aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Projects/AVRISP-MKII/Lib/V2Protocol.c
blob: fd64c5a1e83ac92ca4333656ee3bb1478dadb864 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  V2Protocol handler, to process V2 Protocol commands used in Atmel programmer devices.
 */

#define  INCLUDE_FROM_V2PROTOCOL_C
#include "V2Protocol.h"

/** Current memory address for FLASH/EEPROM memory read/write commands */
uint32_t CurrentAddress;

/** Flag to indicate that the next read/write operation must update the device's current extended FLASH address */
bool MustLoadExtendedAddress;


/** ISR to manage timeouts whilst processing a V2Protocol command */
ISR(TIMER0_COMPA_vect, ISR_NOBLOCK)
{
	if (TimeoutTicksRemaining)
	  TimeoutTicksRemaining--;
	else
	  TCCR0B = 0;
}

/** Initializes the hardware and software associated with the V2 protocol command handling. */
void V2Protocol_Init(void)
{
	#if defined(ADC) && !defined(NO_VTARGET_DETECT)
	/* Initialize the ADC converter for VTARGET level detection on supported AVR models */
	ADC_Init(ADC_FREE_RUNNING | ADC_PRESCALE_128);
	ADC_SetupChannel(VTARGET_ADC_CHANNEL);
	ADC_StartReading(VTARGET_REF_MASK | ADC_RIGHT_ADJUSTED | VTARGET_ADC_CHANNEL_MASK);
	#endif

	/* Timeout timer initialization (~10ms period) */
	OCR0A  = (((F_CPU / 1024) / 100) - 1);
	TCCR0A = (1 << WGM01);
	TIMSK0 = (1 << OCIE0A);

	V2Params_LoadNonVolatileParamValues();

	#if defined(ENABLE_ISP_PROTOCOL)
	ISPTarget_ConfigureRescueClock();
	#endif
}

/** Master V2 Protocol packet handler, for received V2 Protocol packets from a connected host.
 *  This routine decodes the issued command and passes off the handling of the command to the
 *  appropriate function.
 */
void V2Protocol_ProcessCommand(void)
{
	uint8_t V2Command = Endpoint_Read_8();

	/* Reset timeout counter duration and start the timer */
	TimeoutTicksRemaining = COMMAND_TIMEOUT_TICKS;
	TCCR0B = ((1 << CS02) | (1 << CS00));

	switch (V2Command)
	{
		case CMD_SIGN_ON:
			V2Protocol_SignOn();
			break;
		case CMD_SET_PARAMETER:
		case CMD_GET_PARAMETER:
			V2Protocol_GetSetParam(V2Command);
			break;
		case CMD_LOAD_ADDRESS:
			V2Protocol_LoadAddress();
			break;
		case CMD_RESET_PROTECTION:
			V2Protocol_ResetProtection();
			break;
#if defined(ENABLE_ISP_PROTOCOL)
		case CMD_ENTER_PROGMODE_ISP:
			ISPProtocol_EnterISPMode();
			break;
		case CMD_LEAVE_PROGMODE_ISP:
			ISPProtocol_LeaveISPMode();
			break;
		case CMD_PROGRAM_FLASH_ISP:
		case CMD_PROGRAM_EEPROM_ISP:
			ISPProtocol_ProgramMemory(V2Command);
			break;
		case CMD_READ_FLASH_ISP:
		case CMD_READ_EEPROM_ISP:
			ISPProtocol_ReadMemory(V2Command);
			break;
		case CMD_CHIP_ERASE_ISP:
			ISPProtocol_ChipErase();
			break;
		case CMD_READ_FUSE_ISP:
		case CMD_READ_LOCK_ISP:
		case CMD_READ_SIGNATURE_ISP:
		case CMD_READ_OSCCAL_ISP:
			ISPProtocol_ReadFuseLockSigOSCCAL(V2Command);
			break;
		case CMD_PROGRAM_FUSE_ISP:
		case CMD_PROGRAM_LOCK_ISP:
			ISPProtocol_WriteFuseLock(V2Command);
			break;
		case CMD_SPI_MULTI:
			ISPProtocol_SPIMulti();
			break;
#endif
#if defined(ENABLE_XPROG_PROTOCOL)
		case CMD_XPROG_SETMODE:
			XPROGProtocol_SetMode();
			break;
		case CMD_XPROG:
			XPROGProtocol_Command();
			break;
#endif
		default:
			V2Protocol_UnknownCommand(V2Command);
			break;
	}

