aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Projects/AVRISP-MKII/Lib/V2Protocol.c
blob: fd64c5a1e83ac92ca4333656ee3bb1478dadb864 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  V2Protocol handler, to process V2 Protocol commands used in Atmel programmer devices.
 */

#define  INCLUDE_FROM_V2PROTOCOL_C
#include "V2Protocol.h"

/** Current memory address for FLASH/EEPROM memory read/write commands */
uint32_t CurrentAddress;

/** Flag to indicate that the next read/write operation must update the device's current extended FLASH address */
bool MustLoadExtendedAddress;


/** ISR to manage timeouts whilst processing a V2Protocol command */
ISR(TIMER0_COMPA_vect, ISR_NOBLOCK)
{
	if (TimeoutTicksRemaining)
	  TimeoutTicksRemaining--;
	else
	  TCCR0B = 0;
}

/** Initializes the hardware and software associated with the V2 protocol command handling. */
void V2Protocol_Init(void)
{
	#if defined(ADC) && !defined(NO_VTARGET_DETECT)
	/* Initialize the ADC converter for VTARGET level detection on supported AVR models */
	ADC_Init(ADC_FREE_RUNNING | ADC_PRESCALE_128);
	ADC_SetupChannel(VTARGET_ADC_CHANNEL);
	ADC_StartReading(VTARGET_REF_MASK | ADC_RIGHT_ADJUSTED | VTARGET_ADC_CHANNEL_MASK);
	#endif

	/* Timeout timer initialization (~10ms period) */
	OCR0A  = (((F_CPU / 1024) / 100) - 1);
	TCCR0A = (1 << WGM01);
	TIMSK0 = (1 << OCIE0A);

	V2Params_LoadNonVolatileParamValues();

	#if defined(ENABLE_ISP_PROTOCOL)
	ISPTarget_ConfigureRescueClock();
	#endif
}

/** Master V2 Protocol packet handler, for received V2 Protocol packets from a connected host.
 *  This routine decodes the issued command and passes off the handling of the command to the
 *  appropriate function.
 */
void V2Protocol_ProcessCommand(void)
{
	uint8_t V2Command = Endpoint_Read_8();

	/* Reset timeout counter duration and start the timer */
	TimeoutTicksRemaining = COMMAND_TIMEOUT_TICKS;
	TCCR0B = ((1 << CS02) | (1 << CS00));

	switch (V2Command)
	{
		case CMD_SIGN_ON:
			V2Protocol_SignOn();
			break;
		case CMD_SET_PARAMETER:
		case CMD_GET_PARAMETER:
			V2Protocol_GetSetParam(V2Command);
			break;
		case CMD_LOAD_ADDRESS:
			V2Protocol_LoadAddress();
			break;
		case CMD_RESET_PROTECTION:
			V2Protocol_ResetProtection();
			break;
#if defined(ENABLE_ISP_PROTOCOL)
		case CMD_ENTER_PROGMODE_ISP:
			ISPProtocol_EnterISPMode();
			break;
		case CMD_LEAVE_PROGMODE_ISP:
			ISPProtocol_LeaveISPMode();
			break;
		case CMD_PROGRAM_FLASH_ISP:
		case CMD_PROGRAM_EEPROM_ISP:
			ISPProtocol_ProgramMemory(V2Command);
			break;
		case CMD_READ_FLASH_ISP:
		case CMD_READ_EEPROM_ISP:
			ISPProtocol_ReadMemory(V2Command);
			break;
		case CMD_CHIP_ERASE_ISP:
			ISPProtocol_ChipErase();
			break;
		case CMD_READ_FUSE_ISP:
		case CMD_READ_LOCK_ISP:
		case CMD_READ_SIGNATURE_ISP:
		case CMD_READ_OSCCAL_ISP:
			ISPProtocol_ReadFuseLockSigOSCCAL(V2Command);
			break;
		case CMD_PROGRAM_FUSE_ISP:
		case CMD_PROGRAM_LOCK_ISP:
			ISPProtocol_WriteFuseLock(V2Command);
			break;
		case CMD_SPI_MULTI:
			ISPProtocol_SPIMulti();
			break;
#endif
#if defined(ENABLE_XPROG_PROTOCOL)
		case CMD_XPROG_SETMODE:
			XPROGProtocol_SetMode();
			break;
		case CMD_XPROG:
			XPROGProtocol_Command();
			break;
#endif
		default:
			V2Protocol_UnknownCommand(V2Command);
			break;
	}

