aboutsummaryrefslogtreecommitdiffstats
path: root/testhal/STM32/STM32F7xx/IRQ_STORM/mcuconf.h
blob: 0c2967da9a2c25ba1b9670ea4e4fe8813479377f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/*
    ChibiOS - Copyright (C) 2006..2015 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef _MCUCONF_H_
#define _MCUCONF_H_

/*
 * STM32F4xx drivers configuration.
 * The following settings override the default settings present in
 * the various device driver implementation headers.
 * Note that the settings for each driver only have effect if the whole
 * driver is enabled in halconf.h.
 *
 * IRQ priorities:
 * 15...0       Lowest...Highest.
 *
 * DMA priorities:
 * 0...3        Lowest...Highest.
 */

#define STM32F7xx_MCUCONF

/*
 * HAL driver system settings.
 */
#define STM32_NO_INIT                       FALSE
#define STM32_PVD_ENABLE                    FALSE
#define STM32_PLS                           STM32_PLS_LEV0
#define STM32_BKPRAM_ENABLE                 FALSE
#define STM32_HSI_ENABLED                   TRUE
#define STM32_LSI_ENABLED                   FALSE
#define STM32_HSE_ENABLED                   TRUE
#define STM32_LSE_ENABLED                   TRUE
#define STM32_CLOCK48_REQUIRED              TRUE
#define STM32_SW                            STM32_SW_PLL
#define STM32_PLLSRC                        STM32_PLLSRC_HSE
#define STM32_PLLM_VALUE                    25
#define STM32_PLLN_VALUE                    432
#define STM32_PLLP_VALUE                    2
#define STM32_PLLQ_VALUE                    9
#define STM32_HPRE                          STM32_HPRE_DIV1
#define STM32_PPRE1                         STM32_PPRE1_DIV4
#define STM32_PPRE2                         STM32_PPRE2_DIV2
#define STM32_RTCSEL                        STM32_RTCSEL_LSE
#define STM32_RTCPRE_VALUE                  25
#define STM32_MCO1SEL                       STM32_MCO1SEL_HSI
#define STM32_MCO1PRE                       STM32_MCO1PRE_DIV1
#define STM32_MCO2SEL                       STM32_MCO2SEL_SYSCLK
#define STM32_MCO2PRE                       STM32_MCO2PRE_DIV4
#define STM32_I2SSRC                        STM32_I2SSRC_PLLI2S
#define STM32_PLLI2SN_VALUE                 192
#define STM32_PLLI2SP_VALUE                 4
#define STM32_PLLI2SQ_VALUE                 4
#define STM32_PLLI2SR_VALUE                 4
#define STM32_PLLSAIN_VALUE                 192
#define STM32_PLLSAIP_VALUE                 4
#define STM32_PLLSAIQ_VALUE                 4
#define STM32_PLLSAIR_VALUE                 4
#define STM32_PLLSAIDIVR                    STM32_PLLSAIDIVR_OFF
#define STM32_SAI1SEL                       STM32_SAI1SEL_OFF
#define STM32_SAI2SEL                       STM32_SAI2SEL_OFF
#define STM32_USART1SEL                     STM32_USART1SEL_PCLK2
#define STM32_USART2SEL                     STM32_USART2SEL_PCLK1
#define STM32_USART3SEL                     STM32_USART3SEL_PCLK1
#define STM32_UART4SEL                      STM32_UART4SEL_PCLK1
#define STM32_UART5SEL                      STM32_UART5SEL_PCLK1
#define STM32_USART6SEL                     STM32_USART6SEL_PCLK2
#define STM32_UART7SEL                      STM32_UART7SEL_PCLK1
#define STM32_UART8SEL                      STM32_UART8SEL_PCLK1
#define STM32_I2C1SEL                       STM32_I2C1SEL_PCLK1
#define STM32_I2C2SEL                       STM32_I2C2SEL_PCLK1
#define STM32_I2C3SEL                       STM32_I2C3SEL_PCLK1
#define STM32_I2C4SEL                       STM32_I2C4SEL_PCLK1
#define STM32_LPTIM1SEL                     STM32_LPTIM1SEL_PCLK1
#define STM32_CECSEL                        STM32_CECSEL_LSE
#define STM32_CK48MSEL                      STM32_CK48MSEL_PLL
#define STM32_SDMMCSEL                      STM32_SDMMCSEL_PLL48CLK
#define STM32_SRAM2_NOCACHE                 FALSE

/*
 * ADC driver system settings.
 */
#define STM32_ADC_ADCPRE                    ADC_CCR_ADCPRE_DIV4
#define STM32_ADC_USE_ADC1                  FALSE
#define STM32_ADC_USE_ADC2                  FALSE
#define STM32_ADC_USE_ADC3                  FALSE
#define STM32_ADC_ADC1_DMA_STREAM           STM32_DMA_STREAM_ID(2, 4)
#define STM32_ADC_ADC2_DMA_STREAM           STM32_DMA_STREAM_ID(2, 2)
#define STM32_ADC_ADC3_DMA_STREAM           STM32_DMA_STREAM_ID(2, 1)
#define STM32_ADC_ADC1_DMA_PRIORITY         2
#define STM32_ADC_ADC2_DMA_PRIORITY         2
#define STM32_ADC_ADC3_DMA_PRIORITY         2
#define STM32_ADC_IRQ_PRIORITY              6
#define STM32_ADC_ADC1_DMA_IRQ_PRIORITY     6
#define STM32_ADC_ADC2_DMA_IRQ_PRIORITY     6
#define STM32_ADC_ADC3_DMA_IRQ_PRIORITY     6

/*
 * CAN driver system settings.
 */
#define STM32_CAN_USE_CAN1                  FALSE
#define STM32_CAN_USE_CAN2                  FALSE
#define STM32_CAN_CAN1_IRQ_PRIORITY         11
#define STM32_CAN_CAN2_IRQ_PRIORITY         11

/*
 * DAC driver system settings.
 */
#define STM32_DAC_DUAL_MODE                 FALSE
#define STM32_DAC_USE_DAC1_CH1              FALSE
#define STM32_DAC_USE_DAC1_CH2              FALSE
#define STM32_DAC_DAC1_CH1_IRQ_PRIORITY     10
#define STM32_DAC_DAC1_CH2_IRQ_PRIORITY     10
#define STM32_DAC_DAC1_CH1_DMA_PRIORITY     2
#define STM32_DAC_DAC1_CH2_DMA_PRIORITY     2
#define STM32_DAC_DAC1_CH1_DMA_STREAM       STM32_DMA_STREAM_ID(1, 5)
#define STM32_DAC_DAC1_CH2_DMA_STREAM       STM32_DMA_STREAM_ID(1, 6)

/*
 * EXT driver system settings.
 */
#define STM32_EXT_EXTI0_IRQ_PRIORITY        6
#define STM32_EXT_EXTI1_IRQ_PRIORITY        6
#define STM32_EXT_EXTI2_IRQ_PRIORITY        6
#define STM32_EXT_EXTI3_IRQ_PRIORITY        6
#define STM32_EXT_EXTI4_IRQ_PRIORITY        6
#define STM32_EXT_EXTI5_9_IRQ_PRIORITY      6
#define STM32_EXT_EXTI10_15_IRQ_PRIORITY    6
#define STM32_EXT_EXTI16_IRQ_PRIORITY       6
#define STM32_EXT_EXTI17_IRQ_PRIORITY       15
#define STM32_EXT_EXTI18_IRQ_PRIORITY       6
#define STM32_EXT_EXTI19_IRQ_PRIORITY       6
#define STM32_EXT_EXTI20_IRQ_PRIORITY       6
#define STM32_EXT_EXTI21_IRQ_PRIORITY       15
#define STM32_EXT_EXTI22_IRQ_PRIORITY       15

/*
 * GPT driver system settings.
 */
#define STM32_GPT_USE_TIM1                  FALSE
#define STM32_GPT_USE_TIM2                  FALSE
#define STM32_GPT_USE_TIM3                  TRUE
#define STM32_GPT_USE_TIM4                  TRUE
#define STM32_GPT_USE_TIM5                  FALSE
#define STM32_GPT_USE_TIM6                  FALSE
#define STM32_GPT_USE_TIM7                  FALSE
#define STM32_GPT_USE_TIM8                  FALSE
#define STM32_GPT_USE_TIM9                  FALSE
#define STM32_GPT_USE_TIM11                 FALSE
#define STM32_GPT_USE_TIM12                 FALSE
#define STM32_GPT_USE_TIM14                 FALSE
#define STM32_GPT_TIM1_IRQ_PRIORITY         7
#define STM32_GPT_TIM2_IRQ_PRIORITY         7
#define STM32_GPT_TIM3_IRQ_PRIORITY         10
#define STM32_GPT_TIM4_IRQ_PRIORITY         6
#define STM32_GPT_TIM5_IRQ_PRIORITY         7
#define STM32_GPT_TIM6_IRQ_PRIORITY         7
#define STM32_GPT_TIM7_IRQ_PRIORITY         7
#define STM32_GPT_TIM8_IRQ_PRIORITY         7
#define STM32_GPT_TIM9_IRQ_PRIORITY         7
#define STM32_GPT_TIM11_IRQ_PRIORITY        7
#define STM32_GPT_TIM12_IRQ_PRIORITY        7
#define STM32_GPT_TIM14_IRQ_PRIORITY        7

/*
 * I2C driver system settings.
 */
#define STM32_I2C_USE_I2C1                  FALSE
#define STM32_I2C_USE_I2C2                  FALSE
#define STM32_I2C_USE_I2C3                  FALSE
#define STM32_I2C_BUSY_TIMEOUT              50
#define STM32_I2C_I2C1_RX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 0)
#define STM32_I2C_I2C1_TX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 6)
#define STM32_I2C_I2C2_RX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 2)
#define STM32_I2C_I2C2_TX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 7)
#define STM32_I2C_I2C3_RX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 2)
#define STM32_I2C_I2C3_TX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 4)
#define STM32_I2C_I2C1_IRQ_PRIORITY         5
#define STM32_I2C_I2C2_IRQ_PRIORITY         5
#define STM32_I2C_I2C3_IRQ_PRIORITY         5
#define STM32_I2C_I2C1_DMA_PRIORITY         3
#define STM32_I2C_I2C2_DMA_PRIORITY         3
#define STM32_I2C_I2C3_DMA_PRIORITY         3
#define STM32_I2C_DMA_ERROR_HOOK(i2cp)      osalSysHalt("DMA failure")

/*
 * ICU driver system settings.
 */
#define STM32_ICU_USE_TIM1                  FALSE
#define STM32_ICU_USE_TIM2                  FALSE
#define STM32_ICU_USE_TIM3                  FALSE
#define STM32_ICU_USE_TIM4                  FALSE
#define STM32_ICU_USE_TIM5                  FALSE
#define STM32_ICU_USE_TIM8                  FALSE
#define STM32_ICU_USE_TIM9                  FALSE
#define STM32_ICU_TIM1_IRQ_PRIORITY         7
#define STM32_ICU_TIM2_IRQ_PRIORITY         7
#define STM32_ICU_TIM3_IRQ_PRIORITY         7
#define STM32_ICU_TIM4_IRQ_PRIORITY         7
#define STM32_ICU_TIM5_IRQ_PRIORITY         7
#define STM32_ICU_TIM8_IRQ_PRIORITY         7
#define STM32_ICU_TIM9_IRQ_PRIORITY         7

/*
 * MAC driver system settings.
 */
#define STM32_MAC_TRANSMIT_BUFFERS          2
#define STM32_MAC_RECEIVE_BUFFERS           4
#define STM32_MAC_BUFFERS_SIZE              1522
#define STM32_MAC_PHY_TIMEOUT               100
#define STM32_MAC_ETH1_CHANGE_PHY_STATE     TRUE
#define STM32_MAC_ETH1_IRQ_PRIORITY         13
#define STM32_MAC_IP_CHECKSUM_OFFLOAD       0

/*
 * PWM driver system settings.
 */
#define STM32_PWM_USE_ADVANCED              FALSE
#define STM32_PWM_USE_TIM1                  FALSE
#define STM32_PWM_USE_TIM2                  FALSE
#define STM32_PWM_USE_TIM3                  FALSE
#define STM32_PWM_USE_TIM4                  FALSE
#define STM32_PWM_USE_TIM5                  FALSE
#define STM32_PWM_USE_TIM8                  FALSE
#define STM32_PWM_USE_TIM9                  FALSE
#define STM32_PWM_TIM1_IRQ_PRIORITY         7
#define STM32_PWM_TIM2_IRQ_PRIORITY         7
#define STM32_PWM_TIM3_IRQ_PRIORITY         7
#define STM32_PWM_TIM4_IRQ_PRIORITY         7
#define STM32_PWM_TIM5_IRQ_PRIORITY         7
#define STM32_PWM_TIM8_IRQ_PRIORITY         7
#define STM32_PWM_TIM9_IRQ_PRIORITY         7

/*
 * SDC driver system settings.
 */
#define STM32_SDC_USE_SDMMC1                FALSE
#define STM32_SDC_SDMMC_UNALIGNED_SUPPORT   TRUE
#define STM32_SDC_SDMMC_WRITE_TIMEOUT       250
#define STM32_SDC_SDMMC_READ_TIMEOUT        25
#define STM32_SDC_SDMMC_CLOCK_DELAY         10
#define STM32_SDC_SDMMC1_DMA_STREAM         STM32_DMA_STREAM_ID(2, 3)
#define STM32_SDC_SDMMC1_DMA_PRIORITY       3
#define STM32_SDC_SDMMC1_IRQ_PRIORITY       9

/*
 * SERIAL driver system settings.
 */
#define STM32_SERIAL_USE_USART1             TRUE
#define STM32_SERIAL_USE_USART2             FALSE
#define STM32_SERIAL_USE_USART3             FALSE
#define STM32_SERIAL_USE_UART4              FALSE
#define STM32_SERIAL_USE_UART5              FALSE
#define STM32_SERIAL_USE_USART6             FALSE
#define STM32_SERIAL_USE_UART7              FALSE
#define STM32_SERIAL_USE_UART8              FALSE
#define STM32_SERIAL_USART1_PRIORITY        12
#define STM32_SERIAL_USART2_PRIORITY        12
#define STM32_SERIAL_USART3_PRIORITY        12
#define STM32_SERIAL_UART4_PRIORITY         12
#define STM32_SERIAL_UART5_PRIORITY         12
#define STM32_SERIAL_USART6_PRIORITY        12
#define STM32_SERIAL_UART7_PRIORITY         12
#define STM32_SERIAL_UART8_PRIORITY         12

/*
 * SPI driver system settings.
 */
#define STM32_SPI_USE_SPI1                  FALSE
#define STM32_SPI_USE_SPI2                  FALSE
#define STM32_SPI_USE_SPI3                  FALSE
#define STM32_SPI_USE_SPI4                  FALSE
#define STM32_SPI_USE_SPI5                  FALSE
#define STM32_SPI_USE_SPI6                  FALSE
#define STM32_SPI_SPI1_RX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 0)
#define STM32_SPI_SPI1_TX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 3)
#define STM32_SPI_SPI2_RX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 3)
#define STM32_SPI_SPI2_TX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 4)
#define STM32_SPI_SPI3_RX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 0)
#define STM32_SPI_SPI3_TX_DMA_STREAM        STM32_DMA_STREAM_ID(1, 7)
#define STM32_SPI_SPI4_RX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 0)
#define STM32_SPI_SPI4_TX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 1)
#define STM32_SPI_SPI5_RX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 3)
#define STM32_SPI_SPI5_TX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 4)
#define STM32_SPI_SPI6_RX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 6)
#define STM32_SPI_SPI6_TX_DMA_STREAM        STM32_DMA_STREAM_ID(2, 5)
#define STM32_SPI_SPI1_DMA_PRIORITY         1
#define STM32_SPI_SPI2_DMA_PRIORITY         1
#define STM32_SPI_SPI3_DMA_PRIORITY         1
#define STM32_SPI_SPI4_DMA_PRIORITY         1
#define STM32_SPI_SPI4_DMA_PRIORITY         1
#define STM32_SPI_SPI4_DMA_PRIORITY         1
#define STM32_SPI_SPI1_IRQ_PRIORITY         10
#define STM32_SPI_SPI2_IRQ_PRIORITY         10
#define STM32_SPI_SPI3_IRQ_PRIORITY         10
#define STM32_SPI_SPI4_IRQ_PRIORITY         10
#define STM32_SPI_SPI5_IRQ_PRIORITY         10
#define STM32_SPI_SPI6_IRQ_PRIORITY         10
#define STM32_SPI_DMA_ERROR_HOOK(spip)      osalSysHalt("DMA failure")

/*
 * ST driver system settings.
 */
#define STM32_ST_IRQ_PRIORITY               8
#define STM32_ST_USE_TIMER                  2

