aboutsummaryrefslogtreecommitdiffstats
path: root/keyboards/wilba_tech/wt_mono_backlight.h
blob: 2f913d2cb618f4ccfe6c338ae4c3be5b24052a42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/* Copyright 2018 Jason Williams (Wilba)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#pragma once

#include <stdint.h>
#include <stdbool.h>

#include "quantum/color.h"

typedef struct PACKED
{
    uint8_t h;
    uint8_t s;
} HS;

typedef struct
{
	bool disable_when_usb_suspended:1;  // |
    bool __pad1:1;                      // |
    bool __pad2:1;                      // |
    bool __pad3:1;                      // |
    bool __pad4:1;                      // |
    bool __pad5:1;                      // |
    bool __pad6:1;                      // |
    bool __pad7:1;                      // 1 byte
    uint8_t disable_after_timeout;      // 1 byte
    uint8_t brightness;                 // 1 byte
    uint8_t effect;                     // 1 byte
    uint8_t effect_speed;               // 1 byte
    HS color_1;                         // 2 bytes (Indicator Color for Xeno)
} backlight_config;                     // = 7 bytes

void backlight_config_load(void);
void backlight_config_save(void);
void backlight_config_set_value( uint8_t *data );
void backlight_config_get_value( uint8_t *data );

void backlight_init_drivers(void);

void backlight_timer_init(void);
void backlight_timer_enable(void);
void backlight_timer_disable(void);

void backlight_set_suspend_state(bool state);
void backlight_set_indicator_state(uint8_t state);

// This should not be called from an interrupt
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void backlight_update_pwm_buffers(void);

// Handle backlight specific keycodes
bool process_record_backlight(uint16_t keycode, keyrecord_t *record);

void backlight_set_key_hit(uint8_t row, uint8_t col);

void backlight_effect_increase(void);
void backlight_effect_decrease(void);
void backlight_effect_speed_increase(void);
void backlight_effect_speed_decrease(void);

void backlight_brightness_increase(void);
void backlight_brightness_decrease(void);
> 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/**CFile****************************************************************

  FileName    [abcRr.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Redundancy removal.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcRr.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "src/base/abc/abc.h"
#include "src/proof/fraig/fraig.h"
#include "src/opt/sim/sim.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Abc_RRMan_t_ Abc_RRMan_t;
struct Abc_RRMan_t_
{
    // the parameters
    Abc_Ntk_t *      pNtk;             // the network
    int              nFaninLevels;     // the number of fanin levels
    int              nFanoutLevels;    // the number of fanout levels
    // the node/fanin/fanout
    Abc_Obj_t *      pNode;            // the node
    Abc_Obj_t *      pFanin;           // the fanin
    Abc_Obj_t *      pFanout;          // the fanout
    // the intermediate cones
    Vec_Ptr_t *      vFaninLeaves;     // the leaves of the fanin cone
    Vec_Ptr_t *      vFanoutRoots;     // the roots of the fanout cone
    // the window
    Vec_Ptr_t *      vLeaves;          // the leaves of the window
    Vec_Ptr_t *      vCone;            // the internal nodes of the window
    Vec_Ptr_t *      vRoots;           // the roots of the window
    Abc_Ntk_t *      pWnd;             // the window derived for the edge
    // the miter 
    Abc_Ntk_t *      pMiter;           // the miter derived from the window
    Prove_Params_t * pParams;          // the miter proving parameters
    // statistical variables
    int              nNodesOld;        // the old number of nodes
    int              nLevelsOld;       // the old number of levels
    int              nEdgesTried;      // the number of nodes tried
    int              nEdgesRemoved;    // the number of nodes proved
    int              timeWindow;       // the time to construct the window
    int              timeMiter;        // the time to construct the miter
    int              timeProve;        // the time to prove the miter
    int              timeUpdate;       // the network update time
    int              timeTotal;        // the total runtime
};

static Abc_RRMan_t * Abc_RRManStart();
static void          Abc_RRManStop( Abc_RRMan_t * p );
static void          Abc_RRManPrintStats( Abc_RRMan_t * p );
static void          Abc_RRManClean( Abc_RRMan_t * p );
static int           Abc_NtkRRProve( Abc_RRMan_t * p );
static int           Abc_NtkRRUpdate( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, Abc_Obj_t * pFanin, Abc_Obj_t * pFanout );
static int           Abc_NtkRRWindow( Abc_RRMan_t * p );

