From 041d1ea37802bf7178a31a53f96c26efa6b8fb7b Mon Sep 17 00:00:00 2001
From: James <james.mckenzie@citrix.com>
Date: Fri, 16 Nov 2012 10:41:01 +0000
Subject: fish

---
 grub-core/lib/libgcrypt/cipher/rsa.c | 1379 ++++++++++++++++++++++++++++++++++
 1 file changed, 1379 insertions(+)
 create mode 100644 grub-core/lib/libgcrypt/cipher/rsa.c

(limited to 'grub-core/lib/libgcrypt/cipher/rsa.c')

diff --git a/grub-core/lib/libgcrypt/cipher/rsa.c b/grub-core/lib/libgcrypt/cipher/rsa.c
new file mode 100644
index 0000000..cf278c2
--- /dev/null
+++ b/grub-core/lib/libgcrypt/cipher/rsa.c
@@ -0,0 +1,1379 @@
+/* rsa.c - RSA implementation
+ * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
+ * Copyright (C) 2000, 2001, 2002, 2003, 2008 Free Software Foundation, Inc.
+ *
+ * This file is part of Libgcrypt.
+ *
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * Libgcrypt is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/* This code uses an algorithm protected by U.S. Patent #4,405,829
+   which expired on September 20, 2000.  The patent holder placed that
+   patent into the public domain on Sep 6th, 2000.
+*/
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+
+#include "g10lib.h"
+#include "mpi.h"
+#include "cipher.h"
+
+
+typedef struct
+{
+  gcry_mpi_t n;	    /* modulus */
+  gcry_mpi_t e;	    /* exponent */
+} RSA_public_key;
+
+
+typedef struct
+{
+  gcry_mpi_t n;	    /* public modulus */
+  gcry_mpi_t e;	    /* public exponent */
+  gcry_mpi_t d;	    /* exponent */
+  gcry_mpi_t p;	    /* prime  p. */
+  gcry_mpi_t q;	    /* prime  q. */
+  gcry_mpi_t u;	    /* inverse of p mod q. */
+} RSA_secret_key;
+
+
+/* A sample 1024 bit RSA key used for the selftests.  */
+static const char sample_secret_key[] =
+"(private-key"
+" (rsa"
+"  (n #00e0ce96f90b6c9e02f3922beada93fe50a875eac6bcc18bb9a9cf2e84965caa"
+"      2d1ff95a7f542465c6c0c19d276e4526ce048868a7a914fd343cc3a87dd74291"
+"      ffc565506d5bbb25cbac6a0e2dd1f8bcaab0d4a29c2f37c950f363484bf269f7"
+"      891440464baf79827e03a36e70b814938eebdc63e964247be75dc58b014b7ea251#)"
+"  (e #010001#)"
+"  (d #046129f2489d71579be0a75fe029bd6cdb574ebf57ea8a5b0fda942cab943b11"
+"      7d7bb95e5d28875e0f9fc5fcc06a72f6d502464dabded78ef6b716177b83d5bd"
+"      c543dc5d3fed932e59f5897e92e6f58a0f33424106a3b6fa2cbf877510e4ac21"
+"      c3ee47851e97d12996222ac3566d4ccb0b83d164074abf7de655fc2446da1781#)"
+"  (p #00e861b700e17e8afe6837e7512e35b6ca11d0ae47d8b85161c67baf64377213"
+"      fe52d772f2035b3ca830af41d8a4120e1c1c70d12cc22f00d28d31dd48a8d424f1#)"
+"  (q #00f7a7ca5367c661f8e62df34f0d05c10c88e5492348dd7bddc942c9a8f369f9"
+"      35a07785d2db805215ed786e4285df1658eed3ce84f469b81b50d358407b4ad361#)"
+"  (u #304559a9ead56d2309d203811a641bb1a09626bc8eb36fffa23c968ec5bd891e"
+"      ebbafc73ae666e01ba7c8990bae06cc2bbe10b75e69fcacb353a6473079d8e9b#)))";
+/* A sample 1024 bit RSA key used for the selftests (public only).  */
+static const char sample_public_key[] = 
+"(public-key"
+" (rsa"
+"  (n #00e0ce96f90b6c9e02f3922beada93fe50a875eac6bcc18bb9a9cf2e84965caa"
+"      2d1ff95a7f542465c6c0c19d276e4526ce048868a7a914fd343cc3a87dd74291"
+"      ffc565506d5bbb25cbac6a0e2dd1f8bcaab0d4a29c2f37c950f363484bf269f7"
+"      891440464baf79827e03a36e70b814938eebdc63e964247be75dc58b014b7ea251#)"
+"  (e #010001#)))";
+
+
+
+
+static int test_keys (RSA_secret_key *sk, unsigned nbits);
+static int  check_secret_key (RSA_secret_key *sk);
+static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey);
+static void secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey);
+
+
+/* Check that a freshly generated key actually works.  Returns 0 on success. */
+static int
+test_keys (RSA_secret_key *sk, unsigned int nbits)
+{
+  int result = -1; /* Default to failure.  */
+  RSA_public_key pk;
+  gcry_mpi_t plaintext = gcry_mpi_new (nbits);
+  gcry_mpi_t ciphertext = gcry_mpi_new (nbits);
+  gcry_mpi_t decr_plaintext = gcry_mpi_new (nbits);
+  gcry_mpi_t signature = gcry_mpi_new (nbits);
+
+  /* Put the relevant parameters into a public key structure.  */
+  pk.n = sk->n;
+  pk.e = sk->e;
+
+  /* Create a random plaintext.  */
+  gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
+
+  /* Encrypt using the public key.  */
+  public (ciphertext, plaintext, &pk);
+
+  /* Check that the cipher text does not match the plaintext.  */
+  if (!gcry_mpi_cmp (ciphertext, plaintext))
+    goto leave; /* Ciphertext is identical to the plaintext.  */
+
+  /* Decrypt using the secret key.  */
+  secret (decr_plaintext, ciphertext, sk);
+
+  /* Check that the decrypted plaintext matches the original plaintext.  */
+  if (gcry_mpi_cmp (decr_plaintext, plaintext))
+    goto leave; /* Plaintext does not match.  */
+
+  /* Create another random plaintext as data for signature checking.  */
+  gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
+
+  /* Use the RSA secret function to create a signature of the plaintext.  */
+  secret (signature, plaintext, sk);
+  
+  /* Use the RSA public function to verify this signature.  */
+  public (decr_plaintext, signature, &pk);
+  if (gcry_mpi_cmp (decr_plaintext, plaintext))
+    goto leave; /* Signature does not match.  */
+
+  /* Modify the signature and check that the signing fails.  */
+  gcry_mpi_add_ui (signature, signature, 1);
+  public (decr_plaintext, signature, &pk);
+  if (!gcry_mpi_cmp (decr_plaintext, plaintext))
+    goto leave; /* Signature matches but should not.  */
+
+  result = 0; /* All tests succeeded.  */
+
+ leave:
+  gcry_mpi_release (signature);
+  gcry_mpi_release (decr_plaintext);
+  gcry_mpi_release (ciphertext);
+  gcry_mpi_release (plaintext);
+  return result;
+}
+
+
+/* Callback used by the prime generation to test whether the exponent
+   is suitable. Returns 0 if the test has been passed. */
+static int
+check_exponent (void *arg, gcry_mpi_t a)
+{
+  gcry_mpi_t e = arg;
+  gcry_mpi_t tmp;
+  int result;
+  
+  mpi_sub_ui (a, a, 1);
+  tmp = _gcry_mpi_alloc_like (a);
+  result = !gcry_mpi_gcd(tmp, e, a); /* GCD is not 1. */
+  gcry_mpi_release (tmp);
+  mpi_add_ui (a, a, 1);
+  return result;
+}
+
+/****************
+ * Generate a key pair with a key of size NBITS.  