	/* Disable the timeout management timer */
	TCCR0B = 0;

	Endpoint_WaitUntilReady();
	Endpoint_SelectEndpoint(AVRISP_DATA_OUT_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_OUT);
}

/** Handler for unknown V2 protocol commands. This discards all sent data and returns a
 *  STATUS_CMD_UNKNOWN status back to the host.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
static void V2Protocol_UnknownCommand(const uint8_t V2Command)
{
	/* Discard all incoming data */
	while (Endpoint_BytesInEndpoint() == AVRISP_DATA_EPSIZE)
	{
		Endpoint_ClearOUT();
		Endpoint_WaitUntilReady();
	}

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(V2Command);
	Endpoint_Write_8(STATUS_CMD_UNKNOWN);
	Endpoint_ClearIN();
}

/** Handler for the CMD_SIGN_ON command, returning the programmer ID string to the host. */
static void V2Protocol_SignOn(void)
{
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(CMD_SIGN_ON);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_Write_8(sizeof(PROGRAMMER_ID) - 1);
	Endpoint_Write_Stream_LE(PROGRAMMER_ID, (sizeof(PROGRAMMER_ID) - 1), NULL);
	Endpoint_ClearIN();
}

/** Handler for the CMD_RESET_PROTECTION command, implemented as a dummy ACK function as
 *  no target short-circuit protection is currently implemented.
 */
static void V2Protocol_ResetProtection(void)
{
	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(CMD_RESET_PROTECTION);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_ClearIN();
}


/** Handler for the CMD_SET_PARAMETER and CMD_GET_PARAMETER commands from the host, setting or
 *  getting a device parameter's value from the parameter table.
 *
 *  \param[in] V2Command  Issued V2 Protocol command byte from the host
 */
static void V2Protocol_GetSetParam(const uint8_t V2Command)
{
	uint8_t ParamID = Endpoint_Read_8();
	uint8_t ParamValue;

	if (V2Command == CMD_SET_PARAMETER)
	  ParamValue = Endpoint_Read_8();

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	Endpoint_Write_8(V2Command);

	uint8_t ParamPrivs = V2Params_GetParameterPrivileges(ParamID);

	if ((V2Command == CMD_SET_PARAMETER) && (ParamPrivs & PARAM_PRIV_WRITE))
	{
		Endpoint_Write_8(STATUS_CMD_OK);
		V2Params_SetParameterValue(ParamID, ParamValue);
	}
	else if ((V2Command == CMD_GET_PARAMETER) && (ParamPrivs & PARAM_PRIV_READ))
	{
		Endpoint_Write_8(STATUS_CMD_OK);
		Endpoint_Write_8(V2Params_GetParameterValue(ParamID));
	}
	else
	{
		Endpoint_Write_8(STATUS_CMD_FAILED);
	}

	Endpoint_ClearIN();
}

/** Handler for the CMD_LOAD_ADDRESS command, loading the given device address into a
 *  global storage variable for later use, and issuing LOAD EXTENDED ADDRESS commands
 *  to the attached device as required.
 */
static void V2Protocol_LoadAddress(void)
{
	Endpoint_Read_Stream_BE(&CurrentAddress, sizeof(CurrentAddress), NULL);

	Endpoint_ClearOUT();
	Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
	Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);

	if (CurrentAddress & (1UL << 31))
	  MustLoadExtendedAddress = true;