static int           Abc_NtkRRTfi_int( Vec_Ptr_t * vLeaves, int LevelLimit );
static int           Abc_NtkRRTfo_int( Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int LevelLimit, Abc_Obj_t * pEdgeFanin, Abc_Obj_t * pEdgeFanout );
static int           Abc_NtkRRTfo_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vRoots, int LevelLimit );
static void          Abc_NtkRRTfi_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, int LevelLimit );
static Abc_Ntk_t *   Abc_NtkWindow( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Vec_Ptr_t * vRoots );

static void          Abc_NtkRRSimulateStart( Abc_Ntk_t * pNtk );
static void          Abc_NtkRRSimulateStop( Abc_Ntk_t * pNtk );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Removes stuck-at redundancies.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRR( Abc_Ntk_t * pNtk, int nFaninLevels, int nFanoutLevels, int fUseFanouts, int fVerbose )
{
    ProgressBar * pProgress;
    Abc_RRMan_t * p;
    Abc_Obj_t * pNode, * pFanin, * pFanout;
    int i, k, m, nNodes, RetValue, clk, clkTotal = clock();
    // start the manager
    p = Abc_RRManStart();
    p->pNtk          = pNtk;
    p->nFaninLevels  = nFaninLevels;
    p->nFanoutLevels = nFanoutLevels;
    p->nNodesOld     = Abc_NtkNodeNum(pNtk);
    p->nLevelsOld    = Abc_AigLevel(pNtk);
    // remember latch values
//    Abc_NtkForEachLatch( pNtk, pNode, i )
//        pNode->pNext = pNode->pData;
    // go through the nodes
    Abc_NtkCleanCopy(pNtk);
    nNodes = Abc_NtkObjNumMax(pNtk);
    Abc_NtkRRSimulateStart(pNtk);
    pProgress = Extra_ProgressBarStart( stdout, nNodes );
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        // stop if all nodes have been tried once
        if ( i >= nNodes )
            break;
        // skip the constant node
//        if ( Abc_NodeIsConst(pNode) )
//            continue;
        // skip persistant nodes
        if ( Abc_NodeIsPersistant(pNode) )
            continue;
        // skip the nodes with many fanouts
        if ( Abc_ObjFanoutNum(pNode) > 1000 )
            continue;
        // construct the window
        if ( !fUseFanouts )
        {
            Abc_ObjForEachFanin( pNode, pFanin, k )
            {
                // skip the nodes with only one fanout (tree nodes)
                if ( Abc_ObjFanoutNum(pFanin) == 1 )
                    continue;
/*
                if ( pFanin->Id == 228 && pNode->Id == 2649 )
                {
                    int k = 0;
                }
*/
                p->nEdgesTried++;
                Abc_RRManClean( p );
                p->pNode   = pNode;
                p->pFanin  = pFanin;
                p->pFanout = NULL;

                clk = clock();
                RetValue = Abc_NtkRRWindow( p );
                p->timeWindow += clock() - clk;
                if ( !RetValue )
                    continue;
/*
                if ( pFanin->Id == 228 && pNode->Id == 2649 )
                {
                    Abc_NtkShowAig( p->pWnd, 0 );
                }
*/
                clk = clock();
                RetValue = Abc_NtkRRProve( p );
                p->timeMiter += clock() - clk;
                if ( !RetValue )
                    continue;
//printf( "%d -> %d (%d)\n", pFanin->Id, pNode->Id, k );

                clk = clock();
                Abc_NtkRRUpdate( pNtk, p->pNode, p->pFanin, p->pFanout );
                p->timeUpdate += clock() - clk;

                p->nEdgesRemoved++;
                break;
            }
            continue;
        }
        // use the fanouts
        Abc_ObjForEachFanin( pNode, pFanin, k )
        Abc_ObjForEachFanout( pNode, pFanout, m )
        {
            // skip the nodes with only one fanout (tree nodes)
//            if ( Abc_ObjFanoutNum(pFanin) == 1 && Abc_ObjFanoutNum(pNode) == 1 )
//                continue;

            p->nEdgesTried++;
            Abc_RRManClean( p );
            p->pNode   = pNode;
            p->pFanin  = pFanin;
            p->pFanout = pFanout;

            clk = clock();
            RetValue = Abc_NtkRRWindow( p );
            p->timeWindow += clock() - clk;
            if ( !RetValue )
                continue;

            clk = clock();
            RetValue = Abc_NtkRRProve( p );
            p->timeMiter += clock() - clk;
            if ( !RetValue )
                continue;

