Frequently asked questions ########################## "ImportError: dynamic module does not define init function" =========================================================== 1. Make sure that the name specified in PYBIND11_MODULE is identical to the filename of the extension library (without suffixes such as ``.so``). 2. If the above did not fix the issue, you are likely using an incompatible version of Python that does not match what you compiled with. "Symbol not found: ``__Py_ZeroStruct`` / ``_PyInstanceMethod_Type``" ======================================================================== See the first answer. "SystemError: dynamic module not initialized properly" ====================================================== See the first answer. The Python interpreter immediately crashes when importing my module =================================================================== See the first answer. .. _faq_reference_arguments: Limitations involving reference arguments ========================================= In C++, it's fairly common to pass arguments using mutable references or mutable pointers, which allows both read and write access to the value supplied by the caller. This is sometimes done for efficiency reasons, or to realize functions that have multiple return values. Here are two very basic examples: .. code-block:: cpp void increment(int &i) { i++; } void increment_ptr(int *i) { (*i)++; } In Python, all arguments are passed by reference, so there is no general issue in binding such code from Python. However, certain basic Python types (like ``str``, ``int``, ``bool``, ``float``, etc.) are **immutable**. This means that the following attempt to port the function to Python doesn't have the same effect on the value provided by the caller -- in fact, it does nothing at all. .. code-block:: python def increment(i): i += 1 # nope.. pybind11 is also affected by such language-level conventions, which means that binding ``increment`` or ``increment_ptr`` will also create Python functions that don't modify their arguments. Although inconvenient, one workaround is to encapsulate the immutable types in a custom type that does allow modifications. An other alternative involves binding a small wrapper lambda function that returns a tuple with all output arguments (see the remainder of the documentation for examples on binding lambda functions). An example: .. code-block:: cpp int foo(int &i) { i++; return 123; } and the binding code .. code-block:: cpp m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); }); How can I reduce the build time? ================================ It's good practice to split binding code over multiple files, as in the following example: :file:`example.cpp`: .. code-block:: cpp void init_ex1(py::module_ &); void init_ex2(py::module_ &); /* ... */ PYBIND11_MODULE(example, m) { init_ex1(m); init_ex2(m); /* ... */ } :file:`ex1.cpp`: .. code-block:: cpp void init_ex1(py::module_ &m) { m.def("add", [](int a, int b) { return a + b; }); } :file:`ex2.cpp`: .. code-block:: cpp void init_ex2(py::module_ &m) { m.def("sub", [](int a, int b) { return a - b; }); } :command:`python`: .. code-block:: pycon >>> import example >>> example.add(1, 2) 3 >>> example.sub(1, 1) 0 As shown above, the various ``init_ex`` functions should be contained in separate files that can be compiled independently from one another, and then linked together into the same final shared object. Following this approach will: 1. reduce memory requirements per compilation unit. 2. enable parallel builds (if desired). 