aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lufa/Projects/XPLAINBridge/Config/AppConfig.h
blob: ce9caaf616c5c369251f78b7e8a28f41fdac5744 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *  \brief Application Configuration Header File
 *
 *  This is a header file which is be used to configure some of
 *  the application's compile time options, as an alternative to
 *  specifying the compile time constants supplied through a
 *  makefile or build system.
 *
 *  For information on what each token does, refer to the
 *  \ref Sec_Options section of the application documentation.
 */

#ifndef _APP_CONFIG_H_
#define _APP_CONFIG_H_

	#define AUX_LINE_PORT              PORTB
	#define AUX_LINE_PIN               PINB
	#define AUX_LINE_DDR               DDRB
	#define AUX_LINE_MASK              (1 << 4)

//	#define ENABLE_ISP_PROTOCOL
	#define ENABLE_XPROG_PROTOCOL

	#define VTARGET_ADC_CHANNEL        2
	#define VTARGET_REF_VOLTS          3.3
	#define VTARGET_SCALE_FACTOR       2
//	#define VTARGET_USE_INTERNAL_REF
//	#define NO_VTARGET_DETECT
//	#define XCK_RESCUE_CLOCK_ENABLE
//	#define INVERTED_ISP_MISO

//	#define FIRMWARE_VERSION_MINOR     0x11

#endif
='n348' href='#n348'>348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
-- EMACS settings: -*-  tab-width: 2; indent-tabs-mode: t -*-
-- vim: tabstop=2:shiftwidth=2:noexpandtab
-- kate: tab-width 2; replace-tabs off; indent-width 2;
-- 
-- ============================================================================
-- Authors:					Patrick Lehmann
-- 									Martin Zabel
-- 
-- Package:					This VHDL package declares new physical types and their
--									conversion functions.
--
-- Description:
-- ------------------------------------
--		For detailed documentation see below.
--	
--		NAMING CONVENTION:
--			t - time
--			p - period
--			d - delay
--			f - frequency
--			br - baud rate
--			vec - vector
--			
--		ATTENTION:
--			This package is not supported by Xilinx Synthese Tools prior to 14.7!
--			
--			It was successfully tested with:
--				- Xilinx Synthesis Tool (XST) 14.7 and Xilinx ISE Simulator (iSim) 14.7
--				- Quartus II 13.1
--				- QuestaSim 10.0d
--				- GHDL 0.31
--
--			Tool chains with known issues:
--				- Xilinx Vivado	Synthesis 2014.4
--
--			Untested tool chains
--				- Xilinx Vivado Simulator (xSim) 2014.4
--		
-- License:
-- ============================================================================
-- Copyright 2007-2015 Technische Universitaet Dresden - Germany,
--										 Chair for VLSI-Design, Diagnostics and Architecture
-- 
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
-- 
--		http://www.apache.org/licenses/LICENSE-2.0
-- 
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
-- ============================================================================

library IEEE;
use			IEEE.math_real.all;

library PoC;
use			PoC.config.all;
use			PoC.utils.all;
use			PoC.strings.all;


package physical is
	
	type FREQ is range 0 to INTEGER'high units
		Hz;
		kHz = 1000 Hz;
		MHz = 1000 kHz;
		GHz = 1000 MHz;
	end units;

	type BAUD is range 0 to INTEGER'high units
		Bd;
		kBd = 1000 Bd;
		MBd = 1000 kBd;
		GBd = 1000 MBd;
	end units;

	type MEMORY is range 0 to INTEGER'high units
		Byte;
		KiB = 1024 Byte;
		MiB = 1024 KiB;
		GiB = 1024 MiB;
	end units;
	
	-- vector data types
	type		T_TIMEVEC						is array(NATURAL range <>) of TIME;
	type		T_FREQVEC						is array(NATURAL range <>) of FREQ;
	type		T_BAUDVEC						is array(NATURAL range <>) of BAUD;
	type		T_MEMVEC						is array(NATURAL range <>) of MEMORY;
	