            clk = clock();
            Abc_NtkRRUpdate( pNtk, p->pNode, p->pFanin, p->pFanout );
            p->timeUpdate += clock() - clk;

            p->nEdgesRemoved++;
            break;
        }
    }
    Abc_NtkRRSimulateStop(pNtk);
    Extra_ProgressBarStop( pProgress );
    p->timeTotal = clock() - clkTotal;
    if ( fVerbose )
        Abc_RRManPrintStats( p );
    Abc_RRManStop( p );
    // restore latch values
//    Abc_NtkForEachLatch( pNtk, pNode, i )
//        pNode->pData = pNode->pNext, pNode->pNext = NULL;
    // put the nodes into the DFS order and reassign their IDs
    Abc_NtkReassignIds( pNtk );
    Abc_NtkLevel( pNtk );
    // check
    if ( !Abc_NtkCheck( pNtk ) )
    {
        printf( "Abc_NtkRR: The network check has failed.\n" );
        return 0;
    }
    return 1;
}

/**Function*************************************************************

  Synopsis    [Start the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_RRMan_t * Abc_RRManStart()
{
    Abc_RRMan_t * p;
    p = ABC_ALLOC( Abc_RRMan_t, 1 );
    memset( p, 0, sizeof(Abc_RRMan_t) );
    p->vFaninLeaves  = Vec_PtrAlloc( 100 );  // the leaves of the fanin cone
    p->vFanoutRoots  = Vec_PtrAlloc( 100 );  // the roots of the fanout cone
    p->vLeaves       = Vec_PtrAlloc( 100 );  // the leaves of the window
    p->vCone         = Vec_PtrAlloc( 100 );  // the internal nodes of the window
    p->vRoots        = Vec_PtrAlloc( 100 );  // the roots of the window
    p->pParams       = ABC_ALLOC( Prove_Params_t, 1 );
    memset( p->pParams, 0, sizeof(Prove_Params_t) );
    Prove_ParamsSetDefault( p->pParams );
    return p;
}

/**Function*************************************************************

  Synopsis    [Stop the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_RRManStop( Abc_RRMan_t * p )
{
    Abc_RRManClean( p );
    Vec_PtrFree( p->vFaninLeaves  );  
    Vec_PtrFree( p->vFanoutRoots  );  
    Vec_PtrFree( p->vLeaves );  
    Vec_PtrFree( p->vCone );  
    Vec_PtrFree( p->vRoots );  
    ABC_FREE( p->pParams );
    ABC_FREE( p );
}

/**Function*************************************************************

  Synopsis    [Stop the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_RRManPrintStats( Abc_RRMan_t * p )
{
    double Ratio = 100.0*(p->nNodesOld  - Abc_NtkNodeNum(p->pNtk))/p->nNodesOld;
    printf( "Redundancy removal statistics:\n" );
    printf( "Edges tried     = %6d.\n", p->nEdgesTried );
    printf( "Edges removed   = %6d. (%5.2f %%)\n", p->nEdgesRemoved, 100.0*p->nEdgesRemoved/p->nEdgesTried );
    printf( "Node gain       = %6d. (%5.2f %%)\n", p->nNodesOld  - Abc_NtkNodeNum(p->pNtk), Ratio );
    printf( "Level gain      = %6d.\n", p->nLevelsOld - Abc_AigLevel(p->pNtk) );
    ABC_PRT( "Windowing      ", p->timeWindow );
    ABC_PRT( "Miter          ", p->timeMiter );
    ABC_PRT( "    Construct  ", p->timeMiter - p->timeProve );
    ABC_PRT( "    Prove      ", p->timeProve );
    ABC_PRT( "Update         ", p->timeUpdate );
    ABC_PRT( "TOTAL          ", p->timeTotal );
}