/*
 * UART driver system settings.
 */
#define STM32_UART_USE_USART1               FALSE
#define STM32_UART_USE_USART2               FALSE
#define STM32_UART_USE_USART3               FALSE
#define STM32_UART_USE_UART4                FALSE
#define STM32_UART_USE_UART5                FALSE
#define STM32_UART_USE_USART6               FALSE
#define STM32_UART_USE_UART7                FALSE
#define STM32_UART_USE_UART8                FALSE
#define STM32_UART_USART1_RX_DMA_STREAM     STM32_DMA_STREAM_ID(2, 5)
#define STM32_UART_USART1_TX_DMA_STREAM     STM32_DMA_STREAM_ID(2, 7)
#define STM32_UART_USART2_RX_DMA_STREAM     STM32_DMA_STREAM_ID(1, 5)
#define STM32_UART_USART2_TX_DMA_STREAM     STM32_DMA_STREAM_ID(1, 6)
#define STM32_UART_USART3_RX_DMA_STREAM     STM32_DMA_STREAM_ID(1, 1)
#define STM32_UART_USART3_TX_DMA_STREAM     STM32_DMA_STREAM_ID(1, 3)
#define STM32_UART_UART4_RX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 2)
#define STM32_UART_UART4_TX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 4)
#define STM32_UART_UART5_RX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 0)
#define STM32_UART_UART5_TX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 7)
#define STM32_UART_USART6_RX_DMA_STREAM     STM32_DMA_STREAM_ID(2, 2)
#define STM32_UART_USART6_TX_DMA_STREAM     STM32_DMA_STREAM_ID(2, 7)
#define STM32_UART_UART7_RX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 3)
#define STM32_UART_UART7_TX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 1)
#define STM32_UART_UART8_RX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 6)
#define STM32_UART_UART8_TX_DMA_STREAM      STM32_DMA_STREAM_ID(1, 0)
#define STM32_UART_USART1_IRQ_PRIORITY      12
#define STM32_UART_USART2_IRQ_PRIORITY      12
#define STM32_UART_USART3_IRQ_PRIORITY      12
#define STM32_UART_UART4_IRQ_PRIORITY       12
#define STM32_UART_UART5_IRQ_PRIORITY       12
#define STM32_UART_USART6_IRQ_PRIORITY      12
#define STM32_UART_USART1_DMA_PRIORITY      0
#define STM32_UART_USART2_DMA_PRIORITY      0
#define STM32_UART_USART3_DMA_PRIORITY      0
#define STM32_UART_UART4_DMA_PRIORITY       0
#define STM32_UART_UART5_DMA_PRIORITY       0
#define STM32_UART_USART6_DMA_PRIORITY      0
#define STM32_UART_UART7_DMA_PRIORITY       0
#define STM32_UART_UART8_DMA_PRIORITY       0
#define STM32_UART_DMA_ERROR_HOOK(uartp)    osalSysHalt("DMA failure")

/*
 * USB driver system settings.
 */
#define STM32_USB_USE_OTG1                  FALSE
#define STM32_USB_USE_OTG2                  FALSE
#define STM32_USB_OTG1_IRQ_PRIORITY         14
#define STM32_USB_OTG2_IRQ_PRIORITY         14
#define STM32_USB_OTG1_RX_FIFO_SIZE         512
#define STM32_USB_OTG2_RX_FIFO_SIZE         1024
#define STM32_USB_OTG_THREAD_PRIO           LOWPRIO
#define STM32_USB_OTG_THREAD_STACK_SIZE     128
#define STM32_USB_OTGFIFO_FILL_BASEPRI      0

/*
 * WDG driver system settings.
 */
#define STM32_WDG_USE_IWDG                  FALSE

#endif /* _MCUCONF_H_ */
id='n1274' href='#n1274'>1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
--  Statements synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Ada.Unchecked_Deallocation;

with Grt.Types; use Grt.Types;
with Grt.Algos;
with Grt.Severity; use Grt.Severity;
with Areapools;
with Name_Table;
with Std_Names;
with Errorout; use Errorout;
with Files_Map;
with Simple_IO;

with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Sem_Expr;
with Vhdl.Sem_Inst;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Std_Package;
with Vhdl.Evaluation;
with Vhdl.Ieee.Std_Logic_1164;

with PSL.Types;
with PSL.Nodes;
with PSL.Subsets;
with PSL.NFAs;

with Elab.Memtype; use Elab.Memtype;
with Elab.Vhdl_Heap;
with Elab.Vhdl_Types; use Elab.Vhdl_Types;
with Elab.Vhdl_Expr;
with Elab.Debugger;

with Synth.Errors; use Synth.Errors;
with Synth.Vhdl_Decls; use Synth.Vhdl_Decls;
with Synth.Vhdl_Expr; use Synth.Vhdl_Expr;
with Synth.Vhdl_Insts; use Synth.Vhdl_Insts;
with Synth.Source;
with Synth.Vhdl_Static_Proc;
with Synth.Flags;
with Synth.Vhdl_Context; use Synth.Vhdl_Context;

with Netlists.Builders; use Netlists.Builders;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Locations; use Netlists.Locations;

package body Synth.Vhdl_Stmts is
   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node);

   procedure Set_Location (N : Net; Loc : Node)
     renames Synth.Source.Set_Location;

   function Synth_Waveform (Syn_Inst : Synth_Instance_Acc;
                            Wf : Node;
                            Targ_Type : Type_Acc) return Valtyp
   is
      Res : Valtyp;
   begin
      if Get_Kind (Wf) = Iir_Kind_Unaffected_Waveform then
         --  TODO
         raise Internal_Error;
      end if;
      if Get_Chain (Wf) /= Null_Node then
         --  Warning.
         null;
      end if;
      if Get_Time (Wf) /= Null_Node then
         --  Warning
         null;
      end if;
      if Targ_Type = null then
         return Synth_Expression (Syn_Inst, Get_We_Value (Wf));
      else
         Res := Synth_Expression_With_Type
           (Syn_Inst, Get_We_Value (Wf), Targ_Type);
         Res := Synth_Subtype_Conversion
           (Get_Build (Syn_Inst), Res, Targ_Type, False, Wf);
         return Res;
      end if;
   end Synth_Waveform;

   procedure Synth_Assignment_Prefix (Syn_Inst : Synth_Instance_Acc;
                                      Pfx : Node;
                                      Dest_Base : out Valtyp;
                                      Dest_Typ : out Type_Acc;
                                      Dest_Off : out Value_Offsets;
                                      Dest_Dyn : out Dyn_Name) is
   begin
      case Get_Kind (Pfx) is
         when Iir_Kind_Simple_Name =>
            Synth_Assignment_Prefix (Syn_Inst, Get_Named_Entity (Pfx),
                                     Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
         when Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Interface_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Constant_Declaration
           | Iir_Kind_File_Declaration
           | Iir_Kind_Interface_File_Declaration
           | Iir_Kind_Non_Object_Alias_Declaration
           | Iir_Kind_Object_Alias_Declaration =>
            declare
               Targ : constant Valtyp := Get_Value (Syn_Inst, Pfx);
            begin
               Dest_Dyn := No_Dyn_Name;
               Dest_Typ := Targ.Typ;

               if Targ.Val.Kind = Value_Alias then
                  --  Replace alias by the aliased name.
                  Dest_Base := (Targ.Val.A_Typ, Targ.Val.A_Obj);
                  Dest_Off := Targ.Val.A_Off;
               else
                  Dest_Base := Targ;
                  Dest_Off := (0, 0);
               end if;
            end;
         when Iir_Kind_Function_Call =>
            Dest_Base := Synth_Expression (Syn_Inst, Pfx);
            Dest_Typ := Dest_Base.Typ;
            Dest_Off := (0, 0);
            Dest_Dyn := No_Dyn_Name;

         when Iir_Kind_Indexed_Name =>
            declare
               Voff : Net;
               Off : Value_Offsets;
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
               Strip_Const (Dest_Base);
               Synth_Indexed_Name (Syn_Inst, Pfx, Dest_Typ, Voff, Off);

               if Voff = No_Net then
                  --  Static index.
                  Dest_Off := Dest_Off + Off;
               else
                  --  Dynamic index.
                  if Dest_Dyn.Voff = No_Net then
                     --  The first one.
                     Dest_Dyn := (Pfx_Off => Dest_Off,
                                  Pfx_Typ => Dest_Typ,
                                  Voff => Voff);
                     Dest_Off := Off;
                  else
                     --  Nested one.
                     --  FIXME
                     Dest_Off := Dest_Off + Off;
                  --  if Dest_Off /= (0, 0) then
                  --     Error_Msg_Synth (+Pfx, "nested memory not supported");
                  --  end if;

                     Dest_Dyn.Voff := Build_Addidx
                       (Get_Build (Syn_Inst), Dest_Dyn.Voff, Voff);
                     Set_Location (Dest_Dyn.Voff, Pfx);
                  end if;
               end if;

               Dest_Typ := Get_Array_Element (Dest_Typ);
            end;

         when Iir_Kind_Selected_Element =>
            declare
               Idx : constant Iir_Index32 :=
                 Get_Element_Position (Get_Named_Entity (Pfx));
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
               Dest_Off.Net_Off :=
                 Dest_Off.Net_Off + Dest_Typ.Rec.E (Idx + 1).Boff;
               Dest_Off.Mem_Off :=
                 Dest_Off.Mem_Off + Dest_Typ.Rec.E (Idx + 1).Moff;

               Dest_Typ := Dest_Typ.Rec.E (Idx + 1).Typ;
            end;

         when Iir_Kind_Slice_Name =>
            declare
               Pfx_Bnd : Bound_Type;
               El_Typ : Type_Acc;
               Res_Bnd : Bound_Type;
               Sl_Voff : Net;
               Sl_Off : Value_Offsets;
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
               Strip_Const (Dest_Base);

               Get_Onedimensional_Array_Bounds (Dest_Typ, Pfx_Bnd, El_Typ);
               Synth_Slice_Suffix (Syn_Inst, Pfx, Pfx_Bnd, El_Typ,
                                   Res_Bnd, Sl_Voff, Sl_Off);


               if Sl_Voff = No_Net then
                  --  Fixed slice.
                  Dest_Typ := Create_Onedimensional_Array_Subtype
                    (Dest_Typ, Res_Bnd);
                  Dest_Off.Net_Off := Dest_Off.Net_Off + Sl_Off.Net_Off;
                  Dest_Off.Mem_Off := Dest_Off.Mem_Off + Sl_Off.Mem_Off;
               else
                  --  Variable slice.
                  if Dest_Dyn.Voff = No_Net then
                     --  First one.
                     Dest_Dyn := (Pfx_Off => Dest_Off,
                                  Pfx_Typ => Dest_Typ,
                                  Voff => Sl_Voff);
                     Dest_Off := Sl_Off;
                  else
                     --  Nested.
                     if Dest_Off /= (0, 0) then
                        Error_Msg_Synth (+Pfx, "nested memory not supported");
                     end if;

                     Dest_Dyn.Voff := Build_Addidx
                       (Get_Build (Syn_Inst), Dest_Dyn.Voff, Sl_Voff);
                     Set_Location (Dest_Dyn.Voff, Pfx);
                  end if;
                  Dest_Typ := Create_Slice_Type (Res_Bnd.Len, El_Typ);
               end if;
            end;

         when Iir_Kind_Implicit_Dereference
           | Iir_Kind_Dereference =>
            Synth_Assignment_Prefix
              (Syn_Inst, Get_Prefix (Pfx),
               Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
            if Dest_Off /= (0, 0) and then Dest_Dyn.Voff /= No_Net then
               raise Internal_Error;
            end if;
            Dest_Base := Elab.Vhdl_Heap.Synth_Dereference
              (Read_Access (Dest_Base));
            Dest_Typ := Dest_Base.Typ;

         when others =>
            Error_Kind ("synth_assignment_prefix", Pfx);
      end case;
   end Synth_Assignment_Prefix;

   type Target_Kind is
     (
      --  The target is an object or a static part of it.
      Target_Simple,

      --  The target is an aggregate.
      Target_Aggregate,

      --  The assignment is dynamically indexed.
      Target_Memory
     );

   type Target_Info (Kind : Target_Kind := Target_Simple) is record
      --  In all cases, the type of the target is known or computed.
      Targ_Type : Type_Acc;

      case Kind is
         when Target_Simple =>
            --  For a simple target, the destination is known.
            Obj : Valtyp;
            Off : Value_Offsets;
         when Target_Aggregate =>
            --  For an aggregate: the type is computed and the details will
            --  be handled at the assignment.
            Aggr : Node;
         when Target_Memory =>
            --  For a memory: the destination is known.
            Mem_Obj : Valtyp;
            --  The dynamic offset.
            Mem_Dyn : Dyn_Name;
            --  Offset of the data to be accessed from the memory.
            Mem_Doff : Uns32;
      end case;
   end record;

   type Target_Info_Array is array (Natural range <>) of Target_Info;

   function Synth_Aggregate_Target_Type (Syn_Inst : Synth_Instance_Acc;
                                         Target : Node) return Type_Acc
   is
      Targ_Type : constant Node := Get_Type (Target);
      Base_Type : constant Node := Get_Base_Type (Targ_Type);
      Base_Typ : Type_Acc;
      Bnd : Bound_Type;
      Len : Uns32;
      Res : Type_Acc;
   begin
      Base_Typ := Get_Subtype_Object (Syn_Inst, Base_Type);
      --  It's a basetype, so not bounded.
      pragma Assert (Base_Typ.Kind = Type_Unbounded_Vector);

      if Is_Fully_Constrained_Type (Targ_Type) then
         --  If the aggregate subtype is known, just use it.
         Bnd := Vhdl_Expr.Synth_Array_Bounds (Syn_Inst, Targ_Type, 1);
      else
         --  Ok, so the subtype of the aggregate is not known, in general
         --  because the length of an element is not known.  That's with
         --  vhdl-2008.
         Len := 0;
         declare
            Choice : Node;
            El : Node;
            El_Typ : Type_Acc;
         begin
            Choice := Get_Association_Choices_Chain (Target);
            while Choice /= Null_Node loop
               pragma Assert (Get_Kind (Choice) = Iir_Kind_Choice_By_None);
               El := Get_Associated_Expr (Choice);
               El_Typ := Elab.Vhdl_Expr.Exec_Type_Of_Object (Syn_Inst, El);
               Bnd := Get_Array_Bound (El_Typ, 1);
               Len := Len + Bnd.Len;
               Choice := Get_Chain (Choice);
            end loop;
         end;

         --  Compute the range.
         declare
            Idx_Type : constant Node := Get_Index_Type (Base_Type, 0);
            Idx_Typ : Type_Acc;
         begin
            Idx_Typ := Get_Subtype_Object (Syn_Inst, Idx_Type);
            Bnd := (Dir => Idx_Typ.Drange.Dir,
                    Left => Int32 (Idx_Typ.Drange.Left),
                    Right => 0,
                    Len => Len);
            case Bnd.Dir is
               when Dir_To =>
                  Bnd.Right := Bnd.Left + Int32 (Len);
               when Dir_Downto =>
                  Bnd.Right := Bnd.Left - Int32 (Len);
            end case;
         end;
      end if;

      --  Compute the type.
      case Base_Typ.Kind is
         when Type_Unbounded_Vector =>
            Res := Create_Vector_Type (Bnd, Base_Typ.Uvec_El);
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Synth_Aggregate_Target_Type;

   function Synth_Target (Syn_Inst : Synth_Instance_Acc;
                          Target : Node) return Target_Info is
   begin
      case Get_Kind (Target) is
         when Iir_Kind_Aggregate =>
            return Target_Info'(Kind => Target_Aggregate,
                                Targ_Type => Synth_Aggregate_Target_Type
                                  (Syn_Inst, Target),
                                Aggr => Target);
         when Iir_Kind_Simple_Name
           | Iir_Kind_Selected_Element
           | Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Indexed_Name
           | Iir_Kind_Slice_Name
           | Iir_Kind_Dereference =>
            declare
               Base : Valtyp;
               Typ : Type_Acc;
               Off : Value_Offsets;

               Dyn : Dyn_Name;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Target, Base, Typ, Off, Dyn);
               if Dyn.Voff = No_Net then
                  --  FIXME: check index.
                  return Target_Info'(Kind => Target_Simple,
                                      Targ_Type => Typ,
                                      Obj => Base,
                                      Off => Off);
               else
                  return Target_Info'(Kind => Target_Memory,
                                      Targ_Type => Typ,
                                      Mem_Obj => Base,
                                      Mem_Dyn => Dyn,
                                      Mem_Doff => Off.Net_Off);
               end if;
            end;
         when others =>
            Error_Kind ("synth_target", Target);
      end case;
   end Synth_Target;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Target_Info;
                               Val : Valtyp;
                               Loc : Node);