+ * USE_E = 0 let Libcgrypt decide what exponent to use.
+ *       = 1 request the use of a "secure" exponent; this is required by some 
+ *           specification to be 65537.
+ *       > 2 Use this public exponent.  If the given exponent
+ *           is not odd one is internally added to it. 
+ * TRANSIENT_KEY:  If true, generate the primes using the standard RNG.
+ * Returns: 2 structures filled with all needed values
+ */
+static gpg_err_code_t
+generate_std (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e,
+              int transient_key)
+{
+  gcry_mpi_t p, q; /* the two primes */
+  gcry_mpi_t d;    /* the private key */
+  gcry_mpi_t u;
+  gcry_mpi_t t1, t2;
+  gcry_mpi_t n;    /* the public key */
+  gcry_mpi_t e;    /* the exponent */
+  gcry_mpi_t phi;  /* helper: (p-1)(q-1) */
+  gcry_mpi_t g;
+  gcry_mpi_t f;
+  gcry_random_level_t random_level;
+
+  if (fips_mode ())
+    {
+      if (nbits < 1024)
+        return GPG_ERR_INV_VALUE;
+      if (transient_key)
+        return GPG_ERR_INV_VALUE;
+    }
+
+  /* The random quality depends on the transient_key flag.  */
+  random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM;
+
+  /* Make sure that nbits is even so that we generate p, q of equal size. */
+  if ( (nbits&1) )
+    nbits++; 
+
+  if (use_e == 1)   /* Alias for a secure value */
+    use_e = 65537;  /* as demanded by Sphinx. */
+
+  /* Public exponent:
+     In general we use 41 as this is quite fast and more secure than the
+     commonly used 17.  Benchmarking the RSA verify function
+     with a 1024 bit key yields (2001-11-08): 
+     e=17    0.54 ms
+     e=41    0.75 ms
+     e=257   0.95 ms
+     e=65537 1.80 ms
+  */
+  e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+  if (!use_e)
+    mpi_set_ui (e, 41);     /* This is a reasonable secure and fast value */
+  else 
+    {
+      use_e |= 1; /* make sure this is odd */
+      mpi_set_ui (e, use_e); 
+    }
+    
+  n = gcry_mpi_new (nbits);
+
+  p = q = NULL;
+  do
+    {
+      /* select two (very secret) primes */
+      if (p)
+        gcry_mpi_release (p);
+      if (q)
+        gcry_mpi_release (q);
+      if (use_e)
+        { /* Do an extra test to ensure that the given exponent is
+             suitable. */
+          p = _gcry_generate_secret_prime (nbits/2, random_level,
+                                           check_exponent, e);
+          q = _gcry_generate_secret_prime (nbits/2, random_level,
+                                           check_exponent, e);
+        }
+      else
+        { /* We check the exponent later. */
+          p = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL);
+          q = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL);
+        }
+      if (mpi_cmp (p, q) > 0 ) /* p shall be smaller than q (for calc of u)*/
+        mpi_swap(p,q);
+      /* calculate the modulus */
+      mpi_mul( n, p, q );
+    }
+  while ( mpi_get_nbits(n) != nbits );
+
+  /* calculate Euler totient: phi = (p-1)(q-1) */
+  t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+  t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+  phi = gcry_mpi_snew ( nbits );
+  g	= gcry_mpi_snew ( nbits );
+  f	= gcry_mpi_snew ( nbits );
+  mpi_sub_ui( t1, p, 1 );
+  mpi_sub_ui( t2, q, 1 );
+  mpi_mul( phi, t1, t2 );
+  gcry_mpi_gcd(g, t1, t2);
+  mpi_fdiv_q(f, phi, g);
+
+  while (!gcry_mpi_gcd(t1, e, phi)) /* (while gcd is not 1) */
+    {
+      if (use_e)
+        BUG (); /* The prime generator already made sure that we
+                   never can get to here. */
+      mpi_add_ui (e, e, 2);
+    }
+