/**Function*************************************************************

  Synopsis    [Clean the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_RRManClean( Abc_RRMan_t * p )
{
    p->pNode   = NULL; 
    p->pFanin  = NULL; 
    p->pFanout = NULL; 
    Vec_PtrClear( p->vFaninLeaves  );  
    Vec_PtrClear( p->vFanoutRoots  );  
    Vec_PtrClear( p->vLeaves );  
    Vec_PtrClear( p->vCone );  
    Vec_PtrClear( p->vRoots );  
    if ( p->pWnd )   Abc_NtkDelete( p->pWnd );
    if ( p->pMiter ) Abc_NtkDelete( p->pMiter );
    p->pWnd   = NULL;
    p->pMiter = NULL;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if the miter is constant 0.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRRProve( Abc_RRMan_t * p )
{
    Abc_Ntk_t * pWndCopy;
    int RetValue, clk;
//    Abc_NtkShowAig( p->pWnd, 0 );
    pWndCopy = Abc_NtkDup( p->pWnd );
    Abc_NtkRRUpdate( pWndCopy, p->pNode->pCopy->pCopy, p->pFanin->pCopy->pCopy, p->pFanout? p->pFanout->pCopy->pCopy : NULL );
    if ( !Abc_NtkIsDfsOrdered(pWndCopy) )
        Abc_NtkReassignIds(pWndCopy);
    p->pMiter = Abc_NtkMiter( p->pWnd, pWndCopy, 1, 0, 0, 0 );
    Abc_NtkDelete( pWndCopy );
clk = clock();
    RetValue  = Abc_NtkMiterProve( &p->pMiter, p->pParams );
p->timeProve += clock() - clk;
    if ( RetValue == 1 )
        return 1;
    return 0;
}

/**Function*************************************************************

  Synopsis    [Updates the network after redundancy removal.]

  Description [This procedure assumes that non-control value of the fanin
  was proved redundant. It is okay to concentrate on non-control values
  because the control values can be seen as redundancy of the fanout edge.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRRUpdate( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, Abc_Obj_t * pFanin, Abc_Obj_t * pFanout )
{
    Abc_Obj_t * pNodeNew, * pFanoutNew;
    assert( pFanout == NULL );
    assert( !Abc_ObjIsComplement(pNode) );
    assert( !Abc_ObjIsComplement(pFanin) );
    assert( !Abc_ObjIsComplement(pFanout) );
    // find the node after redundancy removal
    if ( pFanin == Abc_ObjFanin0(pNode) )
        pNodeNew = Abc_ObjChild1(pNode);
    else if ( pFanin == Abc_ObjFanin1(pNode) )
        pNodeNew = Abc_ObjChild0(pNode);
    else assert( 0 );
    // replace
    if ( pFanout == NULL )
    {
        Abc_AigReplace( (Abc_Aig_t *)pNtk->pManFunc, pNode, pNodeNew, 1 );
        return 1;
    }
    // find the fanout after redundancy removal
    if ( pNode == Abc_ObjFanin0(pFanout) )
        pFanoutNew = Abc_AigAnd( (Abc_Aig_t *)pNtk->pManFunc, Abc_ObjNotCond(pNodeNew,Abc_ObjFaninC0(pFanout)), Abc_ObjChild1(pFanout) );
    else if ( pNode == Abc_ObjFanin1(pFanout) )
        pFanoutNew = Abc_AigAnd( (Abc_Aig_t *)pNtk->pManFunc, Abc_ObjNotCond(pNodeNew,Abc_ObjFaninC1(pFanout)), Abc_ObjChild0(pFanout) );
    else assert( 0 );
    // replace
    Abc_AigReplace( (Abc_Aig_t *)pNtk->pManFunc, pFanout, pFanoutNew, 1 );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Constructs window for checking RR.]

  Description [If the window (p->pWnd) with the given scope (p->nFaninLevels, 
  p->nFanoutLevels) cannot be constructed, returns 0. Otherwise, returns 1.
  The levels are measured from the fanin node (pFanin) and the fanout node
  (pEdgeFanout), respectively.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRRWindow( Abc_RRMan_t * p )
{
    Abc_Obj_t * pObj, * pEdgeFanin, * pEdgeFanout;
    int i, LevelMin, LevelMax, RetValue;

    // get the edge
    pEdgeFanout = p->pFanout? p->pFanout : p->pNode;
    pEdgeFanin  = p->pFanout? p->pNode : p->pFanin;
    // get the minimum and maximum levels of the window
    LevelMin = Abc_MaxInt( 0, ((int)p->pFanin->Level) - p->nFaninLevels );
    LevelMax = (int)pEdgeFanout->Level + p->nFanoutLevels;

    // start the TFI leaves with the fanin
    Abc_NtkIncrementTravId( p->pNtk );
    Abc_NodeSetTravIdCurrent( p->pFanin );
    Vec_PtrPush( p->vFaninLeaves, p->pFanin );
    // mark the TFI cone and collect the leaves down to the given level
    while ( Abc_NtkRRTfi_int(p->vFaninLeaves, LevelMin) );