3. allow for faster incremental builds. For instance, when a single class definition is changed, only a subset of the binding code will generally need to be recompiled. "recursive template instantiation exceeded maximum depth of 256" ================================================================ If you receive an error about excessive recursive template evaluation, try specifying a larger value, e.g. ``-ftemplate-depth=1024`` on GCC/Clang. The culprit is generally the generation of function signatures at compile time using C++14 template metaprogramming. .. _`faq:hidden_visibility`: "'SomeClass' declared with greater visibility than the type of its field 'SomeClass::member' [-Wattributes]" ============================================================================================================ This error typically indicates that you are compiling without the required ``-fvisibility`` flag. pybind11 code internally forces hidden visibility on all internal code, but if non-hidden (and thus *exported*) code attempts to include a pybind type (for example, ``py::object`` or ``py::list``) you can run into this warning. To avoid it, make sure you are specifying ``-fvisibility=hidden`` when compiling pybind code. As to why ``-fvisibility=hidden`` is necessary, because pybind modules could have been compiled under different versions of pybind itself, it is also important that the symbols defined in one module do not clash with the potentially-incompatible symbols defined in another. While Python extension modules are usually loaded with localized symbols (under POSIX systems typically using ``dlopen`` with the ``RTLD_LOCAL`` flag), this Python default can be changed, but even if it isn't it is not always enough to guarantee complete independence of the symbols involved when not using ``-fvisibility=hidden``. Additionally, ``-fvisibility=hidden`` can deliver considerably binary size savings. (See the following section for more details.) .. _`faq:symhidden`: How can I create smaller binaries? ================================== To do its job, pybind11 extensively relies on a programming technique known as *template metaprogramming*, which is a way of performing computation at compile time using type information. Template metaprogramming usually instantiates code involving significant numbers of deeply nested types that are either completely removed or reduced to just a few instructions during the compiler's optimization phase. However, due to the nested nature of these types, the resulting symbol names in the compiled extension library can be extremely long. For instance, the included test suite contains the following symbol: .. only:: html .. code-block:: none _​_​Z​N​8​p​y​b​i​n​d​1​1​1​2​c​p​p​_​f​u​n​c​t​i​o​n​C​1​I​v​8​E​x​a​m​p​l​e​2​J​R​N​S​t​3​_​_​1​6​v​e​c​t​o​r​I​N​S​3​_​1​2​b​a​s​i​c​_​s​t​r​i​n​g​I​w​N​S​3​_​1​1​c​h​a​r​_​t​r​a​i​t​s​I​w​E​E​N​S​3​_​9​a​l​l​o​c​a​t​o​r​I​w​E​E​E​E​N​S​8​_​I​S​A​_​E​E​E​E​E​J​N​S​_​4​n​a​m​e​E​N​S​_​7​s​i​b​l​i​n​g​E​N​S​_​9​i​s​_​m​e​t​h​o​d​E​A​2​8​_​c​E​E​E​M​T​0​_​F​T​_​D​p​T​1​_​E​D​p​R​K​T​2​_ .. only:: not html .. code-block:: cpp __ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_11char_traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_methodEA28_cEEEMT0_FT_DpT1_EDpRKT2_ which is the mangled form of the following function type: .. code-block:: cpp pybind11::cpp_function::cpp_function, std::__1::allocator >, std::__1::allocator, std::__1::allocator > > >&, pybind11::name, pybind11::sibling, pybind11::is_method, char [28]>(void (Example2::*)(std::__1::vector, std::__1::allocator >, std::__1::allocator, std::__1::allocator > > >&), pybind11::name const&, pybind11::sibling const&, pybind11::is_method const&, char const (&) [28]) The memory needed to store just the mangled name of this function (196 bytes) is larger than the actual piece of code (111 bytes) it represents! On the other hand, it's silly to even give this function a name -- after all, it's just a tiny cog in a bigger piece of machinery that is not exposed to the outside world. So we'll generally only want to export symbols for those functions which are actually called from the outside. This can be achieved by specifying the parameter ``-fvisibility=hidden`` to GCC and Clang, which sets the default symbol visibility to *hidden*, which has a tremendous impact on the final binary size of the resulting extension library. (On Visual Studio, symbols are already hidden by default, so nothing needs to be done