	/* Disable the timeout management timer */
	TCCR0B = 0;

	Endpoint_WaitUntilReady();
	Endpoint_SelectEndpoint(AVRISP_DATA_OUT_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_OUT);
}

/** Handler for unknown V2 protocol commands. This discards all sent data and returns a
 *  STATUS_CMD_UNKNOWN status back to the host.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
static void V2Protocol_UnknownCommand(const uint8_t V2Command)
{
	/* Discard all incoming data */
	while (Endpoint_BytesInEndpoint() == AVRISP_DATA_EPSIZE)
	{
		Endpoint_ClearOUT();
		Endpoint_WaitUntilReady();
	}

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_UNKNOWN);
	Endpoint_ClearIN();
}

/** Handler for the CMD_SIGN_ON command, returning the programmer ID string to the host. */
static void V2Protocol_SignOn(void)
{
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(CMD_SIGN_ON);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_Write_8(sizeof(PROGRAMMER_ID) - 1);
	Endpoint_Write_Stream_LE(PROGRAMMER_ID, (sizeof(PROGRAMMER_ID) - 1), NULL);
	Endpoint_ClearIN();
}

/** Handler for the CMD_RESET_PROTECTION command, implemented as a dummy ACK function as
 *  no target short-circuit protection is currently implemented.
 */
static void V2Protocol_ResetProtection(void)
{
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(CMD_RESET_PROTECTION);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_ClearIN();
}


/** Handler for the CMD_SET_PARAMETER and CMD_GET_PARAMETER commands from the host, setting or
 *  getting a device parameter's value from the parameter table.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
static void V2Protocol_GetSetParam(const uint8_t V2Command)
{
	uint8_t ParamID = Endpoint_Read_8();
	uint8_t ParamValue;

	if (V2Command == CMD_SET_PARAMETER)
	  ParamValue = Endpoint_Read_8();

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(V2Command);

	uint8_t ParamPrivs = V2Params_GetParameterPrivileges(ParamID);

	if ((V2Command == CMD_SET_PARAMETER) && (ParamPrivs & PARAM_PRIV_WRITE))
	{
		Endpoint_Write_8(STATUS_CMD_OK);
		V2Params_SetParameterValue(ParamID, ParamValue);
	}
	else if ((V2Command == CMD_GET_PARAMETER) && (ParamPrivs & PARAM_PRIV_READ))
	{
		Endpoint_Write_8(STATUS_CMD_OK);
		Endpoint_Write_8(V2Params_GetParameterValue(ParamID));
	}
	else
	{
		Endpoint_Write_8(STATUS_CMD_FAILED);
	}

	Endpoint_ClearIN();
}

/** Handler for the CMD_LOAD_ADDRESS command, loading the given device address into a
 *  global storage variable for later use, and issuing LOAD EXTENDED ADDRESS commands
 *  to the attached device as required.
 */
static void V2Protocol_LoadAddress(void)
{
	Endpoint_Read_Stream_BE(&CurrentAddress, sizeof(CurrentAddress), NULL);

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	if (CurrentAddress & (1UL << 31))
	  MustLoadExtendedAddress = true;

