification tel

Stall()
Summary

Induces a fine-grained stall.

Prototype

EFI_STATUS
Stall (
IN UINTN Microseconds
)
Parameters

Microseconds The number of microseconds to stall execution.
Description

The stall () function stalls execution on the processor for at least the requested number of
microseconds. Execution of the processor is not yielded for the duration of the stall.
Status Codes Returned

EFI_SUCCESS Execution was stalled at least the requested number of
Microseconds.

5-88 12/01/02 Version 1.10

in
tel' Services — Boot Services

CopyMem()
Summary
The CopyMem () function copies the contents of one buffer to another buffer.
Prototype
VOID
CopyMem (
IN VOID *Destination,
IN VOID *Source,
IN UINTN Length
)i
Parameters
Destination Pointer to the destination buffer of the memory copy.
Source Pointer to the source buffer of the memory copy.
Length Number of bytes to copy from Source to Destination.
Description
The CopyMem () function copies Length bytes from the buffer Source to the buffer
Destination.

The implementation of CopyMem () must be reentrant, and it must handle overlapping Source
and Destination buffers. This means that the implementation of CopyMem () must choose the
correct direction of the copy operation based on the type of overlap that exists between the
Source and Destination buffers. If either the Source buffer or the Destinat ion buffer
crosses the top of the processor’s address space, then the result of the copy operation is
unpredictable.

The contents of the Dest inat ion buffer on exit from this service must match the contents of the
Source buffer on entry to this service. Due to potential overlaps, the contents of the Source
buffer may be modified by this service. The following rules can be used to guarantee the correct
behavior:

1. If Destination and Source are identical, then no operation should be performed.

2. If Destination> Source and Destination<(Source + Length), then the data
should be copied from the Source buffer to the Dest inat ion buffer starting from the end
of the buffers and working toward the beginning of the buffers.

3. Otherwise, the data should be copied from the Source buffer to the Destination buffer
starting from the beginning of the buffers and working toward the end of the buffers.

Status Codes Returned

None.

Version 1.10 12/01/02 5-89

-
Extensible Firmware Interface Specification Intel

SetMem()

5-90

Summary

The SetMem () function fills a buffer with a specified value.

Prototype
VOID
SetMem (

IN VOID

IN UINTN
IN UINTS
)

Parameters
Buffer
Size
Value

Description

*Buffer,
Size,
Value

Pointer to the buffer to fill.
Number of bytes in Buffer to fill.
Value to fill Buf fer with.

This function fills Size bytes of Buffer with Value. The implementation of SetMem () must
be reentrant. If Buf fer crosses the top of the processor’s address space, the result of the
SetMem () operation is unpredictable.

Status Codes Returned

None.

12/01/02 Version 1.10

in
tel' Services — Boot Services

GetNextMonotonicCount()
Summary

Returns a monotonically increasing count for the platform.

Prototype

EFI_STATUS
GetNextMonotonicCount (

OUT UINT64 *Count
) ;
Parameters
Count Pointer to returned value.
Description

The GetNextMonotonicCount () function returns a 64-bit value that is numerically larger
then the last time the function was called.

The platform’s monotonic counter is comprised of two parts: the high 32 bits and the low 32 bits.
The low 32-bit value is volatile and is reset to zero on every system reset. It is increased by 1 on
every call to GetNextMonotonicCount (). The high 32-bit value is nonvolatile and is
increased by one on whenever the system resets or the low 32-bit counter overflows.

Status Codes Returned

EFI_SUCCESS The next monotonic count was returned.
EFI_DEVICE_ERROR The device is not functioning properly.
EFI_INVALID_PARAMETER | One of the parameters has an invalid value.

Version 1.10 12/01/02 5-91

-
Extensible Firmware Interface Specification tel

InstallConfigurationTable()

Summary
Adds, updates, or removes a configuration table entry from the EFI System Table.
Prototype

EFI_STATUS
InstallConfigurationTable (

IN EFI GUID *Guid,
IN VOID *Table
)i
Parameters
Guid A pointer to the GUID for the entry to add, update, or remove.
Table A pointer to the configuration table for the entry to add, update, or

remove. May be NULL.
Description

The InstallConfigurationTable () function is used to maintain the list of configuration

tables that are stored in the EFI System Table. The list is stored as an array of (GUID, Pointer)

pairs. The list must be allocated from pool memory with PoolType set to

EfiRuntimeServicesData.

If Guidis not a valid GUID, EFI_INVALID PARAMETER is returned. If Guid is valid, there

are four possibilities:

e [f Guidis not present in the System Table, and Table is not NULL, then the (Guid, Table)
pair is added to the System Table. See Note below.

e If Guidis not present in the System Table, and Table is NULL, then EFI_NOT FOUND
is returned.

e If Guid s present in the System Table, and Table is not NULL, then the (Guid, Table) pair
is updated with the new Table value.

e If Guidis present in the System Table, and Tabl e is NULL, then the entry associated with
Guidis removed from the System Table.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

NOTE

If there is not enough memory to perform an add operation, then EFI_OUT OF RESOURCES is
returned.

Status Codes Returned
EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.
EFI_INVALID_PARAMETER Guidis not valid.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.

EFI_OUT_OF_RESOURCES | There is not enough memory available to complete the operation.

5-92 12/01/02 Version 1.10

in
tel' Services — Boot Services

CalculateCrc32()

Summary

Computes and returns a 32-bit CRC for a data buffer.
Prototype

typedef
EFI_STATUS
CalculateCrc32 (
IN VOID *Data,
IN TUINTN DataSize,
OUT UINT32 *Crc32
) ;

Parameters
Data A pointer to the buffer on which the 32-bit CRC is to be computed.
DataSize The number of bytes in the buffer Data.
Crc32 The 32-bit CRC that was computed for the data buffer specified by
Data and DataSize.
Description

This function computes the 32-bit CRC for the data buffer specified by Data and DataSize. If
the 32-bit CRC is computed, then it is returned in Crc32 and EFI_SUCCESS is returned.

If Datais NULL, then EFI INVALID PARAMETER is returned.

If Crc321s NULL, then EFI INVALID PARAMETER is returned.

If DataSizeis 0, then EFI_INVALID PARAMETER is returned.
Status Codes Returned

EFI_SUCCESS The 32-bit CRC was computed for the data buffer and returned in
Crc32.

EFI_INVALID_PARAMETER Datais NULL.
EFI_INVALID_PARAMETER Crc32is NULL.
EFI_INVALID_PARAMETER DataSizeisO.

Version 1.10 12/01/02 5-93

-
Extensible Firmware Interface Specification Intel

5-94 12/01/02 Version 1.10

6
Services - Runtime Services

This chapter discusses the fundamental services that are present in an EFI-compliant system. The
services are defined by interface functions that may be used by code running in the EFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as EFI applications running in the preboot environment and EFI OS loaders.

Two types of services are described here:
e Boot Services. Functions that are available before a successful call to
ExitBootServices (). These functions are described in Chapter 5.

¢ Runtime Services. Functions that are available before and after any call to
ExitBootServices (). These functions are described in this chapter.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms
(since some devices are not available on some platforms). Protocols are created dynamically. This
chapter discusses the “global” functions and runtime functions; subsequent chapters discuss the
“handle-based.”

EFI applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an EFI Image is provided a pointer to an EFI system table which
contains the Boot Services dispatch table and the default handles for accessing the console. All
boot services functionality is available until an EFI OS loader loads enough of its own environment
to take control of the system’s continued operation and then terminates boot services with a call to
ExitBootServices().

In principle, the ExitBootServices () call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing
to boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS
loader, however, may or may not choose to call ExitBootServices (). This choice may in

part depend upon whether or not such code is designed to make continued use of EFI boot services
or the boot services environment.

The rest of this chapter discusses individual functions. Runtime Services fall into these categories:

e Variable Services (Section 6.1)

e Time Services (Section 6.2)

e Virtual Memory Services (Section 6.3)
e Miscellaneous Services (Section 6.4)

Version 1.10 12/01/02 6-1

intel
Extensible Firmware Interface Specification ’

6.1 Variable Services

Variables are defined as key/value pairs that consist of identifying information plus attributes (the
key) and arbitrary data (the value). Variables are intended for use as a means to store data that is
passed between the EFI environment implemented in the platform and EFI OS loaders and other
applications that run in the EFI environment.

Although the implementation of variable storage is not defined in this specification, variables must
be persistent in most cases. This implies that the EFI implementation on a platform must arrange it
so that variables passed in for storage are retained and available for use each time the system boots,
at least until they are explicitly deleted or overwritten. Provision of this type of nonvolatile storage
may be very limited on some platforms, so variables should be used sparingly in cases where other
means of communicating information cannot be used.

Table 6-1 lists the variable services functions described in this section:

Table 6-1. Variable Services Functions

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

12/01/02 Version 1.10

intel
’ Services — Runtime Services

GetVariable()

Summary

Returns the value of a variable.

Prototype
EFI STATUS
GetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data
) ;
Parameters

VariableName A Null-terminated Unicode string that is the name of the
vendor’s variable.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in the InstallProtocolInterface () function
description.

Attributes If not NULL, a pointer to the memory location to return the
attributes bitmask for the variable. See “Related Definitions.”

DataSize On input, the size in bytes of the return Data buffer.

On output the size of data returned in Data.

Data The buffer to return the contents of the variable.

Related Definitions

//***

// Variable Attributes
//***

##define EFI_VARIABLE NON VOLATILE 0x0000000000000001
##define EFI_ VARIABLE BOOTSERVICE ACCESS 0x0000000000000002
##define EFI VARIABLE RUNTIME ACCESS 0x0000000000000004

Version 1.10 12/01/02 6-3

intel
Extensible Firmware Interface Specification ’

Description

Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid. When a variable is set its At t ributes are supplied to indicate how the
data variable should be stored and maintained by the system. The attributes affect when the
variable may be accessed and volatility of the data. Any attempts to access a variable that does not
have the attribute set for runtime access will yield the EFI_NOT FOUND error.

If the Data buffer is too small to hold the contents of the variable, the error
EFI_ BUFFER TOO SMALL is returned and DataSize is set to the required buffer size to obtain

the data.

Status Codes Returned
EFI_SUCCESS The function completed successfully.
EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has
been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuidis NULL.

EFI_INVALID_PARAMETER DataSizeis NULL.

EFI_INVALID_PARAMETER Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.

6-4 12/01/02 Version 1.10

intel
’ Services — Runtime Services

GetNextVariableName()

Summary

Enumerates the current variable names.

Prototype

EFI_STATUS
GetNextVariableName (

IN OUT UINTN *VariableNameSize,
IN OUT CHAR16 *VariableName,
IN OUT EFI GUID *VendorGuid
)i
Parameters
VariableNameSize The size of the VariableName buffer.
VariableName On input, supplies the last VariableName that was returned

by GetNextVariableName (). On output, returns the Null-
terminated Unicode string of the current variable.

VendorGuid On input, supplies the last VendorGuid that was returned by
GetNextVariableName (). On output, returns the
VendorGuid of the current variable. Type EFI_GUID is
defined in the InstallProtocolInterface () function
description.

Description

GetNextVariableName () is called multiple times to retrieve the VariableName and
VendorGuid of all variables currently available in the system. On each call to
GetNextVariableName () the previous results are passed into the interface, and on output the
interface returns the next variable name data. When the entire variable list has been returned, the
error EFI_NOT_ FOUND is returned.

Note thatif EFI_BUFFER TOO SMALL is returned, the VariableName buffer was too small
for the next variable. When such an error occurs, the VariableNameSize is updated to reflect
the size of buffer needed. In all cases when calling GetNextVariableName () the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

To start the search, a Null-terminated string is passed in VariableName; that is,
VariableName is a pointer to a Null Unicode character. This is always done on the initial call to
GetNextVariableName (). When VariableName is a pointer to a Null Unicode character,
VendorGuidis ignored. GetNextVariableName () cannot be used as a filter to return
variable names with a specific GUID. Instead, the entire list of variables must be retrieved, and the

Version 1.10 12/01/02 6-5

intel
Extensible Firmware Interface Specification ’

caller may act as a filter if it chooses. Calls to SetVariable () between calls to
GetNextVariableName () may produce unpredictable results.

Once ExitBootServices () is performed, variables that are only visible during boot services

will no longer be returned. To obtain the data contents or attribute for a variable returned by
GetNextVariableName () , the GetVariable () interface is used.

Status Codes Returned

EFI_SUCCESS

The function completed successfully.

EFI_NOT_FOUND

The next variable was not found.

EFI_BUFFER_TOO_SMALL

The VariableNameSize is too small for the result.
VariableNameS1ize has been updated with the size needed
to complete the request.

EFI_INVALID_PARAMETER

VariableNameSize is NULL.

EFI_INVALID_PARAMETER

VariableName is NULL.

EFI_INVALID_PARAMETER

VendorGuid is NULL.

EFI_DEVICE_ERROR

The variable name could not be retrieved due to a hardware error.

12/01/02 Version 1.10

intel

SetVariable()

Summary

Sets the value of a variable.

Prototype

EFI_STATUS
SetVariable (
IN CHAR1G6
IN EFI_GUID
IN UINT32
IN UINTN
IN VOID
) ;
Parameters

VariableName

VendorGuid

Attributes
DataSize

Data

Description

Services — Runtime Services

*VariableName,
*VendorGuid,
Attributes,
DataSize,
*Data

A Null-terminated Unicode string that is the name of the
vendor’s variable. Each VariableName is unique for each
VendorGuid. VariableName must contain 1 or more
Unicode characters. If VariableName is an empty Unicode
string, then EFI_INVALID PARAMETER is returned.

A unique identifier for the vendor. Type EFI_GUID is defined
in the InstallProtocolInterface () function
description.

Attributes bitmask to set for the variable. Refer to the
GetVariable () function description.

The size in bytes of the Data buffer. A size of zero causes the
variable to be deleted.

The contents for the variable.

Variables are stored by the firmware and may maintain their values across power cycles. Each
vendor may create and manage its own variables without the risk of name conflicts by using a

unique VendorGuid.

Each variable has At tributes that define how the firmware stores and maintains the data value.
If the EFI_VARIABLE NON VOLATILE attribute is not set, the firmware stores the variable in
normal memory and it is not maintained across a power cycle. Such variables are used to pass
information from one component to another. An example of this is the firmware’s language code

Version 1.10

12/01/02 6-7

intel
Extensible Firmware Interface Specification ’

support variable. It is created at firmware initialization time for access by EFI components that
may need the information, but does not need to be backed up to nonvolatile storage.

EFI_VARIABLE NON VOLATILE variables are stored in fixed hardware that has a limited
storage capacity; sometimes a severely limited capacity. Software should only use a nonvolatile
variable when absolutely necessary. In addition, if software uses a nonvolatile variable it should
use a variable that is only accessible at boot services time if possible.

A variable must contain one or more bytes of Data. Using SetVariable () witha DataSize

of zero causes the entire variable to be deleted. The space consumed by the deleted variable may
not be available until the next power cycle.

The Attributes have the following usage rules:

e Storage attributes are only applied to a variable when creating the variable. If a preexisting
variable is rewritten with different attributes, the result is indeterminate and may vary between
implementations. The correct method of changing the attributes of a variable is to delete the
variable and recreate it with different attributes. There is one exception to this rule. If a

preexisting variable is rewritten with no access attributes specified, the variable will be deleted.

e Setting a data variable with no access, or zero DataS1ize attributes specified causes it to be
deleted.

e Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE RUNTIME ACCESS set must also have
EFI_VARIABLE BOOTSERVICE ACCESS set. The caller is responsible for following this
rule.

e Once ExitBootServices () is performed, data variables that did not have
EFI_VARIABLE RUNTIME ACCESS set are no longer visible to GetVariable ().

e Once ExitBootServices () is performed, only variables that have
EFI VARIABLE RUNTIME ACCESS and EFI VARIABLE NON VOLATILE setcan be

set with SetVariable (). Variables that have runtime access but that are not nonvolatile are

read-only data variables once ExitBootServices () is performed.

The only rules the firmware must implement when saving a nonvolatile variable is that it has

actually been saved to nonvolatile storage before returning EFI_SUCCESS, and that a partial save

is not performed. If power fails during a call to SetVariable () the variable may contain its
previous value, or its new value. In addition there is no read, write, or delete security protection.

Status Codes Returned

EFI_SUCCESS The firmware has successfully stored the variable and its data as
defined by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied, or the
DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER VariableName is an empty Unicode string.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

12/01/02 Version 1.10

intel

6.2 Time Services

Services — Runtime Services

This section contains function definitions for time-related functions that are typically needed by
operating systems at runtime to access underlying hardware that manages time information and
services. The purpose of these interfaces is to provide operating system writers with an abstraction
for hardware time devices, thereby relieving the need to access legacy hardware devices directly.
There is also a stalling function for use in the preboot environment. Table 6-2 lists the time
services functions described in this section:

Table 6-2. Time Services Functions

Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities of the
platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.

Version 1.10

12/01/02 6-9

intel
Extensible Firmware Interface Specification ’

GetTime()

Summary

Returns the current time and date information, and the time-keeping capabilities of the hardware
platform.

Prototype

EFI_STATUS

GetTime (
OUT EFI TIME *Time,
OUT EFI TIME CAPABILITIES *Capabilities OPTIONAL
) ;

Parameters
Time A pointer to storage to receive a snapshot of the current time. Type
EFI_TIME is defined in “Related Definitions.”
Capabilities An optional pointer to a buffer to receive the real time clock device’s
capabilities. Type EFI_TIME CAPABILITIES is defined in “Related
Definitions.”

Related Definitions

//***

//EFI_TIME
[/ *hkrhkkkkkhkhkkhhkhhhkhhhkhhhkhhhhhhkhhhkhhhhhhhhhhkhhdhx

// This represents the current time information
typedef struct {

UINT16 Year; // 1998 - 20XX
UINTS8 Month; // 1 - 12

UINTS Day; // 1 - 31

UINTS Hour; // 0 - 23

UINTS Minute; // 0 - 59

UINTS Second; // 0 - 59

UINTS8 Padil;

UINT32 Nanosecond; // 0 - 999,999,999
INT16 TimeZone; // -1440 to 1440 or 2047
UINTS8 Daylight;

UINTS8 Pad2z;

} EFI_TIME;

6-10 12/01/02 Version 1.10

intel
’ Services — Runtime Services

//***

// Bit Definitions for EFI TIME.Daylight. See below.
//***

#define EFI_TIME ADJUST DAYLIGHT 0x01
#define EFI_TIME IN DAYLIGHT 0x02

//***

// Value Definition for EFI TIME.TimeZone. See below.
//***

#define EFI UNSPECIFIED TIMEZONE 0x07FF
Year, Month, Day The current local date.
Hour, Minute, Second, Nanosecond

The current local time. Nanoseconds report the current fraction
of a second in the device. The format of the time is
hh:mm:ss.nnnnnnnnn. A battery backed real time clock
device maintains the date and time.

TimeZone The time’s offset in minutes from GMT. If the value is
EFI_UNSPECIFIED TIMEZONE, then the time is interpreted
as a local time.

Daylight A bitmask containing the daylight savings time information for
the time.

The EFI_TIME ADJUST DAYLIGHT bit indicates if the time
is affected by daylight savings time or not. This value does not
indicate that the time has been adjusted for daylight savings
time. It indicates only that it should be adjusted when the
EFI_TIME enters daylight savings time.

IfEFI_TIME IN DAYLIGHT is set, the time has been
adjusted for daylight savings time.

All other bits must be zero.

Version 1.10 12/01/02 6-11

intel
Extensible Firmware Interface Specification ’

//***

// EFI_TIME CAPABILITIES
[/ *hRkrk ke kkkhkkkhkkkhkkkhkhkhkhhkhkkhhkkhkkkhkkkhkkdkhkkkhkkk

// This provides the capabilities of the
// real time clock device as exposed through the EFI interfaces.
typedef struct {

UINT32 Resolution;
UINT32 Accuracy;
BOOLEAN SetsToZero;

} EFI_TIME CAPABILITIES;

Resolution Provides the reporting resolution of the real-time clock device in counts
per second. For a normal PC-AT CMOS RTC device, this value would
be 1 Hz, or 1, to indicate that the device only reports the time to the
resolution of 1 second.

Accuracy Provides the timekeeping accuracy of the real-time clock in an error rate
of 1E-6 parts per million. For a clock with an accuracy of 50 parts per
million, the value in this field would be 50,000,000.

SetsToZero A TRUE indicates that a time set operation clears the device’s time below
the Resolution reporting level. A FALSE indicates that the state
below the Resolution level of the device is not cleared when the time
is set. Normal PC-AT CMOS RTC devices set this value to FALSE.

Description

The GetTime () function returns a time that was valid sometime during the call to the function.
While the returned EFI_TIME structure contains TimeZone and Daylight savings time

information, the actual clock does not maintain these values. The current time zone and daylight
saving time information returned by GetTime () are the values that were last set via
SetTime ().

The GetTime () function should take approximately the same amount of time to read the time
each time it is called. All reported device capabilities are to be rounded up.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetTime ().

Status Codes Returned

EFI_SUCCESS The operation completed successfully.
EFI_INVALID_PARAMETER | Time is NULL.
EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.

6-12 12/01/02 Version 1.10

intel
’ Services — Runtime Services

SetTime()

Summary

Sets the current local time and date information.

Prototype
EFI_STATUS
SetTime (
IN EFI TIME *Time
)i
Parameters
Time A pointer to the current time. Type EFI_TIME is defined in the
GetTime () function description. Full error checking is performed on
the different fields of the EFI_TIME structure (refer to the EFI_TIME
definition in the GetTime () function description for full details), and
EFI_INVALID PARAMETER is returned if any field is out of range.
Description

The SetTime () function sets the real time clock device to the supplied time, and records the
current time zone and daylight savings time information. The SetTime () function is not allowed
to loop based on the current time. For example, if the device does not support a hardware reset for
the sub-resolution time, the code is not to implement the feature by waiting for the time to wrap.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetTime ().

Status Codes Returned

EFI_SUCCESS The operation completed successfully.
EFI_INVALID_PARAMETER A time field is out of range.
EFI_DEVICE_ERROR The time could not be set due to a hardware error.

Version 1.10 12/01/02 6-13

Extensible Firmware Interface Specification

GetWakeupTime()

Summary

Returns the current wakeup alarm clock setting.

Prototype

EFI_STATUS

GetWakeupTime (
OUT BOOLEAN
OUT BOOLEAN

OUT EFI TIME

)i

*Enabled,
*Pending,
*Time

Parameters
Enabled Indicates if the alarm is currently enabled or disabled.
Pending Indicates if the alarm signal is pending and requires acknowledgement.
Time The current alarm setting. Type EFI_TIME is defined in the
GetTime () function description.
Description

The alarm clock time may be rounded from the set alarm clock time to be within the resolution of
the alarm clock device. The resolution of the alarm clock device is defined to be one second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetWakeupTime ().

Status Codes Returned

EFI_SUCCESS

The alarm settings were returned.

EFI_INVALID_PARAMETER

Enabledis NULL.

EFI_INVALID_PARAMETER

Pendingis NULL.

EFI_INVALID_PARAMETER

Time is NULL.

EFI_DEVICE_ERROR

The wakeup time could not be retrieved due to a hardware error.

EFI_UNSUPPORTED

A wakeup timer is not supported on this platform.

12/01/02

Version 1.10

intel

SetWakeupTime()

Summary

Sets the system wakeup alarm clock time.

Prototype

EFI_STATUS
SetWakeupTime (
IN BOOLEAN Enable,

Services — Runtime Services

IN EFI TIME *Time OPTIONAL
)
Parameters
Enable Enable or disable the wakeup alarm.
Time If Enable is TRUE, the time to set the wakeup alarm for. Type
EFI_TIME is defined in the GetTime () function description. If
Enable is FALSE, then this parameter is optional, and may be NULL.
Description

Setting a system wakeup alarm causes the system to wake up or power on at the set time. When the
alarm fires, the alarm signal is latched until acknowledged by calling SetWakeupTime () to
disable the alarm. If the alarm fires before the system is put into a sleeping or off state, since the
alarm signal is latched the system will immediately wake up. If the alarm fires while the system is
off and there is insufficient power to power on the system, the system is powered on when power

is restored.

For an ACPI-aware operating system, this function only handles programming the wakeup alarm
for the desired wakeup time. The operating system still controls the wakeup event as it normally
would through the ACPI Power Management register set.

The resolution for the wakeup alarm is defined to be 1 second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetWakeupTime ().

Status Codes Returned

EFl_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If
Enableis FALSE, then the wakeup alarm was disabled.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.

EFI_UNSUPPORTED A wakeup timer is not supported on this platform.

Version 1.10

intel
Extensible Firmware Interface Specification ’

6.3 Virtual Memory Services

This section contains function definitions for the virtual memory support that may be optionally
used by an operating system at runtime. If an operating system chooses to make EFI runtime
service calls in a virtual addressing mode instead of the flat physical mode, then the operating
system must use the services in this section to switch the EFI runtime services from flat physical
addressing to virtual addressing. Table 6-3 lists the virtual memory service functions described in
this section. The system firmware must follow the processor-specific rules outlined in sections
2.3.2 and 2.3.3 in the layout of the EFI memory map to enable the OS to make the required virtual
mappings.

Table 6-3. Virtual Memory Functions

Name Type Description

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to virtual
addressing.

ConvertPointer Runtime Used by EFl components to convert internal pointers when switching
to virtual addressing.

6-16 12/01/02 Version 1.10

e ’ Services — Runtime Services

SetVirtualAddressMap()

Summary

Changes the runtime addressing mode of EFI firmware from physical to virtual.

Prototype

EFI_STATUS
SetVirtualAddressMap (

IN UINTN MemoryMapSize,
IN UINTN DescriptorSize,
IN UINT32 DescriptorVersion,
IN EFI MEMORY DESCRIPTOR *VirtualMap
)i
Parameters
MemoryMapSize The size in bytes of VirtualMap.
DescriptorSize The size in bytes of an entry in the VirtualMap.
DescriptorVersion The version of the structure entries in VirtualMap.
VirtualMap An array of memory descriptors which contain new virtual

address mapping information for all runtime ranges. Type
EFI_MEMORY DESCRIPTOR is defined in the
GetMemoryMap () function description.

Description

The SetVirtualAddressMap () function is used by the OS loader. The function can only be

called at runtime, and is called by the owner of the system’s memory map. I.e., the component
which called ExitBootServices ().

This call changes the addresses of the runtime components of the EFI firmware to the new virtual
addresses supplied in the VirtualMap. The supplied VirtualMap must provide a new virtual
address for every entry in the memory map at ExitBootServices () thatis marked as being
needed for runtime usage. All of the virtual address fields in the VirtualMap must be aligned
on 4 KB boundaries.

The call to SetVirtualAddressMap () must be done with the physical mappings. On
successful return from this function, the system must then make any future calls with the newly
assigned virtual mappings. All address space mappings must be done in accordance to the
cacheability flags as specified in the original address map.

Version 1.10 12/01/02 6-17

intel
Extensible Firmware Interface Specification ’

When this function is called, all events that were registered to be signaled on an address map
change are notified. Each component that is notified must update any internal pointers for their
new addresses. This can be done with the ConvertPointer () function. Once all events have
been notified, the EFI firmware reapplies image “fix-up” information to virtually relocate all
runtime images to their new addresses. In addition, all of the fields of the EFI Runtime Services
Table except SetVirtualAddressMap and ConvertPointer must be converted from
physical pointers to virtual pointers using the ConvertPointer () service. The
SetVirtualAddressMap () and ConvertPointer () services are only callable in physical
mode, so they do not need to be converted from physical pointers to virtual pointers. Several fields
of the EFI System Table must be converted from physical pointers to virtual pointers using the
ConvertPointer () service. These fields include FirmwareVendor, RuntimeServices,
and ConfigurationTable. Because contents of both the EFI Runtime Services Table and the
EFI System Table are modified by this service, the 32-bit CRC for the EFI Runtime Services Table
and the EFI System Table must be recomputed.

A virtual address map may only be applied one time. Once the runtime system is in virtual mode,
calls to this function return EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The virtual address map has been applied.

EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in
virtual address mapped mode.

EFI_INVALID_PARAMETER DescriptorSizeor DescriptorVersionis
invalid.

EFI_NO_MAPPING A virtual address was not supplied for a range in the memory

map that requires a mapping.

EFI_NOT_FOUND A virtual address was supplied for an address that is not found
in the memory map.

12/01/02 Version 1.10

intel
’ Services — Runtime Services

ConvertPointer()

Summary

Determines the new virtual address that is to be used on subsequent memory accesses.

Prototype

EFI_STATUS
ConvertPointer (

IN UINTN DebugDisposition,
IN VOID **Address
)i
Parameters
DebugDisposition Supplies type information for the pointer being converted. See
“Related Definitions.”
Address A pointer to a pointer that is to be fixed to be the value needed

for the new virtual address mappings being applied.

Related Definitions

//***

// EFI_OPTIONAL PTR
//***

#define EFI OPTIONAL PTR 0x00000001

Description

The ConvertPointer () function is used by an EFI component during the
SetVirtualAddressMap () operation.

The ConvertPointer () function updates the current pointer pointed to by Address to be the

proper value for the new address map. Only runtime components need to perform this operation.
The CreateEvent () function is used to create an event that is to be notified when the address

map is changing. All pointers the component has allocated or assigned must be updated.
If the EFI_OPTIONAL_ PTR flag is specified, the pointer being converted is allowed to be NULL.

Once all components have been notified of the address map change, firmware fixes any compiled in
pointers that are embedded in any runtime image.

Status Codes Returned

EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part
of the current memory map. This is normally fatal.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Version 1.10 12/01/02 6-19

intel
Extensible Firmware Interface Specification ’

6.4 Miscellaneous Runtime Services

This section contains the remaining function definitions for runtime services not defined elsewhere
but which are required to complete the definition of the EFI environment. Table 6-4 lists the
Miscellaneous Runtime Services.

Table 6-4. Miscellaneous Runtime Services

Name Type Description

ResetSystem Runtime Resets the entire platform.

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s monotonic
counter.

6-20 12/01/02 Version 1.10

intel

ResetSystem()

Summary

Resets the entire platform.

Services — Runtime Services

Prototype
VOID
ResetSystem (
IN EFI RESET TYPE ResetType,
IN EFI STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL

)i

Parameters

ResetType

ResetStatus

DataSize

ResetData

Related Definitions

The type of reset to perform. Type EFI_RESET TYPE is defined in
“Related Definitions” below.

The status code for the reset. If the system reset is part of a normal
operation, the status code would be EFI_SUCCESS. If the system reset
is due to some type of failure the most appropriate EFI Status code
would be used.

The size, in bytes, of ResetData.

A data buffer that includes a Null-terminated Unicode string, optionally
followed by additional binary data. The string is a description that the
caller may use to further indicate the reason for the system reset.
ResetData is only valid if ResetStatus is something other then
EFI_SUCCESS. This pointer must be a physical address.

//***

// EFI RESET TYPE
VAR R

typedef enum {

EfiResetCold,

EfiResetWarm,

EfiResetShutdown
} EFI_RESET TYPE;

Version 1.10

12/01/02 6-21

intel
Extensible Firmware Interface Specification ’

Description

The ResetSystem () function resets the entire platform, including all processors and devices, and
reboots the system.

Calling this interface with ResetType of EEiResetCold causes a system-wide reset. This sets

all circuitry within the system to its initial state. This type of reset is asynchronous to system
operation and operates without regard to cycle boundaries. EfiResetCold is tantamount to a

system power cycle.

Calling this interface with Reset Type of EfiResetWarm causes a system-wide initialization.

The processors are set to their initial state, and pending cycles are not corrupted. If the system does
not support this reset type, then an Ef iResetCold must be performed.

Calling this interface with Reset Type of EfiResetShutdown causes the system to enter a

power state equivalent to the ACPI G2/S5 or G3 states. If the system does not support this reset
type, then when the system is rebooted, it should exhibit the EfiResetCold attributes. If the

ACPI S5 state is supported on the system, then this reset type should not be used.
The platform may optionally log the parameters from any non-normal reset that occurs.

The ResetSystem () function does not return.

6-22 12/01/02 Version 1.10

intel
’ Services — Runtime Services

GetNextHighMonotonicCount()

Summary

Returns the next high 32 bits of the platform’s monotonic counter.

Prototype

EFI_STATUS
GetNextHighMonotonicCount (

OUT UINT32 *HighCount
) ;
Parameters
HighCount Pointer to returned value.
Description

The GetNextHighMonotonicCount () function returns the next high 32 bits of the platform’s
monotonic counter.

The platform’s monotonic counter is comprised of two 32-bit quantities: the high 32 bits and the
low 32 bits. During boot service time the low 32-bit value is volatile: it is reset to zero on every
system reset and is increased by 1 on every call to GetNextMonotonicCount (). The high

32-bit value is nonvolatile and is increased by 1 whenever the system resets or whenever the low
32-bit count (returned by GetNextMonoticCount ()) overflows.

The GetNextMonotonicCount () function is only available at boot services time. If the

operating system wishes to extend the platform monotonic counter to runtime, it may do so by

utilizing GetNextHighMonotonicCount (). To do this, before calling

ExitBootServices () the operating system would call GetNextMonotonicCount () to

obtain the current platform monotonic count. The operating system would then provide an

interface that returns the next count by:

e Adding 1 to the last count.

e Before the lower 32 bits of the count overflows, call GetNextHighMonotonicCount ().
This will increase the high 32 bits of the platform’s nonvolatile portion of the monotonic count
by 1.

This function may only be called at Runtime.

Status Codes Returned

EFI_SUCCESS The next high monotonic count was returned.
EFI_DEVICE_ERROR The device is not functioning properly.
EFI_INVALID_PARAMETER | HighCount is NULL.

Version 1.10 12/01/02 6-23

in
Extensible Firmware Interface Specification tel

6-24 12/01/02 Version 1.10

7
Protocols - EFIl Loaded Image

This chapter defines the EFI_LOADED IMAGE protocol. This protocol describes an EFI Image
that has been loaded into memory. This description includes the source from which the image was
loaded, the current location of the image in memory, the type of memory allocated for the image,
and the parameters passed to the image when it was invoked.

EFI_LOADED_IMAGE Protocol

Summary
Can be used on any image handle to obtain information about the loaded image.