	-- if true: TimingToCycles reports difference between expected and actual result
	constant C_PHYSICAL_REPORT_TIMING_DEVIATION		: BOOLEAN		:= TRUE;
	
	-- conversion functions
	function to_time(f : FREQ)	return TIME;
	function to_freq(p : TIME)	return FREQ;
	function to_freq(br : BAUD)	return FREQ;
	function to_baud(str : STRING)	return BAUD;

	-- if-then-else
	function ite(cond : BOOLEAN; value1 : TIME;	value2 : TIME)			return TIME;
	function ite(cond : BOOLEAN; value1 : FREQ;	value2 : FREQ)			return FREQ;
	function ite(cond : BOOLEAN; value1 : BAUD;	value2 : BAUD)			return BAUD;
	function ite(cond : BOOLEAN; value1 : MEMORY;	value2 : MEMORY)	return MEMORY;
	
	-- min/ max for 2 arguments
	function tmin(arg1 : TIME; arg2 : TIME) return TIME;						-- Calculates: min(arg1, arg2) for times
	function fmin(arg1 : FREQ; arg2 : FREQ) return FREQ;						-- Calculates: min(arg1, arg2) for frequencies
	function bmin(arg1 : BAUD; arg2 : BAUD) return BAUD;						-- Calculates: min(arg1, arg2) for symbols per second
	function mmin(arg1 : MEMORY; arg2 : MEMORY) return MEMORY;			-- Calculates: min(arg1, arg2) for memory
	
	function tmax(arg1 : TIME; arg2 : TIME) return TIME;						-- Calculates: max(arg1, arg2) for times
	function fmax(arg1 : FREQ; arg2 : FREQ) return FREQ;						-- Calculates: max(arg1, arg2) for frequencies
	function bmax(arg1 : BAUD; arg2 : BAUD) return BAUD;						-- Calculates: max(arg1, arg2) for symbols per second
	function mmax(arg1 : MEMORY; arg2 : MEMORY) return MEMORY;			-- Calculates: max(arg1, arg2) for memory
	
	-- min/max/sum as vector aggregation
	function tmin(vec : T_TIMEVEC)	return TIME;										-- Calculates: min(vec) for a time vector
	function fmin(vec : T_FREQVEC)	return FREQ;										-- Calculates: min(vec) for a frequency vector
	function bmin(vec : T_BAUDVEC)	return BAUD;										-- Calculates: min(vec) for a baud vector
	function mmin(vec : T_MEMVEC)	return MEMORY;									-- Calculates: min(vec) for a memory vector
	
	function tmax(vec : T_TIMEVEC)	return TIME;										-- Calculates: max(vec) for a time vector
	function fmax(vec : T_FREQVEC)	return FREQ;										-- Calculates: max(vec) for a frequency vector
	function bmax(vec : T_BAUDVEC)	return BAUD;										-- Calculates: max(vec) for a baud vector
	function mmax(vec : T_MEMVEC)	return MEMORY;									-- Calculates: max(vec) for a memory vector
	
	function tsum(vec : T_TIMEVEC)	return TIME;										-- Calculates: sum(vec) for a time vector
	function fsum(vec : T_FREQVEC)	return FREQ;										-- Calculates: sum(vec) for a frequency vector
	function bsum(vec : T_BAUDVEC)	return BAUD;										-- Calculates: sum(vec) for a baud vector
	function msum(vec : T_MEMVEC)	return MEMORY;									-- Calculates: sum(vec) for a memory vector
	
	-- convert standard types (NATURAL, REAL) to time (TIME)
	function fs2Time(t_fs : INTEGER)		return TIME;
	function ps2Time(t_ps : INTEGER)		return TIME;
	function ns2Time(t_ns : INTEGER)		return TIME;
	function us2Time(t_us : INTEGER)		return TIME;
	function ms2Time(t_ms : INTEGER)		return TIME;
	function sec2Time(t_sec : INTEGER)	return TIME;
	
	function fs2Time(t_fs : REAL)				return TIME;
	function ps2Time(t_ps : REAL)				return TIME;
	function ns2Time(t_ns : REAL)				return TIME;
	function us2Time(t_us : REAL)				return TIME;
	function ms2Time(t_ms : REAL)				return TIME;
	function sec2Time(t_sec : REAL)			return TIME;
	
