aboutsummaryrefslogtreecommitdiffstats
path: root/demos/STM32/NIL-STM32F100-DISCOVERY/main.c
diff options
context:
space:
mode:
authorroccomarco <roccomarco@35acf78f-673a-0410-8e92-d51de3d6d3f4>2017-07-02 10:02:27 +0000
committerroccomarco <roccomarco@35acf78f-673a-0410-8e92-d51de3d6d3f4>2017-07-02 10:02:27 +0000
commit21f0a0552f88615ace146ddc4a12c54994e59e5f (patch)
tree7ceffbecd9849e3ed51935231d2c32f485064f9e /demos/STM32/NIL-STM32F100-DISCOVERY/main.c
parentbfee2aaa337ebcc236a64b286d781c66d872f427 (diff)
downloadChibiOS-21f0a0552f88615ace146ddc4a12c54994e59e5f.tar.gz
ChibiOS-21f0a0552f88615ace146ddc4a12c54994e59e5f.tar.bz2
ChibiOS-21f0a0552f88615ace146ddc4a12c54994e59e5f.zip
Renamed HAL Peripheral Interfaces group as HAL Abtract Peripheral Interfaces
git-svn-id: svn://svn.code.sf.net/p/chibios/svn/trunk@10287 35acf78f-673a-0410-8e92-d51de3d6d3f4
Diffstat (limited to 'demos/STM32/NIL-STM32F100-DISCOVERY/main.c')
0 files changed, 0 insertions, 0 deletions
34 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
------------------------------------------------------------------------
--
-- Copyright 1996 by IEEE. All rights reserved.
--
-- This source file is an essential part of IEEE Std 1076.2-1996, IEEE Standard 
-- VHDL Mathematical Packages. This source file may not be copied, sold, or 
-- included with software that is sold without written permission from the IEEE
-- Standards Department. This source file may be used to implement this standard 
-- and may be distributed in compiled form in any manner so long as the 
-- compiled form does not allow direct decompilation of the original source file.
-- This source file may be copied for individual use between licensed users. 
-- This source file is provided on an AS IS basis. The IEEE disclaims ANY 
-- WARRANTY EXPRESS OR IMPLIED INCLUDING ANY WARRANTY OF MERCHANTABILITY 
-- AND FITNESS FOR USE FOR A PARTICULAR PURPOSE. The user of the source 
-- file shall indemnify and hold IEEE harmless from any damages or liability 
-- arising out of the use thereof.
--
-- Title:       Standard VHDL Mathematical Packages (IEEE Std 1076.2-1996,
--              MATH_COMPLEX)
--
-- Library:     This package shall be compiled into a library
--              symbolically named IEEE.
--
-- Developers:  IEEE DASC VHDL Mathematical Packages Working Group
--
-- Purpose:     This package defines a standard for designers to use in
--              describing VHDL models that make use of common COMPLEX
--              constants and common COMPLEX mathematical functions and
--              operators.
--
-- Limitation:  The values generated by the functions in this package may
--              vary from platform to platform, and the precision of results
--              is only guaranteed to be the minimum required by IEEE Std 1076-
--              1993.
--
-- Notes:
--              No declarations or definitions shall be included in, or
--              excluded from, this package.
--              The "package declaration" defines the types, subtypes, and
--              declarations of MATH_COMPLEX.
--              The standard mathematical definition and conventional meaning
--              of the mathematical functions that are part of this standard
--              represent the formal semantics of the implementation of the
--              MATH_COMPLEX package declaration.  The purpose of the
--              MATH_COMPLEX package body is to provide a guideline for
--              implementations to verify their implementation of MATH_COMPLEX.
--              Tool developers may choose to implement the package body in
--              the most efficient manner available to them.
--
-- -----------------------------------------------------------------------------
-- Version    : 1.5
-- Date       : 24 July 1996
-- -----------------------------------------------------------------------------

use WORK.MATH_REAL.all;
package MATH_COMPLEX is
    constant CopyRightNotice: STRING
      := "Copyright 1996 IEEE. All rights reserved.";

    --
    -- Type Definitions
    --
    type COMPLEX is
        record
                RE: REAL;        -- Real part
                IM: REAL;        -- Imaginary part
        end record;

    subtype POSITIVE_REAL is REAL range 0.0 to REAL'HIGH;

    subtype PRINCIPAL_VALUE is REAL range -MATH_PI to MATH_PI;

    type COMPLEX_POLAR is
        record
                MAG: POSITIVE_REAL;    -- Magnitude
                ARG: PRINCIPAL_VALUE;  -- Angle in radians; -MATH_PI is illegal
        end record;

    --
    -- Constant Definitions
    --
    constant  MATH_CBASE_1: COMPLEX := COMPLEX'(1.0, 0.0);
    constant  MATH_CBASE_J: COMPLEX := COMPLEX'(0.0, 1.0);
    constant  MATH_CZERO: COMPLEX := COMPLEX'(0.0, 0.0);