GUID

#define LOADED IMAGE PROTOCOL \
{0x5B1B31A1,0x9562, 0x11d2, 0x8E, 0x3F, 0x00, 0xA0, 0xC9, 0x69, 0x72, 0x3B}

Revision Number
#define EFI_ LOADED IMAGE INFORMATION REVISION 0x1000

Protocol Interface Structure
typedef struct {

UINT32 Revision;
EFI HANDLE ParentHandle;
EFI SYSTEM TABLE *SystemTable;

// Source location of the image

EFI HANDLE DeviceHandle;
EFI DEVICE PATH *FilePath;
VOID *Reserved;

// Image’s load options
UINT32 LoadOptionsSize;
VOID *L,oadOptions;

Version 1.10 12/01/02 7-1

intel
Extensible Firmware Interface Specification ’

// Location where image was loaded

VOID *ImageBase;
UINT64 ImageSize;

EFI MEMORY TYPE ImageCodeType;
EFI MEMORY TYPE ImageDataType;
EFI IMAGE UNLOAD Unload;

} EFI_LOADED IMAGE;

Parameters

Revision Defines the revision of the EFI_LOADED IMAGE structure.
All future revisions will be backward compatible to the current
revision.

ParentHandle Parent image’s image handle. NULL if the image is loaded
directly from the firmware’s boot manager. Type EFI HANDLE
is defined in Chapter 5.

SystemTable The image’s EFI system table pointer. Type
EFI SYSTEM TABLE is defined in Chapter 4.

DeviceHandle The device handle that the EFI Image was loaded from. Type
EFI_ HANDLE is defined in Chapter 5.

FilePath A pointer to the file path portion specific to DeviceHandle
that the EFI Image was loaded from. The EFI DEVICE PATH
protocol is defined in Chapter 8.

Reserved Reserved. DO NOT USE.

LoadOptionsSize The size in bytes of LoadOptions.

LoadOptions A pointer to the image’s binary load options.

ImageBase The base address at which the image was loaded.

ImageSize The size in bytes of the loaded image.

ImageCodeType The memory type that the code sections were loaded as. Type
EFI MEMORY TYPE is defined in Chapter 5.

ImageDataType The memory type that the data sections were loaded as. Type
EFI_MEMORY TYPE is defined in Chapter 5.

Unload Function that unloads the image. See Unload ().

Description

Each loaded image has an image handle that supports the EFI_LOADED IMAGE protocol. When

an image is started, it is passed the image handle for itself. The image can use the handle to obtain
its relevant image data stored in the EFI_LOADED IMAGE structure, such as its load options.

7-2 12/01/02 Version 1.10

intel
’ Protocols — EFI Loaded Image

LOADED_IMAGE.Unload()

Summary

Unloads an image from memory.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI UNLOAD IMAGE) (

IN EFI HANDLE ImageHandle,
)
Parameters
ImageHandle The handle to the image to unload. Type EFI HANDLE is defined in
Chapter 5.
Description

The Unload () function unloads an image from memory if TmageHandle is valid.

Status Codes Returned
EFI_SUCCESS The image was unloaded.
EFI_INVALID_PARAMETER | The ImageHandle was not valid.

Version 1.10 12/01/02 7-3

in
Extensible Firmware Interface Specification tel

7-4 12/01/02 Version 1.10

8
Protocols - Device Path Protocol

This chapter contains the definition of the device path protocol and the information needed to
construct and manage device paths in the EFI environment. A device path is constructed and used
by the firmware to convey the location of important devices, such as the boot device and console,
consistent with the software-visible topology of the system.

8.1 Device Path Overview

A Device Path is used to define the programmatic path to a device. The primary purpose of a
Device Path is to allow an application, such as an OS loader, to determine the physical device that
the EFI interfaces are abstracting.

A collection of device paths is usually referred to as a name space. ACPI, for example, is rooted
around a name space that is written in ASL (ACPI Source Language). Given that EFI does not
replace ACPI and defers to ACPI when ever possible, it would seem logical to utilize the ACPI
name space in EFI. However, the ACPI name space was designed for usage at operating system
runtime and does not fit well in platform firmware or OS loaders. Given this, EFI defines its own
name space, called a Device Path.

A Device Path is designed to make maximum leverage of the ACPI name space. One of the key
structures in the Device Path defines the linkage back to the ACPI name space. The Device Path
also is used to fill in the gaps where ACPI defers to buses with standard enumeration algorithms.
The Device Path is able to relate information about which device is being used on buses with
standard enumeration mechanisms. The Device Path is also used to define the location on a
medium where a file should be, or where it was loaded from. A special case of the Device Path can
also be used to support the optional booting of legacy operating systems from legacy media.

The Device Path was designed so that the OS loader and the operating system could tell which
devices the platform firmware was using as boot devices. This allows the operating system to
maintain a view of the system that is consistent with the platform firmware. An example of this is a
“headless” system that is using a network connection as the boot device and console. In such a
case, the firmware will convey to the operating system the network adapter and network protocol
information being used as the console and boot device in the device path for these devices.

Version 1.10 12/01/02 8-1

intel
Extensible Firmware Interface Specification ’

8.2 EFI_DEVICE_PATH Protocol

This section provides a detailed description of the EFI_DEVICE PATH protocol.

EFI_DEVICE_PATH Protocol

8-2

Summary

Can be used on any device handle to obtain generic path/location information concerning the
physical device or logical device. If the handle does not logically map to a physical device, the
handle may not necessarily support the device path protocol.

GUID
##define DEVICE PATH PROTOCOL \
{ 09576e91-6d3£f-11d2-8e39-00a0c969723b }

Protocol Interface Structure

EFI DEVICE PATH *DevicePath ;
Parameters
DevicePath A pointer to device path data. The device path describes the location of

the device the handle is for. The size of the Device Path can be
determined from the structures that make up the Device Path. Type
EFI_DEVICE PATH is defined in the LocateDevicePath ()

function description.

Description

The executing EFI Image may use the device path to match its own device drivers to the particular
device. Note that the executing EFI OS loader and EFI application images must access all physical
devices via Boot Services device handles until ExitBootServices () is successfully called.
An EFI driver may access only a physical device for which it provides functionality.

12/01/02 Version 1.10

intel

Protocols — Device Path Protocol

8.3 Device Path Nodes

There are six major types of Device Path nodes:

8.3.1

Hardware Device Path. This Device Path defines how a device is attached to the resource
domain of a system, where resource domain is simply the shared memory, memory mapped
I/0, and I/O space of the system.

ACPI Device Path. This Device Path is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described using ACPI AML
in the ACPI name space; this Device Path is a linkage to the ACPI name space.

Messaging Device Path. This Device Path is used to describe the connection of devices outside
the resource domain of the system. This Device Path can describe physical messaging
information (e.g., a SCSI ID) or abstract information (e.g., networking protocol IP addresses).
Media Device Path. This Device Path is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define which partition
on a hard drive was being used.

BIOS Boot Specification Device Path. This Device Path is used to point to boot legacy
operating systems; it is based on the BIOS Boot Specification Version 1.01. Refer to the
References appendix for details on obtaining this specification.

End of Hardware Device Path. Depending on the Sub-Type, this Device Path node is used to
indicate the end of the Device Path instance or Device Path structure.

Generic Device Path Structures

A Device Path is a variable-length binary structure that is made up of variable-length generic
Device Path nodes. Table 8-1 defines the structure of a such a node and the lengths of its
components. The table defines the type and sub-type values corresponding to the Device Paths
described Section 8.3; all other type and sub-type values are Reserved.

Table 8-1. Generic Device Path Node Structure

Byte Byte
Mnemonic Offset Length Description
Type 0 1 Type 0x01 — Hardware Device Path
Type 0x02 — ACPI Device Path
Type 0x03 — Messaging Device Path
Type 0x04 — Media Device Path
Type 0x05 — BIOS Boot Specification Device Path
Type OxFF — End of Hardware Device Path
Sub-Type 1 1 Sub-Type — Varies by Type. (See Table 8-2.)
Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.
Specific Device Path Data | 4 n Specific Device Path data. Type and Sub-Type define
type of data. Size of data is included in Length.

Version 1.10 12/01/02 8-3

intel
Extensible Firmware Interface Specification ’

A Device Path is a series of generic Device Path nodes. The first Device Path node starts at byte
offset zero of the Device Path. The next Device Path node starts at the end of the previous Device
Path node. Therefore all nodes are byte-packed data structures that may appear on any byte
boundary. All code references to device path notes must assume all fields are UNALIGNED. Since
every Device Path node contains a length field in a known place, it is possible to traverse Device
Path nodes that are of an unknown type. There is no limit to the number, type, or sequence of

nodes in a Device Path.

A Device Path is terminated by an End of Hardware Device Path node. This type of node has two
sub-types (see Table 8-2):

e End This Instance of a Device Path (sub-type 0x01). This type of node terminates one Device
Path instance and denotes the start of another. This is only required when an environment
variable represents multiple devices. An example of this would be the ConsoleOut
environment variable that consists of both a VGA console and serial output console. This
variable would describe a console output stream that is sent to both VGA and serial
concurrently and thus has a Device Path that contains two complete Device Paths.

e End Entire Device Path (sub-type OxFF). This type of node terminates an entire Device Path.
Software searches for this sub-type to find the end of a Device Path. All Device Paths must
end with this sub-type.

Table 8-2. Device Path End Structure
Byte Byte

Mnemonic | Offset | Length | Description

Type 0 1 Type 0x7F — End of Hardware Device Path
Type OxFF — End of Hardware Device Path

Sub-Type 1 1 Sub-Type 0xFF — End Entire Device Path, or
Sub-Type 0x01 — End This Instance of a Device Path and start a new

Device Path
Length 2 2 Length of this structure in bytes. Length is 4 bytes.

12/01/02 Version 1.10

intel

8.3.2

Hardware Device Path

Protocols — Device Path Protocol

This Device Path defines how a device is attached to the resource domain of a system, where
resource domain is simply the shared memory, memory mapped I/O, and I/O space of the system.
It is possible to have multiple levels of Hardware Device Path such as a PCCARD device that was
attached to a PCCARD PCI controller.

8.3.2.1 PCI Device Path

The Device Path for PCI defines the path to the PCI configuration space address for a PCI device.
There is one PCI Device Path entry for each device and function number that defines the path from
the root PCI bus to the device. Because the PCI bus number of a device may potentially change, a
flat encoding of single PCI Device Path entry cannot be used. An example of this is when a PCI
device is behind a bridge, and one of the following events occurs:

e OS performs a Plug and Play configuration of the PCI bus.

e A hot plug of a PCI device is performed.

e The system configuration changes between reboots.

The PCI Device Path entry must be preceded by an ACPI Device Path entry that uniquely identifies

the PCI root bus. The programming of root PCI bridges is not defined by any PCI specification and
this is why an ACPI Device Path entry is required.

Table 8-3. PCI Device Path
Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 1 — Hardware Device Path
Sub-Type 1 1 Sub-Type 1 - PCI
Length 2 2 Length of this structure is 6 bytes
Function 4 1 PCI Function Number
Device 5 1 PCI Device Number

8.3.2.2 PCCARD Device Path

Table 8-4. PCCARD Device Path
Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 1 — Hardware Device Path
Sub-Type 1 1 Sub-Type 2 - PCCARD
Length 2 Length of this structure in bytes. Length is 5 bytes.
Function Number 4 1 Function Number (0 = First Function)

Version 1.10

12/01/02 8-5

Extensible Firmware Interface Specification

8.3.2.3 Memory Mapped Device Path
Table 8-5. Memory Mapped Device Path
Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 1 — Hardware Device Path.
Sub-Type 1 1 Sub-Type 3 — Memory Mapped.
Length Length of this structure in bytes. Length is 24 bytes.
Memory Type EFI_MEMORY TYPE. Type EFI_MEMORY TYPEis
defined in the AllocatePages () function description.
Start Address 8 Starting Memory Address.
End Address 16 Ending Memory Address.

8.3.2.4 Vendor Device Path

The Vendor Device Path allows the creation of vendor-defined Device Paths. A vendor must
allocate a Vendor_GUID for a Device Path. The Vendor_GUID can then be used to define the
contents on the n bytes that follow in the Vendor Device Path node.

Table 8-6. Vendor-Defined Device Path
Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 1 — Hardware Device Path.
Sub-Type 1 1 Sub-Type 4 — Vendor.
Length 2 Length of this structure in bytes. Length is 20 + n bytes.
Vendor_GUID 16 Vendor-assigned GUID that defines the data that follows.
Vendor Defined Data 20 n Vendor-defined variable size data.

8.3.2.5 Controller Device Path

Table 8-7. Controller Device Path
Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 1 — Hardware Device Path.
Sub-Type 1 1 Sub-Type 5 — Controller.
Length Length of this structure in bytes. Length is 8 bytes.

Controller Number

Controller number.

12/01/02

Version 1.10

intel
’ Protocols — Device Path Protocol

8.3.3 ACPI Device Path

This Device Path contains ACPI Device IDs that represent a device’s Plug and Play Hardware ID
and its corresponding unique persistent ID. The ACPI IDs are stored in the ACPI _HID, _CID, and
_UID device identification objects that are associated with a device. The ACPI Device Path
contains values that must match exactly the ACPI name space that is provided by the platform
firmware to the operating system. Refer to the ACPI specification for a complete description of the
_HID, _CID, and _UID device identification objects.

The _HID and _CID values are optional device identification objects that appear in the ACPI name
space. If only _HID is present, the _HID must be used to describe any device that will be
enumerated by the ACPI driver. The _CID, if present, contains information that is important for the
OS to attach generic driver (e.g., PCI Bus Driver), while the _HID contains information important
for the OS to attach device-specific driver. The ACPI bus driver only enumerates a device when no
standard bus enumerator exists for a device.

The _UID object provides the OS with a serial number-style ID for a device that does not change
across reboots. The object is optional, but is required when a system contains two devices that
report the same _HID. The _UID only needs to be unique among all device objects with the same
_HID value. If no _UID exists in the APCI name space for a _HID the value of zero must be stored
in the _UID field of the ACPI Device Path.

The ACPI Device Path is only used to describe devices that are not defined by a Hardware Device
Path. An _HID (along with _CID if present) is required to represent a PCI root bridge, since the
PCI specification does not define the programming model for a PCI root bridge. There are two
subtypes of the ACPI Device Path: a simple subtype that only includes the _HID and _UID fields,
and an extended subtype that includes the _HID, _CID, and _UID fields.

The ACPI Device Path node only supports numeric 32-bit values for the _HID and _UID values.
The Expanded ACPI Device Path node supports both numeric and string values for the _HID,
_UID, and _CID values. As a result, the ACPI Device Path node is smaller and should be used if
possible to reduce the size of device paths that may potentially be stored in nonvolatile storage. If a
string value is required for the _HID field, or a string value is required for the _UID field, or a
_CID field is required, then the Expanded ACPI Device Path node must be used. If a string field of
the Expanded ACPI Device Path node is present, then the corresponding numeric field is ignored.

The _HID and _CID fields in the ACPI Device Path node and Expanded ACPI Device Path node
are stored as a 32-bit compressed EISA-type IDs. The following macro can be used to compute
these EISA-type IDs from a Plug and Play Hardware ID. The Plug and Play Hardware IDs used to
compute the _HID and _CID fields in the EFI device path nodes must match the Plug and Play
Hardware IDs used to build the matching entries in the ACPI tables. The compressed EISA-type
IDs produced by this macro differ from the compressed EISA-type IDs stored in ACPI tables. As a
result, the compressed EISA-type IDs from the ACPI Device Path nodes cannot be directly
compared to the compressed EISA-type IDs from the ACPI table.

#define EFI_PNP ID(ID) (UINT32) (((ID) << 16) | 0x41DO0)
#define EISA PNP ID(ID) EFI_PNP_ID (ID)

Version 1.10 12/01/02 8-7

intel
Extensible Firmware Interface Specification ’

Table 8-8. ACPI Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 2 — ACPI Device Path.
Sub-Type 1 1 Sub-Type 1 ACPI Device Path.
Length 2 2 Length of this structure in bytes. Length is 12 bytes.
HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit

compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. Only the 32-bit
numeric value type of _UID is supported; thus strings must
not be used for the _UID in the ACPI name space.

Table 8-9. Expanded ACPI Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 2 — ACPI Device Path.
Sub-Type 1 1 Sub-Type 2 Expanded ACPI Device Path.
Length 2 2 Length of this structure in bytes. Minimum length is

19 bytes. The actual size will depend on the size of
the _HIDSTR, _UIDSTR, and _CIDSTR fields.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space.

_CID 12 4 Device’s compatible PnP hardware ID stored in a numeric
32-bit compressed EISA-type ID. This value must match at
least one of the compatible device IDs returned by the
corresponding _CID in the ACPI name space.

_HIDSTR 16 >=1 Device’s PnP hardware ID stored as a null-terminated ASCII
string. This value must match the corresponding _HID in
the ACPI name space. If the length of this string not
including the null-terminator is 0, then the _HID field is used.
If the length of this null-terminated string is greater than 0,
then this field supercedes the _HID field.

continued

8-8 12/01/02 Version 1.10

intel
’ Protocols — Device Path Protocol

Table 8-9. Expanded ACPI Device Path (continued)

Byte Byte
Mnemonic Offset Length | Description
_UIDSTR Varies >=1 Unique ID that is required by ACPI if two devices have the

same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. This value is
stored as a null-terminated ASCII string. If the length of this
string not including the null-terminator is 0, then the _UID
field is used. If the length of this null-terminated string is
greater than 0, then this field supercedes the _UID field.
The Byte Offset of this field can be computed by adding 16
to the size of the _HIDSTR field.

_CIDSTR Varies | >=1 Device’s compatible PnP hardware ID stored as a null-
terminated ASCII string. This value must match at least one
of the compatible device IDs returned by the corresponding
_CID in the ACPI name space. If the length of this string not
including the null-terminator is 0, then the _CID field is used.
If the length of this null-terminated string is greater than 0,
then this field supercedes the _CID field. The Byte Offset of
this field can be computed by adding 16 to the sum of the
sizes of the _HIDSTR and _UIDSTR fields.

8.3.4 Messaging Device Path

This Device Path is used to describe the connection of devices outside the resource domain of the
system. This Device Path can describe physical messaging information like SCSI ID or abstract
information like networking protocol IP addresses.

8.3.4.1 ATAPI Device Path

Table 8-10. ATAPI Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 1 — ATAPI
Length 2 2 Length of this structure in bytes. Length is 8 bytes.
PrimarySecondary 4 1 Set to zero for primary or one for secondary
SlaveMaster 5 1 Set to zero for master or one for slave mode
Logical Unit Number 6 2 Logical Unit Number

Version 1.10 12/01/02 8-9

intel
Extensible Firmware Interface Specification ’

8.3.4.2 SCSI Device Path

Table 8-11. SCSI Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 2 — SCSI
Length 2 2 Length of this structure in bytes. Length is 8 bytes.
Target ID 4 2 Target ID on the SCSI bus, PUN
Logical Unit Number 6 2 Logical Unit Number, LUN

8.3.4.3 Fibre Channel Device Path

Table 8-12. Fibre Channel Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 3 — Fibre Channel
Length 2 2 Length of this structure in bytes. Length is 24 bytes.
Reserved 4 4 Reserved
World Wide Number 8 8 Fibre Channel World Wide Number
Logical Unit Number 16 8 Fibre Channel Logical Unit Number

8.3.4.4 1394 Device Path

Table 8-13. 1394 Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 4 — 1394
Length 2 2 Length of this structure in bytes. Length is 16 bytes.
Reserved 4 4 Reserved
GUID' 8 8 1394 Global Unique ID (GUID)'

Notes: 'The usage of the term GUID is per the 1394 specification. This is not the same as the EFI_GUID
type defined in the EFI Specification.

8-10 12/01/02 Version 1.10

intel
’ Protocols — Device Path Protocol

8.3.4.5 USB Device Path

Table 8-14. USB Device Path

Byte Byte
Mnemonic Offset | Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 5 - USB
Length 2 2 Length of this structure in bytes. Length is 16 bytes.
USB Parent Port Number 4 1 USB Parent Port Number
Interface 5 1 USB Interface Number

8.3.4.6 USB Class Device Path

Table 8-15. USB Class Device Path

Byte Byte
Mnemonic Offset | Length | Description
Type 0 1 Type 3 - Messaging Device Path.
Sub-Type 1 1 Sub-Type 15 - USB Class.
Length 2 2 Length of this structure in bytes. Length is 11 bytes.
Vendor ID 4 2 Vendor ID assigned by USB-IF. A value of OxFFFF will

match any Vendor ID.

Product ID 6 2 Product ID assigned by USB-IF. A value of OxFFFF will
match any Product ID.

Device Class 8 1 The class code assigned by the USB-IF. A value of OxFF
will match any class code.

Device Subclass 9 1 The subclass code assigned by the USB-IF. A value of
OxFF will match any subclass code.

Device Protocol 10 1 The protocol code assigned by the USB-IF. A value of OxFF
will match any protocol code.

Version 1.10 12/01/02 8-11

intel
Extensible Firmware Interface Specification ’

8.3.4.7 1,0 Device Path

Table 8-16. 1,0 Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 6 — 120 Random Block Storage Class
Length 2 Length of this structure in bytes. Length is 8 bytes.
TID 4 Target ID (TID) for a device

8.3.4.8 MAC Address Device Path

Table 8-17. MAC Address Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 11 — MAC Address for a network interface
Length 2 2 Length of this structure in bytes. Length is 37 bytes.
MAC Address 4 32 The MAC address for a network interface padded with Os
IfType 36 1 Network interface type(i.e. 802.3, FDDI). See RFC 1700

8.3.4.9 IPv4 Device Path

Table 8-18. IPv4 Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 12 — IPv4
Length 2 2 Length of this structure in bytes. Length is 19 bytes.
Local IP Address 4 4 The local IPv4 address
Remote IP Address 8 4 The remote IPv4 address
Local Port 12 2 The local port number
Remote Port 14 2 The remote port number
Protocol 16 2 The network protocol(i.e. UDP, TCP). See RFC 1700
StaticlPAddress 18 1 0x00 - The Source IP Address was assigned though DHCP
0x01 - The Source IP Address is statically bound

8-12 12/01/02 Version 1.10

intel
’ Protocols — Device Path Protocol

8.3.4.10 IPv6 Device Path

Table 8-19. IPv6 Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 13 — IPv6
Length 2 2 Length of this structure in bytes. Length is 43 bytes.
Local IP Address 4 16 The local IPv6 address
Remote IP Address 20 16 The remote IPv6 address
Local Port 36 2 The local port number
Remote Port 38 2 The remote port number
Protocol 40 2 The network protocol (i.e. UDP, TCP). See RFC 1700
StaticlPAddress 42 1 0x00 - The Source IP Address was assigned though DHCP
0x01 - The Source IP Address is statically bound

8.3.4.11 InfiniBand Device Path

Table 8-20. InfiniBand Device Path

Byte Byte
Mnemonic Offset | Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 9 — InfiniBand
Length 2 2 Length of this structure in bytes. Length is 48 bytes.
Resource Flags 4 4 Flags to help identify/manage InfiniBand device path
elements:
¢ Bit 0 — I0C/Service (0b = I0C, 1b = Service)
¢ Bit 1 — Extend Boot Environment
e Bit 2 — Console Protocol
¢ Bit 3 — Storage Protocol
e Bit 4 — Network Protocol
All other bits are reserved.
PORT GID 8 16 128-bit Global Identifier for remote fabric port
IOC GUID/Service ID 24 8 64-bit unique identifier to remote IOC or server process.
Interpretation of field specified by Resource Flags (bit 0)
Target Port ID 32 8 64-bit persistent ID of remote 10C port
Device ID 40 8 64-bit persistent ID of remote device
Note: The usage of the terms GUID and GID is per the InfiniBand Specification. The term GUID is not

the same as the EFI_GUID type defined in this EFI Specification.

Version 1.10 12/01/02 8-13

Extensible Firmware Interface Specification

8.3.4.12 UART Device Path

Table 8-21. UART Device Path

Byte
Mnemonic Offset

Byte
Length

Description

Type 0

Type 3 — Messaging Device Path

Sub-Type

Sub-Type 14 — UART

N | =

Length

N | =

Length of this structure in bytes. Length is 19 bytes.

SN

Reserved

SN

Reserved

Baud Rate

o]

o)

The baud rate setting for the UART style device. A value of
0 means that the device's default baud rate will be used.

Data Bits 16

The number of data bits for the UART style device. A value
of 0 means that the device's default number of data bits will
be used.

Parity 17

The parity setting for the UART style device.
Parity 0x00 - Default Parity

Parity 0x01 - No Parity

Parity 0x02 - Even Parity

Parity 0x03 - Odd Parity

Parity 0x04 - Mark Parity

Parity 0x05 - Space Parity

Stop Bits 18

The number of stop bits for the UART style device.
Stop Bits 0x00 - Default Stop Bits

Stop Bits 0x01 - 1 Stop Bit

Stop Bits 0x02 - 1.5 Stop Bits

Stop Bits 0x03 - 2 Stop Bits

8.3.4.13 Vendor-Defined Messaging Device Path

Table 8-22. Vendor-Defined Messaging Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 10 — Vendor
Length 2 Length of this structure in bytes. Length is 20 + n bytes.
Vendor_GUID 16 Vendor-assigned GUID that defines the data that follows
Vendor Defined Data 20 n Vendor-defined variable size data

The following two GUIDs are used with a Vendor-Defined Messaging Device Path to describe the
transport protocol for use with PC-ANSI, VT-100, VT-100+, and VT-UTFS terminals. Device
paths can be constructed with this node as the last node in the device path. The rest of the device
path describes the physical device that is being used to transmit and receive data. The PC-ANSI,
VT-100, VT-100+, and VT-UTF8 GUIDs define the format of the data that is being sent though the
physical device. Additional GUIDs can be generated to describe additional transport protocols.

12/01/02 Version 1.10

intel
’ Protocols — Device Path Protocol

#define EFI_PC ANSI GUID \
{ 0xe0c14753,0xf9be, 0x11d2, 0x9a, 0x0c, 0x00, 0x90,0x27, 0x3f, Oxcl, 0x4d }

#define EFI VT 100 GUID \
{ 0xdfa66065,0xb419,0x11d3, 0x9a, 0x2d, 0x00,0x90, 0x27, 0x3 £, Oxcl, 0x4d }

#define EFI VT 100 PLUS GUID \
{ 0x7baec70b,0x57e0, 0x4c76,0x8e,0x87,0x2f, 0x%¢e,0x28,0x08,0x83,0x43 }

#define EFI_VT UTF8 GUID \
{ 0xad15a0d6, 0x8bec, Ox4acf, 0xa0, 0x73, 0xd0, 0x1d, Oxe7, 0x7e, 0x2d, 0x88 }

8.3.4.14 UART Flow Control Messaging Path

The UART messaging device path defined in the EFI 1.02 specification does not contain a
provision for flow control. Therefore, a new device path node is needed to declare flow control
characteristics. It is a vendor-defined messaging node which may be appended to the UART node
in a device path. It has the following definition:

##define DEVICE PATH MESSAGING UART FLOW_ CONTROL \
{0X37499A9D, 0X542F, 0X4C89, 0XA0, 0X26,0X35, 0XDA, 0X14,0X20,0X94, 0XE4 }

Table 8-23. UART Flow Control Messaging Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 3 — Messaging Device Path
Sub-Type 1 1 Sub-Type 10 — Vendor
Length 2 2 Length of this structure in bytes. Length is 24 bytes.
Vendor_GUID 4 16 DEVICE PATH MESSAGING UART FLOW_ CONTROL
Flow_Control_Map 20 4 Bitmap of supported flow control types.
Bit O set indicates hardware flow control.
Bit 1 set indicates Xon/Xoff flow control.
All other bits are reserved and are clear.

A debugport driver that implements Xon/Xoff flow control would produce a device path similar to
the following:
ACPI (PciRootBridge) /Pci (0x1f,0) /ACPI (PNP0501,0) /UART (115200,n,8,1)
/UartFlowCtrl (2) /DebugPort ()

NOTE

If no bits are set in the Flow_Control_Map, this indicates there is no flow control and is equivalent
to leaving the flow control node out of the device path completely.

Version 1.10 12/01/02 8-15

intel
Extensible Firmware Interface Specification ’

8.3.5 Media Device Path

This Device Path is used to describe the portion of the medium that is being abstracted by a boot
service. An example of Media Device Path would be defining which partition on a hard drive was
being used.

8.3.5.1 Hard Drive

The Hard Drive Media Device Path is used to represent a partition on a hard drive. The master boot
record (MBR) that resides in the first sector of the disk defines the partitions on a disk. Partitions
are addressed in EFI starting at LBA zero. Partitions are numbered one through n. A partition
number of zero can be used to represent the raw hard drive.

The MBR Type is stored in the Device Path to allow new MBR types to be added in the future.
The Hard Drive Device Path also contains a Disk Signature and a Disk Signature Type. The disk
signature is maintained by the OS and only used by EFI to partition Device Path nodes. The disk
signature enables the OS to find disks even after they have been physically moved in a system.

Table 8-24. Hard Drive Media Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 4 — Media Device Path
Sub-Type 1 1 Sub-Type 1 — Hard Drive
Length 2 2 Length of this structure in bytes. Length is 42 bytes.
Partition Number 4 4 Partition Number of the hard drive. Partition numbers start
at one. Partition number zero represents the entire device.
Partitions are defined by entries in the master boot record in
the first sector of the hard disk device.
Partition Start 8 8 Starting LBA of the partition on the hard drive
Partition Size 16 8 Size of the partition in units of Logical Blocks
Partition Signature 24 16 Signature unique to this partition
MBR Type 40 1 MBR Type: (Unused values reserved)
0x01 — PC-AT compatible MBR. Partition Start and Partition
Size come from PartitionStartingLBA and
PartitionSizeInLBA for the partition.
0x02 — EFI Partition Table Header.
Signature Type 41 1 Type of Disk Signature: (Unused values reserved)
0x00 — No Disk Signature.
0x01 — 32-bit signature from address 0x1b8 of the type
0x01 MBR.
0x02 — GUID signature.

8-16 12/01/02 Version 1.10

intel

Protocols — Device Path Protocol

The following structure defines a MBR for EFI:

typedef struct MBR_PARTITION {

UINTS8
UINTS
UINTS8
UINTS
UINT32
UINT32

} MBR_PARTITION;

typedef struct PC MBR ({

UINTS

BootIndicator;

// 0x80 for active partition

PartitionStartCHS[3];

OS_Indicator;

PartitionEndCHS [3] ;
PartitionStartingLBA;
PartitionSizeInLBA;

MBR_PARTITION

UINT16
} PC_MBR;

MBRCode [0x1BE] ;
PartitionEntry [4] ;
Signature; // Must be 0xaa55

8.3.5.2 CD-ROM Media Device Path

The CD-ROM Media Device Path is used to define a system partition that exists on a CD-ROM.
The CD-ROM is assumed to contain an ISO-9660 file system and follow the CD-ROM “El Torito”
format. The Boot Entry number from the Boot Catalog is how the “El Torito” specification defines
the existence of bootable entities on a CD-ROM. In EFI the bootable entity is an EFI System
Partition that is pointed to by the Boot Entry.

Table 8-25. CD-ROM Media Device Path

Byte Byte

Mnemonic Offset Length | Description

Type 0 1 Type 4 — Media Device Path.

Sub-Type 1 1 Sub-Type 2 — CD-ROM “El Torito” Format.

Length Length of this structure in bytes. Length is 24 bytes.

Boot Entry Boot Entry number from the Boot Catalog. The
Initial/Default entry is defined as zero.

Partition Start 8 8 Starting RBA of the partition on the medium. CD-ROMs use
Relative logical Block Addressing.

Partition Size 16 8 Size of the partition in units of Blocks, also called Sectors.

Version 1.10

12/01/02 8-17

Extensible Firmware Interface Specification

8.3.5.3 Vendor-Defined Media Device Path

Table 8-26. Vendor-Defined Media Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 4 — Media Device Path.
Sub-Type 1 1 Sub-Type 3 — Vendor.
Length 2 Length of this structure in bytes. Length is 20 + n bytes.
Vendor_GUID 16 Vendor-assigned GUID that defines the data that follows.
Vendor Defined Data 20 n Vendor-defined variable size data.

8.3.5.4 File Path Media Device Path

Table 8-27. File Path Media Device Path
Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 4 — Media Device Path.
Sub-Type 1 1 Sub-Type 4 - File Path.
Length 2 Length of this structure in bytes. Length is 4 + n bytes.
Path Name n Unicode Path string including directory and file names. The

length of this string n can be determined by subtracting 4
from the Length entry. A device path may contain one or
more of these nodes. The complete path to a file can be
found by concatenating all the File Path Media Device Path
nodes. This is typically used to describe the directory path
in one node, and the filename in another node.

8.3.5.5 Media Protocol Device Path

The Media Protocol Device Path is used to denote the protocol that is being used in a device path at
the location of the path specified. Many protocols are inherent to the style of device path.

Table 8-28. Media Protocol Media Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 4 — Media Device Path.
Sub-Type 1 1 Sub-Type 5 — Media Protocol.
Length 2 2 Length of this structure in bytes. Length is 20 bytes.
Protocol GUID 4 16 The ID of the protocol.

12/01/02 Version 1.10

intel

8.3.6

Protocols — Device Path Protocol

BIOS Boot Specification Device Path

This Device Path is used to describe the booting of non-EFI-aware operating systems. This Device
Path is based on the IPL and BCV table entry data structures defined in Appendix A of the BIOS
Boot Specification. The BIOS Boot Specification Device Path defines a complete Device Path and
is not used with other Device Path entries. This Device Path is only needed to enable platform
firmware to select a legacy non-EFI OS as a boot option.

Table 8-29. BIOS Boot Specification Device Path

Byte Byte
Mnemonic Offset Length | Description
Type 0 1 Type 5 — BIOS Boot Specification Device Path.
Sub-Type 1 1 Sub-Type 1 — BIOS Boot Specification Version 1.01.
Length 2 2 Length of this structure in bytes. Length is 8 + n bytes.
Device Type 4 2 Device Type as defined by the BIOS Boot Specification.
Status Flag 6 2 Status Flags as defined by the BIOS Boot Specification
Description String 8 n ASCIIZ string that describes the boot device to a user. The

length of this string n can be determined by subtracting 8
from the Length entry.

Example BIOS Boot Specification Device Types would include:

Version

00h = Reserved
01h = Floppy
02h = Hard Disk
03h = CD-ROM
04h = PCMCIA

05h =USB

06h = Embedded network
07h..7Fh = Reserved

80h = BEV device

81h..FEh = Reserved

FFh = Unknown

1.10

12/01/02 8-19

intel
Extensible Firmware Interface Specification ’

8.4

Device Path Generation Rules

8.4.1 Housekeeping Rules

The Device Path is a set of Device Path nodes. The Device Path must be terminated by an End of
Device Path node with a sub-type of End the Entire Device Path. A NULL Device Path consists of
a single End Device Path Node. A Device Path that contains a NULL pointer and no Device Path
structures is illegal.