+  /* calculate the secret key d = e^1 mod phi */
+  d = gcry_mpi_snew ( nbits );
+  mpi_invm(d, e, f );
+  /* calculate the inverse of p and q (used for chinese remainder theorem)*/
+  u = gcry_mpi_snew ( nbits );
+  mpi_invm(u, p, q );
+
+  if( DBG_CIPHER )
+    {
+      log_mpidump("  p= ", p );
+      log_mpidump("  q= ", q );
+      log_mpidump("phi= ", phi );
+      log_mpidump("  g= ", g );
+      log_mpidump("  f= ", f );
+      log_mpidump("  n= ", n );
+      log_mpidump("  e= ", e );
+      log_mpidump("  d= ", d );
+      log_mpidump("  u= ", u );
+    }
+
+  gcry_mpi_release (t1);
+  gcry_mpi_release (t2);
+  gcry_mpi_release (phi);
+  gcry_mpi_release (f);
+  gcry_mpi_release (g);
+
+  sk->n = n;
+  sk->e = e;
+  sk->p = p;
+  sk->q = q;
+  sk->d = d;
+  sk->u = u;
+
+  /* Now we can test our keys. */
+  if (test_keys (sk, nbits - 64))
+    {
+      gcry_mpi_release (sk->n); sk->n = NULL;
+      gcry_mpi_release (sk->e); sk->e = NULL;
+      gcry_mpi_release (sk->p); sk->p = NULL;
+      gcry_mpi_release (sk->q); sk->q = NULL;
+      gcry_mpi_release (sk->d); sk->d = NULL;
+      gcry_mpi_release (sk->u); sk->u = NULL;
+      fips_signal_error ("self-test after key generation failed");
+      return GPG_ERR_SELFTEST_FAILED;
+    }
+
+  return 0;
+}
+
+
+/* Helper for generate_x931.  */
+static gcry_mpi_t 
+gen_x931_parm_xp (unsigned int nbits)
+{
+  gcry_mpi_t xp;
+
+  xp = gcry_mpi_snew (nbits);
+  gcry_mpi_randomize (xp, nbits, GCRY_VERY_STRONG_RANDOM);
+      
+  /* The requirement for Xp is:
+
+       sqrt{2}*2^{nbits-1} <= xp <= 2^{nbits} - 1
+
+     We set the two high order bits to 1 to satisfy the lower bound.
+     By using mpi_set_highbit we make sure that the upper bound is
+     satisfied as well.  */
+  mpi_set_highbit (xp, nbits-1);
+  mpi_set_bit (xp, nbits-2);
+  gcry_assert ( mpi_get_nbits (xp) == nbits );
+  
+  return xp;
+}     
+
+
+/* Helper for generate_x931.  */
+static gcry_mpi_t 
+gen_x931_parm_xi (void)
+{
+  gcry_mpi_t xi;
+
+  xi = gcry_mpi_snew (101);
+  gcry_mpi_randomize (xi, 101, GCRY_VERY_STRONG_RANDOM);
+  mpi_set_highbit (xi, 100);
+  gcry_assert ( mpi_get_nbits (xi) == 101 );
+  
+  return xi;
+}     
+
+
+
+/* Variant of the standard key generation code using the algorithm
+   from X9.31.  Using this algorithm has the advantage that the
+   generation can be made deterministic which is required for CAVS
+   testing.  */
+static gpg_err_code_t
+generate_x931 (RSA_secret_key *sk, unsigned int nbits, unsigned long e_value,
+               gcry_sexp_t deriveparms, int *swapped)
+{
+  gcry_mpi_t p, q; /* The two primes.  */
+  gcry_mpi_t e;    /* The public exponent.  */
+  gcry_mpi_t n;    /* The public key.  */
+  gcry_mpi_t d;    /* The private key */
+  gcry_mpi_t u;    /* The inverse of p and q.  */
+  gcry_mpi_t pm1;  /* p - 1  */
+  gcry_mpi_t qm1;  /* q - 1  */
+  gcry_mpi_t phi;  /* Euler totient.  */
+  gcry_mpi_t f, g; /* Helper.  */
+
+  *swapped = 0;
+
+  if (e_value == 1)   /* Alias for a secure value. */
+    e_value = 65537; 
+
+  /* Point 1 of section 4.1:  k = 1024 + 256s with S >= 0  */
+  if (nbits < 1024 || (nbits % 256))
+    return GPG_ERR_INV_VALUE;
+  
+  /* Point 2:  2 <= bitlength(e) < 2^{k-2}
+     Note that we do not need to check the upper bound because we use
+     an unsigned long for E and thus there is no way for E to reach
+     that limit.  */
+  if (e_value < 3)
+    return GPG_ERR_INV_VALUE;
+     
+  /* Our implementaion requires E to be odd.  */
+  if (!(e_value & 1))
+    return GPG_ERR_INV_VALUE;
+
+  /* Point 3:  e > 0 or e 0 if it is to be randomly generated.
