aboutsummaryrefslogtreecommitdiffstats
path: root/docs/feature_macros.md
blob: ba5d91882fb7e8080ea31ace73fc64bc70969730 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Macros

Macros allow you to send multiple keystrokes when pressing just one key. QMK has a number of ways to define and use macros. These can do anything you want: type common phrases for you, copypasta, repetitive game movements, or even help you code.

!> **Security Note**: While it is possible to use macros to send passwords, credit card numbers, and other sensitive information it is a supremely bad idea to do so. Anyone who gets a hold of your keyboard will be able to access that information by opening a text editor.

## The New Way: `SEND_STRING()` & `process_record_user`

Sometimes you just want a key to type out words or phrases. For the most common situations we've provided `SEND_STRING()`, which will type out your string (i.e. a sequence of characters) for you. All ASCII characters that are easily translated to a keycode are supported (e.g. `\n\t`).

Here is an example `keymap.c` for a two-key keyboard:

```c
enum custom_keycodes {
	MY_CUSTOM_MACRO = SAFE_RANGE
};

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
	if (record->event.pressed) {
		switch(keycode) {
			case MY_CUSTOM_MACRO:
				SEND_STRING("QMK is the best thing ever!"); // this is our macro!
				return false;
		}
	}
	return true;
};

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
	[0] = {
	  {MY_CUSTOM_MACRO, KC_ESC}
	}
};
```

What happens here is this:
We first define a new custom keycode in the range not occupied by any other keycodes.
Then we use the `process_record_user` function, which is called whenever a key is pressed or released, to check if our custom keycode has been activated.
If yes, we send the string `"QMK is the best thing ever!"` to the computer via the `SEND_STRING` macro (this is a C preprocessor macro, not to be confused with QMK macros).
We return `false` to indicate to the caller that the key press we just processed need not be processed any further.
Finally, we define the keymap so that the first button activates our macro and the second button is just an escape button.

You might want to add more than one macro.
You can do that by adding another keycode and adding another case to the switch statement, like so:

```c
enum custom_keycodes {
	MY_CUSTOM_MACRO = SAFE_RANGE,
	MY_OTHER_MACRO
};

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
	if (record->event.pressed) {
		switch(keycode) {
			case MY_CUSTOM_MACRO:
				SEND_STRING("QMK is the best thing ever!");
				return false;
			case MY_OTHER_MACRO:
				SEND_STRING(SS_LCTRL("ac")); // selects all and copies
				return false;
		}
	}
	return true;
};

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
	[0] = {
	  {MY_CUSTOM_MACRO, MY_OTHER_MACRO}
	}
};
```

### TAP, DOWN and UP

You may want to use keys in your macros that you can't write down, such as `Ctrl` or `Home`.
You can send arbitrary keycodes by wrapping them in:

* `SS_TAP()` presses and releases a key.
* `SS_DOWN()` presses (but does not release) a key.
* `SS_UP()` releases a key.

For example:

    SEND_STRING(SS_TAP(X_HOME));

Would tap `KC_HOME` - note how the prefix is now `X_`, and not `KC_`. You can also combine this with other strings, like this:

    SEND_STRING("VE"SS_TAP(X_HOME)"LO");

Which would send "VE" followed by a `KC_HOME` tap, and "LO" (spelling "LOVE" if on a newline).

There's also a couple of mod shortcuts you can use:

* `SS_LCTRL(string)`
* `SS_LGUI(string)`
* `SS_LALT(string)`
* `SS_LSFT(string)`
* `SS_RALT(string)`

These press the respective modifier, send the supplied string and then release the modifier.
They can be used like this:

    SEND_STRING(SS_LCTRL("a"));

Which would send LCTRL+a (LCTRL down, a, LCTRL up) - notice that they take strings (eg `"k"`), and not the `X_K` keycodes.

### Alternative Keymaps

By default, it assumes a US keymap with a QWERTY layout; if you want to change that (e.g. if your OS uses software Colemak), include this somewhere in your keymap:

    #include <sendstring_colemak.h>

### Strings in Memory

If for some reason you're manipulating strings and need to print out something you just generated (instead of being a literal, constant string), you can use `send_string()`, like this:

```c
char my_str[4] = "ok.";
send_string(my_str);
```

The shortcuts defined above won't work with `send_string()`, but you can separate things out to different lines if needed:

```c
char my_str[4] = "ok.";
SEND_STRING("I said: ");
send_string(my_str);
SEND_STRING(".."SS_TAP(X_END));
```

## The Old Way: `MACRO()` & `action_get_macro`

?> This is inherited from TMK, and hasn't been updated - it's recommend that you use `SEND_STRING` and `process_record_user` instead.

