aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Demos/Host/ClassDriver/VirtualSerialHost/VirtualSerialHost.c
blob: 740f285f6b759278058c40cfd5e0f8c02f6514e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the VirtualSerialHost demo. This file contains the main tasks of
 *  the demo and is responsible for the initial application hardware configuration.
 */

#include "VirtualSerialHost.h"

/** LUFA CDC Class driver interface configuration and state information. This structure is
 *  passed to all CDC Class driver functions, so that multiple instances of the same class
 *  within a device can be differentiated from one another.
 */
USB_ClassInfo_CDC_Host_t VirtualSerial_CDC_Interface =
	{
		.Config =
			{
				.DataINPipe             =
					{
						.Address        = (PIPE_DIR_IN  | 1),
						.Banks          = 1,
					},
				.DataOUTPipe            =
					{
						.Address        = (PIPE_DIR_OUT | 2),
						.Banks          = 1,
					},
				.NotificationPipe       =
					{
						.Address        = (PIPE_DIR_IN  | 3),
						.Banks          = 1,
					},
			},
	};


/** Main program entry point. This routine configures the hardware required by the application, then
 *  enters a loop to run the application tasks in sequence.
 */
int main(void)
{
	SetupHardware();

	puts_P(PSTR(ESC_FG_CYAN "CDC Host Demo running.\r\n" ESC_FG_WHITE));

	LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
	GlobalInterruptEnable();

	for (;;)
	{
		CDCHost_Task();

		CDC_Host_USBTask(&VirtualSerial_CDC_Interface);
		USB_USBTask();
	}
}

/** Configures the board hardware and chip peripherals for the demo's functionality. */
void SetupHardware(void)
{
#if (ARCH == ARCH_AVR8)
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
#endif

	/* Hardware Initialization */
	Serial_Init(9600, false);
	LEDs_Init();
	USB_Init();

	/* Create a stdio stream for the serial port for stdin and stdout */
	Serial_CreateStream(NULL);
}

/** Task to manage an enumerated USB CDC device once connected, to print received data
 *  from the device to the serial port.
 */
void CDCHost_Task(void)
{
	if (USB_HostState != HOST_STATE_Configured)
	  return;

	if (CDC_Host_BytesReceived(&VirtualSerial_CDC_Interface))
	{
		/* Echo received bytes from the attached device through the USART */
		int16_t ReceivedByte = CDC_Host_ReceiveByte(&VirtualSerial_CDC_Interface);
		if (!(ReceivedByte < 0))
		  putchar(ReceivedByte);
	}
}

/** Event handler for the USB_DeviceAttached event. This indicates that a device has been attached to the host, and
 *  starts the library USB task to begin the enumeration and USB management process.
 */
void EVENT_USB_Host_DeviceAttached(void)
{
	puts_P(PSTR("Device Attached.\r\n"));
	LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
}

/** Event handler for the USB_DeviceUnattached event. This indicates that a device has been removed from the host, and
 *  stops the library USB task management process.
 */
void EVENT_USB_Host_DeviceUnattached(void)
{
	puts_P(PSTR("\r\nDevice Unattached.\r\n"));
	LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
}

/** Event handler for the USB_DeviceEnumerationComplete event. This indicates that a device has been successfully
 *  enumerated by the host and is now ready to be used by the application.
 */
void EVENT_USB_Host_DeviceEnumerationComplete(void)
{
	LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);

	uint16_t ConfigDescriptorSize;
	uint8_t  ConfigDescriptorData[512];

	if (USB_Host_GetDeviceConfigDescriptor(1, &ConfigDescriptorSize, ConfigDescriptorData,
	                                       sizeof(ConfigDescriptorData)) != HOST_GETCONFIG_Successful)
	{
		puts_P(PSTR("Error Retrieving Configuration Descriptor.\r\n"));
		LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
		return;
	}

	if (CDC_Host_ConfigurePipes(&VirtualSerial_CDC_Interface,
	                            ConfigDescriptorSize, ConfigDescriptorData) != CDC_ENUMERROR_NoError)
	{
		puts_P(PSTR("Attached Device Not a Valid CDC Class Device.\r\n"));
		LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
		return;
	}

	if (USB_Host_SetDeviceConfiguration(1) != HOST_SENDCONTROL_Successful)
	{
		puts_P(PSTR("Error Setting Device Configuration.\r\n"));
		LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
		return;
	}