+     We support only a fixed E and thus there is no need for an extra test.  */
+
+
+  /* Compute or extract the derive parameters.  */
+  {
+    gcry_mpi_t xp1 = NULL;
+    gcry_mpi_t xp2 = NULL;
+    gcry_mpi_t xp  = NULL;
+    gcry_mpi_t xq1 = NULL;
+    gcry_mpi_t xq2 = NULL;
+    gcry_mpi_t xq  = NULL;
+    gcry_mpi_t tmpval;
+
+    if (!deriveparms)
+      {
+        /* Not given: Generate them.  */
+        xp = gen_x931_parm_xp (nbits/2);
+        /* Make sure that |xp - xq| > 2^{nbits - 100} holds.  */
+        tmpval = gcry_mpi_snew (nbits/2);
+        do
+          {
+            gcry_mpi_release (xq);
+            xq = gen_x931_parm_xp (nbits/2);
+            mpi_sub (tmpval, xp, xq);
+          }
+        while (mpi_get_nbits (tmpval) <= (nbits/2 - 100));
+        gcry_mpi_release (tmpval);
+
+        xp1 = gen_x931_parm_xi ();
+        xp2 = gen_x931_parm_xi ();
+        xq1 = gen_x931_parm_xi ();
+        xq2 = gen_x931_parm_xi ();
+
+      }
+    else
+      {
+        /* Parameters to derive the key are given.  */
+        struct { const char *name; gcry_mpi_t *value; } tbl[] = {
+          { "Xp1", &xp1 },
+          { "Xp2", &xp2 },
+          { "Xp",  &xp  },
+          { "Xq1", &xq1 },
+          { "Xq2", &xq2 },
+          { "Xq",  &xq  },
+          { NULL,  NULL }
+        };
+        int idx;
+        gcry_sexp_t oneparm;
+        
+        for (idx=0; tbl[idx].name; idx++)
+          {
+            oneparm = gcry_sexp_find_token (deriveparms, tbl[idx].name, 0);
+            if (oneparm)
+              {
+                *tbl[idx].value = gcry_sexp_nth_mpi (oneparm, 1,
+                                                     GCRYMPI_FMT_USG);
+                gcry_sexp_release (oneparm);
+              }
+          }
+        for (idx=0; tbl[idx].name; idx++)
+          if (!*tbl[idx].value)
+            break;
+        if (tbl[idx].name)
+          {
+            /* At least one parameter is missing.  */
+            for (idx=0; tbl[idx].name; idx++)
+              gcry_mpi_release (*tbl[idx].value);
+            return GPG_ERR_MISSING_VALUE;
+          }
+      }
+    
+    e = mpi_alloc_set_ui (e_value); 
+
+    /* Find two prime numbers.  */
+    p = _gcry_derive_x931_prime (xp, xp1, xp2, e, NULL, NULL);
+    q = _gcry_derive_x931_prime (xq, xq1, xq2, e, NULL, NULL);
+    gcry_mpi_release (xp);  xp  = NULL;
+    gcry_mpi_release (xp1); xp1 = NULL;
+    gcry_mpi_release (xp2); xp2 = NULL;
+    gcry_mpi_release (xq);  xq  = NULL; 
+    gcry_mpi_release (xq1); xq1 = NULL;
+    gcry_mpi_release (xq2); xq2 = NULL;
+    if (!p || !q)
+      {
+        gcry_mpi_release (p);
+        gcry_mpi_release (q);
+        gcry_mpi_release (e);
+        return GPG_ERR_NO_PRIME;
+      }
+  }
+
+
+  /* Compute the public modulus.  We make sure that p is smaller than
+     q to allow the use of the CRT.  */
+  if (mpi_cmp (p, q) > 0 )
+    {
+      mpi_swap (p, q);
+      *swapped = 1;
+    }
+  n = gcry_mpi_new (nbits);
+  mpi_mul (n, p, q);
+
+  /* Compute the Euler totient:  phi = (p-1)(q-1)  */
+  pm1 = gcry_mpi_snew (nbits/2);
+  qm1 = gcry_mpi_snew (nbits/2);
+  phi = gcry_mpi_snew (nbits);
+  mpi_sub_ui (pm1, p, 1);
+  mpi_sub_ui (qm1, q, 1);
+  mpi_mul (phi, pm1, qm1);
+
+  g = gcry_mpi_snew (nbits);
+  gcry_assert (gcry_mpi_gcd (g, e, phi));
+
+  /* Compute: f = lcm(p-1,q-1) = phi / gcd(p-1,q-1) */
+  gcry_mpi_gcd (g, pm1, qm1);
+  f = pm1; pm1 = NULL;
+  gcry_mpi_release (qm1); qm1 = NULL;
+  mpi_fdiv_q (f, phi, g);
+  gcry_mpi_release (phi); phi = NULL;
+  d = g; g = NULL;
+  /* Compute the secret key:  d = e^{-1} mod lcm(p-1,q-1) */
+  mpi_invm (d, e, f);
+
+  /* Compute the inverse of p and q.  */
+  u = f; f = NULL;
+  mpi_invm (u, p, q );
+
+  if( DBG_CIPHER )
+    {
+      if (*swapped)
+        log_debug ("p and q are swapped\n");
+      log_mpidump("  p", p );
+      log_mpidump("  q", q );
+      log_mpidump("  n", n );
+      log_mpidump("  e", e );
+      log_mpidump("  d", d );
+      log_mpidump("  u", u );
+    }
+
+
+  sk->n = n;
+  sk->e = e;
+  sk->p = p;
+  sk->q = q;
+  sk->d = d;
+  sk->u = u;
+
+  /* Now we can test our keys. */
+  if (test_keys (sk, nbits - 64))
+    {
+      gcry_mpi_release (sk->n); sk->n = NULL;
+      gcry_mpi_release (sk->e); sk->e = NULL;
+      gcry_mpi_release (sk->p); sk->p = NULL;
+      gcry_mpi_release (sk->q); sk->q = NULL;
+      gcry_mpi_release (sk->d); sk->d = NULL;
+      gcry_mpi_release (sk->u); sk->u = NULL;
+      fips_signal_error ("self-test after key generation failed");
+      return GPG_ERR_SELFTEST_FAILED;
+    }
+
+  return 0;
+}
+
+
+/****************
+ * Test wether the secret key is valid.
+ * Returns: true if this is a valid key.