	-- convert standard types (NATURAL, REAL) to period (TIME)
	function Hz2Time(f_Hz : NATURAL)		return TIME;
	function kHz2Time(f_kHz : NATURAL)	return TIME;
	function MHz2Time(f_MHz : NATURAL)	return TIME;
	function GHz2Time(f_GHz : NATURAL)	return TIME;

	function Hz2Time(f_Hz : REAL)				return TIME;
	function kHz2Time(f_kHz : REAL) 		return TIME;
	function MHz2Time(f_MHz : REAL) 		return TIME;
	function GHz2Time(f_GHz : REAL) 		return TIME;
	
	-- convert standard types (NATURAL, REAL) to frequency (FREQ)
	function Hz2Freq(f_Hz : NATURAL)		return FREQ;
	function kHz2Freq(f_kHz : NATURAL)	return FREQ;
	function MHz2Freq(f_MHz : NATURAL)	return FREQ;
	function GHz2Freq(f_GHz : NATURAL)	return FREQ;
	
	function Hz2Freq(f_Hz : REAL)				return FREQ;
	function kHz2Freq(f_kHz : REAL)			return FREQ;
	function MHz2Freq(f_MHz : REAL)			return FREQ;
	function GHz2Freq(f_GHz : REAL)			return FREQ;
	
	-- convert physical types to standard type (REAL)
	function to_real(t : TIME;			scale : TIME)		return REAL;
	function to_real(f : FREQ;			scale : FREQ)		return REAL;
	function to_real(br : BAUD;			scale : BAUD)		return REAL;
	function to_real(mem : MEMORY;	scale : MEMORY)	return REAL;
	
	-- convert physical types to standard type (INTEGER)
	function to_int(t : TIME;			scale : TIME;		RoundingStyle : T_ROUNDING_STYLE := ROUND_TO_NEAREST)	return INTEGER;
	function to_int(f : FREQ;			scale : FREQ;		RoundingStyle : T_ROUNDING_STYLE := ROUND_TO_NEAREST)	return INTEGER;
	function to_int(br : BAUD;		scale : BAUD;		RoundingStyle : T_ROUNDING_STYLE := ROUND_TO_NEAREST)	return INTEGER;
	function to_int(mem : MEMORY;	scale : MEMORY;	RoundingStyle : T_ROUNDING_STYLE := ROUND_UP)					return INTEGER;
	
	-- calculate needed counter cycles to achieve a given 1. timing/delay and 2. frequency/period
	function TimingToCycles(Timing : TIME; Clock_Period			: TIME; RoundingStyle : T_ROUNDING_STYLE := ROUND_UP) return NATURAL;
	function TimingToCycles(Timing : TIME; Clock_Frequency	: FREQ; RoundingStyle : T_ROUNDING_STYLE := ROUND_UP) return NATURAL;
	
	function CyclesToDelay(Cycles : NATURAL; Clock_Period			: TIME) return TIME;
	function CyclesToDelay(Cycles : NATURAL; Clock_Frequency	: FREQ) return TIME;
	
	-- convert and format physical types to STRING
	function to_string(t : TIME; precision : NATURAL)			return STRING;
	function to_string(f : FREQ; precision : NATURAL)			return STRING;
	function to_string(br : BAUD; precision : NATURAL)		return STRING;
	function to_string(mem : MEMORY; precision : NATURAL)	return STRING;
end physical;


package body physical is

	-- iSim 14.7 does not support fs in simulation (fs values are converted to 0 ps)
	function MinimalTimeResolutionInSimulation return TIME is
	begin
		if		(1 fs > 0 sec) then	return 1 fs;
		elsif	(1 ps > 0 sec) then	return 1 ps;
		elsif	(1 ns > 0 sec) then	return 1 ns;
		elsif	(1 us > 0 sec) then	return 1 us;
		elsif	(1 ms > 0 sec) then	return 1 ms;
		else											return 1 sec;
		end if;
	end function;