there.) In addition to decreasing binary size, ``-fvisibility=hidden`` also avoids potential serious issues when loading multiple modules and is required for proper pybind operation. See the previous FAQ entry for more details. How can I properly handle Ctrl-C in long-running functions? =========================================================== Ctrl-C is received by the Python interpreter, and holds it until the GIL is released, so a long-running function won't be interrupted. To interrupt from inside your function, you can use the ``PyErr_CheckSignals()`` function, that will tell if a signal has been raised on the Python side. This function merely checks a flag, so its impact is negligible. When a signal has been received, you must either explicitly interrupt execution by throwing ``py::error_already_set`` (which will propagate the existing ``KeyboardInterrupt``), or clear the error (which you usually will not want): .. code-block:: cpp PYBIND11_MODULE(example, m) { m.def("long running_func", []() { for (;;) { if (PyErr_CheckSignals() != 0) throw py::error_already_set(); // Long running iteration } }); } CMake doesn't detect the right Python version ============================================= The CMake-based build system will try to automatically detect the installed version of Python and link against that. When this fails, or when there are multiple versions of Python and it finds the wrong one, delete ``CMakeCache.txt`` and then add ``-DPYTHON_EXECUTABLE=$(which python)`` to your CMake configure line. (Replace ``$(which python)`` with a path to python if your prefer.) You can alternatively try ``-DPYBIND11_FINDPYTHON=ON``, which will activate the new CMake FindPython support instead of pybind11's custom search. Requires CMake 3.12+, and 3.15+ or 3.18.2+ are even better. You can set this in your ``CMakeLists.txt`` before adding or finding pybind11, as well. Inconsistent detection of Python version in CMake and pybind11 ============================================================== The functions ``find_package(PythonInterp)`` and ``find_package(PythonLibs)`` provided by CMake for Python version detection are modified by pybind11 due to unreliability and limitations that make them unsuitable for pybind11's needs. Instead pybind11 provides its own, more reliable Python detection CMake code. Conflicts can arise, however, when using pybind11 in a project that *also* uses the CMake Python detection in a system with several Python versions installed. This difference may cause inconsistencies and errors if *both* mechanisms are used in the same project. There are three possible solutions: 1. Avoid using ``find_package(PythonInterp)`` and ``find_package(PythonLibs)`` from CMake and rely on pybind11 in detecting Python version. If this is not possible, the CMake machinery should be called *before* including pybind11. 2. Set ``PYBIND11_FINDPYTHON`` to ``True`` or use ``find_package(Python COMPONENTS Interpreter Development)`` on modern CMake (3.12+, 3.15+ better, 3.18.2+ best). Pybind11 in these cases uses the new CMake FindPython instead of the old, deprecated search tools, and these modules are much better at finding the correct Python. 3. Set ``PYBIND11_NOPYTHON`` to ``TRUE``. Pybind11 will not search for Python. However, you will have to use the target-based system, and do more setup yourself, because it does not know about or include things that depend on Python, like ``pybind11_add_module``. This might be ideal for integrating into an existing system, like scikit-build's Python helpers. How to cite this project? ========================= We suggest the following BibTeX template to cite pybind11 in scientific discourse: .. code-block:: bash @misc{pybind11, author = {Wenzel Jakob and Jason Rhinelander and Dean Moldovan}, year = {2017}, note = {https://github.com/pybind/pybind11}, title = {pybind11 -- Seamless operability between C++11 and Python} } a> 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/*
    ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