   --  Extract a part of VAL from a target aggregate at offset OFF (offset
   --  in the array).
   function Aggregate_Extract (Ctxt : Context_Acc;
                               Val : Valtyp;
                               Off : Uns32;
                               Typ : Type_Acc;
                               Loc : Node) return Valtyp
   is
      El_Typ : constant Type_Acc := Get_Array_Element (Val.Typ);
   begin
      case Val.Val.Kind is
         when Value_Net
           | Value_Wire =>
            declare
               N : Net;
            begin
               N := Build2_Extract
                 (Ctxt, Get_Net (Ctxt, Val), Off * El_Typ.W, Typ.W);
               Set_Location (N, Loc);
               return Create_Value_Net (N, Typ);
            end;
         when Value_Memory =>
            declare
               Res : Valtyp;
            begin
               Res := Create_Value_Memory (Typ);
               --  Need to reverse offsets.
               Copy_Memory
                 (Res.Val.Mem,
                  Val.Val.Mem + (Val.Typ.Sz - Size_Type (Off + 1) * El_Typ.Sz),
                  Typ.Sz);
               return Res;
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Aggregate_Extract;

   procedure Synth_Assignment_Aggregate (Syn_Inst : Synth_Instance_Acc;
                                         Target : Node;
                                         Target_Typ : Type_Acc;
                                         Val : Valtyp;
                                         Loc : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Targ_Bnd : constant Bound_Type := Get_Array_Bound (Target_Typ, 1);
      Choice : Node;
      Assoc : Node;
      Pos : Uns32;
      Targ_Info : Target_Info;
   begin
      Choice := Get_Association_Choices_Chain (Target);
      Pos := Targ_Bnd.Len;
      while Is_Valid (Choice) loop
         Assoc := Get_Associated_Expr (Choice);
         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_None =>
               Targ_Info := Synth_Target (Syn_Inst, Assoc);
               if Get_Element_Type_Flag (Choice) then
                  Pos := Pos - 1;
               else
                  Pos := Pos - Get_Array_Bound (Targ_Info.Targ_Type, 1).Len;
               end if;
               Synth_Assignment
                 (Syn_Inst, Targ_Info,
                  Aggregate_Extract (Ctxt, Val, Pos,
                                     Targ_Info.Targ_Type, Assoc),
                  Loc);
            when others =>
               Error_Kind ("synth_assignment_aggregate", Choice);
         end case;
         Choice := Get_Chain (Choice);
      end loop;
   end Synth_Assignment_Aggregate;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Target_Info;
                               Val : Valtyp;
                               Loc : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      V : Valtyp;
      W : Wire_Id;
   begin
      V := Synth_Subtype_Conversion (Ctxt, Val, Target.Targ_Type, False, Loc);
      pragma Unreferenced (Val);
      if V = No_Valtyp then
         --  In case of error.
         return;
      end if;

      case Target.Kind is
         when Target_Aggregate =>
            Synth_Assignment_Aggregate
              (Syn_Inst, Target.Aggr, Target.Targ_Type, V, Loc);
         when Target_Simple =>
            if V.Typ.Sz = 0 then
               --  If there is nothing to assign (like a null slice),
               --  return now.
               return;
            end if;

            if Target.Obj.Val.Kind = Value_Wire then
               W := Get_Value_Wire (Target.Obj.Val);
               if Is_Static (V.Val)
                 and then V.Typ.Sz = Target.Obj.Typ.Sz
               then
                  pragma Assert (Target.Off = (0, 0));
                  Phi_Assign_Static (W, Unshare (Get_Memtyp (V)));
               else
                  if V.Typ.W = 0 then
                     --  Forget about null wires.
                     return;
                  end if;
                  Phi_Assign_Net
                    (Ctxt, W, Get_Net (Ctxt, V), Target.Off.Net_Off);
               end if;
            else
               if not Is_Static (V.Val) then
                  --  Maybe the error message is too cryptic ?
                  Error_Msg_Synth
                    (+Loc, "cannot assign a net to a static value");
               else
                  Strip_Const (V);
                  Copy_Memory (Target.Obj.Val.Mem + Target.Off.Mem_Off,
                               V.Val.Mem, V.Typ.Sz);
               end if;
            end if;
         when Target_Memory =>
            declare
               Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
               W : constant Wire_Id := Get_Value_Wire (Target.Mem_Obj.Val);
               N : Net;
            begin
               N := Get_Current_Assign_Value
                 (Ctxt, W,
                  Target.Mem_Dyn.Pfx_Off.Net_Off, Target.Mem_Dyn.Pfx_Typ.W);
               N := Build_Dyn_Insert (Ctxt, N, Get_Net (Ctxt, V),
                                      Target.Mem_Dyn.Voff, Target.Mem_Doff);
               Set_Location (N, Loc);
               Phi_Assign_Net (Ctxt, W, N, Target.Mem_Dyn.Pfx_Off.Net_Off);
            end;
      end case;
   end Synth_Assignment;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Node;
                               Val : Valtyp;
                               Loc : Node)
   is
      Info : Target_Info;
   begin
      Info := Synth_Target (Syn_Inst, Target);
      Synth_Assignment (Syn_Inst, Info, Val, Loc);
   end Synth_Assignment;

   function Synth_Read_Memory (Syn_Inst : Synth_Instance_Acc;
                               Obj : Valtyp;
                               Res_Typ : Type_Acc;
                               Off : Uns32;
                               Dyn : Dyn_Name;
                               Loc : Node) return Valtyp
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      N : Net;
   begin
      N := Get_Net (Ctxt, Obj);
      if Dyn.Voff /= No_Net then
         Synth.Source.Set_Location_Maybe (N, Loc);
         if Res_Typ.W /= 0 then
            --  Do not try to extract if the net is null.
            N := Build_Dyn_Extract (Ctxt, N, Dyn.Voff,
                                    Off + Dyn.Pfx_Off.Net_Off, Res_Typ.W);
         end if;
      else
         pragma Assert (not Is_Static (Obj.Val));
         N := Build2_Extract (Ctxt, N, Off, Res_Typ.W);
      end if;
      Set_Location (N, Loc);
      return Create_Value_Net (N, Res_Typ);
   end Synth_Read_Memory;

   function Synth_Read (Syn_Inst : Synth_Instance_Acc;
                        Targ : Target_Info;
                        Loc : Node) return Valtyp
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      N : Net;
   begin
      case Targ.Kind is
         when Target_Simple =>
            N := Build2_Extract (Ctxt, Get_Net (Ctxt, Targ.Obj),
                                 Targ.Off.Net_Off, Targ.Targ_Type.W);
            return Create_Value_Net (N, Targ.Targ_Type);
         when Target_Aggregate =>
            raise Internal_Error;
         when Target_Memory =>
            return Synth_Read_Memory (Syn_Inst, Targ.Mem_Obj, Targ.Targ_Type,
                                      0, Targ.Mem_Dyn, Loc);
      end case;
   end Synth_Read;

   --  Concurrent or sequential simple signal assignment
   procedure Synth_Simple_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Valtyp;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Val := Synth_Waveform
        (Syn_Inst, Get_Waveform_Chain (Stmt), Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Simple_Signal_Assignment;

   procedure Synth_Conditional_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Targ : Target_Info;
      Cond : Node;
      Cwf : Node;
      Inp : Input;
      Val, Cond_Val : Valtyp;
      Cond_Net : Net;
      First, Last : Net;
      V : Net;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Last := No_Net;
      Cwf := Get_Conditional_Waveform_Chain (Stmt);
      Cond := Null_Node;
      while Cwf /= Null_Node loop
         Val := Synth_Waveform
           (Syn_Inst, Get_Waveform_Chain (Cwf), Targ.Targ_Type);
         if Val = No_Valtyp then
            --  Mark the error, but try to continue.
            Set_Error (Syn_Inst);
         else
            V := Get_Net (Ctxt, Val);
            Cond := Get_Condition (Cwf);
            if Cond /= Null_Node then
               Cond_Val := Synth_Expression (Syn_Inst, Cond);
               if Cond_Val = No_Valtyp then
                  Cond_Net := Build_Const_UB32 (Ctxt, 0, 1);
               else
                  Cond_Net := Get_Net (Ctxt, Cond_Val);
               end if;

               V := Build_Mux2 (Ctxt, Cond_Net, No_Net, V);
               Set_Location (V, Cwf);
            end if;

            if Last /= No_Net then
               Inp := Get_Input (Get_Net_Parent (Last), 1);
               Connect (Inp, V);
            else
               First := V;
            end if;
            Last := V;
         end if;
         Cwf := Get_Chain (Cwf);
      end loop;
      if Cond /= Null_Node then
         pragma Assert (Last /= No_Net);
         Inp := Get_Input (Get_Net_Parent (Last), 1);
         if Get_Driver (Inp) = No_Net then
            --  No else.
            Val := Synth_Read (Syn_Inst, Targ, Stmt);
            Connect (Inp, Get_Net (Ctxt, Val));
         end if;
      end if;
      Val := Create_Value_Net (First, Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Conditional_Signal_Assignment;

   procedure Synth_Variable_Assignment (C : Seq_Context; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Valtyp;
   begin
      Targ := Synth_Target (C.Inst, Get_Target (Stmt));
      Val := Synth_Expression_With_Type
        (C.Inst, Get_Expression (Stmt), Targ.Targ_Type);
      if Val = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      Synth_Assignment (C.Inst, Targ, Val, Stmt);
   end Synth_Variable_Assignment;

   procedure Synth_Conditional_Variable_Assignment
     (C : Seq_Context; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Target : constant Node := Get_Target (Stmt);
      Targ_Type : Type_Acc;
      Cond : Node;
      Ce : Node;
      Val, Cond_Val : Valtyp;
      V : Net;
      First, Last : Net;
   begin
      Targ_Type := Get_Subtype_Object (C.Inst, Get_Type (Target));
      Last := No_Net;
      Ce := Get_Conditional_Expression_Chain (Stmt);
      while Ce /= Null_Node loop
         Val := Synth_Expression_With_Type
           (C.Inst, Get_Expression (Ce), Targ_Type);
         V := Get_Net (Ctxt, Val);
         Cond := Get_Condition (Ce);
         if Cond /= Null_Node then
            Cond_Val := Synth_Expression (C.Inst, Cond);
            V := Build_Mux2 (Ctxt, Get_Net (Ctxt, Cond_Val), No_Net, V);
            Set_Location (V, Ce);
         end if;

         if Last /= No_Net then
            Connect (Get_Input (Get_Net_Parent (Last), 1), V);
         else
            First := V;
         end if;
         Last := V;
         Ce := Get_Chain (Ce);
      end loop;
      Val := Create_Value_Net (First, Targ_Type);
      Synth_Assignment (C.Inst, Target, Val, Stmt);
   end Synth_Conditional_Variable_Assignment;

   procedure Synth_If_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Els : constant Node := Get_Else_Clause (Stmt);
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Cond_Val : Valtyp;
      Cond_Net : Net;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Cond_Val := Synth_Expression (C.Inst, Cond);
      if Cond_Val = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      if Is_Static_Val (Cond_Val.Val) then
         Strip_Const (Cond_Val);
         if Read_Discrete (Get_Value_Memtyp (Cond_Val)) = 1 then
            --  True.
            Synth_Sequential_Statements
              (C, Get_Sequential_Statement_Chain (Stmt));
         else
            pragma Assert (Read_Discrete (Get_Value_Memtyp (Cond_Val)) = 0);
            if Is_Valid (Els) then
               --  Else part
               if Is_Null (Get_Condition (Els)) then
                  --  Final else part.
                  Synth_Sequential_Statements
                    (C, Get_Sequential_Statement_Chain (Els));
               else
                  --  Elsif.  Handled as a nested if.
                  Synth_If_Statement (C, Els);
               end if;
            end if;
         end if;
      else
         --  The statements for the 'then' part.
         Push_Phi;
         Synth_Sequential_Statements
           (C, Get_Sequential_Statement_Chain (Stmt));
         Pop_Phi (Phi_True);

         Push_Phi;

         if Is_Valid (Els) then
            if Is_Null (Get_Condition (Els)) then
               --  Final else part.
               Synth_Sequential_Statements
                 (C, Get_Sequential_Statement_Chain (Els));
            else
               --  Elsif.  Handled as a nested if.
               Synth_If_Statement (C, Els);
            end if;
         end if;

         Pop_Phi (Phi_False);

         Cond_Net := Get_Net (Ctxt, Cond_Val);
         Merge_Phis (Ctxt, Cond_Net, Phi_True, Phi_False, Get_Location (Stmt));
      end if;
   end Synth_If_Statement;

   type Alternative_Index is new Int32;

   --  Only keep '0' and '1' in choices for std_logic.
   function Ignore_Choice_Logic (V : Ghdl_U8; Loc : Node) return Boolean is
   begin
      case V is
         when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos =>
            return False;
         when Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
            Warning_Msg_Synth
              (+Loc, "choice with 'L' or 'H' value is ignored");
            return True;
         when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos =>
            Warning_Msg_Synth (+Loc, "choice with meta-value is ignored");
            return True;
         when others =>
            --  Only 9 values.
            raise Internal_Error;
      end case;
   end Ignore_Choice_Logic;

   function Ignore_Choice_Expression (V : Valtyp; Loc : Node) return Boolean is
   begin
      case V.Typ.Kind is
         when Type_Bit =>
            return False;
         when Type_Logic =>
            if V.Typ = Logic_Type then
               return Ignore_Choice_Logic (Read_U8 (V.Val.Mem), Loc);
            else
               return False;
            end if;
         when Type_Discrete =>
            return False;
         when Type_Vector =>
            if V.Typ.Vec_El = Logic_Type then
               for I in 1 .. Size_Type (V.Typ.Vbound.Len) loop
                  if Ignore_Choice_Logic (Read_U8 (V.Val.Mem + (I - 1)), Loc)
                  then
                     return True;
                  end if;
               end loop;
               return False;
            else
               return False;
            end if;
         when Type_Array =>
            return False;
         when others =>
            raise Internal_Error;
      end case;
   end Ignore_Choice_Expression;

   --  Create the condition for choices of CHOICE chain belonging to the same
   --  alternative.  Update CHOICE to the next alternative.
   procedure Synth_Choice (Syn_Inst : Synth_Instance_Acc;
                           Sel : Net;
                           Choice_Typ : Type_Acc;
                           Nets : in out Net_Array;
                           Other_Choice : in out Nat32;
                           Choice_Idx : in out Nat32;
                           Choice : in out Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Cond : Net;
      Res : Net;
   begin
      Res := No_Net;
      loop
         case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
            when Iir_Kind_Choice_By_Expression =>
               declare
                  V : Valtyp;
               begin
                  V := Synth_Expression_With_Basetype
                    (Syn_Inst, Get_Choice_Expression (Choice));
                  V := Synth_Subtype_Conversion
                    (Ctxt, V, Choice_Typ, False, Choice);
                  if Ignore_Choice_Expression (V, Choice) then
                     Cond := No_Net;
                  else
                     Cond := Build_Compare
                       (Ctxt, Id_Eq, Sel, Get_Net (Ctxt, V));
                     Set_Location (Cond, Choice);
                  end if;
               end;

            when Iir_Kind_Choice_By_Range =>
               declare
                  Rng : Discrete_Range_Type;
                  Cmp_L, Cmp_R : Module_Id;
                  L, R : Net;
               begin
                  Synth_Discrete_Range
                    (Syn_Inst, Get_Choice_Range (Choice), Rng);

                  if Rng.Is_Signed then
                     case Rng.Dir is
                        when Dir_To =>
                           Cmp_L := Id_Sge;
                           Cmp_R := Id_Sle;
                        when Dir_Downto =>
                           Cmp_L := Id_Sle;
                           Cmp_R := Id_Sge;
                     end case;
                     L := Build2_Const_Int (Ctxt, Rng.Left, Choice_Typ.W);
                     R := Build2_Const_Int (Ctxt, Rng.Right, Choice_Typ.W);
                  else
                     case Rng.Dir is
                        when Dir_To =>
                           Cmp_L := Id_Uge;
                           Cmp_R := Id_Ule;
                        when Dir_Downto =>
                           Cmp_L := Id_Ule;
                           Cmp_R := Id_Uge;
                     end case;
                     L := Build2_Const_Uns
                       (Ctxt, Uns64 (Rng.Left), Choice_Typ.W);
                     R := Build2_Const_Uns
                       (Ctxt, Uns64 (Rng.Right), Choice_Typ.W);
                  end if;

                  L := Build_Compare (Ctxt, Cmp_L, Sel, L);
                  Set_Location (L, Choice);

                  R := Build_Compare (Ctxt, Cmp_R, Sel, R);
                  Set_Location (R, Choice);

                  Cond := Build_Dyadic (Ctxt, Id_And, L, R);
                  Set_Location (Cond, Choice);
               end;

            when Iir_Kind_Choice_By_Others =>
               --  Last and only one.
               pragma Assert (Res = No_Net);
               Other_Choice := Choice_Idx + 1;
               pragma Assert (Get_Chain (Choice) = Null_Node);
               Choice := Null_Node;
               return;
         end case;

         if not Get_Same_Alternative_Flag (Choice) then
            --  First choice.
            Choice_Idx := Choice_Idx + 1;
            Res := Cond;
         else
            if Cond = No_Net then
               --  No new condition.
               null;
            else
               if Res /= No_Net then
                  Res := Build_Dyadic (Ctxt, Id_Or, Res, Cond);
                  Set_Location (Res, Choice);
               else
                  Res := Cond;
               end if;
            end if;
         end if;

         Choice := Get_Chain (Choice);
         exit when Choice = Null_Node
           or else not Get_Same_Alternative_Flag (Choice);
      end loop;
      if Res = No_Net then
         Res := Build_Const_UB32 (Ctxt, 0, 1);
      end if;
      Nets (Choice_Idx) := Res;
   end Synth_Choice;

   type Alternative_Data_Type is record
      Asgns : Seq_Assign;
      Val : Net;
   end record;
   type Alternative_Data_Array is
     array (Alternative_Index range <>) of Alternative_Data_Type;
   type Alternative_Data_Acc is access Alternative_Data_Array;
   procedure Free_Alternative_Data_Array is new Ada.Unchecked_Deallocation
     (Alternative_Data_Array, Alternative_Data_Acc);

   type Wire_Id_Array is array (Natural range <>) of Wire_Id;
   type Wire_Id_Array_Acc is access Wire_Id_Array;
   procedure Free_Wire_Id_Array is new Ada.Unchecked_Deallocation
     (Wire_Id_Array, Wire_Id_Array_Acc);

   procedure Sort_Wire_Id_Array (Arr : in out Wire_Id_Array)
   is
      function Lt (Op1, Op2 : Natural) return Boolean is
      begin
         return Is_Lt (Arr (Op1), Arr (Op2));
      end Lt;

      procedure Swap (From : Natural; To : Natural)
      is
         T : Wire_Id;
      begin
         T := Arr (From);
         Arr (From) := Arr (To);
         Arr (To) := T;
      end Swap;

      procedure Wid_Heap_Sort is
         new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
   begin
      Wid_Heap_Sort (Arr'Length);
   end Sort_Wire_Id_Array;

   --  Count the number of wires used in all the alternatives.
   function Count_Wires_In_Alternatives (Alts : Alternative_Data_Array)
                                        return Natural
   is
      Res : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Res := 0;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if not Get_Wire_Mark (W) then
               Res := Res + 1;
               Set_Wire_Mark (W, True);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      return Res;
   end Count_Wires_In_Alternatives;