	Endpoint_Write_8(CMD_LOAD_ADDRESS);
	Endpoint_Write_8(STATUS_CMD_OK);
	Endpoint_ClearIN();
}
pan class="p">) break; return (!exact || (*q == NULL) || ((*q)->cpupool_id == id)) ? *q : NULL; } static struct cpupool *cpupool_find_by_id(int poolid) { return __cpupool_find_by_id(poolid, 1); } static struct cpupool *__cpupool_get_by_id(int poolid, int exact) { struct cpupool *c; spin_lock(&cpupool_lock); c = __cpupool_find_by_id(poolid, exact); if ( c != NULL ) atomic_inc(&c->refcnt); spin_unlock(&cpupool_lock); return c; } struct cpupool *cpupool_get_by_id(int poolid) { return __cpupool_get_by_id(poolid, 1); } static struct cpupool *cpupool_get_next_by_id(int poolid) { return __cpupool_get_by_id(poolid, 0); } void cpupool_put(struct cpupool *pool) { if ( !atomic_dec_and_test(&pool->refcnt) ) return; scheduler_free(pool->sched); free_cpupool_struct(pool); } /* * create a new cpupool with specified poolid and scheduler * returns pointer to new cpupool structure if okay, NULL else * possible failures: * - no memory * - poolid already used * - unknown scheduler */ static struct cpupool *cpupool_create( int poolid, unsigned int sched_id, int *perr) { struct cpupool *c; struct cpupool **q; int last = 0; *perr = -ENOMEM; if ( (c = alloc_cpupool_struct()) == NULL ) return NULL; /* One reference for caller, one reference for cpupool_destroy(). */ atomic_set(&c->refcnt, 2); cpupool_dprintk("cpupool_create(pool=%d,sched=%u)\n", poolid, sched_id); spin_lock(&cpupool_lock); for_each_cpupool(q) { last = (*q)->cpupool_id; if ( (poolid != CPUPOOLID_NONE) && (last >= poolid) ) break; } if ( *q != NULL ) { if ( (*q)->cpupool_id == poolid ) { spin_unlock(&cpupool_lock); free_cpupool_struct(c); *perr = -EEXIST; return NULL; } c->next = *q; } c->cpupool_id = (poolid == CPUPOOLID_NONE) ? (last + 1) : poolid; if ( poolid == 0 ) { c->sched = scheduler_get_default(); } else { c->sched = scheduler_alloc(sched_id, perr); if ( c->sched == NULL ) { spin_unlock(&cpupool_lock); free_cpupool_struct(c); return NULL; } } *q = c; spin_unlock(&cpupool_lock); cpupool_dprintk("Created cpupool %d with scheduler %s (%s)\n", c->cpupool_id, c->sched->name, c->sched->opt_name); *perr = 0; return c; } /* * destroys the given cpupool * returns 0 on success, 1 else * possible failures: * - pool still in use * - cpus still assigned to pool * - pool not in list */ static int cpupool_destroy(struct cpupool *c) { struct cpupool **q; spin_lock(&cpupool_lock); for_each_cpupool(q) if ( *q == c ) break; if ( *q != c ) { spin_unlock(&cpupool_lock); return -ENOENT; } if ( (c->n_dom != 0) || cpumask_weight(c->cpu_valid) ) { spin_unlock(&cpupool_lock); return -EBUSY; } *q = c->next; spin_unlock(&cpupool_lock); cpupool_put(c); cpupool_dprintk("cpupool_destroy(pool=%d)\n", c->cpupool_id); return 0; } /* * assign a specific cpu to a cpupool * cpupool_lock must be held */ static int cpupool_assign_cpu_locked(struct cpupool *c, unsigned int cpu) { int ret; struct cpupool *old; struct domain *d; if ( (cpupool_moving_cpu == cpu) && (c != cpupool_cpu_moving) ) return -EBUSY; old = per_cpu(cpupool, cpu); per_cpu(cpupool, cpu) = c; ret = schedule_cpu_switch(cpu, c); if ( ret ) { per_cpu(cpupool, cpu) = old; return ret; } cpumask_clear_cpu(cpu, &cpupool_free_cpus); if (cpupool_moving_cpu == cpu) { cpupool_moving_cpu = -1; cpupool_put(cpupool_cpu_moving); cpupool_cpu_moving = NULL; } cpumask_set_cpu(cpu, c->cpu_valid); rcu_read_lock(&domlist_read_lock); for_each_domain_in_cpupool(d, c) { domain_update_node_affinity(d); } rcu_read_unlock(&domlist_read_lock); return 0; } static long cpupool_unassign_cpu_helper(void *info) { int cpu = cpupool_moving_cpu; long ret; cpupool_dprintk("cpupool_unassign_cpu(pool=%d,cpu=%d)\n", cpupool_cpu_moving->cpupool_id, cpu); spin_lock(&cpupool_lock); ret = cpu_disable_scheduler(cpu); cpumask_set_cpu(cpu, &cpupool_free_cpus); if ( !ret ) { ret = schedule_cpu_switch(cpu, NULL); if ( ret ) { cpumask_clear_cpu(cpu, &cpupool_free_cpus); goto out; } per_cpu(cpupool, cpu) = NULL; cpupool_moving_cpu = -1; cpupool_put(cpupool_cpu_moving); cpupool_cpu_moving = NULL; } out: spin_unlock(&cpupool_lock); cpupool_dprintk("cpupool_unassign_cpu ret=%ld\n", ret); return ret; } /* * unassign a specific cpu from a cpupool * we must be sure not to run on the cpu to be unassigned! to achieve this * the main functionality is performed via continue_hypercall_on_cpu on a * specific cpu. * if the cpu to be removed is the last one of the cpupool no active domain * must be bound to the cpupool. dying domains are moved to cpupool0 as they * might be zombies. * possible failures: * - last cpu and still active domains in cpupool * - cpu just being unplugged */ int cpupool_unassign_cpu(struct cpupool *c, unsigned int cpu) { int work_cpu; int ret; struct domain *d; cpupool_dprintk("cpupool_unassign_cpu(pool=%d,cpu=%d)\n", c->cpupool_id, cpu); spin_lock(&cpupool_lock); ret = -EBUSY; if ( (cpupool_moving_cpu != -1) && (cpu != cpupool_moving_cpu) ) goto out; if ( cpumask_test_cpu(cpu, &cpupool_locked_cpus) ) goto out; ret = 0; if ( !cpumask_test_cpu(cpu, c->cpu_valid) && (cpu != cpupool_moving_cpu) ) goto out; if ( (c->n_dom > 0) && (cpumask_weight(c->cpu_valid) == 1) && (cpu != cpupool_moving_cpu) ) { rcu_read_lock(&domlist_read_lock); for_each_domain_in_cpupool(d, c) { if ( !d->is_dying ) { ret = -EBUSY; break; } c->n_dom--; ret = sched_move_domain(d, cpupool0); if ( ret ) { c->n_dom++; break; } cpupool0->n_dom++; } rcu_read_unlock(&domlist_read_lock); if ( ret ) goto out; } cpupool_moving_cpu = cpu; atomic_inc(&c->refcnt); cpupool_cpu_moving = c; cpumask_clear_cpu(cpu, c->cpu_valid); spin_unlock(&cpupool_lock); work_cpu = smp_processor_id(); if ( work_cpu == cpu ) { work_cpu = cpumask_first(cpupool0->cpu_valid); if ( work_cpu == cpu ) work_cpu = cpumask_next(cpu, cpupool0->cpu_valid); } return continue_hypercall_on_cpu(work_cpu, cpupool_unassign_cpu_helper, c); out: spin_unlock(&cpupool_lock); cpupool_dprintk("cpupool_unassign_cpu(pool=%d,cpu=%d) ret %d\n", c->cpupool_id, cpu, ret); return ret; } /* * add a new domain to a cpupool * possible failures: * - pool does not exist * - no cpu assigned to pool */ int cpupool_add_domain(struct domain *d, int poolid) { struct cpupool *c; int rc; int n_dom = 0; if ( poolid == CPUPOOLID_NONE ) return 0; spin_lock(&cpupool_lock); c = cpupool_find_by_id(poolid); if ( c == NULL ) rc = -ESRCH; else if ( !cpumask_weight(c->cpu_valid) ) rc = -ENODEV; else { c->n_dom++; n_dom = c->n_dom; d->cpupool = c; rc = 0; } spin_unlock(&cpupool_lock); cpupool_dprintk("cpupool_add_domain(dom=%d,pool=%d) n_dom %d rc %d\n", d->domain_id, poolid, n_dom, rc); return rc; } /* * remove a domain from a cpupool */ void cpupool_rm_domain(struct domain *d) { int cpupool_id; int n_dom; if ( d->cpupool == NULL ) return; spin_lock(&cpupool_lock); cpupool_id = d->cpupool->cpupool_id; d->cpupool->n_dom--; n_dom = d->cpupool->n_dom; d->cpupool = NULL; spin_unlock(&cpupool_lock); cpupool_dprintk("cpupool_rm_domain(dom=%d,pool=%d) n_dom %d\n", d->domain_id, cpupool_id, n_dom); return; } /* * called to add a new cpu to pool admin * we add a hotplugged cpu to the cpupool0 to be able to add it to dom0, * unless we are resuming from S3, in which case we put the cpu back * in the cpupool it was in prior to suspend. */ static void cpupool_cpu_add(unsigned int cpu) { spin_lock(&cpupool_lock); cpumask_clear_cpu(cpu, &cpupool_locked_cpus); cpumask_set_cpu(cpu, &cpupool_free_cpus); if ( system_state == SYS_STATE_resume ) { struct cpupool **c; for_each_cpupool(c) { if ( cpumask_test_cpu(cpu, (*c)->cpu_suspended ) ) { cpupool_assign_cpu_locked(*c, cpu); cpumask_clear_cpu(cpu, (*c)->cpu_suspended); } } } if ( cpumask_test_cpu(cpu, &cpupool_free_cpus) ) cpupool_assign_cpu_locked(cpupool0, cpu); spin_unlock(&cpupool_lock); } /* * called to remove a cpu from pool admin * the cpu to be removed is locked to avoid removing it from dom0 * returns failure if not in pool0 */ static int cpupool_cpu_remove(unsigned int cpu) { int ret = 0; spin_lock(&cpupool_lock); if ( !cpumask_test_cpu(cpu, cpupool0->cpu_valid)) ret = -EBUSY; else cpumask_set_cpu(cpu, &cpupool_locked_cpus); spin_unlock(&cpupool_lock); return ret; } /* * do cpupool related sysctl operations */ int cpupool_do_sysctl(struct xen_sysctl_cpupool_op *op) { int ret; struct cpupool *c; switch ( op->op ) { case XEN_SYSCTL_CPUPOOL_OP_CREATE: { int poolid; poolid = (op->cpupool_id == XEN_SYSCTL_CPUPOOL_PAR_ANY) ? CPUPOOLID_NONE: op->cpupool_id; c = cpupool_create(poolid, op->sched_id, &ret); if ( c != NULL ) { op->cpupool_id = c->cpupool_id; cpupool_put(c); } } break; case XEN_SYSCTL_CPUPOOL_OP_DESTROY: { c = cpupool_get_by_id(op->cpupool_id); ret = -ENOENT; if ( c == NULL ) break; ret = cpupool_destroy(c); cpupool_put(c); } break; case XEN_SYSCTL_CPUPOOL_OP_INFO: { c = cpupool_get_next_by_id(op->cpupool_id); ret = -ENOENT; if ( c == NULL ) break; op->cpupool_id = c->cpupool_id; op->sched_id = c->sched->sched_id; op->n_dom = c->n_dom; ret = cpumask_to_xenctl_bitmap(&op->cpumap, c->cpu_valid); cpupool_put(c); } break; case XEN_SYSCTL_CPUPOOL_OP_ADDCPU: { unsigned cpu; cpu = op->cpu; cpupool_dprintk("cpupool_assign_cpu(pool=%d,cpu=%d)\n", op->cpupool_id, cpu); spin_lock(&cpupool_lock); if ( cpu == XEN_SYSCTL_CPUPOOL_PAR_ANY ) cpu = cpumask_first(&cpupool_free_cpus); ret = -EINVAL; if ( cpu >= nr_cpu_ids ) goto addcpu_out; ret = -EBUSY; if ( !cpumask_test_cpu(cpu, &cpupool_free_cpus) ) goto addcpu_out; c = cpupool_find_by_id(op->cpupool_id); ret = -ENOENT; if ( c == NULL ) goto addcpu_out; ret = cpupool_assign_cpu_locked(c, cpu); addcpu_out: spin_unlock(&cpupool_lock); cpupool_dprintk("cpupool_assign_cpu(pool=%d,cpu=%d) ret %d\n", op->cpupool_id, cpu, ret); } break; case XEN_SYSCTL_CPUPOOL_OP_RMCPU: { unsigned cpu; c = cpupool_get_by_id(op->cpupool_id); ret = -ENOENT; if ( c == NULL ) break; cpu = op->cpu; if ( cpu == XEN_SYSCTL_CPUPOOL_PAR_ANY ) cpu = cpumask_last(c->cpu_valid); ret = (cpu < nr_cpu_ids) ? cpupool_unassign_cpu(c, cpu) : -EINVAL; cpupool_put(c); } break; case XEN_SYSCTL_CPUPOOL_OP_MOVEDOMAIN: { struct domain *d; ret = rcu_lock_remote_domain_by_id(op->domid, &d); if ( ret ) break; if ( d->cpupool == NULL ) { ret = -EINVAL; rcu_unlock_domain(d); break; } if ( op->cpupool_id == d->cpupool->cpupool_id ) { ret = 0; rcu_unlock_domain(d); break; } cpupool_dprintk("cpupool move_domain(dom=%d)->pool=%d\n", d->domain_id, op->cpupool_id); ret = -ENOENT; spin_lock(&cpupool_lock); c = cpupool_find_by_id(op->cpupool_id); if ( (c != NULL) && cpumask_weight(c->cpu_valid) ) { d->cpupool->n_dom--; ret = sched_move_domain(d, c); if ( ret ) d->cpupool->n_dom++; else c->n_dom++; } spin_unlock(&cpupool_lock); cpupool_dprintk("cpupool move_domain(dom=%d)->pool=%d ret %d\n", d->domain_id, op->cpupool_id, ret); rcu_unlock_domain(d); } break; case XEN_SYSCTL_CPUPOOL_OP_FREEINFO: { ret = cpumask_to_xenctl_bitmap( &op->cpumap, &cpupool_free_cpus); } break; default: ret = -ENOSYS; break; } return ret; } void dump_runq(unsigned char key) { unsigned long flags; s_time_t now = NOW(); struct cpupool **c; spin_lock(&cpupool_lock); local_irq_save(flags); printk("sched_smt_power_savings: %s\n", sched_smt_power_savings? "enabled":"disabled"); printk("NOW=0x%08X%08X\n", (u32)(now>>32), (u32)now); printk("Idle cpupool:\n"); schedule_dump(NULL); for_each_cpupool(c) { printk("Cpupool %d:\n", (*c)->cpupool_id); schedule_dump(*c); } local_irq_restore(flags); spin_unlock(&cpupool_lock); } static int cpu_callback( struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; int rc = 0; if ( system_state == SYS_STATE_suspend ) { struct cpupool **c; for_each_cpupool(c) if ( cpumask_test_cpu(cpu, (*c)->cpu_valid ) ) cpumask_set_cpu(cpu, (*c)->cpu_suspended); } switch ( action ) { case CPU_DOWN_FAILED: case CPU_ONLINE: cpupool_cpu_add(cpu); break; case CPU_DOWN_PREPARE: rc = cpupool_cpu_remove(cpu); break; default: break; } return !rc ? NOTIFY_DONE : notifier_from_errno(rc); } static struct notifier_block cpu_nfb = { .notifier_call = cpu_callback }; static int __init cpupool_presmp_init(void) { int err; void *cpu = (void *)(long)smp_processor_id(); cpupool0 = cpupool_create(0, 0, &err); BUG_ON(cpupool0 == NULL); cpupool_put(cpupool0); cpu_callback(&cpu_nfb, CPU_ONLINE, cpu); register_cpu_notifier(&cpu_nfb); return 0; } presmp_initcall(cpupool_presmp_init); /* * Local variables: * mode: C * c-file-style: "BSD" * c-basic-offset: 4 * tab-width: 4 * indent-tabs-mode: nil * End: */