All Device Path nodes start with the generic Device Path structure. Unknown Device Path types
can be skipped when parsing the Device Path since the length field can be used to find the next
Device Path structure in the stream. Any future additions to the Device Path structure types will
always start with the current standard header. The size of a Device Path can be determined by
traversing the generic Device Path structures in each header and adding up the total size of the
Device Path. This size will include the four bytes of the End of Device Path structure.

Multiple hardware devices may be pointed to by a single Device Path. Each hardware device will
contain a complete Device Path that is terminated by the Device Path End Structure. The Device
Path End Structures that do not end the Device Path contain a sub-type of End This Instance of the
Device Path. The last Device Path End Structure contains a sub-type of End Entire Device Path.

8.4.2 Rules with ACPI _HID and _UID

8-20

As described in the ACPI specification, ACPI supports several different kinds of device
identification objects, including _HID, _CID and _UID. The _UID device identification objects are
optional in ACPI and only required if more than one _HID exists with the same ID. The ACPI
Device Path structure must contain a zero in the _UID field if the ACPI name space does not
implement _UID. The _UID field is a unique serial number that persists across reboots.

If a device in the ACPI name space has a _HID and is described by a _CRS (Current Resource
Setting) then it should be described by an ACPI Device Path structure. A _CRS implies that a
device is not mapped by any other standard. A _CRS is used by ACPI to make a nonstandard
device into a Plug and Play device. The configuration methods in the ACPI name space allow the
ACPI driver to configure the device in a standard fashion. The presence of a _CID determines
whether the ACPI Device Path node or the Expanded ACPI Device Path node should be used.

Table 8-30 maps ACPI _CRS devices to EFI Device Path.

Table 8-30. ACPI _CRS to EFI Device Path Mapping

ACPI _CRS Item EFI Device Path

PCI Root Bus ACPI Device Path: _HID PNPOA03, _UID

Floppy ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3
Keyboard ACPI Device Path: _HID PNP0301, _UID 0

Serial Port ACPI Device Path: _HID PNP0501, _UID Serial Port COM number 0-3
Parallel Port ACPI Device Path: _HID PNP0401, _UID LPT number 0-3

12/01/02 Version 1.10

intel
’ Protocols — Device Path Protocol

Support of root PCI bridges requires special rules in the EFI Device Path. A root PCI bridge is a
PCI device usually contained in a chipset that consumes a proprietary bus and produces a PCI bus.
In typical desktop and mobile systems there is only one root PCI bridge. On larger server systems
there are typically multiple root PCI bridges. The operation of root PCI bridges is not defined in
any current PCI specification. A root PCI bridge should not be confused with a PCI to PCI bridge
that both consumes and produces a PCI bus. The operation and configuration of PCI to PCI bridges
is fully specified in current PCI specifications.

Root PCI bridges will use the plug and play ID of PNPOAO3, This will be stored in the ACPI
Device Path _HID field, or in the Expanded ACPI Device Path _CID field to match the ACPI name
space. The _UID in the ACPI Device Path structure must match the _UID in the ACPI name space.

8.4.3 Rules with ACPI _ADR

If a device in the ACPI name space can be completely described by a _ADR object then it will map
to an EFI ACPI, Hardware, or Message Device Path structure. A _ADR method implies a bus with
a standard enumeration algorithm. If the ACPI device has a _ADR and a _CRS method, then it
should also have a _HID method and follow the rules for using _HID.

Table 8-31 relates the ACPI_ADR bus definition to the EFI Device Path:

Table 8-31. ACPI _ADR to EFI Device Path Mapping

ACPI _ADR Bus EFI Device Path

EISA Not supported

Floppy Bus ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3
IDE Controller ATAPI Message Device Path: Maser/Slave : LUN

IDE Channel ATAPI Message Device Path: Maser/Slave : LUN

PCI PCI Hardware Device Path

PCMCIA Not Supported

PC CARD PC CARD Hardware Device Path

SMBus Not Supported

Version 1.10 12/01/02 8-21

intel
Extensible Firmware Interface Specification ’

8.4.4 Hardware vs. Messaging Device Path Rules

Hardware Device Paths are used to define paths on buses that have a standard enumeration
algorithm and that relate directly to the coherency domain of the system. The coherency domain is
defined as a global set of resources that is visible to at least one processor in the system. In a
typical system this would include the processor memory space, 1O space, and PCI configuration
space.

Messaging Device Paths are used to define paths on buses that have a standard enumeration
algorithm, but are not part of the global coherency domain of the system. SCSI and Fibre Channel
are examples of this kind of bus. The Messaging Device Path can also be used to describe virtual
connections over network-style devices. An example would be the TCPI/IP address of a internet
connection.

Thus Hardware Device Path is used if the bus produces resources that show up in the coherency
resource domain of the system. A Message Device Path is used if the bus consumes resources from
the coherency domain and produces resources out side the coherency domain of the system.

8.4.5 Media Device Path Rules

The Media Device Path is used to define the location of information on a medium. Hard Drives are
subdivided into partitions by the MBR and a Media Device Path is used to define which partition is
being used. A CD-ROM has boot partitions that are defined by the “El Torito” specification, and
the Media Device Path is used to point to these partitions.

A BLOCK IO protocol is produced for both raw devices and partitions on devices. This allows the
SIMPLE FILE SYSTEM protocol to not have to understand media formats. The BLOCK IO
protocol for a partition contains the same Device Path as the parent BLOCK IO protocol for the
raw device with the addition of a Media Device Path that defines which partition is being
abstracted.

The Media Device Path is also used to define the location of a file in a file system. This Device
Path is used to load files and to represent what file an image was loaded from.

8.4.6 Other Rules

8-22

The BIOS Boot Specification Device Path is not a typical Device Path. A Device Path containing
the BIOS Boot Specification Device Path should only contain the required End Device Path
structure and no other Device Path structures. The BIOS Boot Specification Device Path is only
used to allow the EFI boot menus to boot a legacy operating system from legacy media.

The EFI Device Path can be extended in a compatible fashion by assigning your own vendor GUID
to a Hardware, Messaging, or Media Device Path. This extension is guaranteed to never conflict
with future extensions of this specification

The EFI specification reserves all undefined Device Path types and subtypes. Extension is only
permitted using a Vendor GUID Device Path entry.

12/01/02 Version 1.10

9
Protocols - EFI Driver Model

EFI drivers that follow the EFI Driver Model are not allowed to search for controllers to manage.
When a specific controller is needed, the EFI boot service ConnectController () is used
along with the EFI DRIVER BINDING PROTOCOL services to identify the best drivers for a
controller. Once ConnectController () has identified the best drivers for a controller, the
start service in the EFI_DRIVER BINDING PROTOCOL is used by ConnectController ()
to start each driver on the controller. Once a controller is no longer needed, it can be released with
the EFI boot service DisconnectController (). DisconnectController () callsthe
stop service in each EFI_DRIVER BINDING PROTOCOL to stop the controller.

The driver initialization routine of an EFI driver is not allowed to touch any device hardware.
Instead, it just installs an instance of the EFI_DRIVER BINDING PROTOCOL on the

ImageHandle of the EFI driver. The test to determine if a driver supports a given controller
must be performed in as little time as possible without causing any side effects on any of the

controllers it is testing. As a result, most of the controller initialization code is present in the start
and stop services of the EFI_DRIVER BINDING PROTOCOL.

9.1 EFI Driver Binding Protocol

This section provides a detailed description of the EFI_DRIVER BINDING PROTOCOL. This
protocol is produced by every driver that follows the EFI Driver Model, and it is the central
component that allows drivers and controllers to be managed. It provides a service to test if a
specific controller is supported by a driver, a service to start managing a controller, and a service to
stop managing a controller. These services apply equally to drivers for both bus controllers and
device controllers.

EFI_DRIVER_BINDING_PROTOCOL

Summary

Provides the services required to determine if a driver supports a given controller. If a controller is
supported, then it also provides routines to start and stop the controller.

GUID

#define EFI_DRIVER BINDING PROTOCOL GUID \
{0x18A031AB, 0xB443, 0x4D1A, 0xA5, 0xC0, 0x0C, 0x09, 0x26, 0X1E, 0x9F, 0x71}

Version 1.10 12/01/02 9-1

intel
Extensible Firmware Interface Specification ’

Protocol Interface Structure

typedef struct EFI DRIVER BINDING PROTOCOL {
EFI_DRIVER BINDING PROTOCOL SUPPORTED Supported;

EFI DRIVER BINDING PROTOCOL START Start;
EFI DRIVER BINDING PROTOCOL STOP Stop;
UINT32 Version;

EFI HANDLE
EFI HANDLE

ImageHandle;
DriverBindingHandle;

} EFI_DRIVER BINDING PROTOCOL;

Parameters

Supported

Start

Stop

Version

Tests to see if this driver supports a given controller. This
service is called by the EFI boot service
ConnectController (). In order to make drivers as small
as possible, there are a few calling restrictions for this service.
ConnectController () must follow these calling
restrictions. If any other agent wishes to call Supported () it
must also follow these calling restrictions. See the
Supported () function description.

Starts a controller using this driver. This service is called by the
EFI boot service ConnectController (). In order to make
drivers as small as possible, there are a few calling restrictions
for this service. ConnectController () must follow these
calling restrictions. If any other agent wishes to call Start ()
it must also follow these calling restrictions. See the Start ()
function description.

Stops a controller using this driver. This service is called by the
EFI boot service DisconnectController (). In order to
make drivers as small as possible, there are a few calling
restrictions for this service. DisconnectController ()
must follow these calling restrictions. If any other agent wishes
to call Stop () it must also follow these calling restrictions.
See the Stop () function description.

The version number of the EFI Driver that produced the
EFI_DRIVER BINDING PROTOCOL. This field is used by
the EFI boot service ConnectController () to determine
the order that driver’s Supported () service will be used
when a controller needs to be started. EFI Driver Binding
Protocol instances with higher Version values will be used
before ones with lower Version values. The Version values
of 0x0-0x0f and OxXEffffff0-0xfELffEfES are reserved
for platform/OEM specific drivers. The Version values of
0x10-0xffffffef arereserved for IHV-developed drivers.

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

ImageHandle The image handle of the EFI Driver that produced this instance
of the EFI DRIVER BINDING PROTOCOL.

DriverBindingHandle The handle on which this instance of the
EFI_DRIVER BINDING PROTOCOL is installed. In most
cases, this is the same handle as TmageHandle. However, for
EFI Drivers that produce more than one instance of the
EFI_DRIVER BINDING PROTOCOL, this value may not be
the same as TmageHandle.

Description

The EFI_DRIVER BINDING PROTOCOL provides a service to determine if a driver supports a
given controller. If a controller is supported, then it also provides services to start and stop the
controller. All EFI drivers are required to be reentrant so they can manage one or more controllers.
This requires that drivers not use global variables to store device context. Instead, they must
allocate a separate context structure per controller that the driver is managing. Bus drivers must
support starting and stopping the same bus multiple times, and they must also support starting and
stopping all of their children, or just a subset of their children.

Version 1.10 12/01/02 9-3

intel
Extensible Firmware Interface Specification ’

EFl_DRIVER_BINDING_PROTOCOL.Supported()

Summary

Tests to see if this driver supports a given controller. If a child device is provided, it further tests to
see if this driver supports creating a handle for the specified child device.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI DRIVER BINDING PROTOCOL SUPPORTED) (
IN EFI DRIVER BINDING PROTOCOL *This,

IN EFI HANDLE

ControllerHandle,

IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
) ;
Parameters
This A pointer to the EFI DRIVER BINDING PROTOCOL

ControllerHandle

RemainingDevicePath

Description

instance.

The handle of the controller to test. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.
Sometimes just the presence of this I/O abstraction is enough for
the driver to determine if it supports ControllerHandle.
Sometimes, the driver may use the services of the I/O abstraction
to determine if this driver supports ControllerHandle.

A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.

This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that
the device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages () with

FreePages (), AllocatePool () with FreePool (), and OpenProtocol () with

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

CloseProtocol (). Since ControllerHandle may have been previously started by the

same driver, if a protocol is already in the opened state, then it must not be closed with
CloseProtocol (). This is required to guarantee the state of ControllerHandle is not

modified by this function.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already open for exclusive access by a different driver or
application, then EFI_ACCESS DENIED is returned.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already opened by the same driver, then

EFI_ALREADY STARTED isreturned. However, if the driver specified by This is a bus driver
that is able to create one child handle at a time, then it is not an error, and the bus driver should
continue with its test of ControllerHandle. This allows a bus driver to create one child
handle on the first call to Supported () and Start (), and create additional child handles on
additional calls to Supported () and Start ().

If ControllerHandle is not supported by This, then EFI_UNSUPPORTED is returned.

If Thisis a bus driver that creates child handles with an EFI DEVICE PATH PROTOCOL, then
ControllerHandle must support the EFI DEVICE PATH. If it does not, then
EFI_UNSUPPORTED is returned.

If ControllerHandle is supported by This, and This is a device driver, then
EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is NULL, then EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is not NULL, then RemainingDevicePath must be analyzed. If
RemainingDevicePath starts with an EFI Device Path node that the bus driver recognizes and
supports, then EFI_SUCCESS is returned. Otherwise, EFI_UNSUPPORTED is returned.

The Supported () function is designed to be invoked from the EFI boot service
ConnectController (). As aresult, much of the error checking on the parameters to
Supported () has been moved into this common boot service. It is legal to call Supported ()
from other locations, but the following calling restrictions must be followed or the system behavior
will not be deterministic.

ControllerHandle must be a valid EFI_HANDLE. If RemainingDevicePath is not
NULL, then it must be a pointer to a naturally aligned EFI_DEVICE PATH that contains at least
one device path node other than the end node.

Version 1.10 12/01/02 9-5

intel
Extensible Firmware Interface Specification ’

9-6

Status Codes Returned

EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by
This.

EFI_ALREADY_STARTED The device specified by ControllerHandle and

RemainingDevicePath is already being managed by the driver
specified by This.

EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePathis already being managed by a different
driver or an application that requires exclusive access.

EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePathis not supported by the driver specified by
This.

Examples

extern EFI GUID gEfiDriverBindingProtocolGuid;

EFI_HANDLE DriverImageHandle;

EFI_HANDLE ControllerHandle;

EFI_DRIVER BINDING PROTOCOL *DriverBinding;

EFI_DEVICE PATH PROTOCOL *RemainingDevicePath;

//

// Use the DriverImageHandle to get the Driver Binding Protocol instance

//

Status = gBS->OpenProtocol (
DriverImageHandle,
&gEfiDriverBindingProtocolGuid,
&DriverBinding,
DriverImageHandle,
NULL,
EFI_OPEN PROTOCOL GET PROTOCOL
)

if (EFI_ERROR (Status)) {

return Status;
}

//

// EXAMPLE #1

//

// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle

//

Status = DriverBinding->Supported (
DriverBinding,
ControllerHandle,
NULL

)i

return Status;

12/01/02 Version 1.10

e ’ Protocols — EFI Driver Model

//

// EXAMPLE #2

//

// The RemainingDevicePath parameter can be used to initialize only

// the minimum devices required to boot. For example, maybe we only

// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle

// 1s a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example
// would return EFI_SUCCESS if the SCSI driver supports creating the

// child handle for PUN=3, LUN=0. Otherwise it would return an error.

//

Status = DriverBinding->Supported (
DriverBinding,
ControllerHandle,

RemainingDevicePath
) ;

return Status;

Pseudo Code

Listed below are the algorithms for the Supported () function for three different types of
drivers. How the Start () function of a driver is implemented can affect how the
Supported () function is implemented. All of the services in the

EFI DRIVER BINDING PROTOCOL need to work together to make sure that all resources
opened or allocated in Supported () and Start () are released in Stop ().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a bus driver that always creates
all of its child handles on the first call to Start (). The third is a more advanced bus driver that
can either create one child handles at a time on successive calls to Start (), or it can create all of
its child handles or all of the remaining child handles in a single call to Start ().

Device Driver:

1. Ignore the parameter RemainingDevicePath.

2. Open all required protocols with OpenProtocol (). A standard driver should use an
Attribute of EFI_OPEN PROTOCOL BY DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an At tribute of
EFI_OPEN PROTOCOL BY DRIVER | EFI_OPEN PROTOCOL EXCLUSIVE.

3. If any of the calls to OpenProtocol () in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol (), and return the status code from the call to
OpenProtocol () that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol () and
return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol ().

6. Return EFI_SUCCESS.

Version 1.10 12/01/02 9-7

intel
Extensible Firmware Interface Specification ’

Bus Driver that creates all of its child handles on the first call to Start():

1.

3.
6.

Check the contents of the first Device Path Node of RemainingDevicePath to make sure
it is a legal Device Path Node for this bus driver’s children. If it is not, then return

EFI UNSUPPORTED.

Open all required protocols with OpenProtocol (). A standard driver should use an
Attribute of EFI_OPEN PROTOCOL BY DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an At tribute of

EFI_OPEN PROTOCOL BY DRIVER | EFI_OPEN PROTOCOL EXCLUSIVE.

If any of the calls to OpenProtocol () in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol (), and return the status code from the call to
OpenProtocol () that returned an error.

Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol () and
return EFI_UNSUPPORTED.

Close all protocols opened in (2) with CloseProtocol ().

Return EFI_SUCCESS.

Bus Driver that is able to create all or one of its child handles on each call to Start():

1.

Check the contents of the first Device Path Node of RemainingDevicePath to make sure
it is a legal Device Path Node for this bus driver’s children. If it is not, then return

EFI UNSUPPORTED.

Open all required protocols with OpenProtocol (). A standard driver should use an
Attribute of EFI_OPEN PROTOCOL BY DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an At tribute of

EFI_OPEN PROTOCOL BY DRIVER | EFI_OPEN PROTOCOL EXCLUSIVE.

If any of the calls to OpenProtocol () in (2) failed with an error other than
EFI_ALREADY STARTED, then close all of the protocols opened in (2) that did not return
EFI_ALREADY STARTED with CloseProtocol (), and return the status code from the
OpenProtocol () call that returned an error.

Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) that did not return

EFI_ALREADY STARTED with CloseProtocol () and return EFI_UNSUPPORTED.
Close all protocols opened in (2) that did not return EFI_ALREADY STARTED with
CloseProtocol ().

Return EFI_SUCCESS.

12/01/02 Version 1.10

tel

Protocols — EFI Driver Model

Listed below is sample code of the Supported () function of device driver for a device on the
XYZ bus. The XYZ bus is abstracted with the EFI_XYZ IO PROTOCOL. Just the presence of
the EFI_XYZ IO PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. The gBS variable is initialized in this driver’s entry point. See
Chapter 4.

extern EFI GUID gEfiXyzIoProtocol;
EFI_BOOT_SERVICES TABLE *gBS;

EFI_STATUS
AbcSupported (
IN EFI DRIVER BINDING PROTOCOL *This,
IN EFI_ HANDLE ControllerHandle,
IN EFI_DEVICE PATH PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;

EFI_XYZ IO_PROTOCOL *XyzIo;

Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,

&XyzIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_ PROTOCOL_BY DRIVER
)i
if (EFI_ERROR (Status)) ({
return Status;

}

gBS->CloseProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,
This->DriverBindingHandle,
ControllerHandle
)i

return EFI_SUCCESS;

Version 1.10 12/01/02

OPTIONAL

9-9

intel
Extensible Firmware Interface Specification ’

EFI_DRIVER_BINDING_PROTOCOL.Start()

Summary

Starts a device controller or a bus controller. The Start () and Stop () services of the
EFI DRIVER BINDING PROTOCOL mirror each other.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI _DRIVER BINDING PROTOCOL START) (
IN EFI DRIVER BINDING PROTOCOL *This,

IN EFI HANDLE ControllerHandle,
IN EFI DEVICE PATH *RemainingDevicePath OPTIONAL
)i
Parameters
This A pointer to the EFI_DRIVER BINDING PROTOCOL
instance.
ControllerHandle The handle of the controller to start. This handle must support a

protocol interface that supplies an I/O abstraction to the driver.

RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL, then only the handle for the child
device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.

Description

This function starts the device specified by Controller with the driver specified by This.
Whatever resources are allocated in Start () must be freed in Stop (). For example, every
AllocatePool(),AllocatePages (), OpenProtocol (), and
InstallProtocolInterface () in Start () must be matched with a FreePool (),
FreePages (), CloseProtocol (), and UninstallProtocolInterface () in
Stop ().

If Controlleris started, then EFI_SUCCESS is returned. If Controller cannot be started
due to a device error, then EFI_DEVICE ERROR is returned. If there are not enough resources to
start the device or bus specified by Controller, then EFI_OUT OF RESOURCES is returned.

If the driver specified by This is a device driver, then RemainingDevicePath is ignored.

9-10 12/01/02 Version 1.10

e ’ Protocols — EFI Driver Model

If the driver specified by This is a bus driver, and RemainingDevicePath is NULL, then all
of the children of Controller are discovered and enumerated, and a device handle is created for
each child.

If the driver specified by This is a bus driver that is capable of creating one child handle at a time
and RemainingDevicePath is not NULL, then only the device handle for the child device
specified by RemainingDevicePathis created. Depending on the bus type, all of the child
devices may need to be discovered and enumerated, but only device handle for the one child
specified by RemainingDevicePath shall be created.

The Start () function is designed to be invoked from the EFI boot service

ConnectController (). As aresult, much of the error checking on the parameters to

Start () has been moved into this common boot service. It is legal to call Start () from other

locations, but the following calling restrictions must be followed or the system behavior will not be

deterministic.

1. ControllerHandle mustbe avalid EFI_HANDLE.

2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE PATH that contains at least one device path node other than the end node.

3. Prior to calling Start (), the Supported () function for the driver specified by This must
have been called with the same calling parameters, and Supported () must have returned
EFI_SUCCESS.

Status Codes Returned

EFI_SUCCESS The device was started.

EFI_DEVICE_ERROR The device could not be started due to a device error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Examples
extern EFI GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER BINDING PROTOCOL *DriverBinding;
EFI DEVICE PATH PROTOCOL *RemainingDevicePath;
//

// Use the DriverImageHandle to get the Driver Binding Protocol instance

//

Status = gBS->OpenProtocol (
DriverImageHandle,
&gEfiDriverBindingProtocolGuid,
&DriverBinding,
DriverImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
)i

if (EFI_ERROR (Status)) {

return Status;

}

Version 1.10 12/01/02 9-11

intel
Extensible Firmware Interface Specification

//

// EXAMPLE #1

//

// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle

//

Status = DriverBinding->Supported (
DriverBinding,
ControllerHandle,
NULL

)
if (!EFI_ERROR (Status)) {
Status = DriverBinding->Start (

DriverBinding,
ControllerHandle,
NULL
)i
}
return Status;
//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle

// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example
// would return EFI SUCCESS if the SCSI driver supports creating the
// child handle for PUN=3, LUN=0. Otherwise it would return an error.
//
Status = DriverBinding->Supported (
DriverBinding,
ControllerHandle,
RemainingDevicePath
)i
if (!EFI_ERROR (Status)) {
Status = DriverBinding->Start (
DriverBinding,
ControllerHandle,
RemainingDevicePath
)i
}

return Status;

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

Pseudo Code

Listed below are the algorithms for the Start () function for three different types of drivers.

How the Start () function of a driver is implemented can affect how the Supported ()
function is implemented. All of the services in the EFI DRIVER BINDING PROTOCOL need to
work together to make sure that all resources opened or allocated in Supported () and

Start () arereleased in Stop ().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a simple bus driver that always
creates all of its child handles on the first call to Start (). It does not attach any additional
protocols to the handle for the bus controller. The third is a more advanced bus driver that can
either create one child handles at a time on successive calls to Start (), or it can create all of its
child handles or all of the remaining child handles in a single call to Start (). Once again, it does
not attach any additional protocols to the handle for the bus controller.

Device Driver:

1. Ignore the parameter RemainingDevicePath.

2. Open all required protocols with OpenProtocol (). A standard driver should use an
Attribute of EFI_OPEN PROTOCOL BY DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an At tribute of
EFI_OPEN PROTOCOL BY DRIVER | EFI_OPEN PROTOCOL EXCLUSIVE. It must
use the same At tribute value that was used in Supported ().

3. If any of the calls to OpenProtocol () in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol (), and return the status code from the call to
OpenProtocol () that returned an error.

4. Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in (2) with CloseProtocol (), and return EFI_DEVICE ERROR.

5. Allocate and initialize all of the data structures that this driver requires to manage the device
specified by ControllerHandle. This would include space for public protocols and space
for any additional private data structures that are related to ControllerHandle. If an error
occurs allocating the resources, then close all of the protocols opened in (2) with
CloseProtocol (), and return EFI_OUT OF RESOURCES.

6. Install all the new protocol interfaces onto ControllerHandle using
InstallMultipleProtocolInterfaces (). If an error occurs, close all of the
protocols opened in (1) with CloseProtocol (), and return the error from
InstallMultipleProtocolInterfaces().

7. Return EFI_SUCCESS.

Version 1.10 12/01/02 9-13

intel
Extensible Firmware Interface Specification ’

Bus Driver that creates all of its child handles on the first call to Start():

1.
2.

Ignore the parameter RemainingDevicePath.

Open all required protocols with OpenProtocol (). A standard driver should use an

Attribute of EFI_OPEN PROTOCOL BY DRIVER. If this driver needs exclusive access

to a protocol interface, and it requires any drivers that may be using the protocol interface to

disconnect, then the driver should use an At tribute of

EFI_OPEN PROTOCOL BY DRIVER | EFI_OPEN PROTOCOL EXCLUSIVE. It must

use the same At tribute value that was used in Supported ().

If any of the calls to OpenProtocol () in (2) returned an error, then close all of the

protocols opened in (2) with CloseProtocol (), and return the status code from the call to

OpenProtocol () that returned an error.

Initialize the device specified by ControllerHandle. If an error occurs, close all of the

protocols opened in (2) with CloseProtocol (), and return EFI_DEVICE ERROR.

Discover all the child devices of the bus controller specified by ControllerHandle.

If the bus requires it, allocate resources to all the child devices of the bus controller specified by

ControllerHandle.

FOR each child C of ControllerHandle:

a. Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (2) with CloseProtocol (), and
return EFI_OUT OF RESOURCES.

b. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

c. Initialize the child device C. If an error occurs, close all of the protocols opened in (2) with
CloseProtocol (), and return EFI_DEVICE ERROR.

d. Create a new handle for C, and install the protocol interfaces for child device C using
InstallMultipleProtocolInterfaces (). This may include the
EFI DEVICE PATH protocol.

e. Call openProtocol () on behalf of the child C with an Attribute of
EFI OPEN PROTOCOL BY CHILD CONTROLLER.

END FOR

Return EFT_SUCCESS.

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. Open all required protocols with OpenProtocol (). A standard driver should use an
Attribute of EFI_OPEN PROTOCOL BY DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN PROTOCOL BY DRIVER | EFI_OPEN PROTOCOL EXCLUSIVE. It must
use the same At tribute value that was used in Supported ().

2. If any of the calls to OpenProtocol () in (1) returned an error, then close all of the protocols
opened in (1) with CloseProtocol (), and return the status code from the call to
OpenProtocol () that returned an error.

3. Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in (1) with CloseProtocol (), and return EFI_DEVICE ERROR.

4. TF RemainingDevicePath is not NULL, THEN
a. Cis the child device specified by RemainingDevicePath.

b. Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (1) with CloseProtocol (), and
return EFI_OUT OF RESOURCES.

c. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

Initialize the child device C.

e. Create a new handle for C, and install the protocol interfaces for child device C using
InstallMultipleProtocolInterfaces (). This may include the
EFI DEVICE PATH protocol.

f. Call OpenProtocol () on behalf of the child C with an Attribute of
EFI OPEN PROTOCOL BY CHILD CONTROLLER.

ELSE

5. Discover all the child devices of the bus controller specified by ControllerHandle.
6. If the bus requires it, allocate resources to all the child devices of the bus controller specified by
ControllerHandle.
7. FOR each child C of ControllerHandle
a. Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (1) with CloseProtocol (), and
return EFI_OUT OF RESOURCES.
b. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.
c. Initialize the child device C.
d. Create a new handle for C, and install the protocol interfaces for child device C using
InstallMultipleProtocolInterfaces (). This may include the
EFI_DEVICE PATH protocol.

Version 1.10 12/01/02 9-15

Extensible Firmware Interface Specification

9-16

e. Call OpenProtocol () on behalf of the child C with an Attribute of

EFI OPEN PROTOCOL BY CHILD CONTROLLER.
8. END FOR

9. ENDIF
10. Return EFI_SUCCESS.

Listed below is sample code of the Start () function of a device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYZ IO PROTOCOL. This driver does allow the

EFI_XYZ IO PROTOCOL to be shared with other drivers, and just the presence of the

EFI_XYZ IO PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC IO PROTOCOL on
ControllerHandle. The gBS variable is initialized in this driver’s entry point as shown in the
EFI Driver Model examples in Chapter 4.

extern EFI GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT SERVICES TABLE *gBS;

EFI_STATUS

)
{

AbcStart (
IN EFI_DRIVER BINDING PROTOCOL *This,
IN EFI_ HANDLE ControllerHandle,
IN EFI_DEVICE PATH PROTOCOL *RemainingDevicePath OPTIONAL
EFI_STATUS Status;
EFI_XYZ IO_PROTOCOL *XyzIo;
EFI_ABC DEVICE AbcDevice;
//

// Open the Xyz I/O Protocol that this driver consumes

//

Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiXyzIoProtocol,

&XyzIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_ PROTOCOL_BY DRIVER
)i
if (EFI_ERROR (Status)) {
return Status;

}
//

// Allocate and zero a private data structure for the Abc device.

//

Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_ABC_DEVICE),
&AbcDevice

)i

12/01/02

Version 1.10

tel

Protocols — EFI Driver Model

if (EFI_ERROR (Status)) f{
goto ErrorExit;

ZeroMem (AbcDevice, sizeof (EFI_ABC DEVICE)) ;

//

// Initialize the contents of the private data structure for the Abc device.
// This includes the XyzIo protocol instance and other private data fields
// and the EFI_ABC IO PROTOCOL instance that will be installed.

//

AbcDevice->Signature

EFI_ABC DEVICE SIGNATURE;

AbcDevice->XyzIo = XyzIo;
AbcDevice->PrivateDatal = PrivateValuel;
AbcDevice->PrivateData?2 = PrivateValue2;
AbcDevice->PrivateDataN = PrivateValueN;
AbcDevice->AbcIo.Revision = EFI_ABC IO PROTOCOL REVISION;
AbcDevice->AbcIo.Funcl = AbcIoFuncl;
AbcDevice->AbcIo.Func2 = AbcIoFunc?2;
AbcDevice->AbcIo.FuncN = AbcIoFuncN;
AbcDevice->AbcIo.Datal = Valuel;
AbcDevice->AbcIo.Data2 = Value2;
AbcDevice->AbcIo.DataN = ValueN;
//
// Install protocol interfaces for the ABC I/0 device.
//
Status = gBS->InstallMultipleProtocolInterfaces (
&ControllerHandle,
&gEfiAbcIoProtocolGuid, &AbcDevice->Abclo,
NULL

)i
if (EFI_ERROR (Status)) {
goto ErrorExit;

}

return EFI_SUCCESS;

ErrorExit:

//
// When there is an error, the private data structures need to be freed and
// the protocols that were opened need to be closed.
//
if (AbcDevice != NULL)
gBS->FreePool (AbcDevice) ;
}
gBS->CloseProtocol (
ControllerHandle,
&gEfiXyzIoProtocolGuid,
This->DriverBindingHandle,
ControllerHandle
)i

return Status;

Version 1.10 12/01/02 9-17

-
Extensible Firmware Interface Specification e ’

EFI_DRIVER_BINDING_PROTOCOL.Stop()

Summary

Stops a device controller or a bus controller. The Start () and Stop () services of the
EFI DRIVER BINDING PROTOCOL mirror each other.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI DRIVER BINDING PROTOCOL STOP) (
IN EFI DRIVER BINDING PROTOCOL *This,

IN EFI_ HANDLE ControllerHandle,
IN TUINTN NumberOfChildren,
IN EFI HANDLE *ChildHandleBuffer OPTIONAL
) ;
Parameters
This A pointer to the EFI DRIVER BINDING PROTOCOL

instance. Type EFI DRIVER BINDING PROTOCOL is
defined in section 9.1.

ControllerHandle A handle to the device being stopped. The handle must support
a bus specific 1/0 protocol for the driver to use to stop the
device.

NumberOfChildren The number of child device handles in ChildHandleBuffer.

ChildHandleBuffer An array of child handles to be freed. May be NULL if

NumberOfChildrenis 0.

Description

This function performs different operations depending on the parameter NumberOfChildren. If
NumberOfChildren is not zero, then the driver specified by This is a bus driver, and it is
being requested to free one or more of its child handles specified by NumberOfChildren and
ChildHandleBuffer. If all of the child handles are freed, then EFI_SUCCESS is returned. If
NumberOfChildren is zero, then the driver specified by This is either a device driver or a bus
driver, and it is being requested to stop the controller specified by ControllerHandle. If
ControllerHandle is stopped, then EFI_SUCCESS is returned. In either case, this function is
required to undo what was performed in Start (). Whatever resources are allocated in

Start () must be freed in Stop (). For example, every AllocatePool (),
AllocatePages (), OpenProtocol (), and InstallProtocolInterface () in
Start () must be matched with a FreePool (), FreePages (), CloseProtocol (), and
UninstallProtocolInterface () in Stop ().

9-18 12/01/02 Version 1.10

tel

If ControllerHandle cannot be stopped, then EFI_DEVICE ERROR is returned. If, for

some reason, there are not enough resources to stop ControllerHandle, then
EFI_OUT_OF RESOURCES is returned. If ControllerHandle was not started by the driver
specified by This, then EFI_UNSUPPORTED is returned.

The Stop () function is designed to be invoked from the EFI boot service

DisconnectController (). As aresult, much of the error checking on the parameters to

Stop () has been moved into this common boot service. It is legal to call Stop () from other

Protocols — EFI Driver Model

locations, but the following calling restrictions must be followed or the system behavior will not be
deterministic.

1.

same driver’s Start () function.

The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver’s
Start () function, and the Start () function must have called OpenProtocol () on
ControllerHandle with an Attribute of

EFI OPEN PROTOCOL BY CHILD CONTROLLER.

Status Codes Returned

ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this

EFI_SUCCESS The device was stopped.