	-- real division for physical types
	-- ===========================================================================
	function div(a : TIME; b : TIME) return REAL is
		constant MTRIS	: TIME		:= MinimalTimeResolutionInSimulation;
		variable a_real : real;
		variable b_real : real;
	begin
		-- Quartus-II work-around
	  if    a < 1 us  then
			a_real  := real(a / MTRIS);
		elsif a < 1 ms  then
			a_real  := real(a / (1000 * MTRIS)) * 1000.0;
		elsif a < 1 sec then
			a_real  := real(a / (1000000 * MTRIS)) * 1000000.0;
		else
			a_real  := real(a / (1000000000 * MTRIS)) * 1000000000.0;
		end if;

	  if    b < 1 us  then
			b_real  := real(b / MTRIS);
		elsif b < 1 ms  then
			b_real  := real(b / (1000 * MTRIS)) * 1000.0;
		elsif b < 1 sec then
			b_real  := real(b / (1000000 * MTRIS)) * 1000000.0;
		else
			b_real  := real(b / (1000000000 * MTRIS)) * 1000000000.0;
		end if;

		return a_real / b_real;
	end function;
	
	function div(a : FREQ; b : FREQ) return REAL is
	begin
		return real(a / 1 Hz) / real(b / 1 Hz);
	end function;
	
	function div(a : BAUD; b : BAUD) return REAL is
	begin
		return real(a / 1 Bd) / real(b / 1 Bd);
	end function;
	
	function div(a : MEMORY; b : MEMORY) return REAL is
	begin
		return real(a / 1 Byte) / real(b / 1 Byte);
	end function;

	-- conversion functions
	-- ===========================================================================
	function to_time(f : FREQ) return TIME is
		variable res : TIME;
	begin
		res := div(1000 MHz, f) * 1 ns;
		if (POC_VERBOSE = TRUE) then
			report "to_time: f= " & to_string(f, 3) & "  return " & to_string(res, 3) severity note;
		end if;
		return res;
	end function;

	function to_freq(p : TIME) return FREQ is
		variable res : FREQ;
	begin
		if (p <= 1 sec) then res := div(1 sec, p) * 1  Hz;
		else report "to_freq: input period exceeds output frequency scale." severity failure;
		end if;
		if (POC_VERBOSE = TRUE) then
			report "to_freq: p= " & to_string(p, 3) & "  return " & to_string(res, 3) severity note;
		end if;
		return res;
	end function;
	
	function to_freq(br : BAUD) return FREQ is
		variable res : FREQ;
	begin
		res := (br / 1 Bd)	* 1  Hz;
		if (POC_VERBOSE = TRUE) then
			report "to_freq: br= " & to_string(br, 3) & "  return " & to_string(res, 3) severity note;
		end if;
		return res;
	end function;
	