   --  Fill ARR from wire_id of ALTS.
   procedure Fill_Wire_Id_Array (Arr : out Wire_Id_Array;
                                 Alts : Alternative_Data_Array)
   is
      Idx : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Idx := Arr'First;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if Get_Wire_Mark (W) then
               Arr (Idx) := W;
               Idx := Idx + 1;
               Set_Wire_Mark (W, False);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      pragma Assert (Idx = Arr'Last + 1);
   end Fill_Wire_Id_Array;

   type Seq_Assign_Value_Array_Acc is access Seq_Assign_Value_Array;
   procedure Free_Seq_Assign_Value_Array is new Ada.Unchecked_Deallocation
     (Seq_Assign_Value_Array, Seq_Assign_Value_Array_Acc);

   function Is_Assign_Value_Array_Static
     (Wid : Wire_Id; Arr : Seq_Assign_Value_Array) return Memtyp
   is
      Res : Memtyp;
      Prev_Val : Memtyp;
   begin
      Prev_Val := Null_Memtyp;
      for I in Arr'Range loop
         case Arr (I).Is_Static is
            when False =>
               --  A value is not static.
               return Null_Memtyp;
            when Unknown =>
               if Prev_Val = Null_Memtyp then
                  --  First use of previous value.
                  if Get_Kind (Wid) /= Wire_Variable
                    or else not Is_Static_Wire (Wid)
                  then
                     --  The previous value is not static.
                     return Null_Memtyp;
                  end if;
                  Prev_Val := Get_Static_Wire (Wid);
                  if Res /= Null_Memtyp then
                     --  There is already a result.
                     if not Is_Equal (Res, Prev_Val) then
                        --  The previous value is different from the result.
                        return Null_Memtyp;
                     end if;
                  else
                     Res := Prev_Val;
                  end if;
               end if;
            when True =>
               if Res = Null_Memtyp then
                  --  First value.  Keep it.
                  Res := Arr (I).Val;
               else
                  if not Is_Equal (Res, Arr (I).Val) then
                     --  Value is different.
                     return  Null_Memtyp;
                  end if;
               end if;
         end case;
      end loop;
      return Res;
   end Is_Assign_Value_Array_Static;

   procedure Synth_Case_Statement_Dynamic
     (C : in out Seq_Context; Stmt : Node; Sel : Valtyp)
   is
      use Vhdl.Sem_Expr;
      Ctxt : constant Context_Acc := Get_Build (C.Inst);

      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);

      Case_Info : Choice_Info_Type;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      Nbr_Choices : Nat32;

      Pasgns : Seq_Assign_Value_Array_Acc;
      Nets : Net_Array_Acc;

      Nbr_Wires : Natural;
      Wires : Wire_Id_Array_Acc;

      Sel_Net : Net;
   begin
      --  Strategies to synthesize a case statement.  Assume the selector is
      --  a net of W bits
      --  - a large mux, with 2**W inputs
      --    - if the number of choices is dense
      --    - if W is small
      --  - a onehot mux.  Each choice is converted to an single bit condition
      --    by adding a comparison operator (equal for single choice,
      --    inequalities for ranges, or for multiple choices). Only one of
      --    these conditions is true (plus 'others').
      --    - if the number of choices is sparse
      --    - large range choices
      --  - a tree of mux/mux2
      --    - large number of choices, densily grouped but sparsed compared
      --       to 2**W (eg: a partially filled memory)
      --    - divide and conquier

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      --Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));

      --  Compute number of non-default alternatives.
      Nbr_Choices := Nat32 (Case_Info.Nbr_Alternatives);
      if Case_Info.Others_Choice /= Null_Node then
         Nbr_Choices := Nbr_Choices - 1;
      end if;

      Nets := new Net_Array (1 .. Int32 (Alts'Last));

      Sel_Net := Get_Net (Ctxt, Sel);

      --  Synth statements and keep list of assignments.
      --  Also synth choices.
      declare
         Choice : Node;
         Choice_Idx, Other_Choice : Nat32;
         Phi : Phi_Type;
      begin
         Alt_Idx := 0;
         Choice_Idx := 0;
         Other_Choice := 0;

         Choice := Choices;
         while Is_Valid (Choice) loop
            --  Must be a choice for a new alternative.
            pragma Assert (not Get_Same_Alternative_Flag (Choice));

            --  A new sequence of statements.
            Alt_Idx := Alt_Idx + 1;

            Push_Phi;
            Synth_Sequential_Statements (C, Get_Associated_Chain (Choice));
            Pop_Phi (Phi);
            Alts (Alt_Idx).Asgns := Sort_Phi (Phi);

            Synth_Choice (C.Inst, Sel_Net, Sel.Typ,
                          Nets.all, Other_Choice, Choice_Idx, Choice);
         end loop;
         pragma Assert (Choice_Idx = Nbr_Choices);
         Others_Alt_Idx := Alternative_Index (Other_Choice);
      end;

      --  Create the one-hot vector.
      if Nbr_Choices = 0 then
         Sel_Net := No_Net;
      else
         Sel_Net := Build2_Concat (Ctxt, Nets (1 .. Nbr_Choices));
      end if;

      --  Create list of wire_id, sort it.
      Nbr_Wires := Count_Wires_In_Alternatives (Alts.all);
      Wires := new Wire_Id_Array (1 .. Nbr_Wires);
      Fill_Wire_Id_Array (Wires.all, Alts.all);
      Sort_Wire_Id_Array (Wires.all);

      --  Associate each choice with the assign node
      --  For each wire_id:
      --    Build mux2/mux4 tree (group by 4)
      Pasgns := new Seq_Assign_Value_Array (1 .. Int32 (Alts'Last));

      --  For each wire, compute the result.
      for I in Wires'Range loop
         declare
            Wi : constant Wire_Id := Wires (I);
            Last_Val : Net;
            Res_Inst : Instance;
            Res : Net;
            Default : Net;
            Min_Off, Off : Uns32;
            Wd : Width;
            List : Partial_Assign_List;
            Sval : Memtyp;
         begin
            --  Extract the value for each branch.
            for I in Alts'Range loop
               --  If there is an assignment to Wi in Alt, it will define the
               --  value.
               if Get_Wire_Id (Alts (I).Asgns) = Wi then
                  Pasgns (Int32 (I)) :=
                    Get_Seq_Assign_Value (Alts (I).Asgns);
                  Alts (I).Asgns := Get_Assign_Chain (Alts (I).Asgns);
               else
                  Pasgns (Int32 (I)) := (Is_Static => Unknown);
               end if;
            end loop;

            --  If:
            --  1) All present values in PASGNS are static
            --  2) There is no missing values *or* the previous value is
            --     static.
            --  3) The default value is unused *or* it is static
            --  4) All the values are equal.
            --  then assign directly.
            Sval := Is_Assign_Value_Array_Static (Wi, Pasgns.all);
            if Sval /= Null_Memtyp then
               --  Use static assignment.
               Phi_Assign_Static (Wi, Sval);
            else
               --  Compute the final value for each partial part of the wire.
               Partial_Assign_Init (List);
               Min_Off := 0;
               loop
                  Off := Min_Off;

                  --  Extract value of partial assignments to NETS.
                  Extract_Merge_Partial_Assigns
                    (Ctxt, Pasgns.all, Nets.all, Off, Wd);
                  exit when Off = Uns32'Last and Wd = Width'Last;

                  --  If a branch has no value, use the value before the case.
                  --  Also do it for the default value!
                  Last_Val := No_Net;
                  for I in Nets'Range loop
                     if Nets (I) = No_Net then
                        if Last_Val = No_Net then
                           Last_Val := Get_Current_Assign_Value
                             (Ctxt, Wi, Off, Wd);
                        end if;
                        Nets (I) := Last_Val;
                     end if;
                  end loop;

                  --  Extract default value (for missing alternative).
                  if Others_Alt_Idx /= 0 then
                     Default := Nets (Int32 (Others_Alt_Idx));
                  else
                     Default := Build_Const_X (Ctxt, Wd);
                  end if;

                  if Nbr_Choices = 0 then
                     Res := Default;
                  else
                     Res := Build_Pmux (Ctxt, Sel_Net, Default);
                     Res_Inst := Get_Net_Parent (Res);
                     Set_Location (Res_Inst, Get_Location (Stmt));

                     for I in 1 .. Nbr_Choices loop
                        Connect
                          (Get_Input (Res_Inst, Port_Nbr (2 + I - Nets'First)),
                           Nets (I));
                     end loop;
                  end if;

                  Partial_Assign_Append (List, New_Partial_Assign (Res, Off));
                  Min_Off := Off + Wd;
               end loop;

               Merge_Partial_Assigns (Ctxt, Wi, List);
            end if;
         end;
      end loop;

      --  free.
      Free_Wire_Id_Array (Wires);
      Free_Alternative_Data_Array (Alts);
      Free_Seq_Assign_Value_Array (Pasgns);
      Free_Net_Array (Nets);
   end Synth_Case_Statement_Dynamic;

   procedure Synth_Case_Statement_Static_Array
     (C : in out Seq_Context; Stmt : Node; Sel : Valtyp)
   is
      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);
      Choice : Node;
      Stmts : Node;
      Sel_Expr : Node;
      Sel_Val : Valtyp;
   begin
      --  Synth statements, extract choice value.
      Stmts := Null_Node;
      Choice := Choices;
      loop
         pragma Assert (Is_Valid (Choice));
         if not Get_Same_Alternative_Flag (Choice) then
            Stmts := Get_Associated_Chain (Choice);
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Sel_Expr := Get_Choice_Expression (Choice);
               Sel_Val := Synth_Expression_With_Basetype (C.Inst, Sel_Expr);
               if Is_Equal (Sel_Val, Sel) then
                  Synth_Sequential_Statements (C, Stmts);
                  exit;
               end if;
            when Iir_Kind_Choice_By_Others =>
               Synth_Sequential_Statements (C, Stmts);
               exit;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
   end Synth_Case_Statement_Static_Array;

   procedure Synth_Case_Statement_Static_Scalar
     (C : in out Seq_Context; Stmt : Node; Sel : Int64)
   is
      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);
      Choice : Node;
      Stmts : Node;
      Sel_Expr : Node;
   begin
      --  Synth statements, extract choice value.
      Stmts := Null_Node;
      Choice := Choices;
      loop
         pragma Assert (Is_Valid (Choice));
         if not Get_Same_Alternative_Flag (Choice) then
            Stmts := Get_Associated_Chain (Choice);
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Sel_Expr := Get_Choice_Expression (Choice);
               if Vhdl.Evaluation.Eval_Pos (Sel_Expr) = Sel then
                  Synth_Sequential_Statements (C, Stmts);
                  exit;
               end if;
            when Iir_Kind_Choice_By_Others =>
               Synth_Sequential_Statements (C, Stmts);
               exit;
            when Iir_Kind_Choice_By_Range =>
               declare
                  Bnd : Discrete_Range_Type;
                  Is_In : Boolean;
               begin
                  Synth_Discrete_Range
                    (C.Inst, Get_Choice_Range (Choice), Bnd);
                  case Bnd.Dir is
                     when Dir_To =>
                        Is_In := Sel >= Bnd.Left and Sel <= Bnd.Right;
                     when Dir_Downto =>
                        Is_In := Sel <= Bnd.Left and Sel >= Bnd.Right;
                  end case;
                  if Is_In then
                     Synth_Sequential_Statements (C, Stmts);
                     exit;
                  end if;
               end;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
   end Synth_Case_Statement_Static_Scalar;

   procedure Synth_Case_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Expr : constant Node := Get_Expression (Stmt);
      Sel : Valtyp;
   begin
      Sel := Synth_Expression_With_Basetype (C.Inst, Expr);
      Strip_Const (Sel);
      if Is_Static (Sel.Val) then
         case Sel.Typ.Kind is
            when Type_Bit
              | Type_Logic
              | Type_Discrete =>
               Synth_Case_Statement_Static_Scalar (C, Stmt,
                                                   Read_Discrete (Sel));
            when Type_Vector
              | Type_Array =>
               Synth_Case_Statement_Static_Array (C, Stmt, Sel);
            when others =>
               raise Internal_Error;
         end case;
      else
         Synth_Case_Statement_Dynamic (C, Stmt, Sel);
      end if;
   end Synth_Case_Statement;

   procedure Synth_Selected_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use Vhdl.Sem_Expr;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);

      Expr : constant Node := Get_Expression (Stmt);
      Choices : constant Node := Get_Selected_Waveform_Chain (Stmt);

      Targ : Target_Info;
      Targ_Type : Type_Acc;

      Case_Info : Choice_Info_Type;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      --  Array of choices.  Contains tuple of (Value, Alternative).
      Nbr_Choices : Nat32;

      Nets : Net_Array_Acc;


      Sel : Valtyp;
      Sel_Net : Net;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Targ_Type := Targ.Targ_Type;

      --  Create a net for the expression.
      Sel := Synth_Expression_With_Basetype (Syn_Inst, Expr);
      Sel_Net := Get_Net (Ctxt, Sel);

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      --  Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));

      --  Compute number of non-default alternatives.
      Nbr_Choices := Nat32 (Case_Info.Nbr_Alternatives);
      if Case_Info.Others_Choice /= Null_Node then
         Nbr_Choices := Nbr_Choices - 1;
      end if;

      Nets := new Net_Array (1 .. Nbr_Choices);

      --  Synth statements, extract choice value.
      declare
         Choice, Wf : Node;
         Val : Valtyp;
         Choice_Idx, Other_Choice : Nat32;
      begin
         Alt_Idx := 0;
         Choice_Idx := 0;
         Other_Choice := 0;

         Choice := Choices;
         while Is_Valid (Choice) loop
            pragma Assert (not Get_Same_Alternative_Flag (Choice));

            Wf := Get_Associated_Chain (Choice);
            Val := Synth_Waveform (Syn_Inst, Wf, Targ_Type);

            Alt_Idx := Alt_Idx + 1;
            Alts (Alt_Idx).Val := Get_Net (Ctxt, Val);

            Synth_Choice (Syn_Inst, Sel_Net, Sel.Typ,
                          Nets.all, Other_Choice, Choice_Idx, Choice);
         end loop;
         pragma Assert (Choice_Idx = Nbr_Choices);
         Others_Alt_Idx := Alternative_Index (Other_Choice);
      end;

      --  Create the one-hot vector.
      if Nbr_Choices = 0 then
         Sel_Net := No_Net;
      else
         Sel_Net := Build2_Concat (Ctxt, Nets (1 .. Nbr_Choices));
      end if;

      declare
         Res : Net;
         Res_Inst : Instance;
         Default : Net;
      begin
         --  Extract default value (for missing alternative).
         if Others_Alt_Idx /= 0 then
            Default := Alts (Others_Alt_Idx).Val;
         else
            Default := Build_Const_X (Ctxt, Targ_Type.W);
         end if;

         if Nbr_Choices = 0 then
            Res := Default;
         else
            Res := Build_Pmux (Ctxt, Sel_Net, Default);
            Res_Inst := Get_Net_Parent (Res);
            Set_Location (Res_Inst, Get_Location (Stmt));

            for I in 1 .. Nbr_Choices loop
               Connect
                 (Get_Input (Res_Inst, Port_Nbr (2 + I - Nets'First)),
                  Alts (Alternative_Index (I)).Val);
            end loop;
         end if;

         Synth_Assignment
           (Syn_Inst, Targ, Create_Value_Net (Res, Targ_Type), Stmt);
      end;

      --  free.
      Free_Alternative_Data_Array (Alts);
      Free_Net_Array (Nets);
   end Synth_Selected_Signal_Assignment;

   function Synth_Label (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
                         return Sname
   is
      Label : constant Name_Id := Get_Label (Stmt);
   begin
      if Label = Null_Identifier then
         return No_Sname;
      else
         return New_Sname_User (Label, Get_Sname (Syn_Inst));
      end if;
   end Synth_Label;

   function Is_Copyback_Interface (Inter : Node) return Boolean is
   begin
      case Iir_Parameter_Modes (Get_Mode (Inter)) is
         when Iir_In_Mode =>
            return False;
         when Iir_Out_Mode | Iir_Inout_Mode =>
            return Get_Kind (Inter) = Iir_Kind_Interface_Variable_Declaration;
      end case;
   end Is_Copyback_Interface;

   type Association_Iterator_Kind is
     (Association_Function,
      Association_Operator);

   type Association_Iterator_Init
     (Kind : Association_Iterator_Kind := Association_Function) is
   record
      Inter_Chain : Node;
      case Kind is
         when Association_Function =>
            Assoc_Chain : Node;
         when Association_Operator =>
            Left : Node;
            Right : Node;
      end case;
   end record;

   function Association_Iterator_Build (Inter_Chain : Node; Assoc_Chain : Node)
                                       return Association_Iterator_Init is
   begin
      return Association_Iterator_Init'(Kind => Association_Function,
                                        Inter_Chain => Inter_Chain,
                                        Assoc_Chain => Assoc_Chain);
   end Association_Iterator_Build;

   function Association_Iterator_Build
     (Inter_Chain : Node; Left : Node; Right : Node)
     return Association_Iterator_Init is
   begin
      return Association_Iterator_Init'(Kind => Association_Operator,
                                        Inter_Chain => Inter_Chain,
                                        Left => Left,
                                        Right => Right);
   end Association_Iterator_Build;

   function Count_Associations (Init : Association_Iterator_Init)
                               return Natural
   is
      Assoc : Node;
      Assoc_Inter : Node;
      Inter : Node;
      Nbr_Inout : Natural;
   begin
      case Init.Kind is
         when Association_Function =>
            Nbr_Inout := 0;

            Assoc := Init.Assoc_Chain;
            Assoc_Inter := Init.Inter_Chain;
            while Is_Valid (Assoc) loop
               Inter := Get_Association_Interface (Assoc, Assoc_Inter);

               if Is_Copyback_Interface (Inter) then
                  Nbr_Inout := Nbr_Inout + 1;
               end if;