EFI_DEVICE_ERROR The device could not be stopped due to a device error.
Examples

extern EFI GUID gEfiDriverBindingProtocolGuid;

EFI_HANDLE DriverImageHandle;

EFI_HANDLE ControllerHandle;

EFI_HANDLE ChildHandle;

EFI DRIVER BINDING PROTOCOL *DriverBinding;

//

// Use the DriverImageHandle to get the Driver Binding Protocol instance

//

Status = gBS->OpenProtocol (
DriverImageHandle,
&gEfiDriverBindingProtocolGuid,
&DriverBinding,
DriverImageHandle,
NULL,
EFI_OPEN PROTOCOL GET PROTOCOL
) ;

if (EFI_ERROR (Status)) {

return Status;

}
//

// Use the Driver Binding Protocol instance to free the child
// specified by ChildHandle. Then, use the Driver Binding
// Protocol to stop ControllerHandle.

//

Version 1.10 12/01/02

intel
Extensible Firmware Interface Specification ’

9-20

Status = DriverBinding->Stop (

DriverBinding,
ControllerHandle,
1,

&ChildHandle

)i

Status = DriverBinding->Stop (

DriverBinding,
ControllerHandle,
0,

NULL

)i

Pseudo Code

Device Driver:

1.

Uninstall all the protocols that were installed onto ControllerHandlein Start ().

2. Close all the protocols that were opened on behalf of ControllerHandlein Start ().
3. Free all the structures that were allocated on behalf of ControllerHandlein Start ().
4. Return EFI SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

Bus Driver that is able to create all or one of its child handles on each call to Start():

1.

et

IF NumberOfChildren is zero THEN:
a. Uninstall all the protocols that were installed onto ControllerHandle in Start ().
b. Close all the protocols that were opened on behalf of ControllerHandle in Start ().

c. Free all the structures that were allocated on behalf of ControllerHandle in
Start ().

ELSE

a. FOR each child Cin ChildHandleBuffer

— Uninstall all the protocols that were installed onto C in Start ().

— Close all the protocols that were opened on behalf of C in Start ().
— Free all the structures that were allocated on behalf of C in Start ().
b. END FOR

END IF

Return EFI_SUCCESS.

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

Listed below is sample code of the Stop () function of a device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYZ IO PROTOCOL. This driver does allow the
EFI_XYZ IO PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ IO PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC IO PROTOCOL on
ControllerHandlein Start (). The gBS variable is initialized in this driver’s entry point.

See Chapter 4.
extern EFI GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;

EFI_BOOT SERVICES TABLE *gBS;

EFI_STATUS

AbcStop (
IN EFI_DRIVER BINDING PROTOCOL *This,
IN EFI_ HANDLE ControllerHandle
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
)
{
EFI_STATUS Status;
EFI_ABC IO AbcIo;
EFI_ABC_DEVICE AbcDevice;
//
// Get our context back
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiAbcIoProtocolGuid,
&AbcIo,
This->DriverBindingHandle,
ControllerHandle,

EFI_OPEN PROTOCOL_ GET PROTOCOL
)i
if (EFI_ERROR (Status)) ({
return EFI_UNSUPPORTED;
}

//

// Use Containment Record Macro to get AbcDevice structure from
// a pointer to the AbcIo structure within the AbcDevice structure.

//
AbcDevice = ABC_IO PRIVATE DATA FROM THIS (AbcIo);

Version 1.10 12/01/02 9-21

Extensible Firmware Interface Specification

9-22

//

// Uninstall the protocol installed in Start()

//
st

if

}

atus = gBS->UninstallMultipleProtocolInterfaces

ControllerHandle,

&gEfiAbcIoProtocolGuid, &AbcDevice->AbcIlo,

NULL
)i
(!EFT_ERROR (Status)) {

//

// Close the protocol opened in Start ()

//

Status = gBS->CloseProtocol (
ControllerHandle,
&gEfiXyzIoProtocolGuid,
This->DriverBindingHandle,
ControllerHandle
)i

//

// Free the structure allocated in Start().

//
gBS->FreePool (AbcDevice) ;

return Status;

12/01/02

(

Version 1.10

intel

Protocols — EFI Driver Model

9.2 EFI Platform Driver Override Protocol

This section provides a detailed description of the EFI_PLATFORM DRIVER OVERRIDE
PROTOCOL. This protocol can override the default algorithm for matching drivers to controllers.

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. A platform driver produces this protocol,
and it is installed on a separate handle. This protocol is used by the ConnectController ()
boot service to select the best driver for a controller. All of the drivers returned by this protocol
have a higher precedence than drivers found from an EFI Bus Specific Driver Override Protocol or
drivers found from the general EFI Driver Binding search algorithm. If more than one driver is
returned by this protocol, then the drivers are returned in order from highest precedence to lowest

precedence.

GUID

#define EFI_ PLATFORM DRIVER OVERRIDE PROTOCOL GUID \
{ 0x6b30c738,0xa391,0x11d4, 0x9a, 0x3b, 0x00,0x90,0x27,0x3f, 0xcl,0x4d }

Protocol Interface Structure
typedef struct EFI PLATFORM DRIVER OVERRIDE PROTOCOL {

EFI PLATFORM DRIVER OVERRIDE GET DRIVER GetDriver;
EFI_PLATFORM DRIVER OVERRIDE GET DRIVER PATH GetDriverPath;
EFI PLATFORM DRIVER OVERRIDE DRIVER LOADED DriverLoaded;

} EFI PLATFORM DRIVER OVERRIDE PROTOCOL;

Parameters

GetDriver Retrieves the image handle of a platform override driver for a
controller in the system. See the GetDriver () function
description.

GetDriverPath Retrieves the device path of a platform override driver for a
controller in the system. See the GetDriverPath () function
description.

DriverLoaded This function is used after a driver has been loaded using a

Version 1.10

device path returned by GetDriverPath (). This function
associates a device path to an image handle, so the image handle
can be returned the next time that GetDriver () is called for
the same controller. See the DriverLoaded () function

description.

12/01/02 9-23

intel
Extensible Firmware Interface Specification ’

Description

The EFI_PLATFORM DRIVER OVERRIDE PROTOCOL is used by the EFI boot service
ConnectController () to determine if there is a platform specific driver override for a
controller that is about to be started. The bus drivers in a platform will use a bus defined matching
algorithm for matching drivers to controllers. This protocol allows the platform to override the bus
driver’s default driver matching algorithm. This protocol can be used to specify the drivers for on-
board devices whose drivers may be in a system ROM not directly associated with the on-board
controller, or it can even be used to manage the matching of drivers and controllers in add-in cards.
This can be very useful if there are two adapters that are identical except for the revision of the
driver in the adapter’s ROM. This protocol, along with a platform configuration utility, could
specify which of the two drivers to use for each of the adapters.

The drivers that this protocol returns can be either in the form of an image handle or a device path.
ConnectController () can only use image handles, so ConnectController () is
required to use the GetDriver () service. A different component, such as the Boot Manager,
will have to use the GetDriverPath () service to retrieve the list of drivers that need to be
loaded from I/O devices. Once a driver has been loaded and started, this same component can use
the DriverLoaded () service to associate the device path of a driver with the image handle of
the loaded driver. Once this association has been established, the image handle can then be
returned by the GetDriver () service the next time it is called by ConnectController ().

9-24 12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Retrieves the image handle of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ PLATFORM DRIVER OVERRIDE GET DRIVER) (

IN EFI PLATFORM DRIVER OVERRIDE PROTOCOL *This,
IN EFI_ HANDLE ControllerHandle,
IN OUT EFI HANDLE *DriverImageHandle
)i
Parameters
This A pointer to the EFI PLATFORM DRIVER OVERRIDE
PROTOCOL instance.
ControllerHandle The device handle of the controller to check if a driver override
exists.
DriverImageHandle On input, a pointer to the previous driver image handle returned

by GetDriver (). On output, a pointer to the next driver
image handle. Passing in a NULL, will return the first driver
image handle for ControllerHandle.

Description

This function is used to retrieve a driver image handle that is selected in a platform specific manner.
The first driver image handle is retrieved by passing in a DriverImageHandle value of NULL.
This will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID PARAMETER is returned. If
ControllerHandleisnota valid EFI_HANDLE, then EFI_INVALID PARAMETER is
returned. The first driver image handle has the highest precedence, and the last driver image handle
has the lowest precedence. This ordered list of driver image handles is used by the boot service
ConnectController () to search for the best driver for a controller.

Version 1.10 12/01/02 9-25

In

-
Extensible Firmware Interface Specification e ’

Status Codes Returned

EFI_SUCCESS The driver override for ControllerHandle was returned in
DriverImageHandle.
EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a
previous call to GetDriver ().

9-26 12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()

Summary

Retrieves the device path of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI PLATFORM DRIVER OVERRIDE GET DRIVER PATH) (

IN EFI PLATFORM DRIVER OVERRIDE PROTOCOL *This,
IN EFI HANDLE ControllerHandle,
IN OUT EFI DEVICE PATH PROTOCOL **DriverImagePath
)i
Parameters
This A pointer to the EFI PLATFORM DRIVER OVERRIDE
PROTOCOL instance.
ControllerHandle The device handle of the controller to check if a driver override
exists.
DriverImagePath On input, a pointer to the previous driver device path returned by

GetDriverPath (). On output, a pointer to the next driver
device path. Passing in a pointer to NULL, will return the first
driver device path for ControllerHandle.

Description

This function is used to retrieve a driver device path that is selected in a platform specific manner.
The first driver device path is retrieved by passing in a DriverImagePath value that is a pointer
to NULL. This will cause the first driver device path to be returned in DriverImagePath. On
each successive call, the previous value of DriverImagePath must be passed in. If a call to this
function returns a valid driver device path, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_ FOUND is returned. If a DriverImagePath is passed in that was not
returned on a prior call to this function, then EFI_INVALID PARAMETER is returned. If
ControllerHandleisnota valid EFI_HANDLE, then EFI_INVALID PARAMETER is
returned. The first driver device path has the highest precedence, and the last driver device path has
the lowest precedence. This ordered list of driver device paths is used by a platform specific
component, such as the EFI Boot Manager, to load and start the platform override drivers by using
the EFI boot services LoadImage () and StartImage (). Each time one of these drivers is
loaded and started, the DriverLoaded () service is called.

Version 1.10 12/01/02 9-27

In

-
Extensible Firmware Interface Specification e ’

Status Codes Returned

EFI_SUCCESS The driver override for ControllerHandle was returned in
DriverImagePath.
EFI_NOT_FOUND A driver override for Control lerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImagePath s not a device path that was returned on a
previous call to GetDriverPath().

9-28 12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

Summary

Used to associate a driver image handle with a device path that was returned on a prior call to the
GetDriverPath () service. This driver image handle will then be available through the
GetDriver () service.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI PLATFORM DRIVER OVERRIDE DRIVER LOADED) (
IN EFI_PLATFORM DRIVER OVERRIDE PROTOCOL *This,

IN EFI_HANDLE ControllerHandle,
IN EFI DEVICE PATH PROTOCOL *DriverImagePath,
IN EFI HANDLE DriverImageHandle
)i
Parameters
This A pointer to the EFI PLATFORM DRIVER OVERRIDE

PROTOCOL instance.

ControllerHandle The device handle of a controller. This must match the
controller handle that was used in a prior call to GetDriver ()
to retrieve DriverImagePath.

DriverImagePath A pointer to the driver device path that was returned in a prior
call to GetDriverPath ().

DriverImageHandle The driver image handle that was returned by LoadImage ()
when the driver specified by DriverImagePath was loaded
into memory.

Description

This function associates the image handle specified by DriverImageHandle with the device
path of a driver specified by DriverImagePath. DriverImagePath must be a value that
was returned on a prior call to GetDriverPath () for the controller specified by
ControllerHandle. Once this association has been established, then the service
GetDriver () must return DriverImageHandle as one of the override drivers for the
controller specified by ControllerHandle.

Version 1.10 12/01/02 9-29

intel
Extensible Firmware Interface Specification ’

If the association between the image handle specified by DriverImageHandle and the device
path specified by DriverImagePath is established for the controller specified by
ControllerHandle, then EFI_SUCCESS isreturned. If ControllerHandle is nota valid
EFI_HANDLE, or DriverImagePath is not a valid device path, or DriverImageHandle is
not a valid EFI_HANDLE, then EFI_INVALID PARAMETER is returned. If
DriverImagePath is not a device path that was returned on a prior call to GetDriver () for
the controller specified by ControllerHandle, then EFI_NOT FOUND is returned.

Status Codes Returned

EFI_SUCCESS The association between DriverImagePath and
DriverImageHandle was established for the controller specified
by ControllerHandle.

EFI_NOT_FOUND DriverImagePath s not a device path that was returned on a prior
callto GetDriverPath () for the controller specified by
ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid device handle.
EFI_INVALID_PARAMETER DriverImagePathis not a valid device path.
EFI_INVALID_PARAMETER DriverImageHandle is not a valid image handle.

9-30 12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

9.3 EFI Bus Specific Driver Override Protocol

This section provides a detailed description of the EFI_BUS SPECIFIC DRIVER OVERRIDE
PROTOCOL. Bus drivers that have a bus specific algorithm for matching drivers to controllers are
required to produce this protocol for each controller. For example, a PCI Bus Driver will produce
an instance of this protocol for every PCI controller that has a PCI option ROM that contains one or
more EFI drivers. The protocol instance is attached to the handle of the PCI controller.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. This protocol is produced by a bus
driver, and it is installed on the child handles of buses that require a bus specific algorithm for
matching drivers to controllers. This protocol is used by the ConnectController () boot
service to select the best driver for a controller. All of the drivers returned by this protocol have a
higher precedence than drivers found in the general EFI Driver Binding search algorithm, but a
lower precedence than those drivers returned by the EFI Platform Driver Override Protocol. If
more than one driver image handle is returned by this protocol, then the drivers image handles are
returned in order from highest precedence to lowest precedence.

GUID

#define EFI BUS SPECIFIC DRIVER OVERRIDE PROTOCOL GUID \
{ 0x3bc1lb285,0x8al5, 0x4a82, Oxaa, 0xbf, 0x4d, 0x7d,0x13, 0xfb, 0x32,0x65 }

Protocol Interface Structure

typedef struct EFI BUS_SPECIFIC DRIVER OVERRIDE PROTOCOL {
EFI_BUS SPECIFIC DRIVER OVERRIDE GET DRIVER GetDriver;
} EFI_BUS_SPECIFIC DRIVER OVERRIDE PROTOCOL;

Parameters
GetDriver Uses a bus specific algorithm to retrieve a driver image handle
for a controller. See the GetDriver () function description.

Description

The EFI_BUS SPECIFIC DRIVER OVERRIDE PROTOCOL provides a mechanism for bus
drivers to override the default driver selection performed by the ConnectController () boot
service. This protocol is attached to the handle of a child device after the child handle is created by
the bus driver. The service in this protocol can return a bus specific override driver to
ConnectController (). ConnectController () must call this service until all of the bus
specific override drivers have been retrieved. ConnectController () uses this information
along with the EFI Platform Driver Override Protocol and all of the EFI Driver Binding protocol
instances to select the best drivers for a controller. Since a controller can be managed by more than
one driver, this protocol can return more than one bus specific override driver.

Version 1.10 12/01/02 9-31

-
Extensible Firmware Interface Specification e ’

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Uses a bus specific algorithm to retrieve a driver image handle for a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI BUS SPECIFIC DRIVER OVERRIDE GET DRIVER) (

IN EFI _BUS SPECIFIC DRIVER OVERRIDE PROTOCOL *This,
IN OUT EFI HANDLE *DriverImageHandle
) ;
Parameters
This A pointer to the EFI BUS SPECIFIC DRIVER

OVERRIDE PROTOCOL instance.

DriverImageHandle On input, a pointer to the previous driver image handle returned
by GetDriver (). On output, a pointer to the next driver
image handle. Passing in a NULL, will return the first driver
image handle.

Description

This function is used to retrieve a driver image handle that is selected in a bus specific manner. The
first driver image handle is retrieved by passing in a DriverImageHandle value of NULL. This
will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID PARAMETER isreturned. The
first driver image handle has the highest precedence, and the last driver image handle has the lowest
precedence. This ordered list of driver image handles is used by the boot service
ConnectController () to search for the best driver for a controller.

Status Codes Returned
EFI_SUCCESS A bus specific override driver is returned in DriverImageHandle.

EFI_NOT_FOUND The end of the list of override drivers was reached. A bus specific
override driver is not returned in DriverImageHandle.

EFI_INVALID_PARAMETER DriverImageHandle is nota handle that was returned on a
previous callto GetDriver ().

9-32 12/01/02 Version 1.10

intel

Protocols — EFI Driver Model

9.4 EFI Driver Configuration Protocol

This section provides a detailed description of the EFI_DRIVER CONFIGURATION
PROTOCOL. This is a protocol that allows an EFI Driver to provide the ability to set controller
specific options on a controller that the driver is managing. Unlike legacy option ROMs, the
configuration of drivers and controllers is delayed until a platform management utility chooses to
use the services of this protocol. EFI Drivers are not allowed to perform setup-like operations
outside the context of this protocol. This means that a driver is not allowed to interact with the user
outside the context of this protocol.

EFI_DRIVER_CONFIGURATION_PROTOCOL

Summary

Used to set configuration options for a controller that an EFI Driver is managing.

GUID

#define EFI_DRIVER CONFIGURATION PROTOCOL GUID \
{ 0x107a772b, 0xd5el, 0x11d4,0x9a, 0x46,0x0,0x90,0x27,0x3£,0xcl, 0x4d }

Protocol Interface Structure

typedef struct EFI DRIVER CONFIGURATION PROTOCOL {
EFI_DRIVER CONFIGURATION SET OPTIONS SetOptions;
EFI DRIVER CONFIGURATION OPTIONS VALID OptionsValid;
EFI DRIVER CONFIGURATION FORCE DEFAULTS ForceDefaults;

CHARS8

*SupportedLanguages;

} EFI_DRIVER CONFIGURATION PROTOCOL;

Parameters

SetOptions

OptionsValid

ForceDefaults

SupportedLanguages

Version 1.10

Allows the use to set drivers specific configuration options for a
controller that the driver is currently managing. See the
SetOptions () function description.

Tests to see if a controller’s current configuration options are
valid. See the OptionsValid () function description.

Forces a driver to set the default configuration options for a
controller. See the ForceDefaults () function description.

A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes. This is the list of language codes
that this protocol supports.

12/01/02 9-33

intel
Extensible Firmware Interface Specification ’

Description

The EFI_DRIVER CONFIGURATION PROTOCOL is used by a platform management utility to
allow the user to set controller specific options. This protocol is optionally attached to the image
handle of driver in the driver’s entry point. The platform management utility can collect all the
EFI_DRIVER CONFIGURATION PROTOCOL instances present in the system, and present the

user with a menu of the controllers than have user selectable options. This platform management
utility is invoked through a platform component such as the EFI Boot Manager.

9-34 12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions()

Summary

Allows the user to set controller specific options for a controller that a driver is currently managing.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI DRIVER CONFIGURATION SET OPTIONS) (
IN EFI DRIVER CONFIGURATION PROTOCOL *This,

IN EFI HANDLE ControllerHandle,
IN EFI HANDLE ChildHandle OPTIONAL,
IN CHARS *Language,

OUT EFI DRIVER CONFIGURATION ACTION REQUIRED *ActionRequired
)i

Parameters

This A pointer to the EFI DRIVER CONFIGURATION
PROTOCOL instance.

ControllerHandle The handle of the controller to set options on. If
ControllerHandleis a valid EFI_HANDLE that is being
managed by this driver, then the user will be allowed to set
options for the controller specified by ControllerHandle.
If this parameter is NULL, then the options will be set for all the
controllers that this driver is currently managing. If
ControllerHandle is NULL, then setting options for a child
controller is not supported, so ChildHandle must also be
NULL.

ChildHandle The handle of the child controller to set options on. This is an
optional parameter that may be NULL. It will be NULL for
device drivers, and for a bus drivers that wish to set options for
the bus controller. It will not be NULL for a bus driver that
wishes to set options for one of its child controllers.

Language A pointer to a three character ISO 639-2 language identifier.
This is the language of the user interface that should be
presented to the user, and it must match one of the languages
specified in SupportedLanguages. The number of
languages supported by a driver is up to the driver writer.

ActionRequired A pointer to the action that the calling agent is required to
perform when this function returns. See "Related Definitions"
for a list of the actions that the calling agent is required to
perform prior to accessing ControllerHandle again.

Version 1.10 12/01/02 9-35

intel
Extensible Firmware Interface Specification ’

Description

This function allows the configuration options to be set for the driver specified by This on the
controller specified by ControllerHandle and ChildHandle. This function must only use
the SIMPLE INPUT PROTOCOL and SIMPLE TEXT OUPUT PROTOCOL from the

EFI SYSTEM TABLE to interact with the user, and it must use the language specified by
Language. If the driver specified by This does not support the language specified by
Language, then EFI_UNSUPPORTED is returned. If the controller specified by
ControllerHandle and ChildHandle is not supported by the driver specified by This,
then EFI_UNSUPPORTED is returned. If a device error occurs while setting the configuration
options, EFI_DEVICE ERROR is returned. If there are not enough resources available to set the
configuration options, then EFI_OUT OF RESOURCES is returned.

The ActionRequired return value must always be set to a legal value by this function. The
caller must perform the required action regardless of the return status. The calling agent must also
perform the action described by ActionRequired prior to using any of the services produced by
ControllerHandle or any of its children.

Related Definitions
//***
// EFI DRIVER CONFIGURATION ACTION REQUIRED
//***
typedef enum {
EfiDriverConfigurationActionNone =
EfiDriverConfigurationActionStopController
EfiDriverConfigurationActionRestartController
EfiDriverConfigurationActionRestartPlatform
EfiDriverConfigurationActionMaximum

} EFI DRIVER CONFIGURATION ACTION REQUIRED;

~

~

[}
wdNDRrOo
~

~

EfiDriverConfigurationActionNone

The controller specified by ControllerHandle is still in a usable state. No actions
are required before this controller can be used again.

EfiDriverConfigurationStopController

The driver has detected that the controller specified by ControllerHandle is notin a
usable state, and it needs to be stopped. The calling agent can use the
DisconnectController () service to perform this operation, and it should be
performed as soon as possible.

EfiDriverConfigurationRestartController

This controller specified by ControllerHandle needs to be stopped and restarted
before it can be used again. The calling agent can use the

DisconnectController () and ConnectController () services to perform
this operation. The restart operation can be delayed until all of the configuration options
have been set.

9-36 12/01/02 Version 1.10

intel

Protocols — EFI Driver Model

EfiDriverConfigurationRestartPlatform

A configuration change has been made that requires the platform to be restarted before
the controller specified by ControllerHandle can be used again. The calling agent
can use the ResetSystem () services to perform this operation. The restart operation

can be delayed until all of the configuration options have been set.

Status Codes Returned

EFI_SUCCESS

The driver specified by Th i s successfully set the configuration options
for the controller specified by ControllerHandle.

EFI_INVALID_PARAMETER

ControllerHandleisnotavalid EFI_HANDLE.

EFI_INVALID_PARAMETER

ChildHandleis not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER

ActionRequiredis NULL.

EFI_UNSUPPORTED

The driver specified by This does not support setting configuration
options for the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED

The driver specified by This does not support the language specified by
Language.

EFI_DEVICE_ERROR

A device error occurred while attempt to set the configuration options for
the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES

There are not enough resources available to set the configuration options
for the controller specified by ControllerHandle and
ChildHandle.

Version 1.10

12/01/02 9-37

intel
Extensible Firmware Interface Specification ’

EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid()

Summary

Tests to see if a controller’s current configuration options are valid.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI DRIVER CONFIGURATION OPTIONS VALID) (
IN EFI DRIVER CONFIGURATION PROTOCOL *This,

IN EFI HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL
) ;
Parameters
This A pointer to the EFI DRIVER CONFIGURATION

PROTOCOL instance.

ControllerHandle The handle of the controller to test if it’s current configuration
options are valid.

ChildHandle The handle of the child controller to test if it’s current
configuration options are valid. This is an optional parameter
that may be NULL. It will be NULL for device drivers. It will
also be NULL for a bus drivers that wish to test the configuration
options for the bus controller. It will not be NULL for a bus
driver that wishes to test configuration options for one of its
child controllers.

Description

This function tests to see if the configuration options for the driver specified by This on the
controller specified by ControllerHandle and ChildHandle are valid. If they are, then
EFI_SUCCESS is returned. If they are not valid, then EFI_DEVICE ERROR is returned. If the
controller specified by ControllerHandle and ChildHandle is not currently being managed
by the driver specified by This, then EFI_UNSUPPORTED is returned. This function is not
allowed to interact with the user. Since the driver is responsible for maintaining the configuration
options for each controller it manages, the exact method by which the configuration options are
validated is driver specific.

9-38 12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

Status Codes Returned

EFI_SUCCESS The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This
has a valid set of configuration options.

EFI_INVALID_PARAMETER ControllerHandleisnotavalid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandleis not NULL and it is not a valid EFI_HANDLE.

EFI_UNSUPPORTED The driver specified by Thi s is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This
has an invalid set of configuration options.

Version 1.10 12/01/02 9-39

intel
Extensible Firmware Interface Specification ’

EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults()

Summary

Forces a driver to set the default configuration options for a controller.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI DRIVER CONFIGURATION FORCE DEFAULTS) (
IN EFI DRIVER CONFIGURATION PROTOCOL *This,

IN EFI HANDLE
IN EFI HANDLE
IN UINT32

ControllerHandle,
ChildHandle OPTIONAL,
DefaultType,

OUT EFI DRIVER CONFIGURATION ACTION REQUIRED *ActionRequired

) ;
Parameters

This

ControllerHandle

ChildHandle

DefaultType

ActionRequired

9-40

A pointer to the EFI DRIVER CONFIGURATION
PROTOCOL instance.

The handle of the controller to force default configuration
options on.

The handle of the child controller to force default configuration
options on. This is an optional parameter that may be NULL. It
will be NULL for device drivers. It will also be NULL for a bus
drivers that wish to force default configuration options for the
bus controller. It will not be NULL for a bus driver that wishes
to force default configuration options for one of its child
controllers.

The type of default configuration options to force on the
controller specified by ControllerHandle and
ChildHandle. See Table 9-1 for legal values. A
DefaultType of 0x00000000 must be supported by this
protocol.

A pointer to the action that the calling agent is required to
perform when this function returns. See “Related Definitions” in
the SetOptions () function description for a list of the actions
that the calling agent is required to perform prior to accessing
ControllerHandle again.

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

Description

This function forces the default configuration options specified by Default Type for the driver
specified by This on the controller specified by ControllerHandle and ChildHandle.
This function is not allowed to interact with the user. If the controller specified by
ControllerHandle and ChildHandle is not supported by the driver specified by This,
then EFI_UNSUPPORTED is returned. If the configuration type specified by DefaultType is
not supported, then EFI_UNSUPPORTED is returned. If a device error occurs while setting the
default configuration options, EFI_DEVICE ERROR is returned. If there are not enough
resources available to set the default configuration options, then EFI_OUT OF RESOURCES is
returned.

The ActionRequired return value must always be set to a legal value by this function. The
caller must perform the required action regardless of the return status. The calling agent must also
perform the action described by Act ionRequizred prior to using any of the services produced by
ControllerHandle or any of its children.

Table 9-1. EFI Driver Configuration Default Type

Bits Description
Bit 0-15 If bits 16-31 are 0x0000, then the following values are defined:
0x0000 Safe Defaults. This type must be supported by all implementations of the

EFI_DRIVER_CONFIGURATION_PROTOCOL. It places a controller a safe configuration that
has the greatest probability of functioning correctly in a platform.

0x0001 Manufacturing Defaults. Optional type that places the controller in a configuration suitable
for a manufacturing and test environment.

0x0002 Custom Defaults. Optional type that places the controller in a custom configuration.

0x0003 Performance Defaults. Optional type that places the controller in a configuration the
maximizes the controller’s performance in a platform.

All other values are reserved for future versions of the EFI Specification.

Bits16-31 A value of 0x0000 is reserved by this specification. Values 0x0001-OxFFFF are available for
expansion by third parties.

Version 1.10 12/01/02 9-41

intel
Extensible Firmware Interface Specification ’

9-42

Status Codes Returned

EFI_SUCCESS

The driver specified by Thi s successfully forced the default

configuration options on the controller specified by
ControllerHandleand ChildHandle.

EFI_INVALID_PARAMETER

ControllerHandleisnotavalid EFI_HANDLE.

EFI_INVALID_PARAMETER

ChildHandleis not NULL and itis not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER

ActionRequiredis NULL.

EFI_UNSUPPORTED

The driver specified by This does not support forcing the default

configuration options on the controller specified by
ControllerHandleand ChildHandle.

EFI_UNSUPPORTED

The driver specified by This does not support the configuration type
specified by Defaul t Type.

EFI_DEVICE_ERROR

A device error occurred while attempt to force the default configuration
options on the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES

There are not enough resources available to force the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

9.5 EFI Driver Diagnostics Protocol

This section provides a detailed description of the EFI_DRIVER DIAGNOSTICS PROTOCOL.
This is a protocol that allows an EFI Driver to perform diagnostics on a controller that the driver is
managing.

EFI_DRIVER_DIAGNOSTICS PROTOCOL

Summary

Used to perform diagnostics on a controller that an EFI Driver is managing.

GUID

#define EFI_ DRIVER DIAGNOSTICS PROTOCOL GUID \
{ 0x0784924f,0xe296,0x11d4,0x9%a,0x49,0x0,0x90,0x27,0x3£f,0xcl, 0x4d }

Protocol Interface Structure
typedef struct _EFI_DRIVER_DIAGNOSTICS_PROTOCOL {
EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS RunDiagnostics;

CHARS *SupportedLanguages;
} EFI_DRIVER DIAGNOSTICS PROTOCOL;

Parameters
RunDiagnostics Runs diagnostics on a controller. See the
RunDiagnostics () function description.
SupportedLanguages A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes. This is the list of language codes
that this protocol supports.
Description

The EFI_DRIVER DIAGNOSTICS PROTOCOL is used by a platform management utility to
allow the user to run driver specific diagnostics on a controller. This protocol is optionally attached

to the image handle of driver in the driver’s entry point. The platform management utility can
collect all the EFI_DRIVER DISAGNOTICS PROTOCOL instances present in the system, and

present the user with a menu of the controllers that have diagnostic capabilities. This platform
management utility is invoked through a platform component such as the EFI Boot Manager.

Version 1.10 12/01/02 9-43

intel
Extensible Firmware Interface Specification ’

EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics()

9-44

Summary

Runs diagnostics on a controller.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI DRIVER DIAGNOSTICS RUN DIAGNOSTICS) (
IN EFI DRIVER DIAGNOSTICS PROTOCOL *This,

IN EFI HANDLE
IN EFI HANDLE

ControllerHandle,
ChildHandle OPTIONAL,

IN EFI DRIVER DIAGNOSTIC TYPE DiagnosticType,
IN CHARS *Language,
OUT EFI GUID **ErrorType,
OUT UINTN *BufferSize,
OUT CHARI16 **Buffer
);
Parameters
This A pointer to the EFI DRIVER DIAGNOSTICS PROTOCOL

ControllerHandle

ChildHandle

DiagnosticType

Language

instance.
The handle of the controller to run diagnostics on.

The handle of the child controller to run diagnostics on. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for a bus drivers that wish
to run diagnostics on the bus controller. It will not be NULL for
a bus driver that wishes to run diagnostics on one of its child
controllers.

Indicates type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. See
“Related Definitions” for the list of supported types.

A pointer to a three character ISO 639-2 language identifier.
This is the language in which the optional error message should
be returned in Buffer, and it must match one of the languages
specified in SupportedLanguages. The number of
languages supported by a driver is up to the driver writer.

12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

ErrorType A GUID that defines the format of the data returned in Buffer.
BufferSize The size, in bytes, of the data returned in Buf fer.
Buffer A buffer that contains a Null-terminated Unicode string plus

some additional data whose format is defined by ErrorType.
Bufferis allocated by this function with AllocatePool (),
and it is the caller’s responsibility to free it with a call to
FreePool ().

Description

This function runs diagnostics on the controller specified by ControllerHandle and
ChildHandle. DiagnoticType specifies the type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. If the driver specified by This does
not support the language specified by Language, then EFI_UNSUPPORTED is returned. If the
controller specified by ControllerHandle and ChildHandle is not supported by the driver
specified by This, then EFI_UNSUPPORTED is returned. If the diagnostics type specified by
DiagnosticType is not supported by this driver, then EFI_UNSUPPORTED is returned. If
there are not enough resources available to complete the diagnostic, then
EFI_OUT OF RESOURCES is returned. If the controller specified by ControllerHandle
and ChildHandle passes the diagnostic, then EFI_SUCCESS is returned. Otherwise,
EFI_DEVICE ERROR is returned.

If the language specified by Language is supported by this driver, then status information is
returned in ErrorType, BufferSize, and Buffer. Buffer contains a Null-terminated
Unicode string followed by additional data whose format is defined by ExrrorType.
BufferSizeis the size of Buf fer is bytes, and it is the caller's responsibility to call
FreePool () on Buffer when the caller is done with the return data. If there are not enough
resources available to return the status information, then EFI_OUT OF RESOURCES is returned.

Related Definitions

//***

// EFI_DRIVER DIAGNOSTIC TYPE
VAR R

typedef enum {

EfiDriverDiagnosticTypeStandard =0,
EfiDriverDiagnosticTypeExtended =1,
EfiDriverDiagnosticTypeManufacturing = 2,

EfiDriverDiagnosticTypeMaximum
} EFI_DRIVER DIAGNOSTIC TYPE;

Version 1.10 12/01/02 9-45

Extensible Firmware Interface Specification

intel

EfiDriverDiagnosticTypeStandard

Performs standard diagnostics on the controller. This diagnostic type is required to be
supported by all implementations of this protocol.

EfiDriverDiagnosticTypeExtended

This is an optional diagnostic type that performs diagnostics on the controller that may
take an extended amount of time to execute.

EfiDriverDiagnosticTypeManufacturing

This is an optional diagnostic type that performs diagnostics on the controller that are
suitable for a manufacturing and test environment.

Status Codes Returned

EFI_SUCCESS

The controller specified by ControllerHandle and
ChildHandle passed the diagnostic.

EFI_INVALID_PARAMETER

ControllerHandleisnotavalid EFI_HANDLE.

EFI_INVALID_PARAMETER

ChildHandleis not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER

Language is NULL.

EFI_INVALID_PARAMETER

ErrorType is NULL.

EFI_INVALID_PARAMETER

BufferTypeis NULL.

EFI_INVALID_PARAMETER

Bufferis NULL.

EFI_UNSUPPORTED

The driver specified by This does not support running diagnostics for
the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED

The driver specified by This does not support the type of diagnostic
specified by DiagnosticType.

EFI_UNSUPPORTED

The driver specified by This does not support the language specified by
Language.

EFI_OUT_OF_RESOURCES

There are not enough resources available to complete the diagnostics.