/**
 * @file    templates/chconf.h
 * @brief   Configuration file template.
 * @details A copy of this file must be placed in each project directory, it
 *          contains the application specific kernel settings.
 *
 * @addtogroup config
 * @details Kernel related settings and hooks.
 * @{
 */

#ifndef CHCONF_H
#define CHCONF_H

#define _CHIBIOS_RT_CONF_

/*===========================================================================*/
/**
 * @name System timers settings
 * @{
 */
/*===========================================================================*/

/**
 * @brief   System time counter resolution.
 * @note    Allowed values are 16 or 32 bits.
 */
#define CH_CFG_ST_RESOLUTION                16

/**
 * @brief   System tick frequency.
 * @details Frequency of the system timer that drives the system ticks. This
 *          setting also defines the system tick time unit.
 */
#define CH_CFG_ST_FREQUENCY                 15624

/**
 * @brief   Time delta constant for the tick-less mode.
 * @note    If this value is zero then the system uses the classic
 *          periodic tick. This value represents the minimum number
 *          of ticks that is safe to specify in a timeout directive.
 *          The value one is not valid, timeouts are rounded up to
 *          this value.
 */
#define CH_CFG_ST_TIMEDELTA                 2

/** @} */

/*===========================================================================*/
/**
 * @name Kernel parameters and options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Round robin interval.
 * @details This constant is the number of system ticks allowed for the
 *          threads before preemption occurs. Setting this value to zero
 *          disables the preemption for threads with equal priority and the
 *          round robin becomes cooperative. Note that higher priority
 *          threads can still preempt, the kernel is always preemptive.
 *
 * @note    Disabling the round robin preemption makes the kernel more compact
 *          and generally faster.
 */
#define CH_CFG_TIME_QUANTUM                 0

/**
 * @brief   Managed RAM size.
 * @details Size of the RAM area to be managed by the OS. If set to zero
 *          then the whole available RAM is used. The core memory is made
 *          available to the heap allocator and/or can be used directly through
 *          the simplified core memory allocator.
 *
 * @note    In order to let the OS manage the whole RAM the linker script must
 *          provide the @p __heap_base__ and @p __heap_end__ symbols.
 * @note    Requires @p CH_CFG_USE_MEMCORE.
 */
#define CH_CFG_MEMCORE_SIZE                 128

/**
 * @brief   Idle thread automatic spawn suppression.
 * @details When this option is activated the function @p chSysInit()
 *          does not spawn the idle thread automatically. The application has
 *          then the responsibility to do one of the following:
 *          - Spawn a custom idle thread at priority @p IDLEPRIO.
 *          - Change the main() thread priority to @p IDLEPRIO then enter
 *            an endless loop. In this scenario the @p main() thread acts as
 *            the idle thread.
 *          .
 * @note    Unless an idle thread is spawned the @p main() thread must not
 *          enter a sleep state.
 */
#define CH_CFG_NO_IDLE_THREAD               FALSE

/** @} */

/*===========================================================================*/
/**
 * @name Performance options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   OS optimization.
 * @details If enabled then time efficient rather than space efficient code
 *          is used when two possible implementations exist.
 *
 * @note    This is not related to the compiler optimization options.
 * @note    The default is @p TRUE.
 */
#define CH_CFG_OPTIMIZE_SPEED               TRUE

/** @} */

/*===========================================================================*/
/**
 * @name Subsystem options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Time Measurement APIs.
 * @details If enabled then the time measurement APIs are included in
 *          the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_TM                       FALSE

/**
 * @brief   Threads registry APIs.
 * @details If enabled then the registry APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_REGISTRY                 TRUE

/**
 * @brief   Threads synchronization APIs.
 * @details If enabled then the @p chThdWait() function is included in
 *          the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_WAITEXIT                 TRUE

/**
 * @brief   Semaphores APIs.
 * @details If enabled then the Semaphores APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_SEMAPHORES               TRUE

/**
 * @brief   Semaphores queuing mode.
 * @details If enabled then the threads are enqueued on semaphores by
 *          priority rather than in FIFO order.
 *
 * @note    The default is @p FALSE. Enable this if you have special requirements.
 * @note    Requires @p CH_CFG_USE_SEMAPHORES.
 */
#define CH_CFG_USE_SEMAPHORES_PRIORITY      FALSE

/**
 * @brief   Mutexes APIs.
 * @details If enabled then the mutexes APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MUTEXES                  TRUE

/**
 * @brief   Enables recursive behavior on mutexes.
 * @note    Recursive mutexes are heavier and have an increased
 *          memory footprint.
 *
 * @note    The default is @p FALSE.
 * @note    Requires @p CH_CFG_USE_MUTEXES.
 */
#define CH_CFG_USE_MUTEXES_RECURSIVE        FALSE

/**
 * @brief   Conditional Variables APIs.
 * @details If enabled then the conditional variables APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_MUTEXES.
 */
#define CH_CFG_USE_CONDVARS                 TRUE

/**
 * @brief   Conditional Variables APIs with timeout.
 * @details If enabled then the conditional variables APIs with timeout
 *          specification are included in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_CONDVARS.
 */
#define CH_CFG_USE_CONDVARS_TIMEOUT         TRUE

/**
 * @brief   Events Flags APIs.
 * @details If enabled then the event flags APIs are included in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_EVENTS                   TRUE