	VirtualSerial_CDC_Interface.State.LineEncoding.BaudRateBPS = 9600;
	VirtualSerial_CDC_Interface.State.LineEncoding.CharFormat  = CDC_LINEENCODING_OneStopBit;
	VirtualSerial_CDC_Interface.State.LineEncoding.ParityType  = CDC_PARITY_None;
	VirtualSerial_CDC_Interface.State.LineEncoding.DataBits    = 8;

	if (CDC_Host_SetLineEncoding(&VirtualSerial_CDC_Interface))
	{
		puts_P(PSTR("Error Setting Device Line Encoding.\r\n"));
		LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
		return;
	}

	puts_P(PSTR("CDC Device Enumerated.\r\n"));
	LEDs_SetAllLEDs(LEDMASK_USB_READY);
}

/** Event handler for the USB_HostError event. This indicates that a hardware error occurred while in host mode. */
void EVENT_USB_Host_HostError(const uint8_t ErrorCode)
{
	USB_Disable();

	printf_P(PSTR(ESC_FG_RED "Host Mode Error\r\n"
	                         " -- Error Code %d\r\n" ESC_FG_WHITE), ErrorCode);

	LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
	for(;;);
}

/** Event handler for the USB_DeviceEnumerationFailed event. This indicates that a problem occurred while
 *  enumerating an attached USB device.
 */
void EVENT_USB_Host_DeviceEnumerationFailed(const uint8_t ErrorCode,
                                            const uint8_t SubErrorCode)
{
	printf_P(PSTR(ESC_FG_RED "Dev Enum Error\r\n"
	                         " -- Error Code %d\r\n"
	                         " -- Sub Error Code %d\r\n"
	                         " -- In State %d\r\n" ESC_FG_WHITE), ErrorCode, SubErrorCode, USB_HostState);

	LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
}
p">(animations[i] == animation) { return; } if (free_index == -1 && animations[i] == NULL) { free_index = i; } } if (free_index != -1) { animations[free_index] = animation; } } void stop_keyframe_animation(keyframe_animation_t* animation) { animation->current_frame = animation->num_frames; animation->time_left_in_frame = 0; animation->need_update = true; animation->first_update_of_frame = false; animation->last_update_of_frame = false; for (int i = 0; i < MAX_SIMULTANEOUS_ANIMATIONS; i++) { if (animations[i] == animation) { animations[i] = NULL; return; } } } void stop_all_keyframe_animations(void) { for (int i = 0; i < MAX_SIMULTANEOUS_ANIMATIONS; i++) { if (animations[i]) { animations[i]->current_frame = animations[i]->num_frames; animations[i]->time_left_in_frame = 0; animations[i]->need_update = true; animations[i]->first_update_of_frame = false; animations[i]->last_update_of_frame = false; animations[i] = NULL; } } } static uint8_t get_num_running_animations(void) { uint8_t count = 0; for (int i = 0; i < MAX_SIMULTANEOUS_ANIMATIONS; i++) { count += animations[i] ? 1 : 0; } return count; } static bool update_keyframe_animation(keyframe_animation_t* animation, visualizer_state_t* state, systemticks_t delta, systemticks_t* sleep_time) { // TODO: Clean up this messy code dprintf("Animation frame%d, left %d, delta %d\n", animation->current_frame, animation->time_left_in_frame, delta); if (animation->current_frame == animation->num_frames) { animation->need_update = false; return false; } if (animation->current_frame == -1) { animation->current_frame = 0; animation->time_left_in_frame = animation->frame_lengths[0]; animation->need_update = true; animation->first_update_of_frame = true; } else { animation->time_left_in_frame -= delta; while (animation->time_left_in_frame <= 0) { int left = animation->time_left_in_frame; if (animation->need_update) { animation->time_left_in_frame = 0; animation->last_update_of_frame = true; (*animation->frame_functions[animation->current_frame])(animation, state); animation->last_update_of_frame = false; } animation->current_frame++; animation->need_update = true; animation->first_update_of_frame = true; if (animation->current_frame == animation->num_frames) { if (animation->loop) { animation->current_frame = 0; } else { stop_keyframe_animation(animation); return false; } } delta = -left; animation->time_left_in_frame = animation->frame_lengths[animation->current_frame]; animation->time_left_in_frame -= delta; } } if (animation->need_update) { animation->need_update = (*animation->frame_functions[animation->current_frame])(animation, state); animation->first_update_of_frame = false; } systemticks_t wanted_sleep = animation->need_update ? gfxMillisecondsToTicks(10) : (unsigned)animation->time_left_in_frame; if (wanted_sleep < *sleep_time) { *sleep_time = wanted_sleep; } return true; } void run_next_keyframe(keyframe_animation_t* animation, visualizer_state_t* state) { int next_frame = animation->current_frame + 1; if (next_frame == animation->num_frames) { next_frame = 0; } keyframe_animation_t temp_animation = *animation; temp_animation.current_frame = next_frame; temp_animation.time_left_in_frame = animation->frame_lengths[next_frame]; temp_animation.first_update_of_frame = true; temp_animation.last_update_of_frame = false; temp_animation.need_update = false; visualizer_state_t temp_state = *state; (*temp_animation.frame_functions[next_frame])(&temp_animation, &temp_state); } // TODO: Optimize the stack size, this is probably way too big static DECLARE_THREAD_STACK(visualizerThreadStack, 1024); static DECLARE_THREAD_FUNCTION(visualizerThread, arg) { (void)arg; GListener event_listener; geventListenerInit(&event_listener); geventAttachSource(&event_listener, (GSourceHandle)&current_status, 0); visualizer_keyboard_status_t initial_status = { .default_layer = 0xFFFFFFFF, .layer = 0xFFFFFFFF, .mods = 0xFF, .leds = 0xFFFFFFFF, .suspended = false, #ifdef BACKLIGHT_ENABLE .backlight_level = 0, #endif #ifdef VISUALIZER_USER_DATA_SIZE .user_data = {0}, #endif }; visualizer_state_t state = {.status = initial_status, .current_lcd_color = 0, #ifdef LCD_ENABLE .font_fixed5x8 = gdispOpenFont("fixed_5x8"), .font_dejavusansbold12 = gdispOpenFont("DejaVuSansBold12") #endif }; initialize_user_visualizer(&state); state.prev_lcd_color = state.current_lcd_color; #ifdef LCD_BACKLIGHT_ENABLE lcd_backlight_color(LCD_HUE(state.current_lcd_color), LCD_SAT(state.current_lcd_color), LCD_INT(state.current_lcd_color)); #endif systemticks_t sleep_time = TIME_INFINITE; systemticks_t current_time = gfxSystemTicks(); bool force_update = true; while (true) { systemticks_t new_time = gfxSystemTicks(); systemticks_t delta = new_time - current_time; current_time = new_time; bool enabled = visualizer_enabled; if (force_update || !same_status(&state.status, &current_status)) { force_update = false; #if BACKLIGHT_ENABLE if (current_status.backlight_level != state.status.backlight_level) { if (current_status.backlight_level != 0) { gdispGSetPowerMode(LED_DISPLAY, powerOn); uint16_t percent = (uint16_t)current_status.backlight_level * 100 / BACKLIGHT_LEVELS; gdispGSetBacklight(LED_DISPLAY, percent); } else { gdispGSetPowerMode(LED_DISPLAY, powerOff); } state.status.backlight_level = current_status.backlight_level; } #endif if (visualizer_enabled) { if (current_status.suspended) { stop_all_keyframe_animations(); visualizer_enabled = false; state.status = current_status; user_visualizer_suspend(&state); } else { visualizer_keyboard_status_t prev_status = state.status; state.status = current_status; update_user_visualizer_state(&state, &prev_status); } state.prev_lcd_color = state.current_lcd_color; } } if (!enabled && state.status.suspended && current_status.suspended == false) { // Setting the status to the initial status will force an update // when the visualizer is enabled again state.status = initial_status; state.status.suspended = false; stop_all_keyframe_animations(); user_visualizer_resume(&state); state.prev_lcd_color = state.current_lcd_color; } sleep_time = TIME_INFINITE; for (int i = 0; i < MAX_SIMULTANEOUS_ANIMATIONS; i++) { if (animations[i]) { update_keyframe_animation(animations[i], &state, delta, &sleep_time); } } #ifdef BACKLIGHT_ENABLE gdispGFlush(LED_DISPLAY); #endif #ifdef LCD_ENABLE gdispGFlush(LCD_DISPLAY); #endif #ifdef EMULATOR draw_emulator(); #endif // Enable the visualizer when the startup or the suspend animation has finished if (!visualizer_enabled && state.status.suspended == false && get_num_running_animations() == 0) { visualizer_enabled = true; force_update = true; sleep_time = 0; } systemticks_t after_update = gfxSystemTicks(); unsigned update_delta = after_update - current_time; if (sleep_time != TIME_INFINITE) { if (sleep_time > update_delta) { sleep_time -= update_delta; } else { sleep_time = 0; } } dprintf("Update took %d, last delta %d, sleep_time %d\n", update_delta, delta, sleep_time); #ifdef PROTOCOL_CHIBIOS // The gEventWait function really takes milliseconds, even if the documentation says ticks. // Unfortunately there's no generic ugfx conversion from system time to milliseconds, // so let's do it in a platform dependent way. // On windows the system ticks is the same as milliseconds anyway if (sleep_time != TIME_INFINITE) { sleep_time = TIME_I2MS(sleep_time); } #endif geventEventWait(&event_listener, sleep_time); } #ifdef LCD_ENABLE gdispCloseFont(state.font_fixed5x8); gdispCloseFont(state.font_dejavusansbold12); #endif return 0; } void visualizer_init(void) { gfxInit(); #ifdef LCD_BACKLIGHT_ENABLE lcd_backlight_init(); #endif #ifdef SERIAL_LINK_ENABLE add_remote_objects(remote_objects, sizeof(remote_objects) / sizeof(remote_object_t*)); #endif #ifdef LCD_ENABLE LCD_DISPLAY = get_lcd_display(); #endif #ifdef BACKLIGHT_ENABLE LED_DISPLAY = get_led_display(); #endif // We are using a low priority thread, the idea is to have it run only // when the main thread is sleeping during the matrix scanning gfxThreadCreate(visualizerThreadStack, sizeof(visualizerThreadStack), VISUALIZER_THREAD_PRIORITY, visualizerThread, NULL); } void update_status(bool changed) { if (changed) { GSourceListener* listener = geventGetSourceListener((GSourceHandle)&current_status, NULL); if (listener) { geventSendEvent(listener); } } #ifdef SERIAL_LINK_ENABLE static systime_t last_update = 0; systime_t current_update = chVTGetSystemTimeX(); systime_t delta = current_update - last_update; if (changed || delta > TIME_MS2I(10)) { last_update = current_update; visualizer_keyboard_status_t* r = begin_write_current_status(); *r = current_status; end_write_current_status(); } #endif } uint8_t visualizer_get_mods() { uint8_t mods = get_mods(); #ifndef NO_ACTION_ONESHOT if (!has_oneshot_mods_timed_out()) { mods |= get_oneshot_mods(); } #endif return mods; } #ifdef VISUALIZER_USER_DATA_SIZE void visualizer_set_user_data(void* u) { memcpy(user_data, u, VISUALIZER_USER_DATA_SIZE); } #endif void visualizer_update(layer_state_t default_state, layer_state_t state, uint8_t mods, uint32_t leds) { // Note that there's a small race condition here, the thread could read // a state where one of these are set but not the other. But this should // not really matter as it will be fixed during the next loop step. // Alternatively a mutex could be used instead of the volatile variables bool changed = false; #ifdef SERIAL_LINK_ENABLE if (is_serial_link_connected()) { visualizer_keyboard_status_t* new_status = read_current_status(); if (new_status) { if (!same_status(&current_status, new_status)) { changed = true; current_status = *new_status; } } } else { #else { #endif visualizer_keyboard_status_t new_status = { .layer = state, .default_layer = default_state, .mods = mods, .leds = leds, #ifdef BACKLIGHT_ENABLE .backlight_level = current_status.backlight_level, #endif .suspended = current_status.suspended, }; #ifdef VISUALIZER_USER_DATA_SIZE memcpy(new_status.user_data, user_data, VISUALIZER_USER_DATA_SIZE); #endif if (!same_status(&current_status, &new_status)) { changed = true; current_status = new_status; } } update_status(changed); } void visualizer_suspend(void) { current_status.suspended = true; update_status(true); } void visualizer_resume(void) { current_status.suspended = false; update_status(true); } #ifdef BACKLIGHT_ENABLE void backlight_set(uint8_t level) { current_status.backlight_level = level; update_status(true); } #endif