               Next_Association_Interface (Assoc, Assoc_Inter);
            end loop;

            return Nbr_Inout;
         when Association_Operator =>
            return 0;
      end case;
   end Count_Associations;

   type Association_Iterator
     (Kind : Association_Iterator_Kind := Association_Function) is
   record
      Inter : Node;
      case Kind is
         when Association_Function =>
            First_Named_Assoc : Node;
            Next_Assoc : Node;
         when Association_Operator =>
            Op1 : Node;
            Op2 : Node;
      end case;
   end record;

   procedure Association_Iterate_Init (Iterator : out Association_Iterator;
                                       Init : Association_Iterator_Init) is
   begin
      case Init.Kind is
         when Association_Function =>
            Iterator := (Kind => Association_Function,
                         Inter => Init.Inter_Chain,
                         First_Named_Assoc => Null_Node,
                         Next_Assoc => Init.Assoc_Chain);
         when Association_Operator =>
            Iterator := (Kind => Association_Operator,
                         Inter => Init.Inter_Chain,
                         Op1 => Init.Left,
                         Op2 => Init.Right);
      end case;
   end Association_Iterate_Init;

   --  Return the next association.
   --  ASSOC can be:
   --  * an Iir_Kind_Association_By_XXX node (normal case)
   --  * Null_Iir if INTER is not associated (and has a default value).
   --  * an expression (for operator association).
   procedure Association_Iterate_Next (Iterator : in out Association_Iterator;
                                       Inter : out Node;
                                       Assoc : out Node)
   is
      Formal : Node;
   begin
      Inter := Iterator.Inter;
      if Inter = Null_Node then
         --  End of iterator.
         Assoc := Null_Node;
         return;
      else
         --  Advance to the next interface for the next call.
         Iterator.Inter := Get_Chain (Iterator.Inter);
      end if;

      case Iterator.Kind is
         when Association_Function =>
            if Iterator.First_Named_Assoc = Null_Node then
               Assoc := Iterator.Next_Assoc;
               if Assoc = Null_Node then
                  --  No more association: open association.
                  return;
               end if;
               Formal := Get_Formal (Assoc);
               if Formal = Null_Node then
                  --  Association by position.
                  --  Update for the next call.
                  Iterator.Next_Assoc := Get_Chain (Assoc);
                  return;
               end if;
               Iterator.First_Named_Assoc := Assoc;
            end if;

            --  Search by name.
            Assoc := Iterator.First_Named_Assoc;
            while Assoc /= Null_Node loop
               Formal := Get_Formal (Assoc);
               pragma Assert (Formal /= Null_Node);
               Formal := Get_Interface_Of_Formal (Formal);
               if Formal = Inter then
                  --  Found.
                  --  Optimize in case assocs are in order.
                  if Assoc = Iterator.First_Named_Assoc then
                     Iterator.First_Named_Assoc := Get_Chain (Assoc);
                  end if;
                  return;
               end if;
               Assoc := Get_Chain (Assoc);
            end loop;

            --  Not found: open association.
            return;

         when Association_Operator =>
            Assoc := Iterator.Op1;
            Iterator.Op1 := Iterator.Op2;
            Iterator.Op2 := Null_Node;
      end case;
   end Association_Iterate_Next;

   procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
                                           Caller_Inst : Synth_Instance_Acc;
                                           Init : Association_Iterator_Init;
                                           Infos : out Target_Info_Array)
   is
      pragma Assert (Infos'First = 1);
      Ctxt : constant Context_Acc := Get_Build (Caller_Inst);
      Inter : Node;
      Inter_Type : Type_Acc;
      Assoc : Node;
      Actual : Node;
      Val : Valtyp;
      Nbr_Inout : Natural;
      Iterator : Association_Iterator;
      Info : Target_Info;
   begin
      Set_Instance_Const (Subprg_Inst, True);

      Nbr_Inout := 0;

      --  Process in INTER order.
      Association_Iterate_Init (Iterator, Init);
      loop
         Association_Iterate_Next (Iterator, Inter, Assoc);
         exit when Inter = Null_Node;

         Inter_Type := Get_Subtype_Object (Caller_Inst, Get_Type (Inter));

         case Iir_Parameter_Modes (Get_Mode (Inter)) is
            when Iir_In_Mode =>
               if Assoc = Null_Node
                 or else Get_Kind (Assoc) = Iir_Kind_Association_Element_Open
               then
                  Actual := Get_Default_Value (Inter);
                  Val := Synth_Expression_With_Type
                    (Subprg_Inst, Actual, Inter_Type);
               else
                  if Get_Kind (Assoc) =
                    Iir_Kind_Association_Element_By_Expression
                  then
                     Actual := Get_Actual (Assoc);
                  else
                     Actual := Assoc;
                  end if;
                  Val := Synth_Expression_With_Type
                    (Caller_Inst, Actual, Inter_Type);
               end if;
            when Iir_Out_Mode | Iir_Inout_Mode =>
               Actual := Get_Actual (Assoc);
               Info := Synth_Target (Caller_Inst, Actual);

               case Iir_Kinds_Interface_Object_Declaration (Get_Kind (Inter))
                  is
                  when Iir_Kind_Interface_Constant_Declaration =>
                     raise Internal_Error;
                  when Iir_Kind_Interface_Variable_Declaration =>
                     --  Always pass by value.
                     Nbr_Inout := Nbr_Inout + 1;
                     Infos (Nbr_Inout) := Info;
                     if Info.Kind /= Target_Memory
                       and then Is_Static (Info.Obj.Val)
                     then
                        Val := Create_Value_Memory (Info.Targ_Type);
                        Copy_Memory (Val.Val.Mem,
                                     Info.Obj.Val.Mem + Info.Off.Mem_Off,
                                     Info.Targ_Type.Sz);
                     else
                        Val := Synth_Read (Caller_Inst, Info, Assoc);
                     end if;
                  when Iir_Kind_Interface_Signal_Declaration =>
                     --  Always pass by reference (use an alias).
                     if Info.Kind = Target_Memory then
                        raise Internal_Error;
                     end if;
                     Val := Create_Value_Alias
                       (Info.Obj, Info.Off, Info.Targ_Type);
                  when Iir_Kind_Interface_File_Declaration =>
                     Val := Info.Obj;
                  when Iir_Kind_Interface_Quantity_Declaration =>
                     raise Internal_Error;
               end case;
         end case;

         if Val = No_Valtyp then
            Set_Error (Subprg_Inst);
            return;
         end if;

         --  FIXME: conversion only for constants, reshape for all.
         Val := Synth_Subtype_Conversion (Ctxt, Val, Inter_Type, True, Assoc);

         if Get_Instance_Const (Subprg_Inst) and then not Is_Static (Val.Val)
         then
            Set_Instance_Const (Subprg_Inst, False);
         end if;

         case Iir_Kinds_Interface_Object_Declaration (Get_Kind (Inter)) is
            when Iir_Kind_Interface_Constant_Declaration =>
               --  Pass by reference.
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Variable_Declaration =>
               --  Arguments are passed by copy.
               if Is_Static (Val.Val) or else Get_Mode (Inter) = Iir_In_Mode
               then
                  Val := Unshare (Val, Current_Pool);
               else
                  --  Will be changed to a wire.
                  null;
               end if;
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Signal_Declaration =>
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_File_Declaration =>
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Quantity_Declaration =>
               raise Internal_Error;
         end case;
      end loop;
   end Synth_Subprogram_Association;

   procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
                                           Caller_Inst : Synth_Instance_Acc;
                                           Inter_Chain : Node;
                                           Assoc_Chain : Node)
   is
      Infos : Target_Info_Array (1 .. 0);
      pragma Unreferenced (Infos);
      Init : Association_Iterator_Init;
   begin
      Init := Association_Iterator_Build (Inter_Chain, Assoc_Chain);
      Synth_Subprogram_Association (Subprg_Inst, Caller_Inst, Init, Infos);
   end Synth_Subprogram_Association;

   --  Create wires for out and inout interface variables.
   procedure Synth_Subprogram_Association_Wires
     (Subprg_Inst : Synth_Instance_Acc; Init : Association_Iterator_Init)
   is
      Ctxt : constant Context_Acc := Get_Build (Subprg_Inst);
      Inter : Node;
      Assoc : Node;
      Val : Valtyp;
      Iterator : Association_Iterator;
      Wire : Wire_Id;
   begin
      --  Process in INTER order.
      Association_Iterate_Init (Iterator, Init);
      loop
         Association_Iterate_Next (Iterator, Inter, Assoc);
         exit when Inter = Null_Node;

         if Get_Mode (Inter) in Iir_Out_Modes
           and then Get_Kind (Inter) = Iir_Kind_Interface_Variable_Declaration
         then
            Val := Get_Value (Subprg_Inst, Inter);
            --  Arguments are passed by copy.
            Wire := Alloc_Wire (Wire_Variable, (Inter, Val.Typ));
            Set_Wire_Gate (Wire, Get_Net (Ctxt, Val));

            Val := Create_Value_Wire (Wire, Val.Typ);
            Create_Object_Force (Subprg_Inst, Inter, No_Valtyp);
            Create_Object_Force (Subprg_Inst, Inter, Val);
         end if;
      end loop;
   end Synth_Subprogram_Association_Wires;

   procedure Synth_Subprogram_Back_Association
     (Subprg_Inst : Synth_Instance_Acc;
      Caller_Inst : Synth_Instance_Acc;
      Init : Association_Iterator_Init;
      Infos : Target_Info_Array)
   is
      pragma Assert (Infos'First = 1);
      Inter : Node;
      Assoc : Node;
      Assoc_Inter : Node;
      Val : Valtyp;
      Nbr_Inout : Natural;
      W : Wire_Id;
   begin
      Nbr_Inout := 0;
      pragma Assert (Init.Kind = Association_Function);
      Assoc := Init.Assoc_Chain;
      Assoc_Inter := Init.Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);

         if Is_Copyback_Interface (Inter) then
            if not Get_Whole_Association_Flag (Assoc) then
               raise Internal_Error;
            end if;
            Nbr_Inout := Nbr_Inout + 1;
            Val := Get_Value (Subprg_Inst, Inter);
            Synth_Assignment (Caller_Inst, Infos (Nbr_Inout), Val, Assoc);

            --  Free wire used for out/inout interface variables.
            if Val.Val.Kind = Value_Wire then
               W := Get_Value_Wire (Val.Val);
               Phi_Discard_Wires (W, No_Wire_Id);
               Free_Wire (W);
            end if;
         end if;

         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
      pragma Assert (Nbr_Inout = Infos'Last);
   end Synth_Subprogram_Back_Association;

   function Build_Control_Signal (Syn_Inst : Synth_Instance_Acc;
                                  W : Width;
                                  Loc : Source.Syn_Src) return Net
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Res : Net;
   begin
      Res := Build_Signal (Ctxt, New_Internal_Name (Ctxt), W);
      Set_Location (Res, Loc);
      return Res;
   end Build_Control_Signal;

   function Synth_Dynamic_Subprogram_Call (Syn_Inst : Synth_Instance_Acc;
                                           Sub_Inst : Synth_Instance_Acc;
                                           Call : Node;
                                           Init : Association_Iterator_Init;
                                           Infos : Target_Info_Array)
                                          return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Call);
      Is_Func : constant Boolean := Is_Function_Declaration (Imp);
      Bod : constant Node := Vhdl.Sem_Inst.Get_Subprogram_Body_Origin (Imp);
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Res : Valtyp;
      C : Seq_Context (Mode_Dynamic);
      Wire_Mark : Wire_Id;
      Subprg_Phi : Phi_Type;
   begin
      Mark (Wire_Mark);
      C := (Mode => Mode_Dynamic,
            Inst => Sub_Inst,
            Cur_Loop => null,
            W_En => No_Wire_Id,
            W_Ret => No_Wire_Id,
            W_Val => No_Wire_Id,
            Ret_Init => No_Net,
            Ret_Value => No_Valtyp,
            Ret_Typ => null,
            Nbr_Ret => 0);

      C.W_En := Alloc_Wire (Wire_Variable, (Imp, Bit_Type));
      C.W_Ret := Alloc_Wire (Wire_Variable, (Imp, Bit_Type));

      if Is_Func then
         C.W_Val := Alloc_Wire (Wire_Variable, (Imp, null));
      end if;

      --  Create a phi so that all assignments are gathered.
      Push_Phi;

      Synth_Subprogram_Association_Wires (Sub_Inst, Init);

      if Is_Func then
         --  Set a default value for the return.
         C.Ret_Typ := Get_Subtype_Object (Syn_Inst, Get_Return_Type (Imp));

         Set_Wire_Gate (C.W_Val,
                        Build_Control_Signal (Sub_Inst, C.Ret_Typ.W, Imp));
         C.Ret_Init := Build_Const_X (Ctxt, C.Ret_Typ.W);
         Phi_Assign_Net (Ctxt, C.W_Val, C.Ret_Init, 0);
      end if;

      Set_Wire_Gate
        (C.W_En, Build_Control_Signal (Sub_Inst, 1, Imp));
      Phi_Assign_Static (C.W_En, Bit1);

      Set_Wire_Gate
        (C.W_Ret, Build_Control_Signal (Sub_Inst, 1, Imp));
      Phi_Assign_Static (C.W_Ret, Bit1);

      Vhdl_Decls.Synth_Declarations
        (C.Inst, Get_Declaration_Chain (Bod), True);
      if not Is_Error (C.Inst) then
         Synth_Sequential_Statements (C, Get_Sequential_Statement_Chain (Bod));
      end if;

      if Is_Error (C.Inst) then
         Res := No_Valtyp;
      else
         if Is_Func then
            if C.Nbr_Ret = 0 then
               raise Internal_Error;
            elsif C.Nbr_Ret = 1 and then Is_Static (C.Ret_Value.Val) then
               Res := C.Ret_Value;
            else
               Res := Create_Value_Net
                 (Get_Current_Value (Ctxt, C.W_Val), C.Ret_Value.Typ);
            end if;
         else
            Res := No_Valtyp;
            Synth_Subprogram_Back_Association (C.Inst, Syn_Inst, Init, Infos);
         end if;
      end if;

      Pop_Phi (Subprg_Phi);

      Vhdl_Decls.Finalize_Declarations
        (C.Inst, Get_Declaration_Chain (Bod), True);
      pragma Unreferenced (Infos);

      --  Propagate assignments.
      --  Wires that have been created for this subprogram will be destroyed.
      --  But assignment for outer wires (passed through parameters) have
      --  to be kept.  We cannot merge phi because this won't be allowed for
      --  local wires.
      Propagate_Phi_Until_Mark (Ctxt, Subprg_Phi, Wire_Mark);

      --  Free wires.
      --  These wires are currently unassigned because they were created
      --  within the Phi.
      Free_Wire (C.W_En);
      Free_Wire (C.W_Ret);
      if Is_Func then
         Free_Wire (C.W_Val);
      end if;

      Release (Wire_Mark);

      return Res;
   end Synth_Dynamic_Subprogram_Call;

   function Synth_Static_Subprogram_Call (Syn_Inst : Synth_Instance_Acc;
                                          Sub_Inst : Synth_Instance_Acc;
                                          Call     : Node;
                                          Bod      : Node;
                                          Init : Association_Iterator_Init;
                                          Infos : Target_Info_Array)
                                         return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Call);
      Is_Func : constant Boolean := Is_Function_Declaration (Imp);
      Res : Valtyp;
      C : Seq_Context (Mode_Static);
   begin
      C := (Mode_Static,
            Inst => Sub_Inst,
            Cur_Loop => null,
            S_En => True,
            Ret_Value => No_Valtyp,
            Ret_Typ => null,
            Nbr_Ret => 0);

      if Is_Func then
         --  Set a default value for the return.
         C.Ret_Typ := Get_Subtype_Object (Syn_Inst, Get_Return_Type (Imp));
      end if;

      Synth_Declarations (C.Inst, Get_Declaration_Chain (Bod), True);

      if not Is_Error (C.Inst) then
         Synth_Sequential_Statements (C, Get_Sequential_Statement_Chain (Bod));
      end if;

      if Is_Error (C.Inst) then
         Res := No_Valtyp;
      else
         if Is_Func then
            if C.Nbr_Ret = 0 then
               Error_Msg_Synth
                 (+Call, "function call completed without a return statement");
               Res := No_Valtyp;
            else
               pragma Assert (C.Nbr_Ret = 1);
               pragma Assert (Is_Static (C.Ret_Value.Val));
               Res := C.Ret_Value;
            end if;
         else
            Res := No_Valtyp;
            Synth_Subprogram_Back_Association (C.Inst, Syn_Inst, Init, Infos);
         end if;
      end if;

      Vhdl_Decls.Finalize_Declarations
        (C.Inst, Get_Declaration_Chain (Bod), True);
      pragma Unreferenced (Infos);

      return Res;
   end Synth_Static_Subprogram_Call;

   function Synth_Subprogram_Call (Syn_Inst : Synth_Instance_Acc;
                                   Call : Node;
                                   Init : Association_Iterator_Init)
                                  return Valtyp
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Imp  : constant Node := Get_Implementation (Call);
      Is_Func : constant Boolean := Is_Function_Declaration (Imp);
      Bod : constant Node := Vhdl.Sem_Inst.Get_Subprogram_Body_Origin (Imp);
      Nbr_Inout : constant Natural := Count_Associations (Init);
      Infos : Target_Info_Array (1 .. Nbr_Inout);
      Area_Mark : Areapools.Mark_Type;
      Res : Valtyp;
      Sub_Inst : Synth_Instance_Acc;
      Up_Inst : Synth_Instance_Acc;
   begin
      Areapools.Mark (Area_Mark, Instance_Pool.all);

      Up_Inst := Get_Instance_By_Scope (Syn_Inst, Get_Parent_Scope (Imp));
      Sub_Inst := Make_Elab_Instance (Up_Inst, Bod, Config => Null_Node);
      if Ctxt /= null then
         Set_Extra (Sub_Inst, Syn_Inst, New_Internal_Name (Ctxt));
      end if;