EFI_OUT_OF_RESOURCES

There are not enough resources available to return the status information
in ErrorType, BufferSize, and Buffer.

EFI_DEVICE_ERROR

The controller specified by ControllerHandle and
ChildHandle did not pass the diagnostic.

12/01/02 Version 1.10

In

e ’ Protocols — EFI Driver Model

9.6 EFI Component Name Protocol

This section provides a detailed description of the EFI COMPONENT NAME PROTOCOL. This is
a protocol that allows an EFI Driver to provide a user readable name of an EFI Driver, and a user
readable name for each of the controllers that the EFI Driver is managing. This protocol is used by
platform management utilities that wish to display names of components. These names may
include the names of expansion slots, external connectors, embedded devices, and add-in devices.

EFI_COMPONENT_NAME_PROTOCOL

Summary

Used to retrieve user readable names of EFI Drivers and controllers managed by EFI Drivers.

GUID

#define EFI_ COMPONENT NAME PROTOCOL GUID \
{ 0x107a772c, 0xd5el, 0x11d4, 0x9a,0x46,0x0,0x90,0x27,0x3£f,0xcl, 0x4d }

Protocol Interface Structure
typedef struct EFI COMPONENT NAME PROTOCOL {

EFI COMPONENT NAME GET DRIVER NAME GetDriverName ;
EFI COMPONENT NAME GET CONTROLLER NAME GetControllerName;
CHARS *SupportedLanguages;
} EFI_COMPONENT NAME PROTOCOL;
Parameters
GetDriverName Retrieves a Unicode string that is the user readable name of the
EFI Driver. See the GetDriverName () function description.
GetControllerName Retrieves a Unicode string that is the user readable name of a
controller that is being managed by an EFI Driver. See the
GetControllerName () function description.
SupportedLanguages A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes. This is the list of language codes
that this protocol supports.
Description

The EFI_COMPONENT NAME PROTOCOL is used retrieve a driver’s user readable name and the
names of all the controllers that a driver is managing from the driver’s point of view. Each of these
names is returned as a Null-terminated Unicode string. The caller is required to specify the
language in which the Unicode string is returned, and this language must be present in the list of
languages that this protocol supports specified by SupportedLanguages.

Version 1.10 12/01/02 9-47

-
Extensible Firmware Interface Specification e ’

EFI_COMPONENT_NAME_PROTOCOL.GetDriverName()

Summary

Retrieves a Unicode string that is the user readable name of the EFI Driver.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ COMPONENT NAME GET DRIVER NAME) (
IN EFI COMPONENT NAME PROTOCOL *This,

IN CHARS *Language,
OUT CHAR16 **DriverName
);
Parameters
This A pointer to the EFI COMPONENT NAME PROTOCOL
instance.
Language A pointer to a three character ISO 639-2 language identifier.

This is the language of the driver name that that the caller is
requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported
by a driver is up to the driver writer.

DriverName A pointer to the Unicode string to return. This Unicode string is
the name of the driver specified by This in the language
specified by Language.

Description

This function retrieves the user readable name of an EFI Driver in the form of a Unicode string. If
the driver specified by This has a user readable name in the language specified by Language,
then a pointer to the driver name is returned in DriverName, and EFI_SUCCESS is returned. If
the driver specified by This does not support the language specified by Language, then

EFI_ UNSUPPORTED is returned.

9-48 12/01/02 Version 1.10

intel
’ Protocols — EFI Driver Model

Status Codes Returned

EFI_SUCCESS The Unicode string for the user readable name in the language specified
by Language for the driver specified by This was returned in
DriverName.

EFI_INVALID_PARAMETER Language is NULL.
EFI_INVALID_PARAMETER DriverName is NULL.

EFI_UNSUPPORTED The driver specified by Thi s does not support the language specified by
Language.

Version 1.10 12/01/02 9-49

intel
Extensible Firmware Interface Specification ’

EFI_COMPONENT_NAME_PROTOCOL.GetControllerName()

Summary

Retrieves a Unicode string that is the user readable name of the controller that is being managed by

an EFI Driver.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI COMPONENT NAME GET CONTROLLER NAME) (
IN EFI COMPONENT NAME PROTOCOL #*This,

IN EFI HANDLE
IN EFI HANDLE
IN CHARS

OUT CHAR16

) ;

Parameters

This

ControllerHandle

ChildHandle

Language

ControllerName

9-50

ControllerHandle,
ChildHandle OPTIONAL,
*Language,

**ControllerName

A pointer to the EFI COMPONENT NAME PROTOCOL
instance.

The handle of a controller that the driver specified by This is
managing. This handle specifies the controller whose name is to
be returned.

The handle of the child controller to retrieve the name of. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for a bus drivers that wish
to retrieve the name of the bus controller. It will not be NULL
for a bus driver that wishes to retrieve the name of a child
controller.

A pointer to a three character ISO 639-2 language identifier.
This is the language of the controller name that that the caller is
requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported
by a driver is up to the driver writer.

A pointer to the Unicode string to return. This Unicode string is
the name of the controller specified by ControllerHandle
and ChildHandle in the language specified by Language
from the point of view of the driver specified by This.

12/01/02 Version 1.10

intel

Description

Protocols — EFI Driver Model

This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the driver
specified by This has a user readable name in the language specified by Language, then a
pointer to the controller name is returned in ControllerName, and EFI_SUCCESS is returned.

If the driver specified by This is not currently managing the controller specified by
ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned.

If the driver specified by This does not support the language specified by Language, then
EFI_ UNSUPPORTED is returned.

Status Codes Returned

EFI_SUCCESS

The Unicode string for the user readable name specified by Thi s,
ControllerHandle, ChildHandle, and Language was returned in
ControllerName.

EFI_INVALID_PARAMETER

ControllerHandleisnotavalid EFI_HANDLE.

EFI_INVALID_PARAMETER

ChildHandleis not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER

Language is NULL.

EFI_INVALID_PARAMETER

ControllerName is NULL.

EFI_UNSUPPORTED

The driver specified by Thi s is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED

The driver specified by This does not support the language specified by
Language.

Version 1.10

12/01/02 9-51

in
Extensible Firmware Interface Specification tel

9-52 12/01/02 Version 1.10

10
Protocols - Console Support

10.1 Console I/O Protocol

This chapter defines the Console I/O protocol. This protocol is used to handle input and output of
text-based information intended for the system user during the operation of code in the EFI boot
services environment. Also included here are the definitions of three console devices: one for input
and one each for normal output and errors.

These interfaces are specified by function call definitions to allow maximum flexibility in
implementation. For example, there is no requirement for compliant systems to have a keyboard or
screen directly connected to the system. Implementations may choose to direct information passed
using these interfaces in arbitrary ways provided that the semantics of the functions are preserved
(in other words, provided that the information is passed to and from the system user).

10.1.1 Overview

The EFI console is built out of the SIMPLE INPUT and SIMPLE TEXT OUTPUT protocols.
These two protocols implement a basic text-based console that allows platform firmware, EFI
applications, and EFI OS loaders to present information to and receive input from a system
administrator. The EFI console consists of 16-bit Unicode characters, a simple set of input control
characters (Scan Codes), and a set of output-oriented programmatic interfaces that give
functionality equivalent to an intelligent terminal. The EFI console does not support pointing
devices on input or bitmaps on output.

The EFI specification requires that the SIMPLE INPUT protocol support the same languages as
the corresponding SIMPLE TEXT OUTPUT protocol. The SIMPLE TEXT OUTPUT protocol is
recommended to support at least the printable Basic Latin Unicode character set to enable standard
terminal emulation software to be used with an EFI console. The Basic Latin Unicode character
set implements a superset of ASCII that has been extended to 16-bit characters. Any number of
other Unicode character sets may be optionally supported.

Version 1.10 12/01/02 10-1

intel
Extensible Firmware Interface Specification ’

10.1.2 Consoleln Definition

10-2

The SIMPLE INPUT protocol defines an input stream that contains Unicode characters and
required EFI scan codes. Only the control characters defined in Table 10-1 have meaning in the
Unicode input or output streams. The control characters are defined to be characters U+0000
through U+001F. The input stream does not support any software flow control.

Table 10-1. Supported Unicode Control Characters

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is at the left
margin, no action is taken.

TAB U+0x0009 Tab.

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the current line.

12/01/02 Version 1.10

intel
Protocols — Console Support

The input stream supports Scan Codes in addition to Unicode characters. If the Scan Code is set to
0x00 then the Unicode character is valid and should be used. If the Scan Code is set to a non-0x00
value it represents a special key as defined by Table 10-2.

Table 10-2. EFI Scan Codes for SIMPLE INPUT INTERFACE

EFI Scan Code Description

0x00 Null scan code.

0x01 Move cursor up 1 row.
0x02 Move cursor down 1 row.
0x03 Move cursor right 1 column.
0x04 Move cursor left 1 column.
0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.

0x0a Page Down.

0x0b Function 1.

0x0c Function 2.

0x0d Function 3.

0x0e Function 4.

0oxof Function 5.

0x10 Function 6.

0x11 Function 7.

0x12 Function 8.

0x13 Function 9.

0x14 Function 10.

ox17 Escape.

Version 1.10 12/01/02 10-3

intel
Extensible Firmware Interface Specification ’

10.

2 Simple Input Protocol

The Simple Input protocol defines the minimum input required to support the ConsoleIn device.

SIMPLE_INPUT

10-4

Summary

This protocol is used to obtain input from the ConsoleIn device. The EFI specification requires
that the SIMPLE _INPUT protocol support the same languages as the corresponding
SIMPLE TEXT OUTPUT protocol.

GUID

#define SIMPLE INPUT PROTOCOL \
{ 387477¢c1-69¢c7-11d2-8e39-00a0c969723b }

Protocol Interface Structure
typedef struct SIMPLE INPUT INTERFACE

EFI_INPUT RESET Reset;
EFI INPUT READ KEY ReadKeyStroke;
EFI_ EVENT WaitForKey;

} SIMPLE INPUT INTERFACE;

Parameters
Reset Reset the ConsoleIndevice. See Reset ().

ReadKeyStroke Returns the next input character. See ReadKeyStroke ().

WaitForKey Event to use with WaitForEvent () to wait for a key to be available.

Description

The SIMPLE INPUT protocol is used on the ConsoleIn device. Itis the minimum required
protocol for ConsolelIn.

12/01/02 Version 1.10

intel
’ Protocols — Console Support

SIMPLE_INPUT.Reset()

Summary

Resets the input device hardware.

Prototype

EFI_STATUS

(EFIAPI *EFI_INPUT_RESET) (
IN SIMPLE INPUT INTERFACE *This,
IN BOOLEAN ExtendedVerification
) ;

Parameters

This A pointer to the SIMPLE INPUT INTERFACE instance. Type
SIMPLE INPUT INTERFACE is defined in Section 10.2

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset () function resets the input device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flagis TRUE the

firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform

firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The device was reset.
EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.

Version 1.10 12/01/02 10-5

intel
Extensible Firmware Interface Specification ’

SIMPLE_INPUT.ReadKeyStroke()

Summary

Reads the next keystroke from the input device.

Prototype

EFI_STATUS

(EFIAPI *EFI INPUT READ KEY) (
IN SIMPLE INPUT INTERFACE *This,
OUT EFI_INPUT KEY *Key
) ;

Parameters

This A pointer to the SIMPLE INPUT INTERFACE instance. Type
SIMPLE INPUT INTERFACE is defined in Section 10.2.

Key A pointer to a buffer that is filled in with the keystroke
information for the key that was pressed. Type
EFI_INPUT_ KEY is defined in “Related Definitions” below.

Related Definitions

//***

// EFI INPUT KEY
VAR R

typedef struct {
UINT16 ScanCode;
CHAR16 UnicodeChar;
} EFI_INPUT KEY;

10-6 12/01/02 Version 1.10

intel
’ Protocols — Console Support

Description

The ReadKeyStroke () function reads the next keystroke from the input device. If there is
no pending keystroke the function returns EFI_NOT READY. If there is a pending keystroke,
then ScanCode is the EFI scan code defined in Table 10-2. The UnicodeChar is the actual
printable character or is zero if the key does not represent a printable character (control key,
function key, etc.).

Status Codes Returned

EFI_SUCCESS The keystroke information was returned.
EFI_NOT_READY There was no keystroke data available.
EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.

Version 1.10 12/01/02 10-7

intel
Extensible Firmware Interface Specification ’

10.2.1 ConsoleQOut or StandardError

The SIMPLE TEXT OUTPUT protocol must implement the same Unicode code pages as the

SIMPLE INPUT protocol. The protocol must also support the Unicode control characters defined
in Table 10-1. The SIMPLE TEXT OUTPUT protocol supports special manipulation of the screen
by programmatic methods and therefore does not support the EFI scan codes defined in Table 10-2.

10.3 Simple Text Output Protocol

The Simple Text Output protocol defines the minimum requirements for a text-based
ConsoleOut device. The EFI specification requires that the SIMPLE INPUT protocol support
the same languages as the corresponding SIMPLE _TEXT OUTPUT protocol.

SIMPLE_TEXT_OUTPUT Protocol

Summary

This protocol is used to control text-based output devices.

GUID

#define SIMPLE TEXT OUTPUT PROTOCOL \
{ 387477¢c2-69¢c7-11d2-8e39-00a0c969723b }

Protocol Interface Structure
typedef struct SIMPLE TEXT OUTPUT INTERFACE ({

EFI_TEXT RESET Reset;
EFI TEXT STRING OutputString;
EFI TEXT TEST STRING TestString;
EFI_TEXT QUERY MODE QueryMode;
EFI_TEXT SET MODE SetMode;
EFI_TEXT SET ATTRIBUTE SetAttribute;
EFI TEXT CLEAR SCREEN ClearScreen;
EFI TEXT SET CURSOR POSITION SetCursorPosition;
EFI TEXT ENABLE CURSOR EnableCursor;
SIMPLE TEXT OUTPUT MODE *Mode ;
} SIMPLE TEXT OUTPUT INTERFACE;
Parameters
Reset Reset the ConsoleOut device. See Reset ().
OutputString Displays the Unicode string on the device at the current cursor location.
See OutputString().
TestString Tests to see if the ConsoleOut device supports this Unicode string.
See TestString().
QueryMode Queries information concerning the output device’s supported text mode.

See QueryMode ().

10-8 12/01/02 Version 1.10

intel
’ Protocols — Console Support

SetMode Sets the current mode of the output device. See SetMode ().

SetAttribute Sets the foreground and background color of the text that is output. See
SetAttribute().

ClearScreen Clears the screen with the currently set background color. See
ClearScreen|().

SetCursorPosition Sets the current cursor position. See SetCursorPosition ().

EnableCursor Turns the visibility of the cursor on/off. See EnableCursor ().

Mode Pointer to SIMPLE TEXT OUTPUT MODE data. Type
SIMPLE TEXT OUTPUT MODE is defined in “Related Definitions”
below.

The following data values in the SIMPLE TEXT OUTPUT MODE interface are read-only and are
changed by using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode () and SetMode ().
Mode The text mode of the output device(s).

Attribute The current character output attribute.

CursorColumn The cursor’s column.

CursorRow The cursor’s row.

CursorVisible The cursor is currently visible or not.

Related Definitions

//***

// SIMPLE TEXT OUTPUT MODE
[/ *hkrhkkkkkhhkkhhkhhhkhhhkhhhkhhhhhhkhhhhhhhhhhkrhhkhhkhx

typedef struct {

INT32 MaxMode;

// current settings

INT32 Mode;

INT32 Attribute;
INT32 CursorColumn;
INT32 CursorRow;
BOOLEAN CursorVisible;

} SIMPLE TEXT OUTPUT MODE;

Version 1.10 12/01/02 10-9

intel
Extensible Firmware Interface Specification ’

Description

10-10

The SIMPLE TEXT OUTPUT protocol is used to control text-based output devices. It is the
minimum required protocol for any handle supplied as the ConsoleOut or StandardError
device. In addition, the minimum supported text mode of such devices is at least 80 x 25
characters.

A video device that only supports graphics mode is required to emulate text mode functionality.
Output strings themselves are not allowed to contain any control codes other than those defined in
Table 10-1. Positional cursor placement is done only via the SetCursorPosition () function.
It is highly recommended that text output to the StandardError device be limited to sequential
string outputs. (That is, it is not recommended to use ClearScreen () or
SetCursorPosition () on output messages to StandardError.)

If the output device is not in a valid text mode at the time of the HandleProtocol () call, the
device is to indicate that its CurrentMode is —1. On connecting to the output device the caller is
required to verify the mode of the output device, and if it is not acceptable to set it to something it
can use.

12/01/02 Version 1.10

intel
’ Protocols — Console Support

SIMPLE_TEXT_OUTPUT.Reset()

Summary

Resets the text output device hardware.

Prototype

EFI_STATUS

(EFIAPI *EFI_TEXT_RESET) (
IN SIMPLE TEXT OUTPUT INTERFACE *This,
IN BOOLEAN ExtendedVerification
) ;

Parameters

This A pointer to the SIMPLE TEXT OUTPUT INTERFACE
instance. Type SIMPLE_TEXT_OUTPUT_INTERFACE is
defined in the “Related Definitions” section of Section 10.3.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset () function resets the text output device hardware. The cursor position is set to (0, 0),
and the screen is cleared to the default background color for the output device.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.
Status Codes Returned

EFI_SUCCESS The text output device was reset.
EFI_DEVICE_ERROR The text output device is not functioning correctly and could not be reset.

Version 1.10 12/01/02 10-11

Extensible Firmware

Interface Specification

SIMPLE_TEXT_OUTPUT.OutputString()

Summary

Writes a Unicode string to the output device.

Prototype

EFI STATUS

(EFIAPI

IN SIMPLE TEXT OUTPUT INTERFACE

IN
)i

Parameters

This

String

*EFI_TEXT STRING) (

CHAR16

*String

A pointer to the SIMPLE TEXT OUTPUT INTERFACE

instance. Type SIMPLE_TEXT_OUTPUT_INTERFACE is
defined in the “Related Definitions” section of Section 10.3.

The Null-terminated Unicode string to be displayed on the
output device(s). All output devices must also support the
Unicode drawing characters defined in “Related Definitions.”

Related Definitions

//***

// UNICODE DRAWING CHARACTERS

//***

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

10-12

BOXDRAW HORIZONTAL
BOXDRAW VERTICAL
BOXDRAW DOWN RIGHT
BOXDRAW DOWN LEFT
BOXDRAW UP RIGHT
BOXDRAW UP LEFT

BOXDRAW VERTICAL RIGHT
BOXDRAW VERTICAL LEFT
BOXDRAW DOWN HORIZONTAL
BOXDRAW UP HORIZONTAL
BOXDRAW VERTICAL HORIZONTAL

12/01/02

0x2500
0x2502
0x250¢
0x2510
0x2514
0x2518
0x251c
0x2524
0x252c¢
0x2534
0x253c¢c

Version 1.10

intel

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

//***

// EFI Required Block Elements Code Chart
//***

#define
#define

Version 1.10

BOXDRAW DOUBLE HORIZONTAL
BOXDRAW DOUBLE VERTICAL

BOXDRAW DOWN RIGHT DOUBLE
BOXDRAW DOWN DOUBLE RIGHT
BOXDRAW DOUBLE DOWN RIGHT
BOXDRAW DOWN LEFT DOUBLE
BOXDRAW DOWN DOUBLE_ LEFT
BOXDRAW DOUBLE DOWN LEFT

BOXDRAW UP RIGHT DOUBLE
BOXDRAW UP DOUBLE RIGHT
BOXDRAW DOUBLE UP_ RIGHT

BOXDRAW UP LEFT DOUBLE
BOXDRAW UP DOUBLE LEFT
BOXDRAW DOUBLE UP_ LEFT

BOXDRAW VERTICAL RIGHT DOUBLE
BOXDRAW VERTICAL DOUBLE RIGHT
BOXDRAW DOUBLE VERTICAL RIGHT

BOXDRAW VERTICAL LEFT DOUBLE
BOXDRAW VERTICAL DOUBLE LEFT
BOXDRAW DOUBLE VERTICAL LEFT

BOXDRAW DOWN HORIZONTAL DOUBLE
BOXDRAW DOWN DOUBLE HORIZONTAL
BOXDRAW DOUBLE DOWN HORIZONTAL

BOXDRAW UP HORIZONTAL DOUBLE
BOXDRAW UP DOUBLE HORIZONTAL
BOXDRAW DOUBLE UP HORIZONTAL

BOXDRAW VERTICAL HORIZONTAL DOUBLE
BOXDRAW VERTICAL DOUBLE HORIZONTAL
BOXDRAW DOUBLE VERTICAL HORIZONTAL

BLOCKELEMENT FULL BLOCK
BLOCKELEMENT LIGHT SHADE

12/01/02

Protocols — Console Support

0x2550
0x2551
0x2552
0x2553
0x2554
0x2555
0x2556
0x2557

0x2558
0x2559
0x255a

0x255b
0x255¢c
0x255d

0x255e
0x255f
0x2560

0x2561
0x2562
0x2563

0x2564
0x2565
0x2566

0x2567
0x2568
0x2569

0x256a
0x256b
0x256¢

0x2588
0x2591

10-13

intel
Extensible Firmware Interface Specification ’

//***

// EFI Required Geometric Shapes Code Chart
//***

#define
#define
#define
#define

GEOMETRICSHAPE UP TRIANGLE 0x25b2
GEOMETRICSHAPE RIGHT TRIANGLE 0x25ba
GEOMETRICSHAPE DOWN TRIANGLE 0x25bc
GEOMETRICSHAPE LEFT TRIANGLE 0x25c4

//***

// EFI Required Arrow shapes
//***

#define ARROW UP 0x2191
##define ARROW_ DOWN 0x2193
Description

10-14

The OutputString () function writes a Unicode string to the output device. This is the most

basic output mechanism on an output device. The Stringis displayed at the current cursor
location on the output device(s) and the cursor is advanced according to the rules listed in

Table 10-3.
Table 10-3. EFI Cursor Location/Advance Rules
Mnemonic | Unicode | Description
Null U+0000 Ignore the character, and do not move the cursor.
BS U+0008 If the cursor is not at the left edge of the display, then move the cursor left one
column.
LF U+000A If the cursor is at the bottom of the display, then scroll the display one row, and
do not update the cursor position. Otherwise, move the cursor down one row.
CR U+000D | Move the cursor to the beginning of the current row.
Other U+XXXX | Print the character at the current cursor position and move the cursor right one

column. If this moves the cursor past the right edge of the display, then the line
should wrap to the beginning of the next line. This is equivalent to inserting a
CR and an LF. Note that if the cursor is at the bottom of the display, and the line
wraps, then the display will be scrolled one line.

If desired, the system’s NVRAM environment variables may be used at install time to determine
the configured locale of the system or the installation procedure can query the user for the proper
language support. This is then used to either install the proper EFI image/loader or to configure the
installed image’s strings to use the proper text for the selected locale.

12/01/02 Version 1.10

intel
’ Protocols — Console Support

Status Codes Returned

EFI_SUCCESS The string was output to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to output
the text.

EFI_UNSUPPORTED The output device’s mode is not currently in a defined
text mode.

EFI_WARN_UNKNOWN_GLYPH This warning code indicates that some of the characters
in the Unicode string could not be rendered and were
skipped.

Version 1.10 12/01/02 10-15

intel
Extensible Firmware Interface Specification ’

SIMPLE_TEXT_OUTPUT.TestString()

Summary

Verifies that all characters in a Unicode string can be output to the target device.

Prototype
EFI_STATUS
(EFIAPI *EFI_TEXT TEST STRING) (
IN SIMPLE TEXT OUTPUT INTERFACE *This,
IN CHAR16 *String
) ;

Parameters

This A pointer to the SIMPLE TEXT OUTPUT INTERFACE instance.
Type SIMPLE TEXT OUTPUT INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

String The Null-terminated Unicode string to be examined for the output
device(s).

Description

The TestString () function verifies that all characters in a Unicode string can be output to the
target device.

This function provides a way to know if the desired character set is present for rendering on the
output device(s). This allows the installation procedure (or EFI image) to at least select a letter set
that the output devices are capable of displaying. Since the output device(s) may be changed
between boots, if the loader cannot adapt to such changes it is recommended that the loader call
OutputString () with the text it has and ignore any “unsupported” error codes. The devices(s)
that are capable of displaying the Unicode letter set will do so.

Status Codes Returned

EFI_SUCCESS The device(s) are capable of rendering the output string.

EFI_UNSUPPORTED Some of the characters in the Unicode string cannot be rendered
by one or more of the output devices mapped by the EFI handle.

10-16 12/01/02 Version 1.10

intel
’ Protocols — Console Support

SIMPLE_TEXT_OUTPUT.QueryMode()

Summary

Returns information for an available text mode that the output device(s) supports.

Prototype
EFI_STATUS
(EFIAPI *EFI TEXT QUERY MODE) (
IN SIMPLE TEXT OUTPUT INTERFACE *This,

IN UINTN ModeNumber,
OUT UINTN *Columns,
OUT UINTN *Rows
) ;
Parameters
This A pointer to the SIMPLE TEXT OUTPUT INTERFACE instance.

Type SIMPLE TEXT OUTPUT INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

ModeNumber The mode number to return information on.
Columns, Rows Returns the geometry of the text output device for the request
ModeNumber.
Description

The QueryMode () function returns information for an available text mode that the output
device(s) supports.

It is required that all output devices support at least 80x25 text mode. This mode is defined to be
mode 0. If the output devices support 80x50, that is defined to be mode 1. Any other text
dimensions supported by the device may then follow as mode 2 and above. (For example, it is a
prerequisite that 80x25 and 80x50 text modes be supported before any other modes are.)

Status Codes Returned

EFI_SUCCESS The requested mode information was returned.
EFI_DEVICE_ERROR The device had an error and could not complete the request.
EFI_UNSUPPORTED The mode number was not valid.

Version 1.10 12/01/02 10-17

intel
Extensible Firmware Interface Specification ’

SIMPLE_TEXT_OUTPUT.SetMode()

Summary

Sets the output device(s) to a specified mode.

Prototype
EFI_STATUS
(* EFIAPI EFI_TEXT SET MODE) (
IN SIMPLE TEXT OUTPUT INTERFACE *This,
IN UINTN ModeNumber
) ;

Parameters

This A pointer to the SIMPLE TEXT OUTPUT INTERFACE instance.
Type SIMPLE TEXT OUTPUT INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

ModeNumber The text mode to set.

Description

The SetMode () function sets the output device(s) to the requested mode. On success the device

is in the geometry for the requested mode, and the device has been cleared to the current
background color with the cursor at (0,0).

Status Codes Returned

EFI_SUCCESS The requested text mode was set.
EFI_DEVICE_ERROR The device had an error and could not complete the request.
EFI_UNSUPPORTED The mode number was not valid.

10-18 12/01/02 Version 1.10

intel

Protocols — Console Support

SIMPLE_TEXT_OUTPUT.SetAttribute()

Summary

Sets the background and foreground colors for the OutputString () and ClearScreen ()

functions.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT SET ATTRIBUTE) (
IN SIMPLE TEXT OUTPUT INTERFACE *This,

IN
)i

Parameters

This

Attribute

UINTN

Attribute

A pointer to the SIMPLE TEXT OUTPUT INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

The attribute to set. Bits 0..3 are the foreground color, and bits 4..6 are

the background color. All other bits are undefined and must be zero.
See “Related Definitions” below.

Related Definitions

//***

// Attri

butes

//***

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Version 1.10

EFI_BLACK
EFI_BLUE
EFI_GREEN
EFI_CYAN
EFI_RED
EFI_MAGENTA
EFI_BROWN
EFI_LIGHTGRAY
EFI_BRIGHT
EFI_DARKGRAY
EFI_LIGHTBLUE
EFI_LIGHTGREEN
EFI_LIGHTCYAN
EFI_LIGHTRED
EFI_LIGHTMAGENTA
EFI_YELLOW
EFI_WHITE

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0xOF

12/01/02 10-19

Extensible Firmware Interface Specification

Description

#define
#define
#define
#define
#define
#define
#define
#define

#define

EFI BACKGROUND BLACK 0x00
EFI BACKGROUND BLUE 0x10
EFI BACKGROUND GREEN 0x20
EFI BACKGROUND CYAN 0x30
EFI BACKGROUND RED 0x40
EFI BACKGROUND MAGENTA 0x50
EFI BACKGROUND BROWN 0x60
EFI BACKGROUND LIGHTGRAY 0x70
EFI_TEXT ATTR (foreground,background) \

((foreground) | ((background) << 4))

The SetAttribute () function sets the background and foreground colors for the
OutputString () and ClearScreen () functions.

The color mask can be set even when the device is in an invalid text mode.

Devices supporting a different number of text colors are required to emulate the above colors to the
best of the device’s capabilities.

Status Codes Returned

10-20

EFI_SUCCESS The requested attributes were set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The attribute requested is not defined by this specification.
12/01/02

Version 1.10

intel
’ Protocols — Console Support

SIMPLE_TEXT_OUTPUT.ClearScreen()

Summary

Clears the output device(s) display to the currently selected background color.

Prototype

EFI_STATUS

(EFIAPI *EFI TEXT CLEAR SCREEN) (
IN SIMPLE TEXT OUTPUT INTERFACE *This
)i

Parameters
This A pointer to the SIMPLE TEXT OUTPUT INTERFACE instance.
Type SIMPLE TEXT OUTPUT INTERFACE is defined in the
“Related Definitions” section of Section 10.3.
Description

The ClearScreen () function clears the output device(s) display to the currently selected
background color. The cursor position is set to (0, 0).

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.
EFI_UNSUPPORTED The output device is not in a valid text mode.

Version 1.10 12/01/02 10-21

intel
Extensible Firmware Interface Specification ’

SIMPLE_TEXT_OUTPUT.SetCursorPosition()

Summary

Sets the current coordinates of the cursor position.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT SET CURSOR POSITION) (
IN SIMPLE TEXT OUTPUT INTERFACE *This,

IN UINTN Column,
IN UINTN Row
)
Parameters
This A pointer to the SIMPLE TEXT OUTPUT INTERFACE instance.

Type SIMPLE TEXT OUTPUT INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

Column, Row The position to set the cursor to. Must greater than or equal to zero and
less than the number of columns and rows returned by QueryMode () .

Description

The SetCursorPosition () function sets the current coordinates of the cursor position. The
upper left corner of the screen is defined as coordinate (0, 0).

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode, or the cursor
position is invalid for the current mode.

10-22 12/01/02 Version 1.10

intel
’ Protocols — Console Support

SIMPLE_TEXT_OUTPUT.EnableCursor()

Summary

Makes the cursor visible or invisible.

Prototype

EFI_STATUS

(EFIAPI *EFI TEXT ENABLE CURSOR) (
IN SIMPLE TEXT OUTPUT INTERFACE *This,
IN BOOLEAN Visible
) ;

Parameters

This A pointer to the SIMPLE TEXT OUTPUT INTERFACE instance.
Type SIMPLE TEXT OUTPUT INTERFACE is defined in the
“Related Definitions” section of Section 10.3.

Visible If TRUE, the cursor is set to be visible. If FALSE, the cursor is set to be
invisible.

Description

The EnableCursor () function makes the cursor visible or invisible.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request or
the device does not support changing the cursor mode.

EFI_UNSUPPORTED The output device does not support visibility control of the
cursor.

Version 1.10 12/01/02 10-23

intel
Extensible Firmware Interface Specification ’

10.4 Universal Graphics Adapter Protocols

This section describes abstractions for displaying graphics on an EFI compliant platform. These
abstractions consist of the UGA Draw Protocols that abstract the drawing to the graphics screen in
the pre-OS space. The UGA I/O protocol also abstracts access to the graphics screen in addition to
supporting child devices of the video controller, such as graphics display devices. The UGA 1/0
protocol is targeted primarily for use in the OS present environment.

The goal of this document is to replace the functionality that currently exists with VGA hardware
and its corresponding video BIOS. The UGA ROM is a software abstraction and its goal is to
support any foreseeable graphics hardware and not require VGA hardware, while at the same time
also lending itself to implementation on the current generation of VGA hardware.

Graphics output is important in the preboot space to support modern firmware features. These
features include the display of logos, the localization of output to any language, and setup and
configuration screens.

There are also needs for graphics abstractions in a modern graphics oriented operating system.
These operating systems generally contain a high performance driver that is specific to video
device, but there are times when some required hardware related operations are not available in the
high performance driver. In these cases it may be advantageous for the operating system to be able
to take advantage of a graphics driver that was distributed with the graphics hardware that does
include such capabilities.

More information on EFI 1.10 UGA ROM usage under an OS can be found at
www.microsoft.com/hwdev/uga

10.4.1 UGA ROM

10-24

The EFI UGA DRAW PROTOCOL provides a lightweight set of services to draw on a video
screen. Graphics primitives are needed prior to operating system boot to support the localization of
output to all known languages. The need for localization is the reason that
EFI_UGA DRAW PROTOCOL does not support any text modes because a font database for all the
glyphs in the Unicode character set would make an EFI_UGA DRAW PROTOCOL option ROM
prohibitively large. The EFI_UGA DRAW PROTOCOL was constructed with the theory that the
system firmware carries the fonts for the characters it chooses to display.

The availability of platform independent graphics primitives prior to an operating system boot
allows the platform vendor to display a logo while the system is booting. Graphics primitives also
allow more options for the user interfaces of configuration and diagnostic programs associated with
the platform independent of the installed operating system.

The EFI_UGA IO PROTOCOL provides a mechanism for the OS to construct a generic OS

specific driver that would make it possible to draw on an output device in the event that a high
performance OS video driver was not available. The EFI_UGA IO PROTOCOL also provides

services that can be used by an OS present high performance video driver.

12/01/02 Version 1.10

http://www.microsoft.com/hwdev/tech/display/uga/

intel
’ Protocols — Console Support

10.4.2 UGA Draw Protocol

The EFI UGA DRAW PROTOCOL supports three member functions to support the limited
graphics needs of the pre-OS space. These member functions allow the caller to draw to a
virtualized frame buffer, to get the current video mode, and to set a video mode. These simple
primitives are sufficient to support the general needs of pre-OS firmware code

10.4.3 BIt Buffer

The basic graphics operation in the EFI_UGA DRAW PROTOCOL is the Block Transfer or Blt.
The Blt operation allows data to be read or written to the video adapter’s video memory. The Blt
operation abstracts the video adapters hardware implementation by introducing the concept of a
software Blt buffer.

The frame buffer abstracts the video display as an array of pixels. Each pixels location on the video
display is defined by its X and Y coordinates. The X coordinate represents a scan line. A scan line
is a horizontal line of pixels on the display. The Y coordinate represents a vertical line on the
display. The upper left hand corner of the video display is defined as (0, 0) where the notation

(X, Y) represents the X and Y coordinate of the pixel. The lower right corner of the video display
is represented by (Width —1, Height -1).