    --
    -- Overloaded equality and inequality operators for COMPLEX_POLAR
    -- (equality and inequality operators for COMPLEX are predefined)
    --

    function "=" ( L: in COMPLEX_POLAR;  R: in COMPLEX_POLAR ) return BOOLEAN;
        -- Purpose:
        --         Returns TRUE if L is equal to R and returns FALSE otherwise
        -- Special values:
        --         COMPLEX_POLAR'(0.0, X) = COMPLEX_POLAR'(0.0, Y) returns TRUE
        --         regardless of the value of X and Y.
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         "="(L,R) is either TRUE or FALSE
        -- Notes:
        --         None

    function "/=" ( L: in COMPLEX_POLAR;  R: in COMPLEX_POLAR ) return BOOLEAN;
        -- Purpose:
        --         Returns TRUE if L is not equal to R and returns FALSE
        --         otherwise
        -- Special values:
        --         COMPLEX_POLAR'(0.0, X) /= COMPLEX_POLAR'(0.0, Y) returns
        --         FALSE regardless of the value of X and Y.
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         "/="(L,R) is either TRUE or FALSE
        -- Notes:
        --         None

    --
    -- Function Declarations
    --
    function CMPLX(X: in REAL;  Y: in REAL:= 0.0 ) return COMPLEX;
        -- Purpose:
        --         Returns COMPLEX number X + iY
        -- Special values:
        --         None
        -- Domain:
        --         X in REAL
        --         Y in REAL
        -- Error conditions:
        --         None
        -- Range:
        --         CMPLX(X,Y) is mathematically unbounded
        -- Notes:
        --         None

    function GET_PRINCIPAL_VALUE(X: in REAL ) return PRINCIPAL_VALUE;
        -- Purpose:
        --         Returns principal value of angle X; X in radians
        -- Special values:
        --         None
        -- Domain:
        --         X in REAL
        -- Error conditions:
        --         None
        -- Range:
        --         -MATH_PI < GET_PRINCIPAL_VALUE(X) <= MATH_PI
        -- Notes:
        --         None

    function COMPLEX_TO_POLAR(Z: in COMPLEX ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value COMPLEX_POLAR of Z
        -- Special values:
        --         COMPLEX_TO_POLAR(MATH_CZERO) = COMPLEX_POLAR'(0.0, 0.0)
        --         COMPLEX_TO_POLAR(Z) = COMPLEX_POLAR'(ABS(Z.IM),
        --                              SIGN(Z.IM)*MATH_PI_OVER_2) if Z.RE = 0.0
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function POLAR_TO_COMPLEX(Z: in COMPLEX_POLAR ) return COMPLEX;
        -- Purpose:
        --         Returns COMPLEX value of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         POLAR_TO_COMPLEX(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "ABS"(Z: in COMPLEX ) return POSITIVE_REAL;
        -- Purpose:
        --         Returns absolute value (magnitude) of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(Z) is mathematically unbounded
        -- Notes:
        --         ABS(Z) = SQRT(Z.RE*Z.RE + Z.IM*Z.IM)

    function "ABS"(Z: in COMPLEX_POLAR ) return POSITIVE_REAL;
        -- Purpose:
        --         Returns absolute value (magnitude) of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         ABS(Z) >= 0.0
        -- Notes:
        --         ABS(Z) = Z.MAG

    function ARG(Z: in COMPLEX ) return PRINCIPAL_VALUE;
        -- Purpose:
        --         Returns argument (angle) in radians of the principal
        --         value of Z
        -- Special values:
        --         ARG(Z) = 0.0 if Z.RE >= 0.0 and Z.IM = 0.0
        --         ARG(Z) = SIGN(Z.IM)*MATH_PI_OVER_2 if Z.RE = 0.0
        --         ARG(Z) = MATH_PI if Z.RE < 0.0        and Z.IM = 0.0
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         -MATH_PI < ARG(Z) <= MATH_PI
        -- Notes:
        --         ARG(Z) = ARCTAN(Z.IM, Z.RE)

    function ARG(Z: in COMPLEX_POLAR ) return PRINCIPAL_VALUE;
        -- Purpose:
        --         Returns argument (angle) in radians of the principal
        --         value of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         -MATH_PI < ARG(Z) <= MATH_PI
        -- Notes:
        --         ARG(Z) = Z.ARG


    function "-" (Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns unary minus of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "-"(Z) is mathematically unbounded
        -- Notes:
        --         Returns -x -jy for Z= x + jy

    function "-" (Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of unary minus of Z
        -- Special values:
        --         "-"(Z) = COMPLEX_POLAR'(Z.MAG, MATH_PI) if Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         Returns COMPLEX_POLAR'(Z.MAG, Z.ARG - SIGN(Z.ARG)*MATH_PI) if
        --                Z.ARG /= 0.0