      Synth_Subprogram_Association (Sub_Inst, Syn_Inst, Init, Infos);

      if Is_Error (Sub_Inst) then
         Res := No_Valtyp;
      else
         if not Is_Func then
            if Ctxt /= null and then Get_Purity_State (Imp) /= Pure then
               Set_Instance_Const (Sub_Inst, False);
            end if;
         end if;

         if Get_Instance_Const (Sub_Inst) then
            Res := Synth_Static_Subprogram_Call
              (Syn_Inst, Sub_Inst, Call, Bod, Init, Infos);
         else
            Res := Synth_Dynamic_Subprogram_Call
              (Syn_Inst, Sub_Inst, Call, Init, Infos);
         end if;
      end if;

      --  Propagate error.
      if Is_Error (Sub_Inst) then
         Set_Error (Syn_Inst);
      end if;

      if Elab.Debugger.Flag_Need_Debug then
         Elab.Debugger.Debug_Leave (Sub_Inst);
      end if;

      Free_Instance (Sub_Inst);
      Areapools.Release (Area_Mark, Instance_Pool.all);

      return Res;
   end Synth_Subprogram_Call;

   function Synth_Subprogram_Call
     (Syn_Inst : Synth_Instance_Acc; Call : Node) return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Call);
      Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Call);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Init : Association_Iterator_Init;
   begin
      Init := Association_Iterator_Build (Inter_Chain, Assoc_Chain);
      return Synth_Subprogram_Call (Syn_Inst, Call, Init);
   end Synth_Subprogram_Call;

   function Synth_User_Operator (Syn_Inst : Synth_Instance_Acc;
                                 Left_Expr : Node;
                                 Right_Expr : Node;
                                 Expr : Node) return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Expr);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Init : Association_Iterator_Init;
   begin
      Init := Association_Iterator_Build (Inter_Chain, Left_Expr, Right_Expr);
      return Synth_Subprogram_Call (Syn_Inst, Expr, Init);
   end Synth_User_Operator;

   procedure Synth_Implicit_Procedure_Call
     (Syn_Inst : Synth_Instance_Acc; Call : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Imp  : constant Node := Get_Implementation (Call);
      Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Call);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Init : constant Association_Iterator_Init :=
        Association_Iterator_Build (Inter_Chain, Assoc_Chain);
      Nbr_Inout : constant Natural := Count_Associations (Init);
      Infos : Target_Info_Array (1 .. Nbr_Inout);
      Area_Mark : Areapools.Mark_Type;
      Sub_Inst : Synth_Instance_Acc;
   begin
      Areapools.Mark (Area_Mark, Instance_Pool.all);
      Sub_Inst := Make_Elab_Instance (Syn_Inst, Imp, Null_Node);

      if Ctxt /= null then
         Set_Extra (Sub_Inst, Syn_Inst, New_Internal_Name (Ctxt));
      end if;

      Synth_Subprogram_Association (Sub_Inst, Syn_Inst, Init, Infos);

      Synth.Vhdl_Static_Proc.Synth_Static_Procedure (Sub_Inst, Imp, Call);

      Synth_Subprogram_Back_Association (Sub_Inst, Syn_Inst, Init, Infos);

      Free_Instance (Sub_Inst);
      Areapools.Release (Area_Mark, Instance_Pool.all);
   end Synth_Implicit_Procedure_Call;

   procedure Synth_Procedure_Call
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Call : constant Node := Get_Procedure_Call (Stmt);
      Imp  : constant Node := Get_Implementation (Call);
      Res : Valtyp;
   begin
      case Get_Implicit_Definition (Imp) is
         when Iir_Predefined_None =>
            if Get_Foreign_Flag (Imp) then
               Error_Msg_Synth
                 (+Stmt, "call to foreign %n is not supported", +Imp);
            else
               Res := Synth_Subprogram_Call (Syn_Inst, Call);
               pragma Assert (Res = No_Valtyp);
            end if;
         when others =>
            Synth_Implicit_Procedure_Call (Syn_Inst, Call);
      end case;
   end Synth_Procedure_Call;

   --  Return True iff WID is a static wire and its value is V.
   function Is_Static_Bit (Wid : Wire_Id; V : Ghdl_U8) return Boolean
   is
      M : Memtyp;
   begin
      pragma Assert (Get_Kind (Wid) = Wire_Variable);
      if not Is_Static_Wire (Wid) then
         return False;
      end if;
      M := Get_Static_Wire (Wid);
      return Read_U8 (M) = V;
   end Is_Static_Bit;

   function Is_Static_Bit0 (Wid : Wire_Id) return Boolean is
   begin
      return Is_Static_Bit (Wid, 0);
   end Is_Static_Bit0;

   function Is_Static_Bit1 (Wid : Wire_Id) return Boolean is
   begin
      return Is_Static_Bit (Wid, 1);
   end Is_Static_Bit1;

   pragma Inline (Is_Static_Bit0);
   pragma Inline (Is_Static_Bit1);

   procedure Loop_Control_Init (C : Seq_Context; Stmt : Node)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
   begin
      --  We might create new wires that will be destroy at the end of the
      --  loop.  Use mark and sweep to control their lifetime.
      Mark (C.Cur_Loop.Wire_Mark);

      if Lc.Prev_Loop /= null and then Lc.Prev_Loop.Need_Quit then
         --  An exit or next statement that targets an outer loop may suspend
         --  the execution of this loop.
         Lc.W_Quit := Alloc_Wire (Wire_Variable, (Lc.Loop_Stmt, Bit_Type));
         Set_Wire_Gate (Lc.W_Quit, Build_Control_Signal (C.Inst, 1, Stmt));
         Phi_Assign_Static (Lc.W_Quit, Bit1);
      end if;

      if Get_Exit_Flag (Stmt) or else Get_Next_Flag (Stmt) then
         --  There is an exit or next statement that target this loop.
         --  We need to save W_En, as if the execution is suspended due to
         --  exit or next, it will resume at the end of the loop.
         if Is_Static_Wire (C.W_En) then
            pragma Assert (Is_Static_Bit1 (C.W_En));
            Lc.Saved_En := No_Net;
         else
            Lc.Saved_En := Get_Current_Value (null, C.W_En);
         end if;
         --  Subloops may be suspended if there is an exit or a next statement
         --  for this loop within subloops.
         Lc.Need_Quit := True;
      end if;

      if Get_Exit_Flag (Stmt) then
         --  There is an exit statement for this loop.  Create the wire.
         Lc.W_Exit := Alloc_Wire (Wire_Variable, (Lc.Loop_Stmt, Bit_Type));
         Set_Wire_Gate (Lc.W_Exit, Build_Control_Signal (C.Inst, 1, Stmt));
         Phi_Assign_Static (Lc.W_Exit, Bit1);
      end if;
   end Loop_Control_Init;

   procedure Loop_Control_And_Start (Is_Net : out Boolean;
                                 S      : out Boolean;
                                 N      : out Net;
                                 En     : Net) is
   begin
      if En = No_Net then
         Is_Net := False;
         N := No_Net;
         S := True;
      else
         Is_Net := True;
         N := En;
         S := True;
      end if;
   end Loop_Control_And_Start;

   procedure Loop_Control_And (C : Seq_Context;
                               Is_Net : in out Boolean;
                               S      : in out Boolean;
                               N      : in out Net;
                               R : Wire_Id)
   is
      Res : Net;
   begin
      if R = No_Wire_Id or else Is_Static_Bit1 (R) then
         --  No change.
         return;
      end if;

      if Is_Static_Bit0 (R) then
         --  Stays 0.
         Is_Net := False;
         S := False;
         N := No_Net;
         return;
      end if;

      if not Is_Net and then not S then
         --  Was 0, remains 0.
         return;
      end if;

      pragma Assert (Is_Net or else S);

      --  Optimize common cases.
      Res := Get_Current_Value (null, R);

      if Is_Net then
         N := Build_Dyadic (Get_Build (C.Inst), Id_And, N, Res);
         Set_Location (N, C.Cur_Loop.Loop_Stmt);
      else
         N := Res;
      end if;

      Is_Net := True;
   end Loop_Control_And;

   procedure Loop_Control_And_Assign (C : Seq_Context;
                                      Is_Net : Boolean;
                                      S      : Boolean;
                                      N      : Net;
                                      W      : Wire_Id) is
   begin
      if Is_Net then
         Phi_Assign_Net (Get_Build (C.Inst), W, N, 0);
      else
         if S then
            Phi_Assign_Static (W, Bit1);
         else
            Phi_Assign_Static (W, Bit0);
         end if;
      end if;
   end Loop_Control_And_Assign;

   procedure Loop_Control_Update (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      N  : Net;
      S  : Boolean;
      Is_Net : Boolean;
   begin
      if not Lc.Need_Quit then
         --  No next/exit statement for this loop.  So no control.
         return;
      end if;

      --  Execution continue iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Loop_Control_And_Start (Is_Net, S, N, Lc.Saved_En);

      --  2. No return (C.W_Ret)
      Loop_Control_And (C, Is_Net, S, N, C.W_Ret);

      --  3. No exit.
      Loop_Control_And (C, Is_Net, S, N, Lc.W_Exit);

      --  4. No quit.
      Loop_Control_And (C, Is_Net, S, N, Lc.W_Quit);

      Loop_Control_And_Assign (C, Is_Net, S, N, C.W_En);
   end Loop_Control_Update;

   procedure Loop_Control_Finish (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      N   : Net;
      S  : Boolean;
      Is_Net : Boolean;
   begin
      --  Execution continue after this loop iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Loop_Control_And_Start (Is_Net, S, N, Lc.Saved_En);

      --  2. No return (C.W_Ret)
      Loop_Control_And (C, Is_Net, S, N, C.W_Ret);

      --  3. No quit (C.W_Quit)
      Loop_Control_And (C, Is_Net, S, N, Lc.W_Quit);

      Phi_Discard_Wires (Lc.W_Quit, Lc.W_Exit);

      if Lc.W_Quit /= No_Wire_Id then
         Free_Wire (Lc.W_Quit);
      end if;

      if Lc.W_Exit /= No_Wire_Id then
         Free_Wire (Lc.W_Exit);
      end if;

      Release (C.Cur_Loop.Wire_Mark);

      Loop_Control_And_Assign (C, Is_Net, S, N, C.W_En);
   end Loop_Control_Finish;

   procedure Synth_Dynamic_Exit_Next_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Cond : constant Node := Get_Condition (Stmt);
      Is_Exit : constant Boolean := Get_Kind (Stmt) = Iir_Kind_Exit_Statement;
      Static_Cond : Boolean;
      Loop_Label : Node;
      Lc : Loop_Context_Acc;
      Cond_Val : Valtyp;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      if Cond /= Null_Node then
         Cond_Val := Synth_Expression (C.Inst, Cond);
         Static_Cond := Is_Static_Val (Cond_Val.Val);
         if Static_Cond then
            if Get_Static_Discrete (Cond_Val) = 0 then
               --  Not executed.
               return;
            end if;
         else
            --  Create a branch for the True case.
            Push_Phi;
         end if;
      end if;

      --  Execution is suspended for the current sequence of statements.
      Phi_Assign_Static (C.W_En, Bit0);

      Lc := C.Cur_Loop;

      --  Compute the loop statement indicated by the exit/next statement.
      Loop_Label := Get_Loop_Label (Stmt);
      if Loop_Label = Null_Node then
         Loop_Label := Lc.Loop_Stmt;
      else
         Loop_Label := Get_Named_Entity (Loop_Label);
      end if;

      --  Update the W_Exit and W_Quit flags for the loops.  All the loops
      --  until the label are canceled.
      loop
         if Lc.Loop_Stmt = Loop_Label then
            --  Final loop.
            if Is_Exit then
               Phi_Assign_Static (Lc.W_Exit, Bit0);
            end if;
            exit;
         else
            Phi_Assign_Static (Lc.W_Quit, Bit0);
         end if;
         Lc := Lc.Prev_Loop;
      end loop;

      if Cond /= Null_Node and not Static_Cond then
         Pop_Phi (Phi_True);

         --  If the condition is false, do nothing.
         Push_Phi;
         Pop_Phi (Phi_False);

         Merge_Phis (Ctxt, Get_Net (Ctxt, Cond_Val), Phi_True, Phi_False,
                     Get_Location (Stmt));
      end if;
   end Synth_Dynamic_Exit_Next_Statement;

   procedure Synth_Static_Exit_Next_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Is_Exit : constant Boolean := Get_Kind (Stmt) = Iir_Kind_Exit_Statement;
      Loop_Label : Node;
      Lc : Loop_Context_Acc;
      Cond_Val : Valtyp;
   begin
      if Cond /= Null_Node then
         Cond_Val := Synth_Expression (C.Inst, Cond);
         if Cond_Val = No_Valtyp then
            Set_Error (C.Inst);
            return;
         end if;
         pragma Assert (Is_Static_Val (Cond_Val.Val));
         if Get_Static_Discrete (Cond_Val) = 0 then
            --  Not executed.
            return;
         end if;
      end if;

      --  Execution is suspended.
      C.S_En := False;

      Lc := C.Cur_Loop;

      Loop_Label := Get_Loop_Label (Stmt);
      if Loop_Label = Null_Node then
         Loop_Label := Lc.Loop_Stmt;
      else
         Loop_Label := Get_Named_Entity (Loop_Label);
      end if;

      loop
         if Lc.Loop_Stmt = Loop_Label then
            if Is_Exit then
               Lc.S_Exit := True;
            end if;
            exit;
         else
            Lc.S_Quit := True;
         end if;
         Lc := Lc.Prev_Loop;
      end loop;
   end Synth_Static_Exit_Next_Statement;

   procedure Init_For_Loop_Statement (C : in out Seq_Context;
                                      Stmt : Node;
                                      Val : out Valtyp)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
      It_Rng : Type_Acc;
   begin
      if It_Type /= Null_Node then
         Synth_Subtype_Indication (C.Inst, It_Type);
      end if;

      --  Initial value.
      It_Rng := Get_Subtype_Object (C.Inst, Get_Type (Iterator));
      Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);
      Create_Object (C.Inst, Iterator, Val);
   end Init_For_Loop_Statement;

   procedure Finish_For_Loop_Statement (C : in out Seq_Context;
                                        Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
   begin
      Destroy_Object (C.Inst, Iterator);
      if It_Type /= Null_Node then
         Destroy_Object (C.Inst, It_Type);
      end if;
   end Finish_For_Loop_Statement;

   procedure Synth_Dynamic_For_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Dynamic);
   begin
      Lc := (Mode => Mode_Dynamic,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             Need_Quit => False,
             Saved_En => No_Net,
             W_Exit => No_Wire_Id,
             W_Quit => No_Wire_Id,
             Wire_Mark => No_Wire_Id);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Loop_Control_Init (C, Stmt);

      Init_For_Loop_Statement (C, Stmt, Val);

      while In_Range (Val.Typ.Drange, Read_Discrete (Val)) loop
         Synth_Sequential_Statements (C, Stmts);

         Update_Index (Val.Typ.Drange, Val);
         Loop_Control_Update (C);

         --  Constant exit.
         exit when Is_Static_Bit0 (C.W_En);

         --  FIXME: dynamic exits.
      end loop;
      Loop_Control_Finish (C);

      Finish_For_Loop_Statement (C, Stmt);

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Dynamic_For_Loop_Statement;

   procedure Synth_Static_For_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Static);
   begin
      Lc := (Mode_Static,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             S_Exit => False,
             S_Quit => False);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Init_For_Loop_Statement (C, Stmt, Val);

      while In_Range (Val.Typ.Drange, Read_Discrete (Val)) loop
         Synth_Sequential_Statements (C, Stmts);
         C.S_En := True;

         Update_Index (Val.Typ.Drange, Val);

         exit when Lc.S_Exit or Lc.S_Quit or C.Nbr_Ret > 0;
      end loop;

      Finish_For_Loop_Statement (C, Stmt);

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Static_For_Loop_Statement;

   procedure Synth_Dynamic_While_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Cond : constant Node := Get_Condition (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Dynamic);
      Iter_Nbr : Natural;
   begin
      Lc := (Mode => Mode_Dynamic,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             Need_Quit => False,
             Saved_En => No_Net,
             W_Exit => No_Wire_Id,
             W_Quit => No_Wire_Id,
             Wire_Mark => No_Wire_Id);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Iter_Nbr := 0;

      Loop_Control_Init (C, Stmt);

      loop
         if Cond /= Null_Node then
            Val := Synth_Expression_With_Type (C.Inst, Cond, Boolean_Type);
            if not Is_Static (Val.Val) then
               Error_Msg_Synth (+Cond, "loop condition must be static");
               exit;
            end if;
            exit when Read_Discrete (Val) = 0;
         end if;

         Synth_Sequential_Statements (C, Stmts);

         Loop_Control_Update (C);

         --  Exit from the loop if W_Exit/W_Ret/W_Quit = 0
         exit when Lc.W_Exit /= No_Wire_Id and then Is_Static_Bit0 (Lc.W_Exit);
         exit when C.W_Ret /= No_Wire_Id and then Is_Static_Bit0 (C.W_Ret);
         exit when Lc.W_Quit /= No_Wire_Id and then Is_Static_Bit0 (Lc.W_Quit);

         Iter_Nbr := Iter_Nbr + 1;
         if Iter_Nbr > Flags.Flag_Max_Loop and Flags.Flag_Max_Loop /= 0 then
            Error_Msg_Synth
              (+Stmt, "maximum number of iterations (%v) reached",
               +Uns32 (Flags.Flag_Max_Loop));
            exit;
         end if;
      end loop;
      Loop_Control_Finish (C);

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Dynamic_While_Loop_Statement;

   procedure Synth_Static_While_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Cond : constant Node := Get_Condition (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Static);
   begin
      Lc := (Mode => Mode_Static,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             S_Exit => False,
             S_Quit => False);
      C.Cur_Loop := Lc'Unrestricted_Access;

      loop
         if Cond /= Null_Node then
            Val := Synth_Expression_With_Type (C.Inst, Cond, Boolean_Type);
            pragma Assert (Is_Static (Val.Val));
            exit when Read_Discrete (Val) = 0;
         end if;