The software Blt buffer is structured as an array of pixels. Pixel (0, 0) is the first element of the
software Blt buffer. The Blt buffer can be thought of as a set of scan lines. It is possible to convert
a pixel location on the video display to the Blt buffer using the following algorithm: Blt buffer
array index =Y * Width + X.

Each software Blt buffer entry represents a pixel that is comprised of a 32-bit quantity. Byte zero
of the Blt buffer entry represents the Red component of the pixel. Byte one of the Blt buffer entry
represents the Green component of the pixel. Byte two of the Blt buffer entry represents the Blue
component of the pixel. Byte three of the Blt buffer entry is reserved and must be zero.

Software BLT Buffer

©, 0) X-axis > (Width -1, 0)
pixel { [T T]]
Scan Line |
. Y-axis
1] |
(0, Height - 1) (Width -1, Height - 1)

OM13157

Figure 10-1. Software BLT Buffer

Version 1.10 12/01/02 10-25

intel
Extensible Firmware Interface Specification ’

10.4.4 UGA 1/0O Protocol

The EFI UGA IO PROTOCOL supports an I/O request mode of operation that is targeted at

providing services to the OS high performance driver. The I/O requests are accessed via the
EFI_UGA IO PROTOCOL DispatchService () member function. The I/O request services
include the capabilities supported by the EFI UGA DRAW PROTOCOL.

The I/0O request mode services support a full set of services for the Graphics Controller, and all its
child devices. Currently Output Controllers, Output Ports, and vendor defined child devices are
supported. An example of an Output Controller would be a RAMDAC or TV OUT. An example
of an Output Port would include a Monitor, TV, or HDTV.

10.4.5 Fallback Mode Driver

A fallback mode driver is defined as a simple driver that can be carried with a hardware device that
can be made to run under any operating system given appropriate operating system support. The
term fallback mode stems from the ability to use this driver when a standard high performance
operating system driver is not available or some capability to manipulate the hardware is not
available in the high performance operating system driver.

A fallback mode driver for a video device can be constructed by layering operating system specific
code on top and below an EBC UGA option ROM. Since a UGA driver uses EFI abstractions to
allocate memory and touch hardware it will be possible to replace the EFI 1.10 core services and
protocols that a UGA ROM depends on with an operating specific driver. The operating system
will also need to abstract the EFI_UGA IO PROTOCOL in some form that is compatible with the
operating system driver model. The DispatchService member of the

EFI _UGA IO PROTOCOL is designed to make binding this protocol into an Operation System
device driver model.

OS Friendly version of
UGA 1/0O Protocol

fi

: EBC Simple
OS EFI 1.1 EBC Driver . Graphic Output
Virtual Machine <:> Protocol
U Driver
OS PCI Driver Same code used by
firmware

OM13158

Figure 10-2. Fallback Mode Driver

From the UGA ROM'’s point of view it cannot tell the difference between a virtual machine that is
produced in the pre-OS and OS present space.

10-26 12/01/02 Version 1.10

intel
’ Protocols — Console Support

10.5 UGA Draw Protocol

The interface structure for the UGA Draw Protocol is defined in this section. A unique UGA Draw
Protocol must represent each video frame buffer in the system.

EFI_UGA_DRAW_PROTOCOL

Summary

Provides a basic abstraction to set video modes and copy pixels to and from the graphics
controller’s frame buffer.

GUID

#define EFI_UGA DRAW PROTOCOL GUID \
{ 0x982c298b, 0xf4fa, 0x41lcb, 0xb8, 0x38,0x77, 0xaa, 0x68, 0x8f, 0xb8, 0x39 }

Protocol Interface Structure
typedef struct EFI_UGA DRAW PROTCOL {

EFI_UGA DRAW PROTOCOL GET MODE GetMode;
EFI_UGA DRAW PROTOCOL SET MODE SetMode;
EFI_UGA DRAW PROTOCOL BLT Blt;
} EFI_UGA DRAW PROTOCOL;
Parameters
GetMode Returns information about the geometry and configuration of the
graphics controller’s current frame buffer configuration.
SetMode Set the graphics device into a given mode and clears the frame
buffer to black.
Blt Software abstraction to draw on the video device’s frame buffer.
Description

The EFI_UGA DRAW PROTOCOL provides a software abstraction to allow pixels to be drawn
directly to the frame buffer. The EFI_UGA DRAW PROTOCOL is designed to be lightweight and
to support the basic needs of graphics output prior to Operating System boot.

A video device can support an arbitrary number of geometries, but it must support the following
mode to conform to this specification:

e 800 x 600 with 32-bit color with a 60 Hz refresh rate.

Version 1.10 12/01/02 10-27

intel
Extensible Firmware Interface Specification ’

EFI_UGA_DRAW_PROTOCOL.GetMode()

Summary

Return the current frame buffer geometry and display refresh rate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI UGA DRAW PROTOCOL GET MODE) (
IN EFI _UGA DRAW PROTOCOL *This,

OUT UINT32 *HorizontalResolution,
OUT UINT32 *VerticalResolution,
OUT UINT32 *ColorDepth,
OUT UINT32 *RefreshRate
)i
Parameters
This The EFI_UGA DRAW PROTOCOL instance. Type

EFI_UGA DRAW PROTOCOL is defined in Section 10.5.

HorizontalResolution The size of video screen in pixels in the X dimension.

VerticalResolution The size of video screen in pixels in the Y dimension.

ColorDepth Number of bits per pixel, currently defined to be 32.

RefreshRate The refresh rate of the monitor in Hertz.
Description

The GetMode () function returns information about the current mode. All UGA devices must
support an 800 x 600 x 32-bit per pixel x 60 Hz mode of operation. A UGA device may support an
arbitrary number of modes in addition to the required mode.

Status Codes Returned
EFI_SUCCESS Valid mode information was returned.
EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.

EFl_INVALID_PARAMETER HorizontalResolution, or
VerticalResolution, or RefreshRate, is NULL.

10-28 12/01/02 Version 1.10

intel

Protocols — Console Support

EFI_UGA_DRAW_PROTOCOL.SetMode()

Summary

Set the video device into the specified mode and clears the output display to black.

Prototype
typedef
EFI_STATUS

(EFIAPI *EFI_UGA DRAW PROTOCOL SET MODE) (
IN EFI UGA DRAW PROTOCOL *This,

IN UINT32
IN UINT32
IN UINT32
IN UINT32
) ;

Parameters

This

HorizontalResolution
VerticalResolution
ColorDepth

RefreshRate

Description

HorizontalResolution,
VerticalResolution,
ColorDepth,
RefreshRate

The EFI UGA DRAW PROTOCOL instance. Type
EFI_UGA DRAW PROTOCOL is defined in Section 10.5.

The size of video screen in pixels in the X dimension.
The size of video screen in pixels in the Y dimension.
Number of bits per pixel, currently defined to be 32.

The refresh rate of the monitor in Hertz.

This SetMode () function sets the output device to the video mode specified by
HorizontalResolution, VerticalResolution, and RefreshRate. If any of the
arguments (HorizontalResolution, VerticalResolution, or RefreshRate) are
not supported EFI_UNSUPPORTED is returned.

If a device error occurs while attempt to set the video mode, then EFI_DEVICE ERROR is
returned. On success the device is in the requested geometry and the hardware frame buffer
has been cleared to black (Red = 0, Green = 0, Blue = 0) and any enabled video display device

is updated.

Version 1.10

12/01/02

10-29

intel
Extensible Firmware Interface Specification ’

Status Codes Returned

EFI SUCCESS Graphics mode was changed.

EFI DEVICE ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED HorizontalResolution, VerticalResolution,
or RefreshRate is not supported.

10-30 12/01/02 Version 1.10

intel
’ Protocols — Console Support

EFI_UGA_DRAW_PROTOCOL.BIt()

Summary

Blt a rectangle of pixels on the graphics screen. Blt stands for BLock Transfer.

Prototype
typedef struct {
UINTS8 Blue;
UINTS Green;
UINTS Red;
UINTS Reserved;
} EFI_UGA PIXEL;

typedef struct {
EfiUgavideoFill,
EfiUgavideoToBltBuffer,
EfiUgaBltBufferToVideo,
EfiUgavVideoToVideo,
EfiUgaBltMax

} EFI_UGA BLT OPERATION;

typedef
EFI_STATUS
(EFIAPI *EFI_UGA DRAW PROTOCOL BLT) (

IN EFI_UGA DRAW PROTOCOL *This,

IN OUT EFI UGA PIXEL *BltBuffer, OPTIONAL
IN EFI UGA BLT OPERATION BltOperation,

IN UINTN SourceX,

IN UINTN Sourcey,

IN UINTN DestinationX,

IN UINTN Destinationy,

IN UINTN width,

IN UINTN Height,

IN UINTN Delta OPTIONAL

I

Version 1.10 12/01/02 10-31

intel
Extensible Firmware Interface Specification ’

Parameters

10-32

This

BltBuffer

BltOperation

SourceX

SourceY

DestinationX

DestinationY

width

Height

Delta

The EFI UGA DRAW PROTOCOL instance.

The data to transfer to the graphics screen. Size is at least
Width*Height*sizeof(EFI_UGA PIXEL).

The operation to perform when copying B1tBuffer on to the graphics
screen.

The X coordinate of the source for the B1tOperation. The origin of
the screen is 0, 0 and that is the upper left-hand corner of the screen.

The Y coordinate of the source for the B1tOperation. The origin of
the screen is 0, 0 and that is the upper left-hand corner of the screen.

The X coordinate of the destination for the B1 tOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the screen.

The Y coordinate of the destination for the B1 tOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the screen.

The width of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_UGA PIXEL element.

The height of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_UGA PIXEL element.

Not used for EfiUgaVideoFill or the EfiUgaVideoToVideo
operation. If a Delta of zero is used, the entire B1tBuffer is being
operated on. If a subrectangle of the B1 tBuffer is being used then
Delta represents the number of bytes in a row of the BItBuffer.

12/01/02 Version 1.10

intel
’ Protocols — Console Su

Description

The B1t () function is used to draw the B1tBuf fer rectangle onto the video screen.

pport

The B1tBuf fer represents a rectangle of Height by width pixels that will be drawn on the
graphics screen using the operation specified by B1tOperation. The Delta value can be used

to enable the B1tOperation to be performed on a sub-rectangle of the BI1 tBuffer.

Table 10-4 describes the B1tOperat ions that are supported on rectangles. Rectangles have
coordinates (left, upper) (right, bottom):

Table 10-4. BIt Operation Table

Blt Operation Operation

EfiUgaVideoFill Write data from the BItBuffer pixel (Sourcex,
SourceY) directly to every pixel of the video display
rectangle (DestinationX, Destinationy)
(DestinationX + Width, DestinationY + Height).
Only one pixel will be used from the B1tBuffer. Delta
is NOT used.

EfiUgaVideoToBltBuffer Read data from the video display rectangle (SourceX,
SourceY) (SourceX + Width, SourceY + Height) and

place it in the B1tBuffer rectangle (DestinationX,
DestinationY) (DestinationX + Width,
DestinationY + Height). If DestinationX or
DestinationY is notzero then Delta must be setto
the length in bytes of a row in the BI1tBuffer.

EfiUgaBltBufferToVideo Write data from the BItBuffer rectangle (Sourcex,
SourceY) (SourceX + Width, SourceY + Height)
directly to the video display rectangle (DestinationX,
DestinationY) (DestinationX + Width,
DestinationY + Height). If SourceX or SourceY is
not zero then Delta must be set to the length in bytes
of a row in the BItBuffer.

EfiUgaVideoToVideo Copy from the video display rectangle (Sourcex,
SourceY) (SourceX + Width, SourceY + Height) to

the video display rectangle (X, v) (X + Width, Y +
Height). The BltBuffer and Delta are notused in
this mode. There is no limitation on the overlapping of
the source and destination rectangles.

Status Codes Returned

EFI_SUCCESS BI1tBuffer was drawn to the graphics screen.
EFI_INVALID_PARAMETER BltOperation is not valid.
EFI_DEVICE_ERROR The device had an error and could not complete the request.

Version 1.10 12/01/02

10-33

intel
Extensible Firmware Interface Specification ’

10.6 Rules for PCI/AGP Devices

10-34

In an EFI system that contains PCI or AGP devices each PCI device/function will be abstracted by
a PCI I/O protocol on a handle with its associated device path.

If the PCI device/function contains a single frame buffer the EFI UGA DRAW PROTOCOL must
be placed on the same handle as the PCI I/O Protocol.

If the PCI device/function contains multiple frame buffers the UGA ROM must create child handles
of the PCI I/O protocol that inherit its device path and append a controller device path node. The
UGA ROM is responsible for creating the child handle and placing the device path protocol and
EFI_UGA DRAW PROTOCOL.

12/01/02 Version 1.10

intel
’ Protocols — Console Support

10.7 UGA 1/O Protocol

The interface structure for the UGA I/O Protocol is defined in this section. Each device abstracted
by a UGA ROM must produce a unique EFI_UGA IO PROTOCOL.

EFI_UGA_10_PROTOCOL

Summary

Provides a basic abstraction to send I/O requests to the graphics device and any of its children.

GUID

#define EFI UGA IO PROTOCOL GUID \
{ 0x6la4d49e, 0x6£68, 0x4flb, 0xb9,0x22,0xa8,0x6e,O0xed, 0xb,0x7,0xa2}

Protocol Interface Structure

typedef struct {

EFI_UGA IO PROTOCOL CREATE DEVICE CreateDevice;
EFI_UGA IO PROTOCOL DELETE DEVICE DeleteDevice;
PUGA_FW SERVICE DISPATCH DispatchService;

} EFI_UGA IO PROTOCOL;

Parameters
CreateDevice Create a UGA_DEVICE object for a child device of a given parent
UGA_DEVICE.
DeleteDevice Delete the uGA DEVICE returned from CreateDevice ().
DispatchService Dispatches 1/0 requests to the display device and its associate child
devices.
Description

The EFI_UGA IO PROTOCOL is the primary interface exported by a UGA ROM in the OS
present environment. The EFI_UGA IO PROTOCOL.DispatchService () allows
communication with the video frame buffer and all its associated child devices. Child devices of
the EFI_UGA IO PROTOCOL include output controllers such as a TV tuner, and display devices
such as a HDTV.

Version 1.10 12/01/02 10-35

intel
Extensible Firmware Interface Specification ’

The EFI_UGA IO PROTOCOL operates on UGA DEVICE objects. Child devices can be
enumerated by using DispatchService () to send a pIoRequest of type
UgaIoGetChildDevice. A UGA DEVICE object can be created via a call to
CreateDevice () with the data returned from UgaIoGetChildDevice.

A video device can support an arbitrary number of geometries, but it must support one of the
following modes to operate with the EFI_UGA IO PROTOCOL:

e 800 x 600 with 32-bit color with a 60 Hz refresh rate.

The advanced features of a UGA device are accessible via its DispatchService (). More
information on the advanced capabilities of an EFI 1.10 UGA ROM can be found at
www.microsoft.com/hwdev/uga.

10-36 12/01/02 Version 1.10

http://www.microsoft.com/hwdev/tech/display/uga/

intel

Protocols — Console Support

EFI_UGA_IO_PROTOCOL.CreateDevice()

Summary

Dynamically allocate storage for a child UGA_ DEVICE.

Prototype
typedef
EFI_STATUS

(EFIAPI *EFI_UGA IO CREATE DEVICE) (
IN EFI _UGA IO PROTOCOL *This,

IN UGA DEVICE *ParentDevice,

IN UGA DEVICE DATA *DeviceData,

IN VOID *RunTimeContext,

OUT UGA DEVICE **Device

)i

Parameters
This The EFI UGA IO PROTOCOL instance. Type
EFI_UGA IO PROTOCOL is defined in Section 10.7.

ParentDevice ParentDevice specifies a pointer to the parent device of Device.
DeviceData A pointer to UGA DEVICE DATA returned from a call to

DispatchService () witha UGA DEVICE of Parent and an

ToRequest of type UgaIoGetChildDevice.

RuntimeContext Context to associate with Device.

Device The Device returns a dynamically allocated child UGA DEVICE object
for ParentDevice. The caller is responsible for deleting Device.

Description

A UGA DEVICE object contains data fields that are defined by this specification and pointers to

implementation specific data structures. Since a UGA DEVICE contains implementation specific
data that must be dynamically allocated, the CreateDevice () member function is required to
create a UGA_ DEVICE object to enable the enumerate all the child UGA DEVICEC(S).

The device must not be started when its UGA_ DEVICE Device is allocated.

Status Codes Returned

EFI_SUCCESS

Device was returned

EFI_INVALID_PARAMETER

One of the arguments was not valid

EFI_DEVICE_ERROR

The device had an error and could not complete the request.

Version 1.10

12/01/02

10-37

-
Extensible Firmware Interface Specification e ’

EFI_UGA_IO_PROTOCOL.DeleteDevice()

Summary

Deletes a dynamically allocated child UGA DEVICE object that was allocated using
CreateDevice ().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI _UGA IO DELETE DEVICE) (
IN EFI UGA IO PROTOCOL *This,

IN UGA DEVICE *Device
)i
Parameters
This The EFI UGA IO PROTOCOL instance. Type

EFI_UGA IO PROTOCOL is defined in Section 10.7.

Device The Device points to a UGA DEVICE object that was dynamically
allocated via a CreateDevice () call.

Description
An object that was created via a CreateDevice () is destroyed.
Status Codes Returned

EFI_SUCCESS The Device was deleted.
EFI_INVALID_PARAMETER The Device was not allocated via CreateDevice ().

10-38 12/01/02 Version 1.10

intel
’ Protocols — Console Support

PUGA_FW_SERVICE_DISPATCH.DispatchService()

Summary

This function is the main UGA service dispatch routine for all UGA IO REQUESTS.

Prototype
typedef
UGA STATUS
(EFIAPI *PUGA FW SERVICE DISPATCH) (

IN PUGA DEVICE pDevice,
IN OUT PUGA IO REQUEST pIoRequest
)
Parameters
pDevice pDevice specifies a pointer to a device object associated with a device

enumerated by a pToRequest - >1oRequestCode of type
UgaIoGetChildDevice. The root device for the

EFI UGA IO PROTOCOL is represented by pDevice being set
to NULL.

pIoRequest pIoRequest points to a caller allocated buffer that contains data
defined by pToRequest - >1oRequestCode. See ‘“Related
Definitions” below for a definition of UGA IO REQUEST CODEs and
their associated data structures.

Related Definitions
typedef UINT32 UGA STATUS;

typedef enum UGA DEVICE TYPE {
UgaDtParentBus = 1,
UgaDtGraphicsController,
UgaDtOutputController,
UgaDtOutputPort,
UgaDtOther

} UGA_DEVICE_TYPE, *PUGA DEVICE_TYPE;

typedef UINT32 UGA DEVICE ID, *PUGA DEVICE ID;

typedef struct UGA DEVICE DATA {
UGA DEVICE TYPE deviceType;
UGA DEVICE ID deviceId;
UINT32 ui32DeviceContextSize;
UINT32 ui32SharedContextSize;
} UGA DEVICE DATA, *PUGA DEVICE DATA;

Version 1.10 12/01/02 10-39

intel
Extensible Firmware Interface Specification ’

typedef struct UGA DEVICE (

PVOID pvDeviceContext;
PVOID pvSharedContext;
PVOID pvRunTimeContext;
struct PUGA DEVICE pParentDevice;
PVOID pvBusIoServices;
PVOID pvStdIoServices;
UGA DEVICE DATA deviceData;

} UGA_DEVICE, *PUGA_ DEVICE;

A UGA DEVICE is the basic device abstraction for enumerating child devices behind an
EFI_UGA IO PROTOCOL. A UGA DEVICE object is allocated dynamically via a call to
CreateDevice (). A programmatic abstraction is required to allocate a UGA_DEVICE, since
some of the data structures pointed to by a UGA_ DEVICE are implementation specific.

typedef enum UGA IO REQUEST CODE {
UgaIoGetVersion = 1,
UgaIoGetChildDevice,
UgaIoStartDevice,
UgaIoStopDevice,
UgaIoFlushDevice,
UgaIoResetDevice,
UgaIoGetDeviceState,
UgaIoSetDeviceState,
UgaIloSetPowerState,
UgaIoGetMemoryConfiguration,
UgaIoSetVideoMode,
UgaIloCopyRectangle,
UgaIloGetEdidSegment,
UgaIoDeviceChannelOpen,
UgaIoDeviceChannelClose,
UgaIoDeviceChannelRead,
UgaIoDeviceChannelWrite,
UgaIoGetPersistentDataSize,
UgaIoGetPersistentData,
UgaIoSetPersistentData,
UgaIoGetDevicePropertySize,
UgaIoGetDeviceProperty,
UgaIoBtPrivateInterface

} UGA IO REQUEST CODE, *PUGA IO REQUEST CODE;

10-40 12/01/02 Version 1.10

intel
’ Protocols — Console Support

typedef struct UGA IO REQUEST ({
IN UGA IO REQUEST CODE ioRequestCode;

IN PVOID pvInBuffer;
IN UINT64 ui64InBufferSize;
OouT PVOID pvOutBuffer;
IN UINT64 ui640OutBufferSize;
OUT UINT64 ui64BytesReturned;

} UGA IO REQUEST, *PUGA IO REQUEST;

A more complete definition of the data structures in this section can be found at
www.microsoft.com/hwdev/uga

Description

This is the main UGA service dispatch routine for all UGA IO REQUESTSs. The
DispatchService () method exports all the support UGA IO REQUEST firmware

functionality of a device.

The EFI UGA DRAW PROTCOL exist to provide lightweight access methods in the pre-OS space
to draw on the video screen. All the functionality of EFI_UGA DRAW PROTCOL can be accessed

directly via an ToRequest.

Status Codes Returned

The status returned by this function is defined on a per ToRequest basis.

Version 1.10 12/01/02 10-41

http://www.microsoft.com/hwdev/tech/display/uga/

intel
Extensible Firmware Interface Specification ’

10.8 Implementation Rules for an EFI UGA Driver

An EFI driver designed to manage the UGA controller must follow the EFI 1.10 driver model and
thus produce an EFI DRIVER BINDING PROTOCOL and follow the rules on implementing the
Supported (), Start (), and Stop (). The Start () function must not initialize or start the
video hardware, and it should just register an EFI _UGA IO PROTOCOL and one or more

EFI UGA DRAW PROTOCOL(s). The video hardware must be initialized via
EFI_UGA_ IO PROTOCOL lI/O requests or via the first call to

EFI _UGA DRAW PROTOCOL.SetMode ().

An EFI_UGA DRAW PROTOCOL must be implemented for every video frame buffer that exists
on a video adapter. In most cases there will be a single EFI_UGA DRAW PROTOCOL placed on
the Controller handle passed into the EFI_DRIVER BINDING.Start () function. Asa UGA
ROM can contain more than one EFI Image, the EFI _UGA DRAW PROTOCOL can be produced
by a separate driver that consumes the EFI_UGA IO PROTOCOL.

An EFI_UGA_ IO PROTOCOL must be produced on the Controller handle passed into the
EFI DRIVER BINDING.Start () function. There is only one EFI _UGA IO PROTOCOL
produced for every device being managed by an UGA ROM.

For PCI based video device all hardware access will be done via EFI_UGA IO PROTOCOL. This
includes 10, MMIO, BAR based access, and DMA.

The EFI Boot Service and Runtime APIs are used to allocate memory and register protocol
interfaces.

Every UGA device must support an 800 x 600 x 32-bit color per pixel at 60 Hz by video mode.

The EFI_UGA IO PROTOCOL.UgaIoDispatchServce () function must support the

following UGA IO REQUESTS:
UgaIloCopyRectangle
UgaIoFlushDevice
UgaIoGetChildDevice
UgaIoGetDeviceProperty
UgaIoGetDevicePropertySize
UgaIoGetDeviceState
UgaIoGetMemoryConfiguration
UgaIoResetDevice
UgaIloSetDeviceState
UgaIoSetPowerState
UgaIloSetVideoMode
UgaIoStartDevice
UgaIoStopDevice

10-42 12/01/02 Version 1.10

intel
’ Protocols — Console Support

The following UGA IO REQUESTSs may not be required for specific hardware configurations:
UgaIoDeviceChannelClose
UgaIoDeviceChannelOpen
UgaIoDeviceChannelRead
UgaIoDeviceChannelWrite
UgaIoGetEdidSegment

For additional information on how implementations can be constructed please refer to the
specification found at www.microsoft.com/hwdev/uga

10.9 UGA Draw Protocol to UGA I/O Protocol Mapping

As the EFI _UGA DRAW PROTOCOL member functions, GetMode (), SetMode (), and B1t ()
exist as a lightweight abstraction of the more extensive functionality abstracted by
DispatchService (). This section describes the conceptual relationship between the protocol
member functions and I/O requests.

The GetMode () function can be implemented via remembering the values passed to the previous
call to SetMode () .

The SetMode () function can be implemented via an UgaIoSetVideoMode I/O request. The
actual geometry of screen can be read via an UgaIoGetMemoryConfiguration I/O request.

The B1t () function can be implemented via an UgaIoCopyRectangle I/O request.

10.9.1 UGA System Requirements

This section defines the requirements a system must meet to support an EFI 1.10 UGA driver. A
system could be defined as an EFI firmware implementation or a Virtual Machine (VM) that runs
under an OS.

Version 1.10 12/01/02 10-43

http://www.microsoft.com/hwdev/tech/display/uga/

intel
Extensible Firmware Interface Specification ’

10.9.2 System Abstraction Requirements

The system must support the loading of an EFI 1.10 image. The system must support the EBC
image type, and it may optionally support native images. When an EFI 1.10 driver is started it is
passed a pointer to the EFI 1.10 System Table, and an EFI Image Handle for the loaded image.
Thus the system must support the EFI system table and its associated runtime and boot services.

For PCI or AGP devices the system must produce a PCI_IO protocol on a handle for every UGA
device that can be supported.

The system will follow the following sequence of events to bind an EFI UGA driver to a
hardware device:

1. Initialize the EFI firmware or VM.
2. Create handles and PCI_IO protocols to abstract the supported devices.

Load the EFI 1.10 UGA drivers (drivers register Driver Binding Protocol but do not
touch hardware).

4. Bind the EFI 1.10 UGA driver to the hardware device. EFI firmware or VM uses
gBS->ConnectController () to bind driver handle to the PCI_IO device handle.

5. UGA protocols are now available for use.

10.9.3 Firmware to OS Hand-off

The system firmware must hand off to the OS the devices to which EFI 1.10 ROMs should be
bound. The EFI firmware must create entries in the Configuration Table of the EFI System Table.

The Configuration Table entry for EFI 1.10 UGA ROMs will contain the

EFI_UGA IO PROTOCOL GUID and a pointer to the EFI_DRIVER OS HANDOFF HEADER
(See “Related Definitions” below.) The EFI_DRIVER OS HANDOFF HEADER describes a list
of EFI_DRIVER_ OS HANDOFF structures that describe to the OS what EFI 1.10 UGA ROMs are
present in the system.

There is an EFI_DRIVER OS HANDOFF entry for each PCI device that the firmware discovered
that is capable of supporting UGA. There may also be EFI_DRIVER OS HANDOFF entries for
EFI 1.10 UGA drivers that were not associated with a device. It should be noted that the
PciRomImage for a device may not contain the PeImage that firmware used as an EFI 1.10
UGA driver for the device.

Related Definitions

10-44

typedef struct {

UINT32 Version;

UINT32 HeaderSize;
UINT32 SizeOfEntries;
UINT32 NumberOfEntries;

} EFI_DRIVER OS_HANDOFF HEADER;

12/01/02 Version 1.10

intel

typedef enum {

Protocols — Console Support

EfiUgaDriverFromPciRom,
EfiUgaDriverFromSystem,
EfiDriverHandof fMax

} EFI_DRIVER HANOFF ENUM;

typedef struct {

EFI DRIVER HANOFF ENUM Type;

EFI DEVICE PATH *DevicePath;
VOID *PciRomImage;
UINT64 PciRomSize;

} EFI_DRIVER OS_ HANDOFF;

Type

DevicePath

PciRomImage

PciRomSize

Version 1.10

The type of the EFI_DRIVER OS_ HANDOFF structure. Currently only
EfiUgaDriverHandof£ £ is defined and it represents the
EFI_DRIVER OS HANDOFF in the context of a UGA device.

Pointer to the EFI device path that represents the UGA PCI address.
Please note the device path does not contain the PCI bus as it may
change from boot to boot.

If Typeis EfiUgaDriverFromPciRom then PciRomImage
represents the contains of the PCI devices ROM bar. If Type is
EfiUgaDriverFromSystem then the PciRomImage was produced
by system for an onboard device. A PCI ROM can contain multiple EFI
images and every image in the ROM must be loaded.

The size of PciRomImage in bytes. The size will only include areas
defines in the PCI 2.2 Option ROM header and not the entire space
decoded by the ROM BAR. For example if the ROM BAR decoded to
16 MB, but the ROM image physically only contained 64 KB of
information this value would be 64 KB.

12/01/02 10-45

intel
Extensible Firmware Interface Specification ’

10.10 Simple Pointer Protocol

This section defines the Simple Pointer Protocol and a detailed description of the
EFI_SIMPLE POINTER PROTOCOL. The intent of this section is to specify a simple method

for accessing pointer devices. This would include devices such as mice and trackballs.

The EFI_SIMPLE POINTER PROTOCOL allows information about a pointer device to be
retrieved. This would include the status of buttons and the motion of the pointer device since the
last time it was accessed. This protocol is attached the device handle of a pointer device, and can
be used for input from the user in the preboot environment.

EFI_SIMPLE_POINTER_PROTOCOL

Summary

Provides services that allow information about a pointer device to be retrieved.

GUID

#define EFI SIMPLE POINTER PROTOCOL GUID \
{0x31878c87, 0xb75, 0x11d5, 0x9a, 0x4f, 0x0, 0x90, 0x27, 0x3f, Oxcl, 0x4d}

Protocol Interface Structure
typedef struct EFI SIMPLE POINTER PROTOCOL {

EFI SIMPLE POINTER RESET Reset;
EFI_SIMPLE POINTER GET STATE GetState;
EFI_EVENT WaitForInput;
EFI_SIMPLE INPUT MODE *Mode ;
} EFI_SIMPLE POINTER PROTOCOL;
Parameters
Reset Resets the pointer device. See the Reset () function
description.
GetState Retrieves the current state of the pointer device. See the
GetState () function description.
WaitForInput Event to use with WaitForEvent () to wait for input from the
pointer device.
Mode Pointer to EFI SIMPLE POINTER MODE data. The type

EFI_SIMPLE POINTER MODE is defined in “Related
Definitions” below.

10-46 12/01/02 Version 1.10

intel
’ Protocols — Console Support

Related Definitions

//***

// EFI_SIMPLE POINTER MODE
//***

typedef struct {

UINT64 ResolutionX;
UINT64 ResolutionY;
UINT64 ResolutionZzZ;
BOOLEAN LeftButton;

BOOLEAN RightButton;

} EFI_SIMPLE POINTER MODE;

The following data values in the EFI_SIMPLE POINTER MODE interface are read-only and are
changed by using the appropriate interface functions:

ResolutionX The resolution of the pointer device on the x-axis in counts/mm. If 0,
then the pointer device does not support an x-axis.

ResolutionY The resolution of the pointer device on the y-axis in counts/mm. If 0,
then the pointer device does not support a y-axis.

ResolutionZz The resolution of the pointer device on the z-axis in counts/mm. If 0,
then the pointer device does not support a z-axis.

LeftButton TRUE if a left button is present on the pointer device. Otherwise FALSE.

RightButton TRUE if a right button is present on the pointer device. Otherwise
FALSE.

Description

The EFI_SIMPLE POINTER PROTOCOL provides a set of services for a pointer device that
can use used as an input device from an EFI application. The services include the ability to reset
the pointer device, retrieve get the state of the pointer device, and retrieve the capabilities of the
pointer device.

Version 1.10 12/01/02 10-47

intel
Extensible Firmware Interface Specification ’

EFI_SIMPLE_POINTER.Reset()

Summary

Resets the pointer device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI SIMPLE POINTER RESET) (
IN EFI SIMPLE POINTER PROTOCOL *This,

IN BOOLEAN ExtendedVerification
)i
Parameters
This A pointer tothe EFI SIMPLE POINTER PROTOCOL

instance. Type EFI_SIMPLE POINTER PROTOCOL is
defined in Section 10.10.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
This Reset () function resets the pointer device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform

firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The device was reset.
EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.

10-48 12/01/02 Version 1.10

intel
’ Protocols — Console Support

EFI_SIMPLE_POINTER.GetState()

Summary

Retrieves the current state of a pointer device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_POINTER_GET_STATE)
IN EFI SIMPLE POINTER PROTOCOL *This,
IN OUT EFI_ SIMPLE POINTER STATE *State
) ;

Parameters
This A pointer to the EFI SIMPLE POINTER PROTOCOL
instance. Type EFI_SIMPLE POINTER PROTOCOL is
defined in Section 10.10.
State A pointer to the state information on the pointer device. Type

EFI SIMPLE POINTER STATE is defined in “Related
Definitions” below.

Related Definitions

//***

// EFI_SIMPLE POINTER STATE
//***

typedef struct {

INT32 RelativeMovementX;
INT32 RelativeMovementY;
INT32 RelativeMovementZ;
BOOLEAN LeftButton;
BOOLEAN RightButton;

} EFI_SIMPLE POINTER STATE;

RelativeMovementX The signed distance in counts that the pointer device has been
moved along the x-axis. The actual distance moved is
RelativeMovementX/ ResolutionX millimeters. If the
ResolutionX field of the EFI SIMPLE POINTER MODE
structure is 0, then this pointer device does not support an x-axis,
and this field must be ignored.

Version 1.10 12/01/02 10-49

intel
Extensible Firmware Interface Specification ’

RelativeMovementY

RelativeMovementZ

LeftButton

RightButton

Description

Status Codes Returned

10-50

The signed distance in counts that the pointer device has been
moved along the y-axis. The actual distance moved is
RelativeMovementY/ ResolutionY millimeters. If the
ResolutionY field of the EFI SIMPLE POINTER MODE
structure is 0, then this pointer device does not support a y-axis,
and this field must be ignored.

The signed distance in counts that the pointer device has been
moved along the z-axis. The actual distance moved is
RelativeMovementZ/ ResolutionZ millimeters. If the
ResolutionZ field of the EFI SIMPLE POINTER MODE
structure is 0, then this pointer device does not support a z-axis,
and this field must be ignored.