+ */
+static int
+check_secret_key( RSA_secret_key *sk )
+{
+  int rc;
+  gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
+  
+  mpi_mul(temp, sk->p, sk->q );
+  rc = mpi_cmp( temp, sk->n );
+  mpi_free(temp);
+  return !rc;
+}
+
+
+
+/****************
+ * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
+ *
+ *	c = m^e mod n
+ *
+ * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
+ */
+static void
+public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey )
+{
+  if( output == input )  /* powm doesn't like output and input the same */
+    {
+      gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 );
+      mpi_powm( x, input, pkey->e, pkey->n );
+      mpi_set(output, x);
+      mpi_free(x);
+    }
+  else
+    mpi_powm( output, input, pkey->e, pkey->n );
+}
+
+#if 0
+static void
+stronger_key_check ( RSA_secret_key *skey )
+{
+  gcry_mpi_t t = mpi_alloc_secure ( 0 );
+  gcry_mpi_t t1 = mpi_alloc_secure ( 0 );
+  gcry_mpi_t t2 = mpi_alloc_secure ( 0 );
+  gcry_mpi_t phi = mpi_alloc_secure ( 0 );
+
+  /* check that n == p * q */
+  mpi_mul( t, skey->p, skey->q);
+  if (mpi_cmp( t, skey->n) )
+    log_info ( "RSA Oops: n != p * q\n" );
+
+  /* check that p is less than q */
+  if( mpi_cmp( skey->p, skey->q ) > 0 )
+    {
+      log_info ("RSA Oops: p >= q - fixed\n");
+      _gcry_mpi_swap ( skey->p, skey->q);
+    }
+
+    /* check that e divides neither p-1 nor q-1 */
+    mpi_sub_ui(t, skey->p, 1 );
+    mpi_fdiv_r(t, t, skey->e );
+    if ( !mpi_cmp_ui( t, 0) )
+        log_info ( "RSA Oops: e divides p-1\n" );
+    mpi_sub_ui(t, skey->q, 1 );
+    mpi_fdiv_r(t, t, skey->e );
+    if ( !mpi_cmp_ui( t, 0) )
+        log_info ( "RSA Oops: e divides q-1\n" );
+
+    /* check that d is correct */
+    mpi_sub_ui( t1, skey->p, 1 );
+    mpi_sub_ui( t2, skey->q, 1 );
+    mpi_mul( phi, t1, t2 );
+    gcry_mpi_gcd(t, t1, t2);
+    mpi_fdiv_q(t, phi, t);
+    mpi_invm(t, skey->e, t );
+    if ( mpi_cmp(t, skey->d ) )
+      {
+        log_info ( "RSA Oops: d is wrong - fixed\n");
+        mpi_set (skey->d, t);
+        _gcry_log_mpidump ("  fixed d", skey->d);
+      }
+
+    /* check for correctness of u */
+    mpi_invm(t, skey->p, skey->q );
+    if ( mpi_cmp(t, skey->u ) )
+      {
+        log_info ( "RSA Oops: u is wrong - fixed\n");
+        mpi_set (skey->u, t);
+        _gcry_log_mpidump ("  fixed u", skey->u);
+      }
+
+    log_info ( "RSA secret key check finished\n");
+
+    mpi_free (t);
+    mpi_free (t1);
+    mpi_free (t2);
+    mpi_free (phi);
+}
+#endif
+
+
+
+/****************
+ * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
+ *
+ *	m = c^d mod n
+ *
+ * Or faster:
+ *
+ *      m1 = c ^ (d mod (p-1)) mod p 
+ *      m2 = c ^ (d mod (q-1)) mod q 
+ *      h = u * (m2 - m1) mod q 
+ *      m = m1 + h * p
+ *
+ * Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
+ */
+static void
+secret(gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey )
+{
+  if (!skey->p || !skey->q || !skey->u)
+    {
+      mpi_powm (output, input, skey->d, skey->n);
+    }
+  else
+    {
+      gcry_mpi_t m1 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+      gcry_mpi_t m2 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+      gcry_mpi_t h  = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
+      
+      /* m1 = c ^ (d mod (p-1)) mod p */
+      mpi_sub_ui( h, skey->p, 1  );
+      mpi_fdiv_r( h, skey->d, h );   
+      mpi_powm( m1, input, h, skey->p );
+      /* m2 = c ^ (d mod (q-1)) mod q */
+      mpi_sub_ui( h, skey->q, 1  );
+      mpi_fdiv_r( h, skey->d, h );
+      mpi_powm( m2, input, h, skey->q );
+      /* h = u * ( m2 - m1 ) mod q */
+      mpi_sub( h, m2, m1 );
+      if ( mpi_is_neg( h ) ) 
+        mpi_add ( h, h, skey->q );
+      mpi_mulm( h, skey->u, h, skey->q ); 
+      /* m = m2 + h * p */
+      mpi_mul ( h, h, skey->p );
+      mpi_add ( output, m1, h );
+    
+      mpi_free ( h );
+      mpi_free ( m1 );
+      mpi_free ( m2 );
+    }
+}
+
+
+
+/* Perform RSA blinding.  */
+static gcry_mpi_t
+rsa_blind (gcry_mpi_t x, gcry_mpi_t r, gcry_mpi_t e, gcry_mpi_t n)
+{
+  /* A helper.  */
+  gcry_mpi_t a;
+
+  /* Result.  */
+  gcry_mpi_t y;
+
+  a = gcry_mpi_snew (gcry_mpi_get_nbits (n));
+  y = gcry_mpi_snew (gcry_mpi_get_nbits (n));
+  
+  /* Now we calculate: y = (x * r^e) mod n, where r is the random
+     number, e is the public exponent, x is the non-blinded data and n
+     is the RSA modulus.  */
+  gcry_mpi_powm (a, r, e, n);
+  gcry_mpi_mulm (y, a, x, n);
+
+  gcry_mpi_release (a);
+
+  return y;
+}
+
+/* Undo RSA blinding.  */
+static gcry_mpi_t
+rsa_unblind (gcry_mpi_t x, gcry_mpi_t ri, gcry_mpi_t n)
+{
+  gcry_mpi_t y;
+
+  y = gcry_mpi_snew (gcry_mpi_get_nbits (n));
+
+  /* Here we calculate: y = (x * r^-1) mod n, where x is the blinded
+     decrypted data, ri is the modular multiplicative inverse of r and
+     n is the RSA modulus.  */
+
+  gcry_mpi_mulm (y, ri, x, n);
+
+  return y;
+}
+
+/*********************************************
+ **************  interface  ******************
+ *********************************************/
+
+static gcry_err_code_t
+rsa_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
+                  const gcry_sexp_t genparms,
+                  gcry_mpi_t *skey, gcry_mpi_t **retfactors,
+                  gcry_sexp_t *r_extrainfo)
+{
+  RSA_secret_key sk;
+  gpg_err_code_t ec;
+  gcry_sexp_t deriveparms;
+  int transient_key = 0;
+  int use_x931 = 0;
+  gcry_sexp_t l1;
+
+  (void)algo;
+  
+  *retfactors = NULL; /* We don't return them.  */
+
+  deriveparms = (genparms?