    function CONJ (Z: in COMPLEX) return COMPLEX;
        -- Purpose:
        --         Returns complex conjugate of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         CONJ(Z) is mathematically unbounded
        -- Notes:
        --         Returns x -jy for Z= x + jy

    function CONJ (Z: in COMPLEX_POLAR) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of complex conjugate of Z
        -- Special values:
        --         CONJ(Z) = COMPLEX_POLAR'(Z.MAG, MATH_PI) if Z.ARG = MATH_PI
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         Returns COMPLEX_POLAR'(Z.MAG, -Z.ARG) if Z.ARG /= MATH_PI

    function SQRT(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns square root of Z with positive real part
        --         or, if the real part is zero, the one with nonnegative
        --         imaginary part
        -- Special values:
        --         SQRT(MATH_CZERO) = MATH_CZERO
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         SQRT(Z) is mathematically unbounded
        -- Notes:
        --         None

    function SQRT(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns square root of Z with positive real part
        --         or, if the real part is zero, the one with nonnegative
        --         imaginary part
        -- Special values:
        --         SQRT(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function EXP(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns exponential of Z
        -- Special values:
        --         EXP(MATH_CZERO) = MATH_CBASE_1
        --         EXP(Z) = -MATH_CBASE_1 if Z.RE = 0.0 and ABS(Z.IM) = MATH_PI
        --         EXP(Z) = SIGN(Z.IM)*MATH_CBASE_J if Z.RE = 0.0 and
        --                                          ABS(Z.IM) =  MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         EXP(Z) is mathematically unbounded
        -- Notes:
        --         None



    function EXP(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of exponential of Z
        -- Special values:
        --         EXP(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG =0.0 and
        --                                                        Z.ARG = 0.0
        --         EXP(Z) = COMPLEX_POLAR'(1.0, MATH_PI) if Z.MAG = MATH_PI and
        --                                        ABS(Z.ARG) = MATH_PI_OVER_2
        --         EXP(Z) = COMPLEX_POLAR'(1.0, MATH_PI_OVER_2) if
        --                                        Z.MAG = MATH_PI_OVER_2 and
        --                                        Z.ARG = MATH_PI_OVER_2
        --         EXP(Z) = COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2) if
        --                                        Z.MAG = MATH_PI_OVER_2 and
        --                                        Z.ARG = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns natural logarithm of Z
        -- Special values:
        --         LOG(MATH_CBASE_1) = MATH_CZERO
        --         LOG(-MATH_CBASE_1) = COMPLEX'(0.0, MATH_PI)
        --         LOG(MATH_CBASE_J) = COMPLEX'(0.0, MATH_PI_OVER_2)
        --         LOG(-MATH_CBASE_J) = COMPLEX'(0.0, -MATH_PI_OVER_2)
        --         LOG(Z) = MATH_CBASE_1 if Z = COMPLEX'(MATH_E, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        -- Range:
        --         LOG(Z) is mathematically unbounded
        -- Notes:
        --         None

    function LOG2(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns logarithm base 2 of Z
        -- Special values:
        --         LOG2(MATH_CBASE_1) = MATH_CZERO
        --         LOG2(Z) = MATH_CBASE_1 if Z = COMPLEX'(2.0, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        -- Range:
        --         LOG2(Z) is mathematically unbounded
        -- Notes:
        --         None

    function LOG10(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns logarithm base 10 of Z
        -- Special values:
        --         LOG10(MATH_CBASE_1) = MATH_CZERO
        --         LOG10(Z) = MATH_CBASE_1 if Z = COMPLEX'(10.0, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        -- Range:
        --         LOG10(Z) is mathematically unbounded
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of natural logarithm of Z
        -- Special values:
        --         LOG(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                             Z.ARG = 0.0
        --         LOG(Z) = COMPLEX_POLAR'(MATH_PI, MATH_PI_OVER_2) if
        --                              Z.MAG = 1.0 and Z.ARG = MATH_PI
        --         LOG(Z) = COMPLEX_POLAR'(MATH_PI_OVER_2, MATH_PI_OVER_2) if
        --                              Z.MAG = 1.0 and  Z.ARG = MATH_PI_OVER_2
        --         LOG(Z) = COMPLEX_POLAR'(MATH_PI_OVER_2, -MATH_PI_OVER_2) if
        --                              Z.MAG = 1.0 and  Z.ARG = -MATH_PI_OVER_2
        --         LOG(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = MATH_E and
        --                                             Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function LOG2(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of logarithm base 2 of Z
        -- Special values:
        --         LOG2(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                              Z.ARG = 0.0
        --         LOG2(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 2.0 and
        --                                             Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --        None