If TRUE, then the left button of the pointer device is being
pressed. If FALSE, then the left button of the pointer device is
not being pressed. If the LeftButton field of the
EFI_SIMPLE POINTER MODE structure is FALSE, then this
field is not valid, and must be ignored.

If TRUE, then the right button of the pointer device is being
pressed. If FALSE, then the right button of the pointer device is
not being pressed. If the RightButton field of the
EFI_SIMPLE POINTER MODE structure is FALSE, then this
field is not valid, and must be ignored.

The GetState () function retrieves the current state of a pointer device. This includes
information on the buttons associated with the pointer device and the distance that each of the axes
associated with the pointer device has been moved. If the state of the pointer device has not
changed since the last call to GetState (), then EFI_NOT READY is returned. If the state of the
pointer device has changed since the last call to GetState (), then the state information is placed
in State, and EFI_SUCCESS is returned. If a device error occurs while attempting to retrieve
the state information, then EFI_DEVICE ERROR is returned.

EFI_SUCCESS The state of the pointer device was returned in State.

EFI_NOT_READY The state of the pointer device has not changed since the last call to
GetState().

EFI_DEVICE_ERROR A device error occurred while attempting to retrieve the pointer device’s
current state.

12/01/02 Version 1.10

intel
’ Protocols — Console Support

10.11EFI Simple Pointer Device Paths

An EFI SIMPLE POINTER PROTOCOL must be installed on a handle for its services to be
available to EFI Drivers and EFI Applications. In addition to the

EFI_SIMPLE POINTER PROTOCOL, an EFI DEVICE PATH must also be installed on the
same handle. See Chapter 5 of the EFI Specification for detailed description of the
EFI_DEVICE PATH.

A device path describes the location of a hardware component in a system from the processor’s
point of view. This includes the list of busses that lie between the processor and the pointer
controller. The EFI Specification takes advantage of the ACPI Specification to name system
components. The following set of examples shows sample device paths for a PS/2T mouse, a serial
mouse, and a USB mouse.

Table 10-5 shows an example device path for a PS/2 mouse that is located behind a PCI to ISA
bridge that is located at PCI device number 0x07 and PCI function 0x00, and is directly attached to
a PCI root bridge. This device path consists of an ACPI Device Path Node for the PCI Root
Bridge, a PCI Device Path Node for the PCI to ISA bridge, an ACPI Device Path Node for the PS/2
mouse, and a Device Path End Structure. The _HID and _UID of the first ACPI Device Path Node
must match the ACPI table description of the PCI Root Bridge. The shorthand notation for this
device path is:

ACPI (PNPOAO3,0) /PCI(7|0)/ACPI (PNPOFO03,0)

Table 10-5. PS/2 Mouse Device Path

Byte Byte

Offset | Length | Data Description

0x00 0x01 0x02 Generic Device Path Header — Type ACPI Device Path

0x01 0x01 0x01 Sub type — ACPI Device Path

0x02 0x02 0x0C Length — 0x0C bytes

0x04 0x04 0x41D0, | _HID PNPOAO3 — 0x41D0 represents a compressed string ‘PNP’ and is in
0x0A03 | the low order bytes.

0x08 0x04 0x0000 | _UID

0x0C 0x01 0x01 Generic Device Path Header — Type Hardware Device Path

0x0D 0x01 0x01 Sub type — PCI

Ox0E 0x02 0x06 Length — 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

continued

Version 1.10 12/01/02 10-51

-
Extensible Firmware Interface Specification e ’

Table 10-5. PS/2 Mouse Device Path (continued)

Byte Byte

Offset | Length | Data Description

0x12 0x01 0x02 Generic Device Path Header — Type ACPI Device Path

0x13 0x01 0x01 Sub type — ACPI Device Path

0x14 0x02 0x0C Length — 0x0C bytes

0x16 0x04 0x41D0, | _HID PNPOF03 — 0x41DO0 represents a compressed string ‘PNP’ and is in
0xOF03 | the low order bytes.

Ox1A 0x04 0x0000 | _UID

Ox1E 0x01 OxFF Generic Device Path Header — Type End of Hardware Device Path

Ox1F 0x01 OxFF Sub type — End of Entire Device Path

0x20 0x02 0x04 Length — 0x04 bytes

Table 10-6 shows an example device path for a serial mouse that is located on COM 1 behind a PCI
to ISA bridge that is located at PCI device number 0x07 and PCI function 0x00. The PCI to ISA
bridge is directly attached to a PCI root bridge, and the communications parameters for COM 1 are
1200 baud, no parity, 8 data bits, and 1 stop bit. This device path consists of an ACPI Device Path
Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to ISA bridge, an ACPI Device
Path Node for COM 1, a UART Device Path Node for the communications parameters, an ACPI
Device Path Node for the serial mouse, and a Device Path End Structure. The _HID and _UID of
the first ACPI Device Path Node must match the ACPI table description of the PCI Root Bridge.
The shorthand notation for this device path is:

ACPI (PNPOAO3,0) /PCI(7|0)/ACPI (PNP0501,0)/UART (1200N81) /ACPI (PNPOF01,0)

Table 10-6. Serial Mouse Device Path

Byte Byte

Offset | Length | Data Description

0x00 0x01 0x02 Generic Device Path Header — Type ACPI Device Path

0x01 0x01 0x01 Sub type — ACPI Device Path

0x02 0x02 0x0C Length — Ox0C bytes

0x04 0x04 0x41D0, | _HID PNPOAO3 — 0x41D0 represents a compressed string ‘PNP’ and is in
0x0AO03 | the low order bytes.

0x08 0x04 0x0000 | _UID

continued

10-52 12/01/02 Version 1.10

intel
’ Protocols — Console Support

Table 10-6. Serial Mouse Device Path (continued)

Byte Byte

Offset | Length | Data Description

0x0C 0x01 0x01 Generic Device Path Header — Type Hardware Device Path
0x0D 0x01 0x01 Sub type — PCI

O0x0E 0x02 0x06 Length — 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x02 Generic Device Path Header — Type ACPI Device Path
0x13 0x01 0x01 Sub type — ACPI Device Path

0x14 0x02 0x0C Length — 0x0C bytes

0x16 0x04 0x41D0, | _HID PNP0501 — 0x41D0 represents a compressed string ‘PNP’ and is in

0x0501 | the low order bytes.
Ox1A 0x04 0x0000 | _UID

Ox1E 0x01 0x03 Generic Device Path Header — Messaging Device Path

Ox1F 0x01 0x0E Sub type — UART Device Path

0x20 0x02 0x13 Length — 0x13 bytes

0x22 0x04 0x00 Reserved

0x26 0x08 1200 Baud Rate

O0x2E 0x01 0x08 Data Bits

O0x2F 0x01 0x01 Parity

0x30 0x01 0x01 Stop Bits

0x31 0x01 0x02 Generic Device Path Header — Type ACPI Device Path

0x32 0x01 0x01 Sub type — ACPI Device Path

0x33 0x02 0x0C Length — 0x0C bytes

0x35 0x04 0x41D0, | _HID PNPOFO01 — 0x41DO0 represents a compressed string ‘PNP’ and is in
0xO0F01 | the low order bytes.

0x39 0x04 0x0000 | _UID

0x3D 0x01 OxFF Generic Device Path Header — Type End of Hardware Device Path

Ox3E 0x01 OxFF Sub type — End of Entire Device Path

Ox3F 0x02 0x04 Length — 0x04 bytes

Version 1.10 12/01/02 10-53

intel
Extensible Firmware Interface Specification ’

Table 10-7 shows an example device path for a USB mouse that is behind a PCI to USB host
controller that is located at PCI device number 0x07 and PCI function 0x02. The PCI to USB host
controller is directly attached to a PCI root bridge. This device path consists of an ACPI Device
Path Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to USB controller, a USB
Device Path Node, and a Device Path End Structure. The HID and _UID of the first ACPI Device
Path Node must match the ACPI table description of the PCI Root Bridge. The shorthand notation
for this device path is:
ACPI (PNPOAO3,0) /PCI(7|2)/USB(0,0)

10-54

Table 10-7. USB Mouse Device Path

Byte Byte

Offset | Length | Data Description

0x00 0x01 0x02 Generic Device Path Header — Type ACPI Device Path

0x01 0x01 0x01 Sub type — ACPI Device Path

0x02 0x02 0x0C Length — 0x0C bytes

0x04 0x04 0x41D0, | _HID PNPOAO3 — 0x41D0 represents a compressed string ‘PNP’ and is in
0x0A03 | the low order bytes.

0x08 0x04 0x0000 | _UID

0x0C 0x01 0x01 Generic Device Path Header — Type Hardware Device Path

0x0D 0x01 0x01 Sub type — PCI

O0x0E 0x02 0x06 Length — 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x03 Generic Device Path Header — Type Messaging Device Path

0x13 0x01 0x05 Sub type — USB

0x14 0x02 0x06 Length — 0x06 bytes

0x16 0x01 0x00 USB Port Number

0x17 0x01 0x00 USB Endpoint Number

0x18 0x01 OxFF Generic Device Path Header — Type End of Hardware Device Path

0x19 0x01 OxFF Sub type — End of Entire Device Path

Ox1A 0x02 0x04 Length — 0x04 bytes

12/01/02 Version 1.10

intel
’ Protocols — Console Support

10.12 Serial I/O Protocol

This section defines the Serial I/O protocol. This protocol is used to abstract byte stream devices.

SERIAL_|O_PROTOCOL

Summary

This protocol is used to communicate with any type of character-based 1/O device.

GUID

#define SERIAL IO PROTOCOL \
{ BB25CF6F-F1D4-11D2-9A0C-0090273FC1FD }

Revision Number
#define SERIAL_IO_INTERFACE_REVI SION 0x00010000

Protocol Interface Structure
typedef struct {

UINT32 Revision;
EFI_SERIAL RESET Reset;
EFI SERIAL SET ATTRIBUTES SetAttributes;
EFI_SERIAL SET CONTROL BITS SetControl;
EFI_SERIAL GET CONTROL BITS GetControl;
EFI_SERIAL WRITE Write;
EFI_SERIAL READ Read;
SERIAL IO MODE *Mode ;
} SERIAL IO INTERFACE;

Parameters

Revision The revision to which the SERIAL IO INTERFACE adheres. All
future revisions must be backwards compatible. If a future version is
not back wards compatible, it is not the same GUID.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device. These include
the baud rate, receive FIFO depth, transmit/receive time out, parity,
data bits, and stop bit attributes.

SetControl Sets the control bits on a serial device. These include Request to
Send and Data Terminal Ready.

GetControl Reads the status of the control bits on a serial device. These include
Clear to Send, Data Set Ready, Ring Indicator, and Carrier Detect.

Write Sends a buffer of characters to a serial device.

Read Receives a buffer of characters from a serial device.

Version 1.10 12/01/02 10-55

intel
Extensible Firmware Interface Specification ’

Mode Pointer to SERIAL IO MODE data. Type SERIAL IO MODE is
defined in “Related Definitions” below.

Related Definitions

//***

// SERIAL IO MODE
VAR R L

typedef struct {
UINT32 ControlMask;

// current Attributes

UINT32 Timeout;

UINT64 BaudRate;

UINT32 ReceiveFifoDepth;
UINT32 DataBits;

UINT32 Parity;

UINT32 StopBits;

} SERIAL IO MODE;

The data values in the SERTIAL IO MODE are read-only and are updated by the code that
produces the SERIAL IO INTERFACE protocol functions:

ControlMask A mask of the Control bits that the device supports. The device must
always support the Input Buffer Empty control bit.

Timeout If applicable, the number of microseconds to wait before timing out a
Read or Write operation.

BaudRate If applicable, the current baud rate setting of the device; otherwise,
baud rate has the value of zero to indicate that device runs at the
device’s designed speed.

ReceiveFifoDepth The number of characters the device will buffer on input.
DataBits The number of data bits in each character.

Parity If applicable, this is the EFI_PARITY TYPE thatis computed or
checked as each character is transmitted or received. If the device
does not support parity the value is the default parity value.

StopBits If applicable, the EFI_STOP_BITS_ TYPE number of stop bits per
character. If the device does not support stop bits the value is the
default stop bit value.

10-56 12/01/02 Version 1.10

intel
’ Protocols — Console Support

//***

// EFI_PARITY TYPE
[/ *hRkrk ke kkkdkkkkkkhhkkkdkkhkhkhhkhhkhhkkhkkkhkkkhkkdkhkkkhkkk

typedef enum {
DefaultParity,
NoParity,
EvenParity,
OddParity,
MarkParity,
SpaceParity

} EFI_PARITY TYPE;

//***

// EFI_STOP BITS TYPE
//***

typedef enum {

DefaultStopBits,

OneStopBit, // 1 stop bit
OneFiveStopBits, // 1.5 stop bits
TwoStopBits // 2 stop bits

} EFI_STOP BITS TYPE;

Description

The Serial I/O protocol is used to communicate with UART-style serial devices. These can be
standard UART serial ports in PC-AT systems, serial ports attached to a USB interface, or
potentially any character-based I/O device.

The Serial I/O protocol can control byte I/O style devices from a generic device to a device with
features such as a UART. As such many of the serial I/O features are optional to allow for the case
of devices that do not have UART controls. Each of these options is called out in the specific serial
I/0O functions.

The default attributes for all UART-style serial device interfaces are: 115,200 baud, a 1 byte
receive FIFO, a 1,000,000 microsecond timeout per character, no parity, 8 data bits, and 1 stop bit.
Flow control is the responsibility of the software that uses the protocol. Hardware flow control can
be implemented through the use of the GetControl () and SetControl () functions
(described below) to monitor and assert the flow control signals. The XON/XOFF flow control
algorithm can be implemented in software by inserting XON and XOFF characters into the serial
data stream as required.

Special care must be taken if a significant amount of data is going to be read from a serial device.
Since EFI drivers are polled mode drivers, characters received on a serial device might be missed.
It is the responsibility of the software that uses the protocol to check for new data often enough to
guarantee that no characters will be missed. The required polling frequency depends on the baud
rate of the connection and the depth of the receive FIFO.

Version 1.10 12/01/02 10-57

-
Extensible Firmware Interface Specification e ’

SERIAL_IO.Reset()

Summary

Resets the serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI SERIAL RESET) (

IN SERIAL IO INTERFACE *This
)i
Parameters
This A pointer to the SERIAL IO INTERFACE instance. Type

SERIAL IO INTERFACE is defined in Section 10.12.

Description
The Reset () function resets the hardware of a serial device.
Status Codes Returned

EFI_SUCCESS The serial device was reset.
EFI_DEVICE_ERROR The serial device could not be reset.

10-58 12/01/02 Version 1.10

intel

SERIAL_10.SetAttributes()

Summary

Protocols — Console Support

Sets the baud rate, receive FIFO depth, transmit/receive time out, parity, data bits, and stop bits on a

serial device.

EFI_STATUS

(EFIAPI *EFI SERIAL SET ATTRIBUTES) (

IN SERIAL IO INTERFACE *This,
IN UINT64 BaudRate,
IN UINT32 ReceiveFifoDepth,
IN UINT32 Timeout
IN EFI PARITY TYPE Parity,
IN UINTS DataBits,
IN EFI STOP BITS TYPE StopBits
) ;
Parameters

This A pointer to the SERIAL IO INTERFACE instance. Type
SERIAL IO INTERFACE is defined in Section 10.12.

BaudRate The requested baud rate. A BaudRate value of 0 will use the
device’s default interface speed.

ReceiveFifoDepth The requested depth of the FIFO on the receive side of the serial
interface. A ReceiveFifoDepth value of 0 will use the
device’s default FIFO depth.

Timeout The requested time out for a single character in microseconds.
This timeout applies to both the transmit and receive side of the
interface. A Timeout value of 0 will use the device’s default
time out value.

Parity The type of parity to use on this serial device. A Parity value
of DefaultParity will use the device’s default parity value.
Type EFI_PARITY TYPE is defined in “Related Definitions”
in Section 10.12.

DataBits The number of data bits to use on this serial device. A
DataBits value of 0 will use the device’s default data bit
setting.

StopBits The number of stop bits to use on this serial device. A

Version 1.10

StopBits value of DefaultStopBits will use the device’s
default number of stop bits. Type EFI_STOP_BITS TYPEis
defined in “Related Definitions” in Section 10.12.

12/01/02 10-59

In

-
Extensible Firmware Interface Specification e ’

Description

The SetAttributes () function sets the baud rate, receive-FIFO depth, transmit/receive time
out, parity, data bits, and stop bits on a serial device.

The controller for a serial device is programmed with the specified attributes. If the Parity,
DataBits, or StopBits values are not valid, then an error will be returned. If the specified
BaudRate is below the minimum baud rate supported by the serial device, an error will be
returned. The nearest baud rate supported by the serial device will be selected without exceeding
the BaudRate parameter. If the specified ReceiveFifoDepth is below the smallest FIFO size
supported by the serial device, an error will be returned. The nearest FIFO size supported by the
serial device will be selected without exceeding the ReceiveFifoDepth parameter.

Status Codes Returned

EFI_SUCCESS The new attributes were set on the serial device.
EFI_INVALID_PARAMETER | One or more of the attributes has an unsupported value.
EFI_DEVICE_ERROR The serial device is not functioning correctly.

10-60 12/01/02 Version 1.10

intel
’ Protocols — Console Support

SERIAL_10.SetControl()

Summary

Sets the control bits on a serial device.

Prototype
EFI STATUS
(EFIAPI *EFI_SERIAL SET CONTROL) (
IN SERIAL_IO_INTERFACE *This,
IN UINT32 Control
)i
Parameters
This A pointer to the SERIAL IO INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 10.12.
Control Sets the bits of Control that are settable. See ‘“Related

Definitions” below.

Related Definitions

//***

// CONTROL BITS
[/ *hkrhkkkkkhkhkkhhkhhhkhhhkhhhkhhhhhhkhhhkhhhhhhhrhhkhhkhx

#define EFI_SERIAL CLEAR TO SEND 0x0010
#define EFI_SERIAL DATA SET READY 0x0020
#define EFI_SERIAL RING INDICATE 0x0040
#define EFI_SERIAL CARRIER DETECT 0x0080
#define EFI_SERIAL REQUEST TO SEND 0x0002
#define EFI_SERIAL DATA TERMINAL READY 0x0001
#define EFI_SERIAL INPUT BUFFER EMPTY 0x0100
#define EFI_SERIAL OUTPUT BUFFER EMPTY 0x0200
#define EFI_SERIAL HARDWARE LOOPBACK ENABLE 0x1000
#define EFI_SERIAL SOFTWARE LOOPBACK ENABLE 0x2000

##define EFI_ SERIAL HARDWARE FLOW CONTROL ENABLE 0x4000

Version 1.10 12/01/02 10-61

Extensible Firmware Interface Specification

Description

intel

The SetControl () function is used to assert or deassert the control signals on a serial device.
The following signals are set according their bit settings:

e Request to Send

e Data Terminal Ready

Only the REQUEST_TO_SEND, DATA_TERMINAL_READY, HARDWARE_LOOPBACK_ENABLE,
SOFTWARE_LOOPBACK_ENABLE, and HARDWARE_FLOW_CONTROL_ENABLE bits can be set
with SetControl (). All the bits can be read with GetControl ().

Status Codes Returned

10-62

EFI_SUCCESS

The new control bits were set on the serial device.

EFI_UNSUPPORTED

The serial device does not support this operation.

EFI_DEVICE_ERROR

The serial device is not functioning correctly.

12/01/02

Version 1.10

intel

SERIAL_10.GetControl()

Summary

Protocols — Console Support

Retrieves the status of the control bits on a serial device.

Prototype
EFI STATUS

(EFIAPI *EFI_SERIAL GET CONTROL) (

IN SERIAL IO

OUT UINT32
)i

Parameters

This

Control

Related Definitions

//***

// CONTROL BITS

//***

INTERFACE *This,
*Control

A pointer to the SERIAL IO INTERFACE instance. Type

SERIAL IO INTERFACE is defined in Section 10.12.

A pointer to return the current control signals from the

serial device. See “Related Definitions” below.

#define EFI_SERIAL CLEAR TO_ SEND

#define EFI_SERIAL DATA SET READY

#define EFI_SERIAL RING INDICATE

#define EFI_SERIAL CARRIER DETECT

#define EFI_SERIAL REQUEST TO_ SEND

#define EFI_SERIAL DATA TERMINAL READY
#define EFI_SERIAL INPUT BUFFER EMPTY
#define EFI_SERIAL OUTPUT BUFFER EMPTY
#define EFI_SERIAL HARDWARE LOOPBACK ENABLE
#define EFI_SERIAL SOFTWARE LOOPBACK ENABLE
#define EFI_SERIAL HARDWARE FLOW CONTROL ENABLE

Description

The GetControl () function retrieves the status of the control bits on a serial device.

Status Codes Returned

0x0010
0x0020
0x0040
0x0080
0x0002
0x0001
0x0100
0x0200
0x1000
0x2000
0x4000

EFI_SUCCESS

The control bits were read from the serial device.

EFI_DEVICE_ERROR

The serial device is not functioning correctly.

Version 1.10

12/01/02

10-63

intel
Extensible Firmware Interface Specification ’

SERIAL_IO.Write()

Summary

Werites data to a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI SERIAL WRITE) (

IN SERIAL_IO_INTERFACE *This,
IN OUT UINTN *BufferSize,
IN VOID *Buffer
)i
Parameters
This A pointer to the SERIAL IO INTERFACE instance. Type

SERIAL IO INTERFACE is defined in Section 10.12.

BufferSize On input, the size of the Buffer. On output, the amount of
data actually written.

Buffer The buffer of data to write.

Description

The Write () function writes the specified number of bytes to a serial device. If a time out error

occurs while data is being sent to the serial port, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the serial
device is returned in Buf ferSize.

Status Codes Returned

EFI_SUCCESS The data was written.
EFI_DEVICE_ERROR The device reported an error.
EFI_TIMEOUT The data write was stopped due to a timeout.

10-64 12/01/02 Version 1.10

intel
’ Protocols — Console Support

SERIAL_lO.Read()

Summary

Reads data from a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI SERIAL READ) (

IN SERIAL IO INTERFACE *This,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
)i
Parameters
This A pointer to the SERIAL IO INTERFACE instance. Type

SERIAL IO INTERFACE is defined in Section 10.12.

BufferSize On input, the size of the Buffer. On output, the amount of
data returned in Buffer.

Buffer The buffer to return the data into.

Description

The Read () function reads a specified number of bytes from a serial device. If a time out error or
an overrun error is detected while data is being read from the serial device, then no more characters
will be read, and an error will be returned. In all cases the number of bytes actually read is returned
in BufferSize.

Status Codes Returned

EFI_SUCCESS The data was read.
EFI_DEVICE_ERROR The serial device reported an error.
EFI_TIMEOUT The operation was stopped due to a timeout or overrun.

Version 1.10 12/01/02 10-65

in
Extensible Firmware Interface Specification tel

10-66 12/01/02 Version 1.10

11
Protocols - Bootable Image Support

11.1 LOAD_FILE Protocol

This section defines the Load File protocol. This protocol is designed to allow code running in the
EFI boot services environment to find and load other modules of code.

LOAD_FILE Protocol

Summary

Is used to obtain files from arbitrary devices.

GUID

#define LOAD FILE PROTOCOL \
{56EC3091-954C-11d2-8E3F-00A0C969723B}

Protocol Interface Structure
typedef struct {
EFI_LOAD FILE LoadFile;
} EFI_LOAD FILE INTERFACE;

Parameters
LoadFile Causes the driver to load the requested file. See the LoadFile ()
function description.
Description

The EFI_LOAD FILE protocol is a simple protocol used to obtain files from arbitrary devices.

When the firmware is attempting to load a file, it first attempts to use the device’s Simple File
System protocol to read the file. If the file system protocol is found, the firmware implements the
policy of interpreting the File Path value of the file being loaded. If the device does not support the
file system protocol, the firmware then attempts to read the file via the EFI_LOAD FILE protocol
and the LoadFile () function. In this case the LoadFile () function implements the policy of
interpreting the File Path value.

Version 1.10 12/01/02 11-1

intel
Extensible Firmware Interface Specification ’

LOAD_FILE.LoadFile()

Summary

Causes the driver to load a specified file.

Prototype
EFI_STATUS

(EFIAPI *EFI LOAD FILE) (
IN EFI LOAD FILE INTERFACE *This,

IN EFI DEVICE PATH *FilePath,
IN BOOLEAN BootPolicy,
IN OUT UINTN *BufferSize,
IN VOID *Buffer OPTIONAL
)i
Parameters

This Indicates a pointer to the calling context. Type
EFI LOAD FILE INTERFACE is defined in Section 11.1.

FilePath The device specific path of the file to load. Type EFI DEVICE PATH
is defined in Chapter 8.

BootPolicy If TRUE, indicates that the request originates from the boot manager, and
that the boot manager is attempting to load FilePath as a boot
selection. If FALSE, then FilePath must match an exact file to be
loaded.

BufferSize On input the size of Buffer in bytes. On output with a return code of
EFI_SUCCESS, the amount of data transferred to Buf fer.

On output with a return code of EFI_BUFFER_TOO_ SMALL, the size
of Buf fer required to retrieve the requested file.

Buffer The memory buffer to transfer the file to. If Buf fer is NULL, then no
the size of the requested file is returned in BufferSize.

Description

The LoadFile () function interprets the device-specific FilePath parameter, returns the entire
file into Buf fer, and sets BufferSize to the amount of data returned. If Buffer is NULL,
then the size of the file is returned in BufferSize. If Bufferis not NULL, and BufferSize
is not large enough to hold the entire file, then EFI_BUFFER TOO SMALL is returned, and
BufferSize is updated to indicate the size of the buffer needed to obtain the file. In this case, no
data is returned in Buffer.

If BootPolicyis FALSE the FilePath must match an exact file to be loaded. If no such file
exists, EFI_NOT FOUND is returned. If Boot Policyis FALSE, and an attempt is being made
to perform a network boot through the PXE Base Code protocol, EFI_UNSUPPORTED is returned.

12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

If Boot Policy is TRUE the firmware’s boot manager is attempting to load an EFI image that is a
boot selection. In this case, FilePath contains the file path value in the boot selection option.
Normally the firmware would implement the policy on how to handle an inexact boot file path;
however, since in this case the firmware cannot interpret the file path, the LoadFile () function
is responsible for implementing the policy. For example, in the case of a network boot through the
PXE Base Code protocol, Fi1ePath merely points to the root of the device, and the firmware
interprets this as wanting to boot from the first valid loader. The following is list of events that
LoadFile () will implement for a PXE boot:

Perform DHCP.

Optionally prompt the user with a menu of boot selections.

Discover the boot server and the boot file.

Download the boot file into Buf fer and update Buf ferSize with the size of the boot file.

Status Codes Returned

EFI_SUCCESS The file was loaded.
EFI_UNSUPPORTED The device does not support the provided BootPolicy.
EFI_INVALID_PARAMETER | FilePath s not a valid device path, or BufferSize
is NULL.
EFI_NO_SUCH_MEDIA No medium was present to load the file.
EFI_DEVICE_ERROR The file was not loaded due to a device error.
EFI_NO_RESPONSE The remote system did not respond.
EFI_NOT_FOUND The file was not found.
EFI_ABORTED The file load process was manually cancelled.
Version 1.10 12/01/02 11-3

intel
Extensible Firmware Interface Specification ’

11.2 File System Format

The file system supported by the Extensible Firmware Interface is based on the FAT file system.
EFI defines a specific version of FAT that is explicitly documented and testable. Conformance to
the EFI specification and its associate reference documents is the only definition of FAT that needs
to be implemented to support EFI. To differentiate the EFI file system from pure FAT, a new
partition file system type has been defined.

EFI encompasses the use of FAT32 for a system partition, and FAT12 or FAT16 for removable
media. The FAT32 system partition is identified by an OS type value other than that used to
identify previous versions of FAT. This unique partition type distinguishes an EFI defined file
system from a normal FAT file system. The file system supported by EFI includes support for
long file names.

The definition of the EFI file system will be maintained by specification and will not evolve over
time to deal with errata or variant interpretations in OS file system drivers or file system utilities.
Future enhancements and compatibility enhancements to FAT will not be automatically included in
EFI file systems. The EFI file system is a target that is fixed by the EFI specification, and other
specifications explicitly referenced by the EFI specification.

For more information about the EFI file system and file image format, visit the web site from which
this document was obtained.

11.2.1 System Partition

A System Partition is a partition in the conventional sense of a partition on a legacy Intel
architecture system. For a hard disk, a partition is a contiguous grouping of sectors on the disk
where the starting sector and size are defined by the Master Boot Record (MBR), which resides on
the first sector of the hard disk. For a diskette (floppy) drive, a partition is defined to be the entire
media. A System Partition can reside on any media that is supported by EFI Boot Services.

A System Partition supports backward compatibility with legacy Intel architecture systems by
reserving the first block (sector) of the partition for compatibility code. On legacy Intel architecture
systems, the first block (sector) of a partition is loaded into memory and execution is transferred to
this code. EFI firmware does not execute the code in the MBR. The EFI firmware contains
knowledge about the partition structure of various devices, and can understand legacy MBR, EFI
partition record, and “El Torito.”

The System Partition contains directories, data files, and EFI Images. EFI Images can contain an
EFI OS Loader, an EFI Driver to extend platform firmware capability, or an EFI Application that
provides a transient service to the system. EFI Applications could include things such as a utility to
create partitions or extended diagnostics. A System Partition can also support data files, such as
error logs, that can be defined and used by various OS or system firmware software components.

11-4 12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

11.2.1.1 File System Format

The first block (sector) of a partition contains a data structure called the BIOS Parameter Block,
BPB, that defines the type and location of FAT file system on the drive. The BPB contains a data
structure that defines the size of the media, the size of reserved space, the number of FAT tables,
and the location and size of the root directory (not used in FAT32). The first block (sector) also
contains code that will be executed as part of the boot process on a legacy Intel architecture system.
This code in the first block (sector) usually contains code that can read a file from the root directory
into memory and transfer control to it. Since EFI firmware contains a file system driver, EFI
firmware can load any file from the file system with out needing to execute any code from

the media.

The EFI firmware must support the FAT32, FAT16, and FAT12 variants of the EFI file system.
What variant of EFI FAT to use is defined by the size of the media. The rules defining the
relationship between media size and FAT variants is defined in the specification for the EFI
file system.

11.2.1.2 File Names

FAT stores file names in two formats. The original FAT format limited file names to eight
characters with three extension characters. This type of file name is called an 8.3, pronounced eight
dot three, file name. FAT was extended to include support for long file names (LFN).

FAT 8.3 file names are always stored as uppercase ASCII characters. LFN can either be stored as
ASCII or Unicode and are stored case sensitive. The string that was used to open or create the file
is stored directly into LEN. FAT defines that all files in a directory must have a unique name, and
unique is defined as a case insensitive match. The following are examples of names that are
considered to be the same and cannot exist in a single directory:

“ThisIsAnExampleDirectory.Dir”
“thisisanexamppledirectory.dir”
THISISANEXAMPLEDIRECTORY.DIR
ThisIsAnExampleDirectory. DIR

11.2.1.3 Directory Structure

An EFI system partition that is present on a hard disk must contain an EFI defined directory in the
root directory. This directory is named EFI. All OS loaders and applications will be stored in
subdirectories below EFI. Applications that are loaded by other applications or drivers are not
required to be stored in any specific location in the EFI system partition. The choice of the
subdirectory name is up to the vendor, but all vendors must pick names that do not collide with any
other vendor’s subdirectory name. This applies to system manufacturers, operating system
vendors, BIOS vendors, and third party tool vendors, or any other vendor that wishes to install files
on an EFI system partition. There must also only be one executable EFI image for each supported
processor architecture in each vendor subdirectory. This guarantees that there is only one image
that can be loaded from a vendor subdirectory by the EFI Boot Manager. If more than one
executable EFI image is present, then the boot behavior for the system will not be deterministic.
There may also be an optional vendor subdirectory called BOOT.

Version 1.10 12/01/02 11-5

intel
Extensible Firmware Interface Specification ’

This directory contains EFI images that aide in recovery if the boot selections for the software
installed on the EFI system partition are ever lost. Any additional EFI executables must be in
subdirectories below the vendor subdirectory. The following is a sample directory structure for an
EFI system partition present on a hard disk.

\EFI
\<0S Vendor 1 Directory>
<0S Loader Image>
\<0S Vendor 2 Directory>
<0S Loader Image>

\<0S Vendor N Directory>
<0S Loader Image>
\<OEM Directory>
<OEM Application Image>
\<BIOS Vendor Directory>
<BIOS Vendor Application Image>
\<Third Party Tool Vendor Directory>
<Third Party Tool Vendor Application Image>
\BOOT
BOOT{machine type short name}.EFI

For removable media devices there must be only one EFI system partition, and that partition must
contain an EFI defined directory in the root directory. The directory will be named EFI. All OS
loaders and applications will be stored in a subdirectory below EFI called BOOT. There must only
be one executable EFI image for each supported processor architecture in the BOOT directory. For
removable media to be bootable under EFI, it must be built in accordance with the rules laid out in
Section 17.4.1.1. This guarantees that there is only one image that can be automatically loaded
from a removable media device by the EFI Boot Manager. Any additional EFI executables must be
in directories other than BOOT. The following is a sample directory structure for an EFI system
partition present on a removable media device.

\EFI
\BOOT
BOOT{machine type short name}.EFI

12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

11.2.2 Partition Discovery

EFI requires the firmware to be able to parse legacy master boot records, the new GUID Partition
Table (GPT), and EI Torito logical device volumes. The EFI firmware produces a logical

BLOCK IO device for each EFI Partition Entry, El Torito logical device volume, and if no EFI
Partition Table is present any partitions found in the partition tables. Logical block address zero of
the BLOCK_ IO device will correspond to the first logical block of the partition. See Figure 11-1.

BLOCK_I/O
DISK A
'd N\
Partition a_ Partition AL
r N7 - I
Partition , Partition ,
A A
L1 Pointers | Pointers
to partitions to partitions
Partition Table Partition Table
OM13159

Figure 11-1. Nesting of Legacy MBR Partition Records

The following is the order in which a block device must be scanned to determine if it contains
partitions. When a check for a valid partitioning scheme succeeds, the search terminates.

1. Check for GUID Partition Table Headers.
2. Follow ISO-9660 specification to search for ISO-9660 volume structures on the magic LBA.
— Check for an “El Torito” volume extension and follow the “El Torito” CD-ROM
specification.
3. If none of the above, check LBA 0 for a legacy MBR partition table.
4. No partition found on device.