    // mark the leaves with the new TravId
    Abc_NtkIncrementTravId( p->pNtk );
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninLeaves, pObj, i )
        Abc_NodeSetTravIdCurrent( pObj );
    // traverse the TFO cone of the leaves (while skipping the edge)
    // (a) mark the nodes in the cone using the current TravId
    // (b) collect the nodes that have external fanouts into p->vFanoutRoots
    while ( Abc_NtkRRTfo_int(p->vFaninLeaves, p->vFanoutRoots, LevelMax, pEdgeFanin, pEdgeFanout) );

    // mark the fanout roots
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanoutRoots, pObj, i )
        pObj->fMarkA = 1;
    // collect roots reachable from the fanout (p->vRoots)
    RetValue = Abc_NtkRRTfo_rec( pEdgeFanout, p->vRoots, LevelMax + 1 );
    // unmark the fanout roots
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanoutRoots, pObj, i )
        pObj->fMarkA = 0;

    // return if the window is infeasible
    if ( RetValue == 0 )
        return 0;

    // collect the DFS-ordered new cone (p->vCone) and new leaves (p->vLeaves)
    // using the previous marks coming from the TFO cone
    Abc_NtkIncrementTravId( p->pNtk );
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vRoots, pObj, i )
        Abc_NtkRRTfi_rec( pObj, p->vLeaves, p->vCone, LevelMin );

    // create a new network
    p->pWnd = Abc_NtkWindow( p->pNtk, p->vLeaves, p->vCone, p->vRoots );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Marks the nodes in the TFI and collects their leaves.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRRTfi_int( Vec_Ptr_t * vLeaves, int LevelLimit )
{
    Abc_Obj_t * pObj, * pNext;
    int i, k, LevelMax, nSize;
    assert( LevelLimit >= 0 );
    // find the maximum level of leaves
    LevelMax = 0;
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
        if ( LevelMax < (int)pObj->Level )
            LevelMax = pObj->Level;
    // if the nodes are all PIs, LevelMax == 0
    if ( LevelMax <= LevelLimit )
        return 0;
    // expand the nodes with the minimum level
    nSize = Vec_PtrSize(vLeaves);
    Vec_PtrForEachEntryStop( Abc_Obj_t *, vLeaves, pObj, i, nSize )
    {
        if ( LevelMax != (int)pObj->Level )
            continue;
        Abc_ObjForEachFanin( pObj, pNext, k )
        {
            if ( Abc_NodeIsTravIdCurrent(pNext) )
                continue;
            Abc_NodeSetTravIdCurrent( pNext );
            Vec_PtrPush( vLeaves, pNext );
        }
    }
    // remove old nodes (cannot remove a PI)
    k = 0;
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
    {
        if ( LevelMax == (int)pObj->Level )
            continue;
        Vec_PtrWriteEntry( vLeaves, k++, pObj );
    }
    Vec_PtrShrink( vLeaves, k );
    if ( Vec_PtrSize(vLeaves) > 2000 )
        return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Marks the nodes in the TFO and collects their roots.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRRTfo_int( Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int LevelLimit, Abc_Obj_t * pEdgeFanin, Abc_Obj_t * pEdgeFanout )
{
    Abc_Obj_t * pObj, * pNext;
    int i, k, LevelMin, nSize, fObjIsRoot;
    // find the minimum level of leaves
    LevelMin = ABC_INFINITY;
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
        if ( LevelMin > (int)pObj->Level )
            LevelMin = pObj->Level;
    // if the minimum level exceed the limit, we are done
    if ( LevelMin > LevelLimit )
        return 0;
    // expand the nodes with the minimum level
    nSize = Vec_PtrSize(vLeaves);
    Vec_PtrForEachEntryStop( Abc_Obj_t *, vLeaves, pObj, i, nSize )
    {
        if ( LevelMin != (int)pObj->Level )
            continue;
        fObjIsRoot = 0;
        Abc_ObjForEachFanout( pObj, pNext, k )
        {
            // check if the fanout is outside of the cone
            if ( Abc_ObjIsCo(pNext) || pNext->Level > (unsigned)LevelLimit )
            {
                fObjIsRoot = 1;
                continue;
            }
            // skip the edge under check
            if ( pObj == pEdgeFanin && pNext == pEdgeFanout )
                continue;
            // skip the visited fanouts
            if ( Abc_NodeIsTravIdCurrent(pNext) )
                continue;
            Abc_NodeSetTravIdCurrent( pNext );
            Vec_PtrPush( vLeaves, pNext );
        }
        if ( fObjIsRoot )
            Vec_PtrPush( vRoots, pObj );
    }
    // remove old nodes
    k = 0;
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
    {
        if ( LevelMin == (int)pObj->Level )
            continue;
        Vec_PtrWriteEntry( vLeaves, k++, pObj );
    }
    Vec_PtrShrink( vLeaves, k );
    if ( Vec_PtrSize(vLeaves) > 2000 )
        return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Collects the roots in the TFO of the node.]