By default QMK assumes you don't have any macros. To define your macros you create an `action_get_macro()` function. For example:

```c
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
	if (record->event.pressed) {
		switch(id) {
			case 0:
				return MACRO(D(LSFT), T(H), U(LSFT), T(I), D(LSFT), T(1), U(LSFT), END);
			case 1:
				return MACRO(D(LSFT), T(B), U(LSFT), T(Y), T(E), D(LSFT), T(1), U(LSFT), END);
		}
	}
	return MACRO_NONE;
};
```

This defines two macros which will be run when the key they are assigned to is pressed. If instead you'd like them to run when the key is released you can change the if statement:

	if (!record->event.pressed) {

### Macro Commands

A macro can include the following commands:

* I() change interval of stroke in milliseconds.
* D() press key.
* U() release key.
* T() type key(press and release).
* W() wait (milliseconds).
* END end mark.

### Mapping a Macro to a Key

Use the `M()` function within your `KEYMAP()` to call a macro. For example, here is the keymap for a 2-key keyboard:

```c
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
	[0] = KEYMAP(
		M(0), M(1)
	),
};

const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
	if (record->event.pressed) {
		switch(id) {
			case 0:
				return MACRO(D(LSFT), T(H), U(LSFT), T(I), D(LSFT), T(1), U(LSFT), END);
			case 1:
				return MACRO(D(LSFT), T(B), U(LSFT), T(Y), T(E), D(LSFT), T(1), U(LSFT), END);
		}
	}
	return MACRO_NONE;
};
```

When you press the key on the left it will type "Hi!" and when you press the key on the right it will type "Bye!".

### Naming Your Macros

If you have a bunch of macros you want to refer to from your keymap while keeping the keymap easily readable you can name them using `#define` at the top of your file.

```c
#define M_HI M(0)
#define M_BYE M(1)

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
	[0] = KEYMAP(
		M_HI, M_BYE
	),
};
```

## Advanced Macro Functions

There are some functions you may find useful in macro-writing. Keep in mind that while you can write some fairly advanced code within a macro if your functionality gets too complex you may want to define a custom keycode instead. Macros are meant to be simple.

### `record->event.pressed`

This is a boolean value that can be tested to see if the switch is being pressed or released. An example of this is

```c
	if (record->event.pressed) {
		// on keydown
	} else {
		// on keyup
	}
```

### `register_code(<kc>);`

This sends the `<kc>` keydown event to the computer. Some examples would be `KC_ESC`, `KC_C`, `KC_4`, and even modifiers such as `KC_LSFT` and `KC_LGUI`.

### `unregister_code(<kc>);`

Parallel to `register_code` function, this sends the `<kc>` keyup event to the computer. If you don't use this, the key will be held down until it's sent.

### `tap_code(<kc>);`

This will send `register_code(<kc>)` and then `unregister_code(<kc>)`. This is useful if you want to send both the press and release events ("tap" the key, rather than hold it).

### `clear_keyboard();`

This will clear all mods and keys currently pressed.

### `clear_mods();`

This will clear all mods currently pressed.

### `clear_keyboard_but_mods();`

This will clear all keys besides the mods currently pressed.