EFI supports the nesting of legacy MBR partitions, by allowing any legacy MBR partition to
contain more legacy MBR partitions. This is accomplished by supporting the same partition
discovery algorithm on every logical block device. It should be noted that the GUID Partition
Table does not allow nesting of GUID Partition Table Headers. Nesting is not needed since a
GUID Partition Table Header can support an arbitrary number of partitions (the addressability
limits of a 64-bit LBA is the limiting factor).

Version 1.10 12/01/02 11-7

intel
Extensible Firmware Interface Specification ’

11.2.2.1 EFI Partition Header

EFI defines a new partitioning scheme that must be supported by EFI firmware. The following list
outlines the advantages of using the GUID Partition Table over the legacy MBR partition table:

e Logical Block Addressing is 64 bits.

e Supports many partitions.

e Uses a primary and backup table for redundancy.

e Uses version number and size fields for future expansion.

e Uses CRC32 fields for improved data integrity.

e Defines a GUID for uniquely identifying each partition.

e Uses a GUID and attributes to define partition content type.

e FEach partition contains a 36 Unicode character human readable name.

The EFI partitioning scheme is depicted in Figure 11-2. The GUID Partition Table Header (see
Table 11-1) starts with a signature and a revision number that specifies which version of the EFI
specification defines the data bytes in the partition header. The GUID Partition Table Header
contains a header size field that is used in calculating the CRC32 that confirms the integrity of the
GUID Partition Table Header. While the GUID Partition Table Header’s size may increase in the
future it cannot span more than one block on the device.

Two GUID Partition Table Header structures are stored on the device: the primary and the backup.
The primary GUID Partition Table Header must be located in block 1 of the logical device, and the
backup GUID Partition Table Header must be located in the last block of the logical device. Within
the GUID Partition Table Header there are the MyLBA and A1 ternateLBA fields. The MyLBA
field contains the logical block address of the GUID Partition Table Header itself, and the
AlternateLBA field contains the logical block address of the other GUID Partition Table
Header. For example, the primary GUID Partition Table Header’s MyLBA value would be 1 and its
AlternateLBA would be the value for the last block of the logical device. The backup GUID
Partition Table Header’s fields would be reversed.

The GUID Partition Table Header defines the range of logical block addresses that are usable by
Partition Entries. This range is defined to be inclusive of FirstUsableLBA through
LastUsableLBA on the logical device. All data stored on the volume must be stored between
the FirstUsableLBA through LastUsableLBA, and only the data structures defined by EFI
to manage partitions may reside outside of the usable space. The value of DiskGUIDis a GUID
that uniquely identifies the entire GUID Partition Table Header and all its associated storage. This
value can be used to uniquely identify the disk. The start of the GUID Partition Entry array is
located at the logical block address PartitionEntryLBA. The size of a GUID Partition Entry
element is defined in the GUID Partition Table Header. There is a 32-bit CRC of the GUID
Partition Entry array that is stored in the GUID Partition Table Header in
PartitionEntryArrayCRC. The size of the GUID Partition Entry array is the
PartitionEntrySize multiplied by NumberOfPartitionEntries. When a GUID
Partition Entry is updated, the PartitionEntryArrayCRC must be updated. When the
PartitionEntryArrayCRCis updated, the GUID Partition Table Header CRC must also be
updated, since the PartitionEntryArrayCRCis stored in the GUID Partition Table Header.

12/01/02 Version 1.10

e ’ Protocols — Bootable Image Support

First useable block Start partition
End partition
LBAO LBA1l LBAN
v
ol | [5
2|55 o5
=2z Partition 1 E:
W3 I3
|05 Os5
) Y
Of|1]-]|n
4
Start partition End partition [
ast useable block
—_— e —
Primary Partition Backup Partition
Table Table
OM13160

Figure 11-2. GUID Partition Table (GPT) Scheme

The primary GUID Partition Entry array must be located after the primary GUID Partition Table
Header and end before the FirstUsableLBA. The backup GUID Partition Entry array must be
located after the LastUsableLBA and end before the backup GUID Partition Table Header.
Therefore the primary and backup GUID Partition Entry arrays are stored in separate locations on
the disk. GUID Partition Entries define a partition that is contained in a range that is within the
usable space declared by the GUID Partition Table Header. Zero or more GUID Partition Entries
may be in use in the GUID Partition Entry array. Each defined partition must not overlap with any
other defined partition. If all the fields of a GUID Partition Entry are zero, the entry is not in use.
A minimum of 16,384 bytes of space must be reserved for the GUID Partition Entry array.
Typically the first useable block will start at an LBA greater than or equal to 34, assuming the LBA
block size is 512 bytes.

Table 11-1. GUID Partition Table Header

Byte Byte

Mnemonic Offset | Length Description

Signature 0 8 Identifies EFl-compatible partition table header.
This value must contain the string “EFI PART,”
0x5452415020494645.

Revision 8 4 The specification revision number that this header
complies to. For version 1.0 of the specification
the correct value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GUID Partition Table Header.

HeaderCRC32 16 4 CRC32 checksum for the GUID Partition Table
Header structure. The range defined by
HeaderSizeis “check-summed.”

Reserved 20 4 Must be zero.

continued

Version 1.10 12/01/02 11-9

intel
Extensible Firmware Interface Specification ’

11-10

Table 11-1. GUID Partition Table Header (continued)

Byte Byte

Mnemonic Offset | Length Description

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GUID Partition Table
Header.

FirstUsableLBA 40 8 The first usable logical block that may be
contained in a GUID Partition Entry.

LastUsableLBA 48 8 The last usable logical block that may be
contained in a GUID Partition Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the
disk.

PartitionEntryLBA 72 8 The starting LBA of the GUID Partition Entry array.

NumberOfPartitionEntries 80 4 The number of Partition Entries in the GUID
Partition Entry array.

SizeOfPartitionEntry 84 4 The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry array.
Must be a multiple of 8.

PartitionEntryArrayCRC32 88 4 The CRC32 of the GUID Partition Entry array.
Starts at Partition Entry LBA and is
NumberOfPartitionEntries *
SizeOfPartitionEntry in byte length.

Reserved 92 BlockSize | The rest of the block is reserved by EFl and must

-92 be zero.

The following test must be performed to determine if a GUID Partition Table is valid:

e Check the GUID Partition Table Signature

e Check the GUID Partition Table CRC

e Check that the MyLBA entry points to the LBA that contains the GUID Partition Table
e Check the CRC of the GUID Partition Entry Array

If the GUID Partition Table is the primary table, stored at LBA 1:

e Check the AlternateLBA to see if it is a valid GUID Partition Table

If the primary GUID Partition Table is corrupt:

e Check the last LBA of the device to see if it has a valid GUID Partition Table.

e If valid backup GUID Partition Table found, restore primary GUID Partition Table.

Any software that updates the primary GUID Partition Table Header must also update the backup
GUID Partition Table Header. The order of the update of the GUID Partition Table Header and its
associated GUID Partition Entry array is not important, since all the CRCs are stored in the GUID
Partition Table Header. However, the primary GUID Partition Table Header and GUID Partition
Entry array must always be updated before the backup.

12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

If the primary GUID Partition Table is invalid the backup GUID Partition Table is located on the
last logical block on the disk. If the backup GUID Partition Table is valid it must be used to restore
the primary GUID Partition Table. If the primary GUID Partition Table is valid and the backup
GUID Partition Table is invalid software must restore the backup GUID Partition Table. If both the
primary and backup GUID Partition Table is corrupted this block device is defined as not having a
valid GUID Partition Header.

The primary and backup GUID Partition Tables must be valid before an attempt is made to grow
the size of a physical volume. This is due to the GUID Partition Table recovery scheme depending
on locating the backup GUID Partition Table at the end of the physical device. A volume may
grow in size when disks are added to a RAID device. As soon as the volume size is increased the
backup GUID Partition Table must be moved to the end of the volume and the primary and backup
GUID Partition Table Headers must be updated to reflect the new volume size.

Table 11-2. GUID Partition Entry

Byte Byte

Mnemonic Offset Length | Description

Partition Type Guid 0 16 Unique ID that defines the purpose and type of this
Partition. A value of zero defines that this partition
record is not being used.

Unique Partition Guid 16 16 GUID that is unique for every partition record. Every
partition ever created will have a unique GUID. This
GUID must be assigned when the GUID Partition Entry
is created. The GUID Partition Entry is created when
ever the NumberOfPartitionEntriesinthe
GUID Partition Table Header is increased to include a
larger range of addresses.

StartingLBA 32 8 Starting LBA of the partition defined by this record.

EndingLBA 40 8 Ending LBA of the partition defined by this record.

Attributes 48 8 Attribute bits, all bits reserved by EFI.

Partition Name 56 72 Unicode string.

The SizeOfPartitionEntry variable in the GUID Partition Table Header defines the size of
a GUID Partition Entry. The GUID Partition Entry starts in the first byte of the GUID Partition
Entry and any unused space at the end of the defined partition entry is reserved space and must be
set to zero.

Each partition record contains a Unique Partition GUID variable that uniquely identifies every
partition that will ever be created. Any time a new partition record is created a new GUID must be
generated for that partition, and every partition is guaranteed to have a unique GUID. The partition
record also contains 64-bit logical block addresses for the starting and ending block of the partition.
The partition is defined as all the logical blocks inclusive of the starting and ending usable LBA
defined in the GUID Partition Table Header. The partition record contains a partition type GUID
that identifies the contents of the partition. This GUID is similar to the OS type field in the legacy
MBR. Each file system must publish its unique GUID. The partition record also contains
Attributes that can be used by utilities to make broad inferences about the usage of a partition. A

Version 1.10 12/01/02 11-11

intel
Extensible Firmware Interface Specification ’

36-character Unicode string is also included, so that a human readable string can be used to
represent what information is stored on the partition. This allows third party utilities to give human
readable names to partitions.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition
using InstallProtocolInterface (). This will allow drivers and applications, including
OS loaders, to easily search for handles that represent EFI System Partitions or vendor specific
partition types.

A utility that makes a binary copy of a disk that is formatted with GPT must generate a new
DiskGUID in the Partition Table Headers. In addition, new UniquePartitionGuids must be
generated for each GUID Partition Entry.

Table 11-3. Defined GUID Partition Entry - Partition Type GUIDs

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000
EFI System Partition C12A7328-F81F-11d2-BA4B-00A0C93EC93B
Partition containing a legacy MBR 024DEE41-33E7-11d3-9D69-0008C781F39F

OS vendors need to generate their own GUIDs to identify their partition types.

Table 11-4. Defined GUID Partition Entry - Attributes

Bits Description

Bit 0 Required for the platform to function. The system cannot function normally if this partition is
removed. This partition should be considered as part of the hardware of the system, and if it is
removed the system may not boot. It may contain diagnostics, recovery tools, or other code or
data that is critical to the functioning of a system independent of any OS.

Bits1-47 Undefined and must be zero. Reserved for expansion by future versions of the EFI
specification.

Bits 48-63 Reserved for GUID specific use. The use of these bits will vary depending on the
PartitionTypeGuid. Only the owner of the PartitionTypeGuidis allowed to
modify these bits. They must be preserved if Bits 0—47 are modified.

11.2.2.2 1SO-9660 and El Torito

11-12

IS0-9660 is the industry standard low level format used on CD-ROM and DVD-ROM. CD-ROM
format is completely described by the “El Torito” Bootable CD-ROM Format Specification
Version 1.0. To boot from a CD-ROM or DVD-ROM in the boot services environment, an EFI
System partition is stored in a “no emulation” mode as defined by the “El Torito” specification. A
Platform ID of OxEF hex indicates an EFI System Partition. The Platform ID is in either the
Section Header Entry or the Validation Entry of the Booting Catalog as defined by the “El Torito”
specification. EFI differs from “El Torito” “no emulation” mode in that it does not load the “no
emulation” image into memory and jump to it. EFI interprets the “no emulation” image as an EFI
system partition. EFI interprets the Sector Count in the Initial/Default Entry or the Section Header
Entry to be the size of the EFI system partition. If the value of Sector Count is set to O or 1, EFI
will assume the system partition consumes the space from the beginning of the “no emulation”
image to the end of the CD-ROM.

12/01/02 Version 1.10

e ’ Protocols — Bootable Image Support

DVD-ROM images formatted as required by the UDF 2.00 specification (OSTA Universal Disk
Format Specification, Revision 2.00) can be booted by EFI. EFI supports booting from an
1SO-9660 file system that conforms to the “El Torito” Bootable CD-ROM Format Specification on
a DVD-ROM. A DVD-ROM that contains an ISO-9660 file system is defined as a “UDF Bridge”
disk. Booting from CD-ROM and DVD-ROM is accomplished using the same methods.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM it is possible to boot Intel architecture personal computers using an EFI CD-ROM or
DVD-ROM. The inclusion of boot code for Intel architecture personal computers is optional and
not required by EFI.

11.2.2.3 Legacy Master Boot Record

The legacy master boot record is the first block (sector) on the disk media. The boot code on the
MBR is not executed by EFI firmware. The MBR may optionally contain a signature located as
defined in Table 11-5. The MBR signature must be maintained by operating systems, and is never
maintained by EFI firmware. The unique signature in the MBR is only 4 bytes in length, so it is
not a GUID. EFI does not specify the algorithm that is used to generate the unique signature.

The uniqueness of the signature is defined as all disks in a given system having a unique value

in this field.

Table 11-5. Legacy Master Boot Record

Byte Byte

Mnemonic Offset Length | Description

BootCode 0 440 Code used on legacy Intel architecture system to select
a partition record and load the first block (sector) of the
partition pointed to by the partition record. This code is
not executed on EFI systems.

UniqueMBRSignature 440 4 Unique Disk Signature, this is an optional feature and
not on all hard drives. This value is always written by
the OS and is never written by EFI firmware.

Unknown 444 2 Unknown

PartitionRecord 446 16*4 Array of four MBR partition records.

Signature 510 2 Must be Oxaa55.

The MBR contains four partition records that define the beginning and ending LBA addresses that a
partition consumes on a hard disk. The partition record contains a legacy Cylinder Head Sector
(CHS) address that is not used in EFI. EFI utilizes the starting LBA entry to define the starting
LBA of the partition on the disk. The size of the partition is defined by the size in LBA field.

The boot indicator field is not used by EFI firmware. The operating system indicator value of OxEF
defines a partition that contains an EFI file system. The other values of the system indicator are not
defined by this specification. If an MBR partition has an operating system indicator value of OxEF,
then the firmware must add the EFI System Partition GUID to the handle for the MBR partition
using InstallProtocolInterface (). This will allow drivers and applications, including
OS loaders, to easily search for handles that represent EFI System Partitions.

Version 1.10 12/01/02 11-13

Extensible Firmware Interface Specification

intel

Table 11-6. Legacy Master Boot Record Partition Record

Byte Byte
Mnemonic Offset Length | Description
Boot Indicator 0 1 Not used by EFI firmware. Set to 0x80 to indicate that this is
the bootable legacy partition.
Start Head 1 1 Start of partition in CHS address, not used by EFI firmware.
Start Sector 2 1 Start of partition in CHS address, not used by EFI firmware.
Start Track 3 1 Start of partition in CHS address, not used by EFI firmware.
OS Type 4 1 OS type. A value of OxEF defines an EFI system partition.
Other values are reserved for legacy operating systems, and
allocated independently of the EFI specification.
End head 5 1 End of partition in CHS address, not used by EFI firmware.
End Sector 6 1 End of partition in CHS address, not used by EFI firmware.
End Track 7 1 End of partition in CHS address, not used by EFI firmware.
Starting LBA 8 4 Starting LBA address of the partition on the disk. Used by
EFI firmware to define the start of the partition.
Size In LBA 12 4 Size of partition in LBA. Used by EFI firmware to determine

the size of the partition.

EFI defines a valid legacy MBR as follows. The signature at the end of the MBR must be
OxaaS55. Each MBR partition record must be checked to make sure that the partition that it
defines physically resides on the disk. Each partition record must be checked to make sure it does
not overlap with other partition records. A partition record that contains an OSIndicator
value of zero or a SizeInLBA value of zero may be ignored. If any of these checks fail, the

MBR is not considered valid.

11.2.2.4 Legacy Master Boot Record and GPT Partitions

The GPT partition structure does not support nesting of partitions. However it is legal to have a
legacy Master Boot Record nested inside a GPT partition.

11-14

On all GUID Partition Table disks a Protective MBR (PMBR) in the first LBA of the disk precedes
the GUID Partition Table Header to maintain compatibility with existing tools that do not
understand GPT partition structures. The Protective MBR has the same format as a legacy MBR,
contains one partition entry of OS type OxEE and reserves the entire space used on the disk by the
GPT partitions, including all headers. The Protective MBR that precedes a GUID Partition Table
Header is shown in Table 11-7. If the GPT partition is larger than a partition that can be
represented by a legacy MBR, values of all Fs must be used to signify that all space that can be
possibly reserved by the MBR is being reserved.

12/01/02

Version 1.10

intel

Protocols — Bootable Image Support

Table 11-7. PMBR Entry to Precede a GUID Partition Table Header

Byte Byte
Mnemonic Offset Length | Description
Boot Indicator 0 1 Must be set to zero to indicate nonbootable partition.
Start Head 1 1 Set to match the Starting LBA of the EFI Partition
Start Sector 2 1 structure. Must be set to OxFFFFFF if it is not possible
Start Track 3 1 to represent the starting LBA.
OS Type 4 1 Must be OxEE.
End head 5 1 Set to match the Ending LBA of the EFI Partition
End Sector 6 1 structure. Must be set to OXFFFFFF if it is not possible
End Track 7 1 to represent the starting LBA.
Starting LBA 8 4 Must be 1 by definition.
Size In LBA 12 4 Length of EFI Partition Head, OXFFFFFFFF if this value
overflows.

11.2.3 Media Formats

This section describes how booting from different types of removable media is handled. In general
the rules are consistent regardless of a media’s physical type and whether it is removable or not.

11.2.3.1 Removable Media

Removable media may contain a standard FAT12, FAT16, or FAT32 file system. Legacy 1.44 MB
floppy devices typically support a FAT12 file system.

Booting from a removable media device can be accomplished the same way as any other boot. The
boot file path provided to the boot manager can consist of an EFI application image to load, or can
merely be the path to a removable media device. In the first case, the path clearly indicates the
image that is to be loaded. In the later case, the boot manager implements the policy to load the
default application image from the device.

For removable media to be bootable under EFI, it must be built in accordance with the rules laid
out in Section 3.4.1.1.

11.2.3.2 Diskette

Version 1.10

EFI bootable diskettes follow the standard formatting conventions used on Intel architecture
personal computers. The diskette contains only a single partition that complies to the EFI file
system type. For diskettes to be bootable under EFI, it must be built in accordance with the rules
laid out in Section 3.4.1.1.

Since the EFI file system definition does not use the code in the first block of the diskette, it is
possible to boot Intel architecture personal computers using a diskette that is also formatted as an
EFI bootable removable media device. The inclusion of boot code for Intel architecture personal
computers is optional and not required by EFI.

Diskettes include the legacy 3.5-inch diskette drives as well as the newer larger capacity removable
media drives such as an lomegat ZipT, Fujitsu MO, or MKE LS-120/SuperDiskT.

12/01/02 11-15

intel
Extensible Firmware Interface Specification ’

11.2.3.3 Hard Drive

Hard drives may contain multiple partitions as defined in Section 11.2.2 on partition discovery.
Any partition on the hard drive may contain a file system that the EFI firmware recognizes.
Images that are to be booted must be stored under the EFI subdirectory as defined in Sections
11.2.1 and 11.2.2.

EFI code does not assume a fixed block size.

Since EFI firmware does not execute the MBR code and does not depend on the bootable flag field
in the partition entry the hard disk can still boot and function normally on an Intel architecture-
based personal computer.

11.2.3.4 CD-ROM and DVD-ROM

A CD-ROM or DVD-ROM may contain multiple partitions as defined Sections 11.2.1 and 11.2.2
and in the “El Torito” specification.

EFI code does not assume a fixed block size.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM, it is possible to boot Intel architecture personal computers using an EFI CD-ROM or
DVD-ROM. The inclusion of boot code for Intel architecture personal computers is optional and
not required by EFI.

11.2.3.5 Network

To boot from a network device, the Boot Manager uses the Load File Protocol to perform a
LoadFile () on the network device. This uses the PXE Base Code Protocol to perform DHCP
and Discovery. This may result in a list of possible boot servers along with the boot files available
on each server. The Load File Protocol for a network boot may then optionally produce a menu
of these selections for the user to choose from. If this menu is presented, it will always have a
timeout, so the Load File Protocol can automatically boot the default boot selection. If there is
only one possible boot file, then the Load File Protocol can automatically attempt to load the

one boot file.

The Load File Protocol will download the boot file using the MTFTP service in the PXE Base Code
Protocol. The downloaded image must be an EFI image that the platform supports.

11-16 12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

11.3 File System Protocol

This section defines the File System protocol. This protocol allows code running in the EFI boot
services environment to obtain file based access to a device. The Simple File System protocol is
used to open a device volume and return an EFI_FILE that provides interfaces to access files on a

device volume.

Simple File System Protocol

Summary

Provides a minimal interface for file-type access to a device.

GUID

#define SIMPLE FILE SYSTEM PROTOCOL \
{ 0964e5b22-6459-11d2-8e39-00a0c969723b }

Revision Number
#define EFI_FILE IO INTERFACE REVISION 0x00010000

Protocol Interface Structure

typedef struct EFI FILE IO INTERFACE {
UINT64 Revision;
EFI VOLUME OPEN OpenVolume;
} EFI_FILE IO INTERFACE;

Parameters
Revision The version of the EFI_FILE IO INTERFACE. The version
specified by this specification is 0x00010000. All future revisions must
be backwards compatible. If a future version is not backwards
compatible, it is not the same GUID.
OpenVolume Opens the volume for file I/O access. See the OpenVolume () function

description.

Version 1.10 12/01/02 11-17

intel
Extensible Firmware Interface Specification ’

Description

The Simple File System protocol provides a minimal interface for file-type access to a device. This
protocol is only supported on some devices.

Devices that support the Simple File System protocol return an EFI_FILE IO INTERFACE.
The only function of this interface is to open a handle to the root directory of the file system on the
volume. Once opened, all accesses to the volume are performed through the volume’s file handles,
using the EFI FILE protocol. The volume is closed by closing all the open file handles.

The firmware automatically creates handles for any block device that supports the following file
system formats:

e FATI2
e FATI6
e FAT32

11-18 12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

EFI_FILE_IO_INTERFACE.OpenVolume()

Summary

Opens the root directory on a volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI VOLUME OPEN) (

IN EFI FILE IO INTERFACE *This,
OUT EFI FILE **Root
)
Parameters
This A pointer to the volume to open the root directory of. See the type

EFI FILE IO INTERFACE description.

Root A pointer to the location to return the opened file handle for the root
directory. See the type EFI FILE protocol description.

Description

The OpenVolume () function opens a volume, and returns a file handle to the volume’s root
directory. This handle is used to perform all other file I/O operations. The volume remains open
until all the file handles to it are closed.

If the medium is changed while there are open file handles to the volume, all file handles to the
volume will return EFI_MEDIA CHANGED. To access the files on the new medium, the volume
must be reopened with OpenvVolume (). If the new medium is a different file system than the one
supplied in the EFI_HANDLE’s DevicePath for the Simple File System protocol,
OpenVolume () will return EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The file volume was opened.

EFI_UNSUPPORTED The volume does not support the requested file system type.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES The file volume was not opened.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported. Any existing file handles for this volume are
no longer valid. To access the files on the new medium, the
volume must be reopened with OpenVolume ().

Version 1.10 12/01/02 11-19

Extensible Firmware Interface Specification

11.4 EFI_FILE Protocol

intel

The protocol and functions described in this section support access to EFI-supported file systems.

EFl_FILE Protocol

Summary

Provides file based access to supported file systems.

Revision Number
#define EFI_FILE_REVISION

Protocol Interface Structure

typedef struct EFI FILE {
UINT64
EFI_FILE OPEN
EFI FILE CLOSE
EFI FILE DELETE
EFI_FILE READ
EFI_FILE WRITE
EFI_FILE GET POSITION
EFI_FILE SET POSITION
EFI_FILE GET INFO
EFI_FILE SET INFO
EFI FILE FLUSH

} EFI FILE;

0x00010000

Revision;
Open;

Close;
Delete;
Read;

Write;
GetPosition;
SetPosition;
GetInfo;
SetInfo;
Flush;

Parameters

Revision The version of the EFI_FILE interface. The version specified by this
specification is 0x00010000. Future versions are required to be
backward compatible to version 1.0.

Open Opens or creates a new file. See the Open () function description.

Close Closes the current file handle. See the Close () function description.

Delete Deletes a file. See the Delete () function description.

Read Reads bytes from a file. See the Read () function description.

Write Writes bytes to a file. See the Write () function description.

GetPosition
description.

11-20

Returns the current file position. See the GetPosition () function

Version 1.10

intel
’ Protocols — Bootable Image Support

SetPosition Sets the current file position. See the SetPosition () function
description.
GetInfo Gets the requested file or volume information. See the GetInfo ()

function description.

SetInfo Sets the requested file information. See the SetInfo () function
description.
Flush Flushes all modified data associated with the file to the device. See the

Flush () function description.

Description
The EFI_FILE provides file IO access to supported file systems.

An EFI_FILE provides access to a file’s or directory’s contents, and is also a reference to a
location in the directory tree of the file system in which the file resides. With any given file handle,
other files may be opened relative to this file’s location, yielding new file handles.

On requesting the file system protocol on a device, the caller gets the

EFI FILE IO INTERFACE to the volume. This interface is used to open the root directory of
the file system when needed. The caller must Close () the file handle to the root directory, and
any other opened file handles before exiting. While there are open files on the device, usage of
underlying device protocol(s) that the file system is abstracting must be avoided. For example,
when a file system that is layered on a DISK IO /BLOCK IO protocol, direct block access to the
device for the blocks that comprise the file system must be avoided while there are open file
handles to the same device.

A file system driver may cache data relating to an open file. A Flush () function is provided that
flushes all dirty data in the file system, relative to the requested file, to the physical medium. If the
underlying device may cache data, the file system must inform the device to flush as well.

Version 1.10 12/01/02 11-21

intel
Extensible Firmware Interface Specification ’

EFI_FILE.Open()

Summary

Opens a new file relative to the source file’s location.

Prototype
EFI STATUS
(EFIAPI *EFI FILE OPEN) (
IN EFI FILE *This,
OUT EFI FILE **NewHandle,
IN CHAR16 *FileName,
IN UINT64 OpenMode,
IN UINT64 Attributes
)i
Parameters
This A pointer to the EFI FILE instance that is the file handle to the source
location. This would typically be an open handle to a directory. See the
type EFI_FILE protocol description.
NewHandle A pointer to the location to return the opened handle for the new file.
See the type EFI_FILE protocol description.
FileName The Null-terminated string of the name of the file to be opened. The file
name may contain the following path modifiers: “\”, “.”, and “. .”.
OpenMode The mode to open the file. The only valid combinations that the file may
be opened with are: Read, Read/Write, or Create/Read/Write. See
“Related Definitions” below.
Attributes Only valid for EFI_FILE MODE_ CREATE, in which case these are the

Related Definitions

attribute bits for the newly created file. See ‘“Related Definitions” below.

//***

// Open Modes

//***

#define EFI FILE MODE READ 0x0000000000000001
#define EFI FILE MODE WRITE 0x0000000000000002
#define EFI_FILE MODE CREATE 0x8000000000000000

//***

// File Attributes
//***

##define EFI FILE READ ONLY 0x0000000000000001
#define EFI_FILE HIDDEN 0x0000000000000002
#define EFI_FILE SYSTEM 0x0000000000000004

11-22

12/01/02 Version 1.10

intel

#define
#define

EFI FILE RESERVED
EFI FILE DIRECTORY

Protocols — Bootable Image Support

0x0000000000000008
0x0000000000000010

#define EFI_FILE ARCHIVE
#define EFI_FILE VALID ATTR

Description

0x0000000000000020
0x0000000000000037

The Open () function opens the file or directory referred to by FileName relative to the location
of This and returns a NewHandle. The FileName may include the following path modifiers:

“\” If the filename starts with a “\” the relative location is the root directory
that This residues on; otherwise “\” separates name components. Each
name component is opened in turn, and the handle to the last file opened
is returned.

9

Opens the current location.

directory for the root directory.

Opens the parent directory for the current location. If the location is the
root directory the request will return an error, as there is no parent

If EFI_FILE MODE CREATE is set, then the file is created in the directory. If the final location
of Fi leName does not refer to a directory, then the operation fails. If the file does not exist in the
directory, then a new file is created. If the file already exists in the directory, then the existing file

is opened.

If the medium of the device changes, all accesses (including the File handle) will result in

EFI_MEDIA CHANGED. To access the new medium, the volume must be reopened.

Status Codes Returned

EFI_SUCCESS The file was opened.
EFI_NOT_FOUND The specified file could not be found on the device.
EFI_NO_MEDIA The device has no medium.

EFI_MEDIA_CHANGED

The device has a different medium in it or the medium is no
longer supported.

EFI_DEVICE_ERROR

The device reported an error.

EFI_VOLUME_CORRUPTED

The file system structures are corrupted.

EFI_WRITE_PROTECTED

An attempt was made to create a file, or open a file for write
when the media is write protected.

EFI_ACCESS_DENIED

The service denied access to the file.

EFI_OUT_OF_RESOURCES

Not enough resources were available to open the file.

EFI_VOLUME_FULL

The volume is full.

Version 1.10

12/01/02

11-23

intel
Extensible Firmware Interface Specification ’

EFI_FILE.Close()

Summary
Closes a specified file handle.

Prototype
EFI_STATUS

(EFIAPI *EFI FILE CLOSE) (
IN EFI FILE *This
)
Parameters
This A pointer to the EFI FILE instance that is the file handle to close. See
the type EFI_FILE protocol description.
Description
The Close () function closes a specified file handle. All “dirty” cached file data is flushed to the

device, and the file is closed. In all cases the handle is closed.

Status Codes Returned
\ EFI_SUCCESS \ The file was closed.

11-24 12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

EFI_FILE.Delete()

Summary

Closes and deletes a file.

Prototype

EFI_STATUS

(EFIAPI *EFI FILE DELETE) (
IN EFI_ FILE *This
)i

Parameters

This A pointer to the EFI FILE instance that is the handle to the file to
delete. See the type EFI_FILE protocol description.

Description

The Delete () function closes and deletes a file. In all cases the file handle is closed. If the file
cannot be deleted, the warning code EFI_WARN DELETE FAILURE is returned, but the handle is
still closed.

Status Codes Returned

EFI_SUCCESS The file was closed and deleted, and the handle was
closed.
EFI_WARN_DELETE_FAILURE The handle was closed, but the file was not deleted.

Version 1.10 12/01/02 11-25

intel
Extensible Firmware Interface Specification ’

EFI_FILE.Read()

Summary
Reads data from a file.

Prototype

EFI_STATUS
(EFIAPI *EFI_FILE READ) (

IN EFI FILE *This,
IN OUT UINTN *BufferSize,
OouUT VOID *Buffer
)i
Parameters
This A pointer to the EFI FILE instance that is the file handle to read data
from. See the type EFI_FILE protocol description.
BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer. In both cases, the size is measured in bytes.
Buffer The buffer into which the data is read.
Description

The Read () function reads data from a file.

If This is not a directory, the function reads the requested number of bytes from the file at the
file’s current position and returns them in Buf fer. If the read goes beyond the end of the file, the
read length is truncated to the end of the file. The file’s current position is increased by the number
of bytes returned.

If Thisis a directory, the function reads the directory entry at the file’s current position and
returns the entry in Buf fer. If the Buffer is not large enough to hold the current directory
entry, then EFI_BUFFER TOO SMALL is returned and the current file position is not updated.
BufferSize is setto be the size of the buffer needed to read the entry. On success, the current
position is updated to the next directory entry. If there are no more directory entries, the read
returns a zero-length buffer. EFI FILE INFO is the structure returned as the directory entry.

Status Codes Returned

EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSizeistoo small to read the
current directory entry. BufferSize has been
updated with the size needed to complete the
request.

11-26 12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

EFI_FILE.Write()

Summary

Werites data to a file.

EFI_STATUS
(EFIAPI *EFI_FILE WRITE) (

IN EFI FILE *This,
IN OUT UINTN *BufferSize,
IN VOID *Buffer
)
Parameters
This A pointer to the EFI FILE instance that is the file handle to write data

to. See the type EFI_FILE protocol description.

BufferSize On input, the size of the Buffer. On output, the amount of data
actually written. In both cases, the size is measured in bytes.

Buffer The buffer of data to write.

Description

The Write () function writes the specified number of bytes to the file at the current file position.
The current file position is advanced the actual number of bytes written, which is returned in
BufferSize. Partial writes only occur when there has been a data error during the write attempt
(such as “file space full”). The file is automatically grown to hold the data if required.

Direct writes to opened directories are not supported.

Status Codes Returned

EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.
EFI_NO_MEDIA The device has no medium.
EFI_DEVICE_ERROR The device reported an error.
EFI_VOLUME_CORRUPTED The file system structures are corrupted.
EFI_WRITE_PROTECTED The file or medium is write protected.
EFI_ACCESS_DENIED The file was opened read only.
EFI_VOLUME_FULL The volume is full.

Version 1.10 12/01/02 11-27

intel
Extensible Firmware Interface Specification ’

EFI_FILE.SetPosition()

Summary

Sets a file’s current position.

Prototype

EFI_STATUS
(EFIAPI *EFI_FILE SET POSITION) (

IN EFI FILE *This,
IN UINT64 Position
)
Parameters
This A pointer to the EFI FILE instance that is the he file handle to set the
requested position on. See the type EFI_FILE protocol description.
Position The byte position from the start of the file to set.
Description

The SetPosition () function sets the current file position for the handle to the position
supplied. With the exception of seeking to position OXFFFFFFFFFFFFFFFF, only absolute
positioning is supported, and seeking past the end of the file is allowed (a subsequent write would
grow the file). Seeking to position OxFFFFFFFFFFFFFFFF causes the current position to be set to
the end of the file.

If This is a directory, the only position that may be set is zero. This has the effect of starting the
read process of the directory entries over.

Status Codes Returned

EFI_SUCCESS The position was set.
EFI_UNSUPPORTED The seek request for nonzero is not valid on open
directories.

11-28 12/01/02 Version 1.10

intel
’ Protocols — Bootable Image Support

EFI_FILE.GetPosition()

Summary

Returns a file’s current position.

Prototype

EFI_STATUS

(EFIAPI *EFI_GET_POSITION) (
IN EFI FILE *This,
OUT UINT64 *Position
) ;

Parameters

This A pointer to the EFI FILE instance that is the file handle