	Endpoint_Write_8(CMD_LOAD_ADDRESS);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_ClearIN();
}
pan class="p">(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; /* Check if the current command is being aborted by the host */ if (MSInterfaceInfo->State.IsMassStoreReset) return; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* Write the Dataflash buffer contents back to the Dataflash page */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE); Dataflash_SendAddressBytes(CurrDFPage, 0x00); Dataflash_WaitWhileBusy(); /* If the endpoint is empty, clear it ready for the next packet from the host */ if (!(Endpoint_IsReadWriteAllowed())) Endpoint_ClearOUT(); /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into * the pre-selected data IN endpoint. This routine reads in Dataflash page sized blocks from the Dataflash * and writes them in OS sized blocks to the endpoint. * * \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state * \param[in] BlockAddress Data block starting address for the read sequence * \param[in] TotalBlocks Number of blocks of data to read */ void DataflashManager_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, const uint32_t BlockAddress, uint16_t TotalBlocks) { uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE); uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE); uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4); /* Select the correct starting Dataflash IC for the block requested */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); /* Wait until endpoint is ready before continuing */ if (Endpoint_WaitUntilReady()) return; while (TotalBlocks) { uint8_t BytesInBlockDiv16 = 0; /* Read an endpoint packet sized data block from the Dataflash */ while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) { /* Check if the endpoint is currently full */ if (!(Endpoint_IsReadWriteAllowed())) { /* Clear the endpoint bank to send its contents to the host */ Endpoint_ClearIN(); /* Wait until the endpoint is ready for more data */ if (Endpoint_WaitUntilReady()) return; } /* Check if end of Dataflash page reached */ if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4)) { /* Reset the Dataflash buffer counter, increment the page counter */ CurrDFPageByteDiv16 = 0; CurrDFPage++; /* Select the next Dataflash chip based on the new Dataflash page index */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); } /* Read one 16-byte chunk of data from the Dataflash */ Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; /* Check if the current command is being aborted by the host */ if (MSInterfaceInfo->State.IsMassStoreReset) return; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* If the endpoint is full, send its contents to the host */ if (!(Endpoint_IsReadWriteAllowed())) Endpoint_ClearIN(); /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board Dataflash IC(s), from * the given RAM buffer. This routine reads in OS sized blocks from the buffer and writes them to the * Dataflash in Dataflash page sized blocks. This can be linked to FAT libraries to write files to the * Dataflash. * * \param[in] BlockAddress Data block starting address for the write sequence * \param[in] TotalBlocks Number of blocks of data to write * \param[in] BufferPtr Pointer to the data source RAM buffer */ void DataflashManager_WriteBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks, const uint8_t* BufferPtr) { uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE); uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE); uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4); bool UsingSecondBuffer = false; /* Select the correct starting Dataflash IC for the block requested */ Dataflash_SelectChipFromPage(CurrDFPage); #if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE) /* Copy selected dataflash's current page contents to the Dataflash buffer */ Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_WaitWhileBusy(); #endif /* Send the Dataflash buffer write command */ Dataflash_SendByte(DF_CMD_BUFF1WRITE); Dataflash_SendAddressBytes(0, CurrDFPageByte); while (TotalBlocks) { uint8_t BytesInBlockDiv16 = 0; /* Write an endpoint packet sized data block to the Dataflash */ while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) { /* Check if end of Dataflash page reached */ if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4)) { /* Write the Dataflash buffer contents back to the Dataflash page */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE); Dataflash_SendAddressBytes(CurrDFPage, 0); /* Reset the Dataflash buffer counter, increment the page counter */ CurrDFPageByteDiv16 = 0; CurrDFPage++; /* Once all the Dataflash ICs have had their first buffers filled, switch buffers to maintain throughput */ if (Dataflash_GetSelectedChip() == DATAFLASH_CHIP_MASK(DATAFLASH_TOTALCHIPS)) UsingSecondBuffer = !