## Advanced Example: Single-Key Copy/Paste

This example defines a macro which sends `Ctrl-C` when pressed down, and `Ctrl-V` when released.

```c
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) {
	switch(id) {
		case 0: {
			if (record->event.pressed) {
				return MACRO( D(LCTL), T(C), U(LCTL), END  );
			} else {
				return MACRO( D(LCTL), T(V), U(LCTL), END  );
			}
			break;
		}
	}
	return MACRO_NONE;
};
```
cm"> * @note Requires @p CH_CFG_USE_CONDVARS. */ #define CH_CFG_USE_CONDVARS_TIMEOUT TRUE /** * @brief Events Flags APIs. * @details If enabled then the event flags APIs are included in the kernel. * * @note The default is @p TRUE. */ #define CH_CFG_USE_EVENTS TRUE /** * @brief Events Flags APIs with timeout. * @details If enabled then the events APIs with timeout specification * are included in the kernel. * * @note The default is @p TRUE. * @note Requires @p CH_CFG_USE_EVENTS. */ #define CH_CFG_USE_EVENTS_TIMEOUT TRUE /** * @brief Synchronous Messages APIs. * @details If enabled then the synchronous messages APIs are included * in the kernel. * * @note The default is @p TRUE. */ #define CH_CFG_USE_MESSAGES TRUE /** * @brief Synchronous Messages queuing mode. * @details If enabled then messages are served by priority rather than in * FIFO order. * * @note The default is @p FALSE. Enable this if you have special * requirements. * @note Requires @p CH_CFG_USE_MESSAGES. */ #define CH_CFG_USE_MESSAGES_PRIORITY FALSE /** * @brief Mailboxes APIs. * @details If enabled then the asynchronous messages (mailboxes) APIs are * included in the kernel. * * @note The default is @p TRUE. * @note Requires @p CH_CFG_USE_SEMAPHORES. */ #define CH_CFG_USE_MAILBOXES TRUE /** * @brief Core Memory Manager APIs. * @details If enabled then the core memory manager APIs are included * in the kernel. * * @note The default is @p TRUE. */ #define CH_CFG_USE_MEMCORE TRUE /** * @brief Heap Allocator APIs. * @details If enabled then the memory heap allocator APIs are included * in the kernel. * * @note The default is @p TRUE. * @note Requires @p CH_CFG_USE_MEMCORE and either @p CH_CFG_USE_MUTEXES or * @p CH_CFG_USE_SEMAPHORES. * @note Mutexes are recommended. */ #define CH_CFG_USE_HEAP TRUE /** * @brief Memory Pools Allocator APIs. * @details If enabled then the memory pools allocator APIs are included * in the kernel. * * @note The default is @p TRUE. */ #define CH_CFG_USE_MEMPOOLS TRUE /** * @brief Objects FIFOs APIs. * @details If enabled then the objects FIFOs APIs are included * in the kernel. * * @note The default is @p TRUE. */ #define CH_CFG_USE_OBJ_FIFOS TRUE /** * @brief Dynamic Threads APIs. * @details If enabled then the dynamic threads creation APIs are included * in the kernel. * * @note The default is @p TRUE. * @note Requires @p CH_CFG_USE_WAITEXIT. * @note Requires @p CH_CFG_USE_HEAP and/or @p CH_CFG_USE_MEMPOOLS. */ #define CH_CFG_USE_DYNAMIC TRUE /** @} */ /*===========================================================================*/ /** * @name Objects factory options * @{ */ /*===========================================================================*/ /** * @brief Objects Factory APIs. * @details If enabled then the objects factory APIs are included in the * kernel. * * @note The default is @p FALSE. */ #define CH_CFG_USE_FACTORY TRUE /** * @brief Maximum length for object names. * @details If the specified length is zero then the name is stored by * pointer but this could have unintended side effects. */ #define CH_CFG_FACTORY_MAX_NAMES_LENGTH 8 /** * @brief Enables the registry of generic objects. */ #define CH_CFG_FACTORY_OBJECTS_REGISTRY TRUE /** * @brief Enables factory for generic buffers. */ #define CH_CFG_FACTORY_GENERIC_BUFFERS TRUE /** * @brief Enables factory for semaphores. */ #define CH_CFG_FACTORY_SEMAPHORES TRUE /** * @brief Enables factory for mailboxes. */ #define CH_CFG_FACTORY_MAILBOXES TRUE /** * @brief Enables factory for objects FIFOs. */ #define CH_CFG_FACTORY_OBJ_FIFOS TRUE /** @} */ /*===========================================================================*/ /** * @name Debug options * @{ */ /*===========================================================================*/ /** * @brief Debug option, kernel statistics. * * @note The default is @p FALSE. */ #define CH_DBG_STATISTICS FALSE /** * @brief Debug option, system state check. * @details If enabled the correct call protocol for system APIs is checked * at runtime. * * @note The default is @p FALSE. */ #define CH_DBG_SYSTEM_STATE_CHECK TRUE /** * @brief Debug option, parameters checks. * @details If enabled then the checks on the API functions input * parameters are activated. * * @note The default is @p FALSE. */ #define CH_DBG_ENABLE_CHECKS TRUE /** * @brief Debug option, consistency checks. * @details If enabled then all the assertions in the kernel code are * activated. This includes consistency checks inside the kernel, * runtime