  Description [Note that this procedure can be improved by
  marking and skipping the visited nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRRTfo_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vRoots, int LevelLimit )
{
    Abc_Obj_t * pFanout;
    int i;
    // if we encountered a node outside of the TFO cone of the fanins, quit
    if ( Abc_ObjIsCo(pNode) || pNode->Level > (unsigned)LevelLimit )
        return 0;
    // if we encountered a node on the boundary, add it to the roots
    if ( pNode->fMarkA )
    {
        Vec_PtrPushUnique( vRoots, pNode );
        return 1;
    }
    // mark the node with the current TravId (needed to have all internal nodes marked)
    Abc_NodeSetTravIdCurrent( pNode );
    // traverse the fanouts
    Abc_ObjForEachFanout( pNode, pFanout, i )
        if ( !Abc_NtkRRTfo_rec( pFanout, vRoots, LevelLimit ) )
            return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Collects the leaves and cone of the roots.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkRRTfi_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, int LevelLimit )
{
    Abc_Obj_t * pFanin;
    int i;
    // skip visited nodes
    if ( Abc_NodeIsTravIdCurrent(pNode) )
        return;
    // add node to leaves if it is not in TFI cone of the leaves (marked before) or below the limit
    if ( !Abc_NodeIsTravIdPrevious(pNode) || (int)pNode->Level <= LevelLimit )
    {
        Abc_NodeSetTravIdCurrent( pNode );
        Vec_PtrPush( vLeaves, pNode );
        return;
    }
    // mark the node as visited
    Abc_NodeSetTravIdCurrent( pNode );
    // call for the node's fanins
    Abc_ObjForEachFanin( pNode, pFanin, i )
        Abc_NtkRRTfi_rec( pFanin, vLeaves, vCone, LevelLimit );
    // add the node to the cone in topological order
    Vec_PtrPush( vCone, pNode );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkWindow( Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Vec_Ptr_t * vRoots )
{
    Abc_Ntk_t * pNtkNew; 
    Abc_Obj_t * pObj;
    int fCheck = 1;
    int i;
    assert( Abc_NtkIsStrash(pNtk) );
    // start the network
    pNtkNew = Abc_NtkAlloc( pNtk->ntkType, pNtk->ntkFunc, 1 );
    // duplicate the name and the spec
    pNtkNew->pName = Extra_UtilStrsav( "temp" );
    // map the constant nodes
    Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
    // create and map the PIs
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
        pObj->pCopy = Abc_NtkCreatePi(pNtkNew);
    // copy the AND gates
    Vec_PtrForEachEntry( Abc_Obj_t *, vCone, pObj, i )
        pObj->pCopy = Abc_AigAnd( (Abc_Aig_t *)pNtkNew->pManFunc, Abc_ObjChild0Copy(pObj), Abc_ObjChild1Copy(pObj) );
    // compare the number of nodes before and after
    if ( Vec_PtrSize(vCone) != Abc_NtkNodeNum(pNtkNew) )
        printf( "Warning: Structural hashing during windowing reduced %d nodes (this is a bug).\n",
            Vec_PtrSize(vCone) - Abc_NtkNodeNum(pNtkNew) );
    // create the POs
    Vec_PtrForEachEntry( Abc_Obj_t *, vRoots, pObj, i )
    {
        assert( !Abc_ObjIsComplement(pObj->pCopy) );
        Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pObj->pCopy );
    }
    // add the PI/PO names
    Abc_NtkAddDummyPiNames( pNtkNew );
    Abc_NtkAddDummyPoNames( pNtkNew );
    // check
    if ( fCheck && !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkWindow: The network check has failed.\n" );
        return NULL;
    }
    return pNtkNew;
}


/**Function*************************************************************

  Synopsis    [Starts simulation to detect non-redundant edges.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkRRSimulateStart( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj;
    unsigned uData, uData0, uData1;
    int i;
    Abc_AigConst1(pNtk)->pData = (void *)~((unsigned)0);
    Abc_NtkForEachCi( pNtk, pObj, i )
        pObj->pData = (void *)(ABC_PTRUINT_T)SIM_RANDOM_UNSIGNED;
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        if ( i == 0 ) continue;
        uData0 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData;
        uData1 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin1(pObj)->pData;
        uData  = Abc_ObjFaninC0(pObj)? ~uData0 : uData0;
        uData &= Abc_ObjFaninC1(pObj)? ~uData1 : uData1;
        assert( pObj->pData == NULL );
        pObj->pData = (void *)(ABC_PTRUINT_T)uData;
    }
}