    function LOG10(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of logarithm base 10 of Z
        -- Special values:
        --         LOG10(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                               Z.ARG = 0.0
        --         LOG10(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 10.0 and
        --                                               Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX; BASE: in REAL) return COMPLEX;
        -- Purpose:
        --         Returns logarithm base BASE of Z
        -- Special values:
        --         LOG(MATH_CBASE_1, BASE) = MATH_CZERO
        --         LOG(Z,BASE) = MATH_CBASE_1 if Z = COMPLEX'(BASE, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        --         BASE > 0.0
        --         BASE /= 1.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        --         Error if BASE <= 0.0
        --         Error if BASE = 1.0
        -- Range:
        --         LOG(Z,BASE) is mathematically unbounded
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX_POLAR; BASE: in REAL ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of logarithm base BASE of Z
        -- Special values:
        --         LOG(Z, BASE) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                                Z.ARG = 0.0
        --         LOG(Z, BASE) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = BASE and
        --                                                Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        --         BASE > 0.0
        --         BASE /= 1.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        --         Error if BASE <= 0.0
        --         Error if BASE = 1.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function SIN (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns sine of Z
        -- Special values:
        --         SIN(MATH_CZERO) = MATH_CZERO
        --         SIN(Z) = MATH_CZERO if Z = COMPLEX'(MATH_PI, 0.0)
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(SIN(Z)) <= SQRT(SIN(Z.RE)*SIN(Z.RE) +
        --                                         SINH(Z.IM)*SINH(Z.IM))
        -- Notes:
        --         None

    function SIN (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of sine of Z
        -- Special values:
        --         SIN(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0 and
        --                                            Z.ARG = 0.0
        --         SIN(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI and
        --                                            Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function  COS (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns cosine of Z
        -- Special values:
        --         COS(Z) = MATH_CZERO if Z = COMPLEX'(MATH_PI_OVER_2, 0.0)
        --         COS(Z) = MATH_CZERO if Z = COMPLEX'(-MATH_PI_OVER_2, 0.0)
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(COS(Z)) <= SQRT(COS(Z.RE)*COS(Z.RE) +
        --                                         SINH(Z.IM)*SINH(Z.IM))
        -- Notes:
        --         None


    function  COS (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of cosine of Z
        -- Special values:
        --         COS(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI_OVER_2
        --                                               and Z.ARG = 0.0
        --         COS(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI_OVER_2
        --                                               and Z.ARG = MATH_PI
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function SINH (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns hyperbolic sine of Z
        -- Special values:
        --         SINH(MATH_CZERO) = MATH_CZERO
        --         SINH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = MATH_PI
        --         SINH(Z) = MATH_CBASE_J if Z.RE = 0.0 and
        --                                               Z.IM = MATH_PI_OVER_2
        --         SINH(Z) = -MATH_CBASE_J if Z.RE = 0.0 and
        --                                               Z.IM = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(SINH(Z)) <= SQRT(SINH(Z.RE)*SINH(Z.RE) +
        --                                         SIN(Z.IM)*SIN(Z.IM))
        -- Notes:
        --         None

    function SINH (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of hyperbolic sine of Z
        -- Special values:
        --         SINH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0 and
        --                                            Z.ARG = 0.0
        --         SINH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI and
        --                                            Z.ARG = MATH_PI_OVER_2
        --         SINH(Z) = COMPLEX_POLAR'(1.0, MATH_PI_OVER_2) if Z.MAG =
        --                         MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2
        --         SINH(Z) = COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2) if Z.MAG =
        --                         MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function COSH (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns hyperbolic cosine of Z
        -- Special values:
        --         COSH(MATH_CZERO) = MATH_CBASE_1
        --         COSH(Z) = -MATH_CBASE_1 if Z.RE = 0.0 and Z.IM = MATH_PI
        --         COSH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = MATH_PI_OVER_2
        --         COSH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(COSH(Z)) <= SQRT(SINH(Z.RE)*SINH(Z.RE) +
        --                                         COS(Z.IM)*COS(Z.IM))
        -- Notes:
        --         None


    function COSH (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of hyperbolic cosine of Z
        -- Special values:
        --         COSH(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 0.0 and
        --                                            Z.ARG = 0.0
        --         COSH(Z) = COMPLEX_POLAR'(1.0, MATH_PI) if Z.MAG = MATH_PI and
        --                                            Z.ARG = MATH_PI_OVER_2
        --         COSH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG =
        --                        MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2
        --         COSH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG =
        --                        MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    --
    -- Arithmetic Operators
    --

    function "+" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "+"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "+" ( L: in REAL;     R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "+"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "+" ( L: in COMPLEX;  R: in REAL )    return COMPLEX;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in REAL
        -- Error conditions:
        --         None
        -- Range:
        --         "+"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "+" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None


    function "+" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "+" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic addition of L and R