/**
 * @brief   Events Flags APIs with timeout.
 * @details If enabled then the events APIs with timeout specification
 *          are included in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_EVENTS.
 */
#define CH_CFG_USE_EVENTS_TIMEOUT           TRUE

/**
 * @brief   Synchronous Messages APIs.
 * @details If enabled then the synchronous messages APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MESSAGES                 TRUE

/**
 * @brief   Synchronous Messages queuing mode.
 * @details If enabled then messages are served by priority rather than in
 *          FIFO order.
 *
 * @note    The default is @p FALSE. Enable this if you have special requirements.
 * @note    Requires @p CH_CFG_USE_MESSAGES.
 */
#define CH_CFG_USE_MESSAGES_PRIORITY        FALSE

/**
 * @brief   Mailboxes APIs.
 * @details If enabled then the asynchronous messages (mailboxes) APIs are
 *          included in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_SEMAPHORES.
 */
#define CH_CFG_USE_MAILBOXES                TRUE

/**
 * @brief   Core Memory Manager APIs.
 * @details If enabled then the core memory manager APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MEMCORE                  FALSE

/**
 * @brief   Heap Allocator APIs.
 * @details If enabled then the memory heap allocator APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_MEMCORE and either @p CH_CFG_USE_MUTEXES or
 *          @p CH_CFG_USE_SEMAPHORES.
 * @note    Mutexes are recommended.
 */
#define CH_CFG_USE_HEAP                     FALSE

/**
 * @brief   Memory Pools Allocator APIs.
 * @details If enabled then the memory pools allocator APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 */
#define CH_CFG_USE_MEMPOOLS                 FALSE

/**
 * @brief   Dynamic Threads APIs.
 * @details If enabled then the dynamic threads creation APIs are included
 *          in the kernel.
 *
 * @note    The default is @p TRUE.
 * @note    Requires @p CH_CFG_USE_WAITEXIT.
 * @note    Requires @p CH_CFG_USE_HEAP and/or @p CH_CFG_USE_MEMPOOLS.
 */
#define CH_CFG_USE_DYNAMIC                  FALSE

/** @} */

/*===========================================================================*/
/**
 * @name Debug options
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Debug option, kernel statistics.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_STATISTICS                   FALSE

/**
 * @brief   Debug option, system state check.
 * @details If enabled the correct call protocol for system APIs is checked
 *          at runtime.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_SYSTEM_STATE_CHECK           FALSE

/**
 * @brief   Debug option, parameters checks.
 * @details If enabled then the checks on the API functions input
 *          parameters are activated.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_ENABLE_CHECKS                FALSE

/**
 * @brief   Debug option, consistency checks.
 * @details If enabled then all the assertions in the kernel code are
 *          activated. This includes consistency checks inside the kernel,
 *          runtime anomalies and port-defined checks.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_ENABLE_ASSERTS               FALSE

/**
 * @brief   Debug option, trace buffer.
 * @details If enabled then the trace buffer is activated.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_ENABLE_TRACE                 CH_DBG_TRACE_MASK_DISABLED

/**
 * @brief   Trace buffer entries.
 * @note    The trace buffer is only allocated if @p CH_DBG_TRACE_MASK is
 *          different from @p CH_DBG_TRACE_MASK_DISABLED.
 */
#define CH_DBG_TRACE_BUFFER_SIZE            128

/**
 * @brief   Debug option, stack checks.
 * @details If enabled then a runtime stack check is performed.
 *
 * @note    The default is @p FALSE.
 * @note    The stack check is performed in a architecture/port dependent way.
 *          It may not be implemented or some ports.
 * @note    The default failure mode is to halt the system with the global
 *          @p panic_msg variable set to @p NULL.
 */
#define CH_DBG_ENABLE_STACK_CHECK           FALSE

/**
 * @brief   Debug option, stacks initialization.
 * @details If enabled then the threads working area is filled with a byte
 *          value when a thread is created. This can be useful for the
 *          runtime measurement of the used stack.
 *
 * @note    The default is @p FALSE.
 */
#define CH_DBG_FILL_THREADS                 FALSE