anomalies and port-defined checks. * * @note The default is @p FALSE. */ #define CH_DBG_ENABLE_ASSERTS TRUE /** * @brief Debug option, trace buffer. * @details If enabled then the trace buffer is activated. * * @note The default is @p CH_DBG_TRACE_MASK_DISABLED. */ #define CH_DBG_TRACE_MASK CH_DBG_TRACE_MASK_ALL /** * @brief Trace buffer entries. * @note The trace buffer is only allocated if @p CH_DBG_TRACE_MASK is * different from @p CH_DBG_TRACE_MASK_DISABLED. */ #define CH_DBG_TRACE_BUFFER_SIZE 128 /** * @brief Debug option, stack checks. * @details If enabled then a runtime stack check is performed. * * @note The default is @p FALSE. * @note The stack check is performed in a architecture/port dependent way. * It may not be implemented or some ports. * @note The default failure mode is to halt the system with the global * @p panic_msg variable set to @p NULL. */ #define CH_DBG_ENABLE_STACK_CHECK TRUE /** * @brief Debug option, stacks initialization. * @details If enabled then the threads working area is filled with a byte * value when a thread is created. This can be useful for the * runtime measurement of the used stack. * * @note The default is @p FALSE. */ #define CH_DBG_FILL_THREADS TRUE /** * @brief Debug option, threads profiling. * @details If enabled then a field is added to the @p thread_t structure that * counts the system ticks occurred while executing the thread. * * @note The default is @p FALSE. * @note This debug option is not currently compatible with the * tickless mode. */ #define CH_DBG_THREADS_PROFILING FALSE /** @} */ /*===========================================================================*/ /** * @name Kernel hooks * @{ */ /*===========================================================================*/ /** * @brief System structure extension. * @details User fields added to the end of the @p ch_system_t structure. */ #define CH_CFG_SYSTEM_EXTRA_FIELDS \ /* Add threads custom fields here.*/ /** * @brief System initialization hook. * @details User initialization code added to the @p chSysInit() function * just before interrupts are enabled globally. */ #define CH_CFG_SYSTEM_INIT_HOOK(tp) { \ /* Add threads initialization code here.*/ \ } /** * @brief Threads descriptor structure extension. * @details User fields added to the end of the @p thread_t structure. */ #define CH_CFG_THREAD_EXTRA_FIELDS \ /* Add threads custom fields here.*/ /** * @brief Threads initialization hook. * @details User initialization code added to the @p _thread_init() function. * * @note It is invoked from within @p _thread_init() and implicitly from all * the threads creation APIs. */ #define CH_CFG_THREAD_INIT_HOOK(tp) { \ /* Add threads initialization code here.*/ \ } /** * @brief Threads finalization hook. * @details User finalization code added to the @p chThdExit() API. */ #define CH_CFG_THREAD_EXIT_HOOK(tp) { \ /* Add threads finalization code here.*/ \ } /** * @brief Context switch hook. * @details This hook is invoked just before switching between threads. */ #define CH_CFG_CONTEXT_SWITCH_HOOK(ntp, otp) { \ /* Context switch code here.*/ \ } /** * @brief ISR enter hook. */ #define CH_CFG_IRQ_PROLOGUE_HOOK() { \ /* IRQ prologue code here.*/ \ } /** * @brief ISR exit hook. */ #define CH_CFG_IRQ_EPILOGUE_HOOK() { \ /* IRQ epilogue code here.*/ \ } /** * @brief Idle thread enter hook. * @note This hook is invoked within a critical zone, no OS functions * should be invoked from here. * @note This macro can be used to activate a power saving mode. */ #define CH_CFG_IDLE_ENTER_HOOK() { \ /* Idle-enter code here.*/ \ } /** * @brief Idle thread leave hook. * @note This hook is invoked within a critical zone, no OS functions * should be invoked from here. * @note This macro can be used to deactivate a power saving mode. */ #define CH_CFG_IDLE_LEAVE_HOOK() { \ /* Idle-leave code here.*/ \ } /** * @brief Idle Loop hook. * @details This hook is continuously invoked by the idle thread loop. */ #define CH_CFG_IDLE_LOOP_HOOK() { \ /* Idle loop code here.*/ \ } /** * @brief System tick event hook. * @details This hook is invoked in the system tick handler immediately * after processing the virtual timers queue. */ #define CH_CFG_SYSTEM_TICK_HOOK() { \ /* System tick event code here.*/ \ } /** * @brief System halt hook. * @details This hook is invoked in case to a system halting error before * the system is halted. */ #define CH_CFG_SYSTEM_HALT_HOOK(reason) { \ /* System halt code here.*/ \ } /** * @brief Trace hook. * @details This hook is invoked each time a new record is written in the * trace buffer. */ #define CH_CFG_TRACE_HOOK(tep) { \ /* Trace code here.*/ \ } /** @} */ /*===========================================================================*/ /* Port-specific settings (override port settings defaulted in chcore.h). */ /*===========================================================================*/ #endif /* CHCONF_H */ /** @} */