         Synth_Sequential_Statements (C, Stmts);
         C.S_En := True;

         --  Exit from the loop if S_Exit/S_Quit
         exit when Lc.S_Exit or Lc.S_Quit or C.Nbr_Ret > 0;
      end loop;

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Static_While_Loop_Statement;

   procedure Synth_Return_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Is_Dyn : constant Boolean := not Get_Instance_Const (C.Inst);
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Val : Valtyp;
      Expr : constant Node := Get_Expression (Stmt);
   begin
      if Expr /= Null_Node then
         --  Return in function.
         Val := Synth_Expression_With_Type (C.Inst, Expr, C.Ret_Typ);
         if Val = No_Valtyp then
            Set_Error (C.Inst);
            return;
         end if;

         Val := Synth_Subtype_Conversion (Ctxt, Val, C.Ret_Typ, True, Stmt);

         if C.Nbr_Ret = 0 then
            C.Ret_Value := Val;
            if not Is_Bounded_Type (C.Ret_Typ) then
               --  The function was declared with an unconstrained return type.
               --  Now that a value has been returned, we know the subtype of
               --  the returned values.  So adjust it.
               --  All the returned values must have the same length.
               C.Ret_Typ := Val.Typ;
               if Is_Dyn then
                  Set_Width (Get_Wire_Gate (C.W_Val), C.Ret_Typ.W);
                  Set_Width (C.Ret_Init, C.Ret_Typ.W);
               end if;
            end if;
         end if;
         if Is_Dyn then
            Phi_Assign_Net (Ctxt, C.W_Val, Get_Net (Ctxt, Val), 0);
         end if;
      end if;

      if Is_Dyn then
         --  The subprogram has returned.  Do not execute further statements.
         Phi_Assign_Static (C.W_En, Bit0);

         if C.W_Ret /= No_Wire_Id then
            Phi_Assign_Static (C.W_Ret, Bit0);
         end if;
      end if;

      C.Nbr_Ret := C.Nbr_Ret + 1;
   end Synth_Return_Statement;

   procedure Synth_Static_Report (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use Simple_IO;

      Is_Report : constant Boolean :=
        Get_Kind (Stmt) = Iir_Kind_Report_Statement;
      Rep_Expr : constant Node := Get_Report_Expression (Stmt);
      Sev_Expr : constant Node := Get_Severity_Expression (Stmt);
      Rep : Valtyp;
      Sev : Valtyp;
      Sev_V : Natural;
   begin
      if Rep_Expr /= Null_Node then
         Rep := Synth_Expression_With_Basetype (Syn_Inst, Rep_Expr);
         if Rep = No_Valtyp then
            Set_Error (Syn_Inst);
            return;
         end if;
         Strip_Const (Rep);
      end if;
      if Sev_Expr /= Null_Node then
         Sev := Synth_Expression (Syn_Inst, Sev_Expr);
         if Sev = No_Valtyp then
            Set_Error (Syn_Inst);
            return;
         end if;
         Strip_Const (Sev);
      end if;

      Put_Err (Disp_Location (Stmt));
      Put_Err (":(");
      if Is_Report then
         Put_Err ("report");
      else
         Put_Err ("assertion");
      end if;
      Put_Err (' ');
      if Sev = No_Valtyp then
         if Is_Report then
            Sev_V := 0;
         else
            Sev_V := 2;
         end if;
      else
         Sev_V := Natural (Read_Discrete (Sev));
      end if;
      case Sev_V is
         when Note_Severity =>
            Put_Err ("note");
         when Warning_Severity =>
            Put_Err ("warning");
         when Error_Severity =>
            Put_Err ("error");
         when Failure_Severity =>
            Put_Err ("failure");
         when others =>
            Put_Err ("??");
      end case;
      Put_Err ("): ");

      if Rep = No_Valtyp then
         Put_Line_Err ("assertion failure");
      else
         Put_Line_Err (Value_To_String (Rep));
      end if;

      if Sev_V >= Flags.Severity_Level then
         Error_Msg_Synth (+Stmt, "error due to assertion failure");
         Elab.Debugger.Debug_Error (Syn_Inst, Stmt);
      end if;
   end Synth_Static_Report;

   procedure Synth_Static_Report_Statement (C : Seq_Context; Stmt : Node) is
   begin
      Synth_Static_Report (C.Inst, Stmt);
   end Synth_Static_Report_Statement;

   procedure Synth_Static_Assertion_Statement (C : Seq_Context; Stmt : Node)
   is
      Cond : Valtyp;
   begin
      Cond := Synth_Expression (C.Inst, Get_Assertion_Condition (Stmt));
      if Cond = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      pragma Assert (Is_Static (Cond.Val));
      Strip_Const (Cond);
      if Read_Discrete (Cond) = 1 then
         return;
      end if;
      Synth_Static_Report (C.Inst, Stmt);
   end Synth_Static_Assertion_Statement;

   procedure Synth_Dynamic_Assertion_Statement (C : Seq_Context; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Loc : constant Location_Type := Get_Location (Stmt);
      Cond : Valtyp;
      N : Net;
      En : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      Cond := Synth_Expression (C.Inst, Get_Assertion_Condition (Stmt));
      if Cond = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      N := Get_Net (Ctxt, Cond);
      En := Phi_Enable (Ctxt, (Stmt, Bit_Type), Bit0, Bit1,
                        Get_Location (Stmt));
      if En /= No_Net then
         --  Build: En -> Cond
         N := Build2_Imp (Ctxt, En, N, Loc);
      end if;
      Inst := Build_Assert (Ctxt, Synth_Label (C.Inst, Stmt), N);
      Set_Location (Inst, Loc);
   end Synth_Dynamic_Assertion_Statement;

   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node)
   is
      Is_Dyn : constant Boolean := not Get_Instance_Const (C.Inst);
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Stmt : Node;
      Phi_T, Phi_F : Phi_Type;
      Has_Phi : Boolean;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         if Is_Dyn then
            pragma Assert (not Is_Static_Bit0 (C.W_En));
            Has_Phi := not Is_Static_Bit1 (C.W_En);
            if Has_Phi then
               Push_Phi;
            end if;
         end if;

         if Flags.Flag_Trace_Statements then
            declare
               Name : Name_Id;
               Line : Natural;
               Col : Natural;
            begin
               Files_Map.Location_To_Position
                 (Get_Location (Stmt), Name, Line, Col);
               Simple_IO.Put_Line ("Execute statement at "
                                     & Name_Table.Image (Name)
                                     & Natural'Image (Line));
            end;
         end if;
         if Elab.Debugger.Flag_Need_Debug then
            Elab.Debugger.Debug_Break (C.Inst, Stmt);
         end if;

         case Get_Kind (Stmt) is
            when Iir_Kind_If_Statement =>
               Synth_If_Statement (C, Stmt);
            when Iir_Kind_Simple_Signal_Assignment_Statement =>
               Synth_Simple_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Conditional_Signal_Assignment_Statement =>
               Synth_Conditional_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Variable_Assignment_Statement =>
               Synth_Variable_Assignment (C, Stmt);
            when Iir_Kind_Conditional_Variable_Assignment_Statement =>
               Synth_Conditional_Variable_Assignment (C, Stmt);
            when Iir_Kind_Case_Statement =>
               Synth_Case_Statement (C, Stmt);
            when Iir_Kind_For_Loop_Statement =>
               if Is_Dyn then
                  Synth_Dynamic_For_Loop_Statement (C, Stmt);
               else
                  Synth_Static_For_Loop_Statement (C, Stmt);
               end if;
            when Iir_Kind_While_Loop_Statement =>
               if Is_Dyn then
                  Synth_Dynamic_While_Loop_Statement (C, Stmt);
               else
                  Synth_Static_While_Loop_Statement (C, Stmt);
               end if;
            when Iir_Kind_Null_Statement =>
               --  Easy
               null;
            when Iir_Kind_Return_Statement =>
               Synth_Return_Statement (C, Stmt);
            when Iir_Kind_Procedure_Call_Statement =>
               Synth_Procedure_Call (C.Inst, Stmt);
            when Iir_Kind_Report_Statement =>
               if not Is_Dyn then
                  Synth_Static_Report_Statement (C, Stmt);
               end if;
            when Iir_Kind_Assertion_Statement =>
               if not Is_Dyn then
                  Synth_Static_Assertion_Statement (C, Stmt);
               else
                  Synth_Dynamic_Assertion_Statement (C, Stmt);
               end if;
            when Iir_Kind_Exit_Statement
              | Iir_Kind_Next_Statement =>
               if Is_Dyn then
                  Synth_Dynamic_Exit_Next_Statement (C, Stmt);
               else
                  Synth_Static_Exit_Next_Statement (C, Stmt);
               end if;
            when Iir_Kind_Wait_Statement =>
               Error_Msg_Synth
                 (+Stmt, "wait statement not allowed for synthesis");
            when others =>
               Error_Kind ("synth_sequential_statements", Stmt);
         end case;
         if Is_Dyn then
            if Has_Phi then
               Pop_Phi (Phi_T);
               Push_Phi;
               Pop_Phi (Phi_F);
               Merge_Phis (Ctxt, Get_Current_Value (Ctxt, C.W_En),
                           Phi_T, Phi_F, Get_Location (Stmt));
            end if;
            if Is_Static_Bit0 (C.W_En) then
               --  Not more execution.
               return;
            end if;
         else
            if not C.S_En or C.Nbr_Ret /= 0 then
               return;
            end if;
         end if;
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Sequential_Statements;

   Proc_Pool : aliased Areapools.Areapool;

   --  Synthesis of statements of a non-sensitized process.
   procedure Synth_Process_Sequential_Statements
     (C : in out Seq_Context; Proc : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Stmt : Node;
      Cond : Node;
      Cond_Val : Valtyp;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Stmt := Get_Sequential_Statement_Chain (Proc);

      --  The first statement must be a wait statement.
      if Get_Kind (Stmt) /= Iir_Kind_Wait_Statement then
         Error_Msg_Synth (+Stmt, "expect wait as the first statement");
         return;
      end if;

      --  Handle the condition as an if.
      Cond := Get_Condition_Clause (Stmt);
      if Cond = Null_Node then
         Error_Msg_Synth (+Stmt, "expect wait condition");
         return;
      end if;
      Cond_Val := Synth_Expression (C.Inst, Cond);

      Push_Phi;
      Synth_Sequential_Statements (C, Get_Chain (Stmt));
      Pop_Phi (Phi_True);
      Push_Phi;
      Pop_Phi (Phi_False);

      Merge_Phis (Ctxt, Get_Net (Ctxt, Cond_Val), Phi_True, Phi_False,
                  Get_Location (Stmt));
   end Synth_Process_Sequential_Statements;

   procedure Synth_Process_Statement
     (Syn_Inst : Synth_Instance_Acc; Proc : Node)
   is
      use Areapools;
      Label : constant Name_Id := Get_Identifier (Proc);
      Decls_Chain : constant Node := Get_Declaration_Chain (Proc);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      M : Areapools.Mark_Type;
      C_Sname : Sname;
      C : Seq_Context (Mode_Dynamic);
   begin
      if Label = Null_Identifier then
         C_Sname := New_Internal_Name (Ctxt, Get_Sname (Syn_Inst));
      else
         C_Sname := New_Sname_User (Label, Get_Sname (Syn_Inst));
      end if;
      C := (Mode => Mode_Dynamic,
            Inst => Make_Instance (Syn_Inst, Proc, C_Sname),
            Cur_Loop => null,
            W_En => Alloc_Wire (Wire_Variable, (Proc, Bit_Type)),
            W_Ret => No_Wire_Id,
            W_Val => No_Wire_Id,
            Ret_Init => No_Net,
            Ret_Value => No_Valtyp,
            Ret_Typ => null,
            Nbr_Ret => 0);

      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Push_Phi;

      Synth_Declarations (C.Inst, Decls_Chain);

      Set_Wire_Gate (C.W_En, Build_Control_Signal (Syn_Inst, 1, Proc));
      Phi_Assign_Static (C.W_En, Bit1);

      if not Is_Error (C.Inst) then
         case Iir_Kinds_Process_Statement (Get_Kind (Proc)) is
            when Iir_Kind_Sensitized_Process_Statement =>
               Synth_Sequential_Statements
                 (C, Get_Sequential_Statement_Chain (Proc));
               --  FIXME: check sensitivity list.
            when Iir_Kind_Process_Statement =>
               Synth_Process_Sequential_Statements (C, Proc);
         end case;
      end if;

      Pop_And_Merge_Phi (Ctxt, Get_Location (Proc));

      Finalize_Declarations (C.Inst, Decls_Chain);

      Free_Instance (C.Inst);
      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;

      Finalize_Assignment (Ctxt, C.W_En);
      Free_Wire (C.W_En);
   end Synth_Process_Statement;

   function Synth_User_Function_Call
     (Syn_Inst : Synth_Instance_Acc; Expr : Node) return Valtyp is
   begin
      --  Is it a call to an ieee function ?
      declare
         Imp  : constant Node := Get_Implementation (Expr);
         Pkg : constant Node := Get_Parent (Imp);
         Unit : Node;
         Lib : Node;
      begin
         if Get_Kind (Pkg) = Iir_Kind_Package_Declaration
           and then not Is_Uninstantiated_Package (Pkg)
         then
            Unit := Get_Parent (Pkg);
            if Get_Kind (Unit) = Iir_Kind_Design_Unit then
               Lib := Get_Library (Get_Design_File (Unit));
               if Get_Identifier (Lib) = Std_Names.Name_Ieee then
                  Error_Msg_Synth
                    (+Expr, "unhandled call to ieee function %i", +Imp);
                  Set_Error (Syn_Inst);
                  return No_Valtyp;
               end if;
            end if;
         end if;
      end;

      return Synth_Subprogram_Call (Syn_Inst, Expr);
   end Synth_User_Function_Call;

   procedure Synth_Concurrent_Assertion_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Cond : constant Node := Get_Assertion_Condition (Stmt);
      Val : Valtyp;
      Inst : Instance;
   begin
      Val := Synth_Expression (Syn_Inst, Cond);
      if Val = No_Valtyp then
         Set_Error (Syn_Inst);
         return;
      end if;
      if Is_Static (Val.Val) then
         if Read_Discrete (Val) /= 1 then
            Synth_Static_Report (Syn_Inst, Stmt);
         end if;
         return;
      end if;

      if not Flags.Flag_Formal then
         --  Ignore the net.
         return;
      end if;

      Inst := Build_Assert
        (Ctxt, Synth_Label (Syn_Inst, Stmt), Get_Net (Ctxt, Val));
      Set_Location (Inst, Get_Location (Stmt));
   end Synth_Concurrent_Assertion_Statement;

   procedure Synth_Block_Statement (Syn_Inst : Synth_Instance_Acc; Blk : Node)
   is
      use Areapools;
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Blk_Inst : constant Synth_Instance_Acc :=
        Get_Sub_Instance (Syn_Inst, Blk);
      Decls_Chain : constant Node := Get_Declaration_Chain (Blk);
      Blk_Sname : Sname;
      M : Areapools.Mark_Type;
   begin
      Blk_Sname := New_Sname_User (Get_Identifier (Blk), Get_Sname (Syn_Inst));
      Set_Extra (Blk_Inst, Syn_Inst, Blk_Sname);
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Synth_Concurrent_Declarations (Blk_Inst, Decls_Chain);
      Synth_Concurrent_Statements
        (Blk_Inst, Get_Concurrent_Statement_Chain (Blk));

      Synth_Attribute_Values (Blk_Inst, Blk);

      Finalize_Declarations (Blk_Inst, Decls_Chain);

      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Block_Statement;

   function Synth_Psl_NFA (Syn_Inst : Synth_Instance_Acc;
                           NFA : PSL.Types.PSL_NFA;
                           Nbr_States : Int32;
                           States : Net;
                           Loc : Source.Syn_Src) return Net
   is
      use PSL.NFAs;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      S : NFA_State;
      S_Num : Int32;
      D_Num : Int32;
      I : Net;
      Cond : Net;
      E : NFA_Edge;
      D_Arr : Net_Array_Acc;
      Res : Net;
   begin
      D_Arr := new Net_Array'(0 .. Nbr_States - 1 => No_Net);

      --  For each state:
      S := Get_First_State (NFA);
      while S /= No_State loop
         S_Num := Get_State_Label (S);
         I := Build_Extract_Bit (Ctxt, States, Uns32 (S_Num));
         Set_Location (I, Loc);

         --  For each edge:
         E := Get_First_Src_Edge (S);
         while E /= No_Edge loop
            --  Edge condition.
            Cond := Build_Dyadic
              (Ctxt, Id_And,
               I, Synth_PSL_Expression (Syn_Inst, Get_Edge_Expr (E)));
            Set_Location (Cond, Loc);

            --  TODO: if EOS is present, then this is a live state.