+                 gcry_sexp_find_token (genparms, "derive-parms", 0) : NULL);
+  if (!deriveparms)
+    {
+      /* Parse the optional "use-x931" flag. */
+      l1 = gcry_sexp_find_token (genparms, "use-x931", 0);
+      if (l1)
+        {
+          use_x931 = 1;
+          gcry_sexp_release (l1);
+        }
+    }
+
+  if (deriveparms || use_x931 || fips_mode ())
+    {
+      int swapped;
+      ec = generate_x931 (&sk, nbits, evalue, deriveparms, &swapped);
+      gcry_sexp_release (deriveparms);
+      if (!ec && r_extrainfo && swapped)
+        {
+          ec = gcry_sexp_new (r_extrainfo, 
+                              "(misc-key-info(p-q-swapped))", 0, 1);
+          if (ec)
+            {
+              gcry_mpi_release (sk.n); sk.n = NULL;
+              gcry_mpi_release (sk.e); sk.e = NULL;
+              gcry_mpi_release (sk.p); sk.p = NULL;
+              gcry_mpi_release (sk.q); sk.q = NULL;
+              gcry_mpi_release (sk.d); sk.d = NULL;
+              gcry_mpi_release (sk.u); sk.u = NULL;
+            }
+        }
+    }
+  else
+    {
+      /* Parse the optional "transient-key" flag. */
+      l1 = gcry_sexp_find_token (genparms, "transient-key", 0);
+      if (l1)
+        {
+          transient_key = 1;
+          gcry_sexp_release (l1);
+        }
+      /* Generate.  */
+      ec = generate_std (&sk, nbits, evalue, transient_key);
+    }
+
+  if (!ec)
+    {
+      skey[0] = sk.n;
+      skey[1] = sk.e;
+      skey[2] = sk.d;
+      skey[3] = sk.p;
+      skey[4] = sk.q;
+      skey[5] = sk.u;
+    }
+  
+  return ec;
+}
+
+
+static gcry_err_code_t
+rsa_generate (int algo, unsigned int nbits, unsigned long evalue,
+              gcry_mpi_t *skey, gcry_mpi_t **retfactors)
+{
+  return rsa_generate_ext (algo, nbits, evalue, NULL, skey, retfactors, NULL);
+}
+
+
+static gcry_err_code_t
+rsa_check_secret_key (int algo, gcry_mpi_t *skey)
+{
+  gcry_err_code_t err = GPG_ERR_NO_ERROR;
+  RSA_secret_key sk;
+
+  (void)algo;
+
+  sk.n = skey[0];
+  sk.e = skey[1];
+  sk.d = skey[2];
+  sk.p = skey[3];
+  sk.q = skey[4];
+  sk.u = skey[5];
+
+  if (!sk.p || !sk.q || !sk.u)
+    err = GPG_ERR_NO_OBJ;  /* To check the key we need the optional
+                              parameters. */
+  else if (!check_secret_key (&sk))
+    err = GPG_ERR_PUBKEY_ALGO;
+
+  return err;
+}
+
+
+static gcry_err_code_t
+rsa_encrypt (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
+             gcry_mpi_t *pkey, int flags)
+{
+  RSA_public_key pk;
+
+  (void)algo;
+  (void)flags;
+  
+  pk.n = pkey[0];
+  pk.e = pkey[1];
+  resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.n));
+  public (resarr[0], data, &pk);
+  
+  return GPG_ERR_NO_ERROR;
+}
+
+
+static gcry_err_code_t
+rsa_decrypt (int algo, gcry_mpi_t *result, gcry_mpi_t *data,
+             gcry_mpi_t *skey, int flags)
+{
+  RSA_secret_key sk;
+  gcry_mpi_t r = MPI_NULL;	/* Random number needed for blinding.  */
+  gcry_mpi_t ri = MPI_NULL;	/* Modular multiplicative inverse of
+				   r.  */
+  gcry_mpi_t x = MPI_NULL;	/* Data to decrypt.  */
+  gcry_mpi_t y;			/* Result.  */
+
+  (void)algo;
+
+  /* Extract private key.  */
+  sk.n = skey[0];
+  sk.e = skey[1];
+  sk.d = skey[2];
+  sk.p = skey[3]; /* Optional. */
+  sk.q = skey[4]; /* Optional. */
+  sk.u = skey[5]; /* Optional. */
+
+  y = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
+
+  /* We use blinding by default to mitigate timing attacks which can
+     be practically mounted over the network as shown by Brumley and
+     Boney in 2003.  */ 
+  if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+    {
+      /* Initialize blinding.  */
+      
+      /* First, we need a random number r between 0 and n - 1, which
+	 is relatively prime to n (i.e. it is neither p nor q).  The
+	 random number needs to be only unpredictable, thus we employ
+	 the gcry_create_nonce function by using GCRY_WEAK_RANDOM with
+	 gcry_mpi_randomize.  */
+      r = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
+      ri = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
+      
+      gcry_mpi_randomize (r, gcry_mpi_get_nbits (sk.n), GCRY_WEAK_RANDOM);
+      gcry_mpi_mod (r, r, sk.n);
+
+      /* Calculate inverse of r.  It practically impossible that the
+         follwing test fails, thus we do not add code to release
+         allocated resources.  */
+      if (!gcry_mpi_invm (ri, r, sk.n))
+	return GPG_ERR_INTERNAL;
+    }
+
+  if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+    x = rsa_blind (data[0], r, sk.e, sk.n);
+  else
+    x = data[0];
+
+  /* Do the encryption.  */
+  secret (y, x, &sk);
+
+  if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+    {
+      /* Undo blinding.  */
+      gcry_mpi_t a = gcry_mpi_copy (y);
+      
+      gcry_mpi_release (y);
+      y = rsa_unblind (a, ri, sk.n);
+
+      gcry_mpi_release (a);