/**Function*************************************************************

  Synopsis    [Stops simulation to detect non-redundant edges.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkRRSimulateStop( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj;
    int i;
    Abc_NtkForEachObj( pNtk, pObj, i )
        pObj->pData = NULL;
}







static void Sim_TraverseNodes_rec( Abc_Obj_t * pRoot, Vec_Str_t * vTargets, Vec_Ptr_t * vNodes );
static void Sim_CollectNodes_rec( Abc_Obj_t * pRoot, Vec_Ptr_t * vField );
static void Sim_SimulateCollected( Vec_Str_t * vTargets, Vec_Ptr_t * vNodes, Vec_Ptr_t * vField );

/**Function*************************************************************

  Synopsis    [Simulation to detect non-redundant edges.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Str_t * Abc_NtkRRSimulate( Abc_Ntk_t * pNtk )
{
    Vec_Ptr_t * vNodes, * vField;
    Vec_Str_t * vTargets;
    Abc_Obj_t * pObj;
    unsigned uData, uData0, uData1;
    int PrevCi, Phase, i, k;

    // start the candidates
    vTargets = Vec_StrStart( Abc_NtkObjNumMax(pNtk) + 1 );
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        Phase = ((Abc_ObjFanoutNum(Abc_ObjFanin1(pObj)) > 1) << 1);
        Phase |= (Abc_ObjFanoutNum(Abc_ObjFanin0(pObj)) > 1);
        Vec_StrWriteEntry( vTargets, pObj->Id, (char)Phase );
    }

    // simulate patters and store them in copy
    Abc_AigConst1(pNtk)->pCopy = (Abc_Obj_t *)~((unsigned)0);
    Abc_NtkForEachCi( pNtk, pObj, i )
        pObj->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)SIM_RANDOM_UNSIGNED;
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        if ( i == 0 ) continue;
        uData0 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData;
        uData1 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin1(pObj)->pData;
        uData  = Abc_ObjFaninC0(pObj)? ~uData0 : uData0;
        uData &= Abc_ObjFaninC1(pObj)? ~uData1 : uData1;
        pObj->pCopy = (Abc_Obj_t *)(ABC_PTRUINT_T)uData;
    }
    // store the result in data
    Abc_NtkForEachCo( pNtk, pObj, i )
    {
        uData0 = (unsigned)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData;
        if ( Abc_ObjFaninC0(pObj) )
            pObj->pData = (void *)(ABC_PTRUINT_T)~uData0;
        else
            pObj->pData = (void *)(ABC_PTRUINT_T)uData0;
    }

    // refine the candidates
    for ( PrevCi = 0; PrevCi < Abc_NtkCiNum(pNtk); PrevCi = i )
    {
        vNodes = Vec_PtrAlloc( 10 );
        Abc_NtkIncrementTravId( pNtk );
        for ( i = PrevCi; i < Abc_NtkCiNum(pNtk); i++ )
        {
            Sim_TraverseNodes_rec( Abc_NtkCi(pNtk, i), vTargets, vNodes );
            if ( Vec_PtrSize(vNodes) > 128 )
                break;
        }
        // collect the marked nodes in the topological order
        vField = Vec_PtrAlloc( 10 );
        Abc_NtkIncrementTravId( pNtk );
        Abc_NtkForEachCo( pNtk, pObj, k )
            Sim_CollectNodes_rec( pObj, vField );

        // simulate these nodes
        Sim_SimulateCollected( vTargets, vNodes, vField );
        // prepare for the next loop
        Vec_PtrFree( vNodes );
    }

    // clean
    Abc_NtkForEachObj( pNtk, pObj, i )
        pObj->pData = NULL;
    return vTargets;
}

/**Function*************************************************************

  Synopsis    [Collects nodes starting from the given node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sim_TraverseNodes_rec( Abc_Obj_t * pRoot, Vec_Str_t * vTargets, Vec_Ptr_t * vNodes )
{
    Abc_Obj_t * pFanout;
    char Entry;
    int k;
    if ( Abc_NodeIsTravIdCurrent(pRoot) )
        return;
    Abc_NodeSetTravIdCurrent( pRoot );
    // save the reached targets
    Entry = Vec_StrEntry(vTargets, pRoot->Id);
    if ( Entry & 1 )
        Vec_PtrPush( vNodes, Abc_ObjNot(pRoot) );
    if ( Entry & 2 )
        Vec_PtrPush( vNodes, pRoot );
    // explore the fanouts
    Abc_ObjForEachFanout( pRoot, pFanout, k )
        Sim_TraverseNodes_rec( pFanout, vTargets, vNodes );
}