            --  Reverse order for final concatenation.
            D_Num := Nbr_States - 1 - Get_State_Label (Get_Edge_Dest (E));
            if D_Arr (D_Num) /= No_Net then
               Cond := Build_Dyadic (Ctxt, Id_Or, D_Arr (D_Num), Cond);
               Set_Location (Cond, Loc);
            end if;
            D_Arr (D_Num) := Cond;

            E := Get_Next_Src_Edge (E);
         end loop;

         S := Get_Next_State (S);
      end loop;

      --  Maybe there is no edge to the first state (common for restrict).
      if D_Arr (Nbr_States - 1) = No_Net then
         D_Arr (Nbr_States - 1) := Build_Const_UB32 (Ctxt, 0, 1);
      end if;

      --  Maybe there is no edge to the final state.
      if D_Arr (0) = No_Net then
         D_Arr (0) := Build_Const_UB32 (Ctxt, 0, 1);
      end if;

      Concat_Array (Ctxt, D_Arr.all, Res);
      Free_Net_Array (D_Arr);

      return Res;
   end Synth_Psl_NFA;

   procedure Synth_Psl_Dff (Syn_Inst : Synth_Instance_Acc;
                            Stmt : Node;
                            Next_States : out Net)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Nbr_States : constant Int32 := Get_PSL_Nbr_States (Stmt);
      Has_Async_Abort : Boolean;
      States : Net;
      Init : Net;
      Rst  : Net;
      Clk : Net;
      Clk_Inst : Instance;
   begin
      --  create init net, clock net
      Init := Build_Const_UB32 (Ctxt, 1, Uns32 (Nbr_States));
      Set_Location (Init, Stmt);
      Clk := Synth_PSL_Expression (Syn_Inst, Get_PSL_Clock (Stmt));

      --  Check the clock is an edge and extract it.
      Clk_Inst := Get_Net_Parent (Clk);
      if Get_Id (Clk_Inst) not in Edge_Module_Id then
         Error_Msg_Synth (+Stmt, "clock is not an edge");
         Next_States := No_Net;
         return;
      end if;

      Rst := No_Net;
      Has_Async_Abort := False;
      if Get_Kind (Stmt) in Iir_Kinds_Psl_Property_Directive
        and then Get_PSL_Abort_Flag (Stmt)
      then
         declare
            use PSL.Types;
            use PSL.Subsets;
            use PSL.Nodes;
            Abort_Prop : constant PSL_Node := Get_Psl_Property (Stmt);
         begin
            Rst := Synth_PSL_Expression (Syn_Inst, Get_Boolean (Abort_Prop));
            Has_Async_Abort := Is_Async_Abort (Abort_Prop);
         end;
      end if;

      --  build idff
      if Rst /= No_Net and then Has_Async_Abort then
         --  In case of async_abort.
         States := Build_Iadff (Ctxt, Clk, No_Net, Rst, Init, Init);
      else
         States := Build_Idff (Ctxt, Clk, No_Net, Init);
      end if;
      Set_Location (States, Stmt);

      --  create update nets
      --  For each state: if set, evaluate all outgoing edges.
      Next_States :=
        Synth_Psl_NFA (Syn_Inst, Get_PSL_NFA (Stmt), Nbr_States, States, Stmt);

      --  Handle sync_abort.
      if Rst /= No_Net and then not Has_Async_Abort then
         Next_States := Build_Mux2 (Ctxt, Rst, Next_States, Init);
         Set_Location (Next_States, Stmt);
      end if;

      Connect (Get_Input (Get_Net_Parent (States), 1), Next_States);
   end Synth_Psl_Dff;

   function Synth_Psl_Final
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node; Next_States : Net) return Net
   is
      use PSL.Types;
      use PSL.NFAs;
      NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
      Res : Net;
   begin
      Res := Build_Extract_Bit
        (Get_Build (Syn_Inst), Next_States,
         Uns32 (Get_State_Label (Get_Final_State (NFA))));
      Set_Location (Res, Stmt);
      return Res;
   end Synth_Psl_Final;

   function Synth_Psl_Not_Final
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node; Next_States : Net)
     return Net
   is
      Res : Net;
   begin
      Res := Build_Monadic (Get_Build (Syn_Inst), Id_Not,
                            Synth_Psl_Final (Syn_Inst, Stmt, Next_States));
      Set_Location (Res, Stmt);
      return Res;
   end Synth_Psl_Not_Final;

   procedure Synth_Psl_Restrict_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Next_States : Net;
      Res : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States /= No_Net then
         --  The restriction holds as long as there is a 1 in the NFA state.
         Res := Build_Reduce (Ctxt, Id_Red_Or, Next_States);
         Set_Location (Res, Stmt);
         Inst := Build_Assume (Ctxt, Synth_Label (Syn_Inst, Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Restrict_Directive;

   procedure Synth_Psl_Cover_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Next_States : Net;
      Res : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build cover gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States /= No_Net then
         --  The sequence is covered as soon as the final state is reached.
         Res := Synth_Psl_Final (Syn_Inst, Stmt, Next_States);
         Inst := Build_Cover
           (Get_Build (Syn_Inst), Synth_Label (Syn_Inst, Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Cover_Directive;

   procedure Synth_Psl_Assume_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Next_States : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States /= No_Net then
         Inst := Build_Assume
           (Ctxt, Synth_Label (Syn_Inst, Stmt),
            Synth_Psl_Not_Final (Syn_Inst, Stmt, Next_States));
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Assume_Directive;

   procedure Synth_Psl_Assert_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use PSL.Types;
      use PSL.NFAs;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
      Active : NFA_State;
      Next_States : Net;
      Inst : Instance;
      Lab : Sname;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build assert gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assert on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States = No_Net then
         return;
      end if;
      Lab := Synth_Label (Syn_Inst, Stmt);

      Inst := Build_Assert
        (Ctxt, Lab, Synth_Psl_Not_Final (Syn_Inst, Stmt, Next_States));
      Set_Location (Inst, Get_Location (Stmt));

      --  Also add a cover gate to cover assertion activation.
      if Flags.Flag_Assert_Cover then
         Active := Get_Active_State (NFA);
         if Active /= No_State then
            if Lab /= No_Sname then
               Lab := New_Sname_User (Std_Names.Name_Cover, Lab);
            end if;
            Inst := Build_Assert_Cover
              (Get_Build (Syn_Inst), Lab,
               Build_Extract_Bit (Get_Build (Syn_Inst), Next_States,
                                  Uns32 (Get_State_Label (Active))));
            Set_Location (Inst, Get_Location (Stmt));
         end if;
      end if;
   end Synth_Psl_Assert_Directive;

   procedure Synth_Generate_Statement_Body
     (Syn_Inst : Synth_Instance_Acc; Bod : Node)
   is
      use Areapools;
      Decls_Chain : constant Node := Get_Declaration_Chain (Bod);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      M : Areapools.Mark_Type;
   begin
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Synth_Concurrent_Declarations (Syn_Inst, Decls_Chain);

      Synth_Concurrent_Statements
        (Syn_Inst, Get_Concurrent_Statement_Chain (Bod));

      Synth_Attribute_Values (Syn_Inst, Bod);

      Finalize_Declarations (Syn_Inst, Decls_Chain);

      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Generate_Statement_Body;

   procedure Synth_If_Generate_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Sub_Inst : Synth_Instance_Acc;
      Name : Sname;
   begin
      Sub_Inst := Get_Sub_Instance (Syn_Inst, Stmt);
      if Sub_Inst = null then
         return;
      end if;

      Name := New_Sname_User (Get_Identifier (Stmt), Get_Sname (Syn_Inst));
      Set_Extra (Sub_Inst, Syn_Inst, Name);
      Synth_Generate_Statement_Body (Sub_Inst, Get_Source_Scope (Sub_Inst));
   end Synth_If_Generate_Statement;

   procedure Synth_For_Generate_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      Bod : constant Node := Get_Generate_Statement_Body (Stmt);
      It_Rng : Type_Acc;
      Sub_Inst : Synth_Instance_Acc;
      Gen_Inst : Synth_Instance_Acc;
      Name : Sname;
      Lname : Sname;
   begin
      It_Rng := Get_Subtype_Object (Syn_Inst, Get_Type (Iterator));
      Gen_Inst := Get_Sub_Instance (Syn_Inst, Stmt);

      Name := New_Sname_User (Get_Identifier (Stmt), Get_Sname (Syn_Inst));
      Set_Extra (Gen_Inst, Syn_Inst, Name);

      for I in 1 .. Get_Range_Length (It_Rng.Drange) loop
         --  FIXME: get position ?
         Lname := New_Sname_Version (Uns32 (I), Name);

         Sub_Inst := Get_Generate_Sub_Instance (Gen_Inst, Positive (I));
         Set_Extra (Sub_Inst, Gen_Inst, Lname);

         Synth_Generate_Statement_Body (Sub_Inst, Bod);
      end loop;
   end Synth_For_Generate_Statement;

   procedure Synth_Concurrent_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
   begin
      case Get_Kind (Stmt) is
         when Iir_Kind_Concurrent_Simple_Signal_Assignment =>
            Push_Phi;
            Synth_Simple_Signal_Assignment (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kind_Concurrent_Conditional_Signal_Assignment =>
            Push_Phi;
            Synth_Conditional_Signal_Assignment (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kind_Concurrent_Selected_Signal_Assignment =>
            Push_Phi;
            Synth_Selected_Signal_Assignment (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kind_Concurrent_Procedure_Call_Statement =>
            Push_Phi;
            Synth_Procedure_Call (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kinds_Process_Statement =>
            Synth_Process_Statement (Syn_Inst, Stmt);
         when Iir_Kind_If_Generate_Statement =>
            Synth_If_Generate_Statement (Syn_Inst, Stmt);
         when Iir_Kind_For_Generate_Statement =>
            Synth_For_Generate_Statement (Syn_Inst, Stmt);
         when Iir_Kind_Component_Instantiation_Statement =>
            if Is_Component_Instantiation (Stmt) then
               declare
                  Comp_Inst : constant Synth_Instance_Acc :=
                    Get_Sub_Instance (Syn_Inst, Stmt);
                  Comp_Config : constant Node :=
                    Get_Instance_Config (Comp_Inst);
               begin
                  if Comp_Config = Null_Node
                    or else Get_Binding_Indication (Comp_Config) = Null_Node
                  then
                     --  Not bound.
                     Synth_Blackbox_Instantiation_Statement (Syn_Inst, Stmt);
                  else
                     Synth_Component_Instantiation_Statement (Syn_Inst, Stmt);
                  end if;
               end;
               --  Un-apply configuration.
               Set_Component_Configuration (Stmt, Null_Node);
            else
               Synth_Design_Instantiation_Statement (Syn_Inst, Stmt);
            end if;
         when Iir_Kind_Block_Statement =>
            Synth_Block_Statement (Syn_Inst, Stmt);
         when Iir_Kind_Psl_Default_Clock
           | Iir_Kind_Psl_Declaration =>
            null;
         when Iir_Kind_Psl_Restrict_Directive =>
            Synth_Psl_Restrict_Directive (Syn_Inst, Stmt);
         when Iir_Kind_Psl_Assume_Directive =>
            if Flags.Flag_Assume_As_Assert then
               Synth_Psl_Assert_Directive (Syn_Inst, Stmt);
            else
               Synth_Psl_Assume_Directive (Syn_Inst, Stmt);
            end if;
         when Iir_Kind_Psl_Cover_Directive =>
            Synth_Psl_Cover_Directive (Syn_Inst, Stmt);
         when Iir_Kind_Psl_Assert_Directive =>
            if Flags.Flag_Assert_As_Assume then
               Synth_Psl_Assume_Directive (Syn_Inst, Stmt);
            else
               Synth_Psl_Assert_Directive (Syn_Inst, Stmt);
            end if;
         when Iir_Kind_Concurrent_Assertion_Statement =>
            --  Passive statement.
            Synth_Concurrent_Assertion_Statement (Syn_Inst, Stmt);
         when others =>
            Error_Kind ("synth_concurrent_statement", Stmt);
      end case;
   end Synth_Concurrent_Statement;

   procedure Synth_Concurrent_Statements
     (Syn_Inst : Synth_Instance_Acc; Stmts : Node)
   is
      Stmt : Node;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         Synth_Concurrent_Statement (Syn_Inst, Stmt);
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Concurrent_Statements;

   --  For allconst/allseq/...
   procedure Synth_Attribute_Formal (Syn_Inst : Synth_Instance_Acc;
                                     Val : Node;
                                     Id : Formal_Module_Id)
   is
      Spec : constant Node := Get_Attribute_Specification (Val);
      Sig : constant Node := Get_Designated_Entity (Val);
      V : Valtyp;
   begin
      --  The type must be boolean
      if (Get_Base_Type (Get_Type (Val)) /=
            Vhdl.Std_Package.Boolean_Type_Definition)
      then
         Error_Msg_Synth (+Val, "type of attribute %i must be boolean",
                          (1 => +Get_Attribute_Designator (Spec)));
         return;
      end if;

      --  The designated entity must be a signal.
      if Get_Kind (Sig) /= Iir_Kind_Signal_Declaration then
         Error_Msg_Synth (+Val, "attribute %i only applies to signals",
                          (1 => +Get_Attribute_Designator (Spec)));
         return;
      end if;

      --  The value must be true
      V := Synth_Expression_With_Type
        (Syn_Inst, Get_Expression (Spec), Boolean_Type);
      if Read_Discrete (V) /= 1 then
         return;
      end if;

      declare
         Off : Value_Offsets;
         Dyn : Dyn_Name;
         N : Net;
         Base : Valtyp;
         Typ : Type_Acc;
      begin
         Synth_Assignment_Prefix (Syn_Inst, Sig, Base, Typ, Off, Dyn);
         pragma Assert (Off = (0, 0));
         pragma Assert (Dyn.Voff = No_Net);
         pragma Assert (Base.Val.Kind = Value_Wire);
         pragma Assert (Base.Typ = Typ);

         N := Build_Formal_Input (Get_Build (Syn_Inst), Id, Typ.W);
         Set_Location (N, Val);
         Add_Conc_Assign (Get_Value_Wire (Base.Val), N, 0);
      end;
   end Synth_Attribute_Formal;

   procedure Synth_Attribute_Values
     (Syn_Inst : Synth_Instance_Acc; Unit : Node)
   is
      use Std_Names;

      Val : Node;
      Spec : Node;
      Id : Name_Id;
   begin
      Val := Get_Attribute_Value_Chain (Unit);
      while Val /= Null_Node loop
         Spec := Get_Attribute_Specification (Val);
         Id := Get_Identifier (Get_Attribute_Designator (Spec));
         case Id is
            when Name_Allconst =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Allconst);
            when Name_Allseq =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Allseq);
            when Name_Anyconst =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Anyconst);
            when Name_Anyseq =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Anyseq);
            when Name_Loc
               | Name_Keep =>
               --  Applies to nets/ports.
               null;
            when others =>
               Warning_Msg_Synth (+Spec, "unhandled attribute %i", (1 => +Id));
         end case;
         Val := Get_Value_Chain (Val);
      end loop;
   end Synth_Attribute_Values;

   procedure Synth_Verification_Unit (Syn_Inst : Synth_Instance_Acc;
                                      Unit : Node;
                                      Parent_Inst : Synth_Instance_Acc)
   is
      use Areapools;
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Unit_Sname : Sname;
      M : Areapools.Mark_Type;
      Item : Node;
   begin
      Unit_Sname := New_Sname_User (Get_Identifier (Unit),
                                    Get_Sname (Syn_Inst));
      Set_Extra (Syn_Inst, Parent_Inst, Unit_Sname);
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Item := Get_Vunit_Item_Chain (Unit);
      while Item /= Null_Node loop
         case Get_Kind (Item) is
            when Iir_Kind_Psl_Default_Clock
              | Iir_Kind_Psl_Declaration =>
               null;
            when Iir_Kind_Psl_Assert_Directive =>
               Synth_Psl_Assert_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Assume_Directive =>
               Synth_Psl_Assume_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Restrict_Directive =>
               Synth_Psl_Restrict_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Cover_Directive =>
               Synth_Psl_Cover_Directive (Syn_Inst, Item);
            when Iir_Kind_Signal_Declaration
              | Iir_Kind_Constant_Declaration
              | Iir_Kind_Function_Declaration
              | Iir_Kind_Procedure_Declaration
              | Iir_Kind_Function_Body
              | Iir_Kind_Procedure_Body
              | Iir_Kind_Attribute_Declaration
              | Iir_Kind_Attribute_Specification
              | Iir_Kind_Object_Alias_Declaration
              | Iir_Kind_Non_Object_Alias_Declaration =>
               Synth_Concurrent_Declaration (Syn_Inst, Item);
            when Iir_Kinds_Concurrent_Signal_Assignment
               | Iir_Kinds_Process_Statement
               | Iir_Kinds_Generate_Statement
               | Iir_Kind_Block_Statement
               | Iir_Kind_Concurrent_Procedure_Call_Statement
               | Iir_Kind_Component_Instantiation_Statement =>
               Synth_Concurrent_Statement (Syn_Inst, Item);
            when others =>
               Error_Kind ("synth_verification_unit", Item);
         end case;
         Item := Get_Chain (Item);
      end loop;

      Synth_Attribute_Values (Syn_Inst, Unit);

      --  Finalize
      Item := Get_Vunit_Item_Chain (Unit);
      while Item /= Null_Node loop
         case Get_Kind (Item) is
            when Iir_Kind_Psl_Default_Clock
              | Iir_Kind_Psl_Assert_Directive
              | Iir_Kind_Psl_Assume_Directive
              | Iir_Kind_Psl_Restrict_Directive
              | Iir_Kind_Psl_Cover_Directive
              | Iir_Kind_Psl_Declaration =>
               null;
            when Iir_Kinds_Concurrent_Signal_Assignment
               | Iir_Kinds_Process_Statement
               | Iir_Kinds_Generate_Statement
               | Iir_Kind_Block_Statement
               | Iir_Kind_Concurrent_Procedure_Call_Statement
               | Iir_Kind_Component_Instantiation_Statement =>
               null;
            when Iir_Kind_Signal_Declaration
              | Iir_Kind_Constant_Declaration
              | Iir_Kind_Function_Declaration
              | Iir_Kind_Procedure_Declaration
              | Iir_Kind_Function_Body
              | Iir_Kind_Procedure_Body
              | Iir_Kind_Attribute_Declaration
              | Iir_Kind_Attribute_Specification
              | Iir_Kind_Object_Alias_Declaration
              | Iir_Kind_Non_Object_Alias_Declaration =>
               Finalize_Declaration (Syn_Inst, Item, False);
            when others =>
               Error_Kind ("synth_verification_unit(2)", Item);
         end case;
         Item := Get_Chain (Item);
      end loop;

      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Verification_Unit;
end Synth.Vhdl_Stmts;