/**
 * @brief   Debug option, threads profiling.
 * @details If enabled then a field is added to the @p Thread structure that
 *          counts the system ticks occurred while executing the thread.
 *
 * @note    The default is @p TRUE.
 * @note    This debug option is defaulted to TRUE because it is required by
 *          some test cases into the test suite.
 */
#define CH_DBG_THREADS_PROFILING            FALSE

/** @} */

/*===========================================================================*/
/**
 * @name Kernel hooks
 * @{
 */
/*===========================================================================*/

/**
 * @brief   Threads descriptor structure extension.
 * @details User fields added to the end of the @p thread_t structure.
 */
#define CH_CFG_THREAD_EXTRA_FIELDS                                          \
  /* Add threads custom fields here.*/

/**
 * @brief   Threads initialization hook.
 * @details User initialization code added to the @p chThdInit() API.
 *
 * @note    It is invoked from within @p chThdInit() and implicitly from all
 *          the threads creation APIs.
 */
#define CH_CFG_THREAD_INIT_HOOK(tp) {                                       \
  /* Add threads initialization code here.*/                                \
}

/**
 * @brief   Threads finalization hook.
 * @details User finalization code added to the @p chThdExit() API.
 */
#define CH_CFG_THREAD_EXIT_HOOK(tp) {                                       \
  /* Add threads finalization code here.*/                                  \
}

/**
 * @brief   Context switch hook.
 * @details This hook is invoked just before switching between threads.
 */
#define CH_CFG_CONTEXT_SWITCH_HOOK(ntp, otp) {                              \
  /* Context switch code here.*/                                            \
}

/**
 * @brief   ISR enter hook.
 */
#define CH_CFG_IRQ_PROLOGUE_HOOK() {                                        \
  /* IRQ prologue code here.*/                                              \
}

/**
 * @brief   ISR exit hook.
 */
#define CH_CFG_IRQ_EPILOGUE_HOOK() {                                        \
  /* IRQ epilogue code here.*/                                              \
}

/**
 * @brief   Idle thread enter hook.
 * @note    This hook is invoked within a critical zone, no OS functions
 *          should be invoked from here.
 * @note    This macro can be used to activate a power saving mode.
 */
#define CH_CFG_IDLE_ENTER_HOOK() {                                          \
  /* Idle-enter code here.*/                                                \
}

/**
 * @brief   Idle thread leave hook.
 * @note    This hook is invoked within a critical zone, no OS functions
 *          should be invoked from here.
 * @note    This macro can be used to deactivate a power saving mode.
 */
#define CH_CFG_IDLE_LEAVE_HOOK() {                                          \
  /* Idle-leave code here.*/                                                \
}

/**
 * @brief   Idle Loop hook.
 * @details This hook is continuously invoked by the idle thread loop.
 */
#define CH_CFG_IDLE_LOOP_HOOK() {                                           \
  /* Idle loop code here.*/                                                 \
}

/**
 * @brief   System tick event hook.
 * @details This hook is invoked in the system tick handler immediately
 *          after processing the virtual timers queue.
 */
#define CH_CFG_SYSTEM_TICK_HOOK() {                                         \
  /* System tick event code here.*/                                         \
}

/**
 * @brief   System halt hook.
 * @details This hook is invoked in case to a system halting error before
 *          the system is halted.
 */
#define CH_CFG_SYSTEM_HALT_HOOK(reason) {                                   \
  /* System halt code here.*/                                               \
}

/**
 * @brief   Trace hook.
 * @details This hook is invoked each time a new record is written in the
 *          trace buffer.
 */
#define CH_CFG_TRACE_HOOK(tep) {                                            \
  /* Trace code here.*/                                                     \
}

/** @} */

/*===========================================================================*/
/* Port-specific settings (override port settings defaulted in chcore.h).    */
/*===========================================================================*/

#endif  /* CHCONF_H */

/** @} */