/**Function*************************************************************

  Synopsis    [Collects nodes starting from the given node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sim_CollectNodes_rec( Abc_Obj_t * pRoot, Vec_Ptr_t * vField )
{
    Abc_Obj_t * pFanin;
    int i;
    if ( Abc_NodeIsTravIdCurrent(pRoot) )
        return;
    if ( !Abc_NodeIsTravIdPrevious(pRoot) )
        return;
    Abc_NodeSetTravIdCurrent( pRoot );
    Abc_ObjForEachFanin( pRoot, pFanin, i )
        Sim_CollectNodes_rec( pFanin, vField );
    if ( !Abc_ObjIsCo(pRoot) )
        pRoot->pData = (void *)(ABC_PTRUINT_T)Vec_PtrSize(vField);
    Vec_PtrPush( vField, pRoot );
}

/**Function*************************************************************

  Synopsis    [Simulate the given nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sim_SimulateCollected( Vec_Str_t * vTargets, Vec_Ptr_t * vNodes, Vec_Ptr_t * vField )
{
    Abc_Obj_t * pObj, * pFanin0, * pFanin1, * pDisproved;
    Vec_Ptr_t * vSims;
    unsigned * pUnsigned, * pUnsignedF;
    int i, k, Phase, fCompl;
    // get simulation info
    vSims = Sim_UtilInfoAlloc( Vec_PtrSize(vField), Vec_PtrSize(vNodes), 0 );
    // simulate the nodes
    Vec_PtrForEachEntry( Abc_Obj_t *, vField, pObj, i )
    {
        if ( Abc_ObjIsCi(pObj) )
        {
            pUnsigned = (unsigned *)Vec_PtrEntry( vSims, i );
            for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
                pUnsigned[k] = (unsigned)(ABC_PTRUINT_T)pObj->pCopy;
            continue;
        }
        if ( Abc_ObjIsCo(pObj) )
        {
            pUnsigned  = (unsigned *)Vec_PtrEntry( vSims, i );
            pUnsignedF = (unsigned *)Vec_PtrEntry( vSims, (int)(ABC_PTRUINT_T)Abc_ObjFanin0(pObj)->pData );
            if ( Abc_ObjFaninC0(pObj) )
                for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
                    pUnsigned[k] = ~pUnsignedF[k];
            else
                for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
                    pUnsigned[k] = pUnsignedF[k];
            // update targets
            for ( k = 0; k < Vec_PtrSize(vNodes); k++ )
            {
                if ( pUnsigned[k] == (unsigned)(ABC_PTRUINT_T)pObj->pData )
                    continue;
                pDisproved = (Abc_Obj_t *)Vec_PtrEntry( vNodes, k );
                fCompl = Abc_ObjIsComplement(pDisproved);
                pDisproved = Abc_ObjRegular(pDisproved);
                Phase = Vec_StrEntry( vTargets, pDisproved->Id );
                if ( fCompl )
                    Phase = (Phase & 2);
                else
                    Phase = (Phase & 1);
                Vec_StrWriteEntry( vTargets, pDisproved->Id, (char)Phase );
            }
            continue;
        }
        // simulate the node
        pFanin0 = Abc_ObjFanin0(pObj);
        pFanin1 = Abc_ObjFanin1(pObj);
    }
}



/*
                {
                    unsigned uData;
                    if ( pFanin == Abc_ObjFanin0(pNode) )
                    {
                        uData = (unsigned)Abc_ObjFanin1(pNode)->pData;
                        uData = Abc_ObjFaninC1(pNode)? ~uData : uData;
                    }
                    else if ( pFanin == Abc_ObjFanin1(pNode) )
                    {
                        uData = (unsigned)Abc_ObjFanin0(pNode)->pData;
                        uData = Abc_ObjFaninC0(pNode)? ~uData : uData;
                    }
                    uData ^= (unsigned)pNode->pData;
//                    Extra_PrintBinary( stdout, &uData, 32 ); printf( "\n" );
                    if ( Extra_WordCountOnes(uData) > 8 )
                        continue;
                }
*/

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END