+    }
+
+  if (! (flags & PUBKEY_FLAG_NO_BLINDING))
+    {
+      /* Deallocate resources needed for blinding.  */
+      gcry_mpi_release (x);
+      gcry_mpi_release (r);
+      gcry_mpi_release (ri);
+    }
+
+  /* Copy out result.  */
+  *result = y;
+  
+  return GPG_ERR_NO_ERROR;
+}
+
+
+static gcry_err_code_t
+rsa_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
+{
+  RSA_secret_key sk;
+
+  (void)algo;
+  
+  sk.n = skey[0];
+  sk.e = skey[1];
+  sk.d = skey[2];
+  sk.p = skey[3];
+  sk.q = skey[4];
+  sk.u = skey[5];
+  resarr[0] = mpi_alloc( mpi_get_nlimbs (sk.n));
+  secret (resarr[0], data, &sk);
+
+  return GPG_ERR_NO_ERROR;
+}
+
+
+static gcry_err_code_t
+rsa_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
+		  int (*cmp) (void *opaque, gcry_mpi_t tmp),
+		  void *opaquev)
+{
+  RSA_public_key pk;
+  gcry_mpi_t result;
+  gcry_err_code_t rc;
+
+  (void)algo;
+  (void)cmp;
+  (void)opaquev;
+
+  pk.n = pkey[0];
+  pk.e = pkey[1];
+  result = gcry_mpi_new ( 160 );
+  public( result, data[0], &pk );
+#ifdef IS_DEVELOPMENT_VERSION
+  if (DBG_CIPHER)
+    {
+      log_mpidump ("rsa verify result:", result );
+      log_mpidump ("             hash:", hash );
+    }
+#endif /*IS_DEVELOPMENT_VERSION*/
+  /*rc = (*cmp)( opaquev, result );*/
+  rc = mpi_cmp (result, hash) ? GPG_ERR_BAD_SIGNATURE : GPG_ERR_NO_ERROR;
+  gcry_mpi_release (result);
+  
+  return rc;
+}
+
+
+static unsigned int
+rsa_get_nbits (int algo, gcry_mpi_t *pkey)
+{
+  (void)algo;
+
+  return mpi_get_nbits (pkey[0]);
+}
+
+
+/* Compute a keygrip.  MD is the hash context which we are going to
+   update.  KEYPARAM is an S-expression with the key parameters, this
+   is usually a public key but may also be a secret key.  An example
+   of such an S-expression is:
+
+      (rsa
+        (n #00B...#)
+        (e #010001#))
+        
+   PKCS-15 says that for RSA only the modulus should be hashed -
+   however, it is not clear wether this is meant to use the raw bytes
+   (assuming this is an unsigned integer) or whether the DER required
+   0 should be prefixed.  We hash the raw bytes.  */
+static gpg_err_code_t
+compute_keygrip (gcry_md_hd_t md, gcry_sexp_t keyparam)
+{
+  gcry_sexp_t l1;
+  const char *data;
+  size_t datalen;
+
+  l1 = gcry_sexp_find_token (keyparam, "n", 1);
+  if (!l1)
+    return GPG_ERR_NO_OBJ;
+
+  data = gcry_sexp_nth_data (l1, 1, &datalen);
+  if (!data)
+    {
+      gcry_sexp_release (l1);
+      return GPG_ERR_NO_OBJ;
+    }
+
+  gcry_md_write (md, data, datalen);
+  gcry_sexp_release (l1);
+
+  return 0;
+}
+
+
+
+
+/* 
+     Self-test section.
+ */
+
+static const char *
+selftest_sign_1024 (gcry_sexp_t pkey, gcry_sexp_t skey)
+{
+  static const char sample_data[] = 
+    "(data (flags pkcs1)"
+    " (hash sha1 #11223344556677889900aabbccddeeff10203040#))";
+  static const char sample_data_bad[] = 
+    "(data (flags pkcs1)"
+    " (hash sha1 #11223344556677889900aabbccddeeff80203040#))";
+
+  const char *errtxt = NULL;
+  gcry_error_t err;
+  gcry_sexp_t data = NULL;
+  gcry_sexp_t data_bad = NULL;
+  gcry_sexp_t sig = NULL;
+
+  err = gcry_sexp_sscan (&data, NULL,
+                         sample_data, strlen (sample_data));
+  if (!err)
+    err = gcry_sexp_sscan (&data_bad, NULL, 
+                           sample_data_bad, strlen (sample_data_bad));
+  if (err)
+    {
+      errtxt = "converting data failed";
+      goto leave;
+    }
+
+  err = gcry_pk_sign (&sig, data, skey);
+  if (err)
+    {
+      errtxt = "signing failed";
+      goto leave;
+    }
+  err = gcry_pk_verify (sig, data, pkey);
+  if (err)
+    {
+      errtxt = "verify failed";
+      goto leave;
+    }
+  err = gcry_pk_verify (sig, data_bad, pkey);
+  if (gcry_err_code (err) != GPG_ERR_BAD_SIGNATURE)
+    {
+      errtxt = "bad signature not detected";
+      goto leave;
+    }
+
+
+ leave:
+  gcry_sexp_release (sig);
+  gcry_sexp_release (data_bad);
+  gcry_sexp_release (data);
+  return errtxt;
+}
+
+
+
+/* Given an S-expression ENCR_DATA of the form:
+
+   (enc-val
+    (rsa
+     (a a-value)))
+
+   as returned by gcry_pk_decrypt, return the the A-VALUE.  On error,
+   return NULL.  */
+static gcry_mpi_t
+extract_a_from_sexp (gcry_sexp_t encr_data)
+{
+  gcry_sexp_t l1, l2, l3;
+  gcry_mpi_t a_value;
+
+  l1 = gcry_sexp_find_token (encr_data, "enc-val", 0);
+  if (!l1)
+    return NULL;
+  l2 = gcry_sexp_find_token (l1, "rsa", 0);
+  gcry_sexp_release (l1);
+  if (!l2)
+    return NULL;
+  l3 = gcry_sexp_find_token (l2, "a", 0);
+  gcry_sexp_release (l2);
+  if (!l3)
+    return NULL;
+  a_value = gcry_sexp_nth_mpi (l3, 1, 0);
+  gcry_sexp_release (l3);
+
+  return a_value;
+}
+
+
+static const char *
+selftest_encr_1024 (gcry_sexp_t pkey, gcry_sexp_t skey)
+{
+  const char *errtxt = NULL;
+  gcry_error_t err;
+  const unsigned int nbits = 1000; /* Encrypt 1000 random bits.  */