(UsingSecondBuffer); /* Select the next Dataflash chip based on the new Dataflash page index */ Dataflash_SelectChipFromPage(CurrDFPage); #if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE) /* If less than one Dataflash page remaining, copy over the existing page to preserve trailing data */ if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4)) { /* Copy selected dataflash's current page contents to the Dataflash buffer */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_MAINMEMTOBUFF2 : DF_CMD_MAINMEMTOBUFF1); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_WaitWhileBusy(); } #endif /* Send the Dataflash buffer write command */ Dataflash_ToggleSelectedChipCS(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2WRITE : DF_CMD_BUFF1WRITE); Dataflash_SendAddressBytes(0, 0); } /* Write one 16-byte chunk of data to the Dataflash */ for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++) Dataflash_SendByte(*(BufferPtr++)); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* Write the Dataflash buffer contents back to the Dataflash page */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE); Dataflash_SendAddressBytes(CurrDFPage, 0x00); Dataflash_WaitWhileBusy(); /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into * the preallocated RAM buffer. This routine reads in Dataflash page sized blocks from the Dataflash * and writes them in OS sized blocks to the given buffer. This can be linked to FAT libraries to read * the files stored on the Dataflash. * * \param[in] BlockAddress Data block starting address for the read sequence * \param[in] TotalBlocks Number of blocks of data to read * \param[out] BufferPtr Pointer to the data destination RAM buffer */ void DataflashManager_ReadBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks, uint8_t* BufferPtr) { uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE); uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE); uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4); /* Select the correct starting Dataflash IC for the block requested */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); while (TotalBlocks) { uint8_t BytesInBlockDiv16 = 0; /* Read an endpoint packet sized data block from the Dataflash */ while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) { /* Check if end of Dataflash page reached */ if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4)) { /* Reset the Dataflash buffer counter, increment the page counter */ CurrDFPageByteDiv16 = 0; CurrDFPage++; /* Select the next Dataflash chip based on the new Dataflash page index */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); } /* Read one 16-byte chunk of data from the Dataflash */ for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++) *(BufferPtr++) = Dataflash_ReceiveByte(); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Disables the Dataflash memory write protection bits on the board Dataflash ICs, if enabled. */ void DataflashManager_ResetDataflashProtections(void) { /* Select first Dataflash chip, send the read status register command */ Dataflash_SelectChip(DATAFLASH_CHIP1); Dataflash_SendByte(DF_CMD_GETSTATUS); /* Check if sector protection is enabled */ if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON) { Dataflash_ToggleSelectedChipCS(); /* Send the commands to disable sector protection */ Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]); } /* Select second Dataflash chip (if present on selected board), send read status register command */ #if (DATAFLASH_TOTALCHIPS == 2) Dataflash_SelectChip(DATAFLASH_CHIP2); Dataflash_SendByte(DF_CMD_GETSTATUS); /* Check if sector protection is enabled */ if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON) { Dataflash_ToggleSelectedChipCS(); /* Send the commands to disable sector protection */ Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]); } #endif /* Deselect current Dataflash chip */ Dataflash_DeselectChip(); } /** Performs a simple test on the attached Dataflash IC(s) to ensure that they are working. * * \return Boolean \c true if all media chips are working, \c false otherwise */ bool DataflashManager_CheckDataflashOperation(void) { uint8_t ReturnByte; /* Test first Dataflash IC is present and responding to commands */ Dataflash_SelectChip(DATAFLASH_CHIP1); Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO); ReturnByte = Dataflash_ReceiveByte(); Dataflash_DeselectChip(); /* If returned data is invalid, fail the command */ if (ReturnByte != DF_MANUFACTURER_ATMEL) return false; #if (DATAFLASH_TOTALCHIPS == 2) /* Test second Dataflash IC is present and responding to commands */ Dataflash_SelectChip(DATAFLASH_CHIP2); Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO); ReturnByte = Dataflash_ReceiveByte(); Dataflash_DeselectChip(); /* If returned data is invalid, fail the command */ if (ReturnByte != DF_MANUFACTURER_ATMEL) return false; #endif return true; }