+  gcry_mpi_t plaintext = NULL;
+  gcry_sexp_t plain = NULL;
+  gcry_sexp_t encr  = NULL;
+  gcry_mpi_t  ciphertext = NULL;
+  gcry_sexp_t decr  = NULL;
+  gcry_mpi_t  decr_plaintext = NULL;
+  gcry_sexp_t tmplist = NULL;
+
+  /* Create plaintext.  The plaintext is actually a big integer number.  */
+  plaintext = gcry_mpi_new (nbits);
+  gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
+  
+  /* Put the plaintext into an S-expression.  */
+  err = gcry_sexp_build (&plain, NULL,
+                         "(data (flags raw) (value %m))", plaintext);
+  if (err)
+    {
+      errtxt = "converting data failed";
+      goto leave;
+    }
+
+  /* Encrypt.  */
+  err = gcry_pk_encrypt (&encr, plain, pkey);
+  if (err)
+    {
+      errtxt = "encrypt failed";
+      goto leave;
+    }
+
+  /* Extraxt the ciphertext from the returned S-expression.  */
+  /*gcry_sexp_dump (encr);*/
+  ciphertext = extract_a_from_sexp (encr);
+  if (!ciphertext)
+    {
+      errtxt = "gcry_pk_decrypt returned garbage";
+      goto leave;
+    }
+
+  /* Check that the ciphertext does no match the plaintext.  */
+  /* _gcry_log_mpidump ("plaintext", plaintext); */
+  /* _gcry_log_mpidump ("ciphertxt", ciphertext); */
+  if (!gcry_mpi_cmp (plaintext, ciphertext))
+    {
+      errtxt = "ciphertext matches plaintext";
+      goto leave;
+    }
+
+  /* Decrypt.  */
+  err = gcry_pk_decrypt (&decr, encr, skey);
+  if (err)
+    {
+      errtxt = "decrypt failed";
+      goto leave;
+    }
+
+  /* Extract the decrypted data from the S-expression.  Note that the
+     output of gcry_pk_decrypt depends on whether a flags lists occurs
+     in its input data.  Because we passed the output of
+     gcry_pk_encrypt directly to gcry_pk_decrypt, such a flag value
+     won't be there as of today.  To be prepared for future changes we
+     take care of it anyway.  */
+  tmplist = gcry_sexp_find_token (decr, "value", 0);
+  if (tmplist)
+    decr_plaintext = gcry_sexp_nth_mpi (tmplist, 1, GCRYMPI_FMT_USG);
+  else
+    decr_plaintext = gcry_sexp_nth_mpi (decr, 0, GCRYMPI_FMT_USG);
+  if (!decr_plaintext)
+    {
+      errtxt = "decrypt returned no plaintext";
+      goto leave;
+    }
+  
+  /* Check that the decrypted plaintext matches the original  plaintext.  */
+  if (gcry_mpi_cmp (plaintext, decr_plaintext))
+    {
+      errtxt = "mismatch";
+      goto leave;
+    }
+
+ leave:
+  gcry_sexp_release (tmplist);
+  gcry_mpi_release (decr_plaintext);
+  gcry_sexp_release (decr);
+  gcry_mpi_release (ciphertext);
+  gcry_sexp_release (encr);
+  gcry_sexp_release (plain);
+  gcry_mpi_release (plaintext);
+  return errtxt;
+}
+
+
+static gpg_err_code_t
+selftests_rsa (selftest_report_func_t report)
+{
+  const char *what;
+  const char *errtxt;
+  gcry_error_t err;
+  gcry_sexp_t skey = NULL;
+  gcry_sexp_t pkey = NULL;
+  
+  /* Convert the S-expressions into the internal representation.  */
+  what = "convert";
+  err = gcry_sexp_sscan (&skey, NULL, 
+                         sample_secret_key, strlen (sample_secret_key));
+  if (!err)
+    err = gcry_sexp_sscan (&pkey, NULL, 
+                           sample_public_key, strlen (sample_public_key));
+  if (err)
+    {
+      errtxt = gcry_strerror (err);
+      goto failed;
+    }
+
+  what = "key consistency";
+  err = gcry_pk_testkey (skey);
+  if (err)
+    {
+      errtxt = gcry_strerror (err);
+      goto failed;
+    }
+
+  what = "sign";
+  errtxt = selftest_sign_1024 (pkey, skey);
+  if (errtxt)
+    goto failed;
+
+  what = "encrypt";
+  errtxt = selftest_encr_1024 (pkey, skey);
+  if (errtxt)
+    goto failed;
+
+  gcry_sexp_release (pkey);
+  gcry_sexp_release (skey);
+  return 0; /* Succeeded. */
+
+ failed:
+  gcry_sexp_release (pkey);
+  gcry_sexp_release (skey);
+  if (report)
+    report ("pubkey", GCRY_PK_RSA, what, errtxt);
+  return GPG_ERR_SELFTEST_FAILED;
+}
+
+
+/* Run a full self-test for ALGO and return 0 on success.  */
+static gpg_err_code_t
+run_selftests (int algo, int extended, selftest_report_func_t report)
+{
+  gpg_err_code_t ec;
+
+  (void)extended;
+
+  switch (algo)
+    {
+    case GCRY_PK_RSA:
+      ec = selftests_rsa (report);
+      break;
+    default:
+      ec = GPG_ERR_PUBKEY_ALGO;
+      break;
+        
+    }
+  return ec;
+}
+
+
+
+
+static const char *rsa_names[] =
+  {
+    "rsa",
+    "openpgp-rsa",
+    "oid.1.2.840.113549.1.1.1",
+    NULL,
+  };
+
+gcry_pk_spec_t _gcry_pubkey_spec_rsa =
+  {
+    "RSA", rsa_names,
+    "ne", "nedpqu", "a", "s", "n",
+    GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
+    rsa_generate,
+    rsa_check_secret_key,
+    rsa_encrypt,
+    rsa_decrypt,
+    rsa_sign,
+    rsa_verify,
+    rsa_get_nbits,
+  };
+pk_extra_spec_t _gcry_pubkey_extraspec_rsa = 
+  {
+    run_selftests,
+    rsa_generate_ext,
+    compute_keygrip
+  };
+
-- 
cgit v1.2.3