	function to_baud(str : STRING) return BAUD is
		variable pos		: INTEGER;
		variable int		: NATURAL;
		variable base		: POSITIVE;
		variable frac		: NATURAL;
		variable digits	: NATURAL;
	begin
		pos			:= str'low;
		int			:= 0;
		frac		:= 0;
		digits	:= 0;
		-- read integer part
		for i in pos to str'high loop
			if (chr_isDigit(str(i)) = TRUE) then		int := int * 10 + to_digit_dec(str(i));
			elsif (str(i) = '.') then								pos	:= -i;	exit;
			elsif (str(i) = ' ') then								pos	:= i;		exit;
			else																		pos := 0;		exit;
			end if;
		end loop;
		-- read fractional part
		if ((pos < 0) and (-pos < str'high)) then
			for i in -pos+1 to str'high loop
				if ((frac = 0) and (str(i) = '0')) then	next;
				elsif (chr_isDigit(str(i)) = TRUE) then	frac	:= frac * 10 + to_digit_dec(str(i));
				elsif (str(i) = ' ') then								digits	:= i + pos - 1;	pos	:= i;	exit;
				else																														pos	:= 0;	exit;
				end if;
			end loop;
		end if;
		-- abort if format is unknown
		if (pos = 0) then report "to_baud: Unknown format" severity FAILURE;	end if;
		-- parse unit
		pos := pos + 1;
		if ((pos + 1 = str'high) and (str(pos to pos + 1) = "Bd")) then
																		return int * 1 Bd;
		elsif (pos + 2 = str'high) then
			if (str(pos to pos + 2) = "kBd") then
				if (frac = 0) then					return (int * 1 kBd);
				elsif (digits <= 3) then		return (int * 1 kBd) + (frac * 10**(3 - digits) * 1 Bd);
				else												return (int * 1 kBd) + (frac / 10**(digits - 3) * 100 Bd);
				end if;
			elsif (str(pos to pos + 2) = "MBd") then
				if (frac = 0) then					return (int * 1 kBd);
				elsif (digits <= 3) then		return (int * 1 MBd) + (frac * 10**(3 - digits) * 1 kBd);
				elsif (digits <= 6) then		return (int * 1 MBd) + (frac * 10**(6 - digits) * 1 Bd);
				else												return (int * 1 MBd) + (frac / 10**(digits - 6) * 100000 Bd);
				end if;
			elsif (str(pos to pos + 2) = "GBd") then
				if (frac = 0) then					return (int * 1 kBd);
				elsif (digits <= 3) then		return (int * 1 GBd) + (frac * 10**(3 - digits) * 1 MBd);
				elsif (digits <= 6) then		return (int * 1 GBd) + (frac * 10**(6 - digits) * 1 kBd);
				elsif (digits <= 9) then		return (int * 1 GBd) + (frac * 10**(9 - digits) * 1 Bd);
				else												return (int * 1 GBd) + (frac / 10**(digits - 9) * 100000000 Bd);
				end if;
			else
				report "to_baud: Unknown unit." severity FAILURE;
			end if;
		else
			report "to_baud: Unknown format" severity FAILURE;
		end if;
	end function;
	
	-- if-then-else
	-- ===========================================================================
	function ite(cond : BOOLEAN; value1 : TIME;	value2 : TIME) return TIME is
	begin
		if cond then
			return value1;
		else
			return value2;
		end if;
	end function;
	
	function ite(cond : BOOLEAN; value1 : FREQ;	value2 : FREQ) return FREQ is
	begin
		if cond then
			return value1;
		else
			return value2;
		end if;
	end function;
	
	function ite(cond : BOOLEAN; value1 : BAUD;	value2 : BAUD) return BAUD is
	begin
		if cond then
			return value1;
		else
			return value2;
		end if;
	end function;
	
	function ite(cond : BOOLEAN; value1 : MEMORY;	value2 : MEMORY) return MEMORY is
	begin
		if cond then
			return value1;
		else
			return value2;
		end if;
	end function;
	
	-- min/ max for 2 arguments
	-- ===========================================================================
	-- Calculates: min(arg1, arg2) for times
	function tmin(arg1 : TIME; arg2 : TIME) return TIME is
	begin
		if (arg1 < arg2) then return arg1; end if;
		return arg2;
	end function;
	
	-- Calculates: min(arg1, arg2) for frequencies
	function fmin(arg1 : FREQ; arg2 : FREQ) return FREQ is
	begin
		if (arg1 < arg2) then return arg1; end if;
		return arg2;
	end function;
	
	-- Calculates: min(arg1, arg2) for symbols per second
	function bmin(arg1 : BAUD; arg2 : BAUD) return BAUD is
	begin
		if (arg1 < arg2) then return arg1; end if;
		return arg2;
	end function;
	
	-- Calculates: min(arg1, arg2) for memory
	function mmin(arg1 : MEMORY; arg2 : MEMORY) return MEMORY is
	begin
		if (arg1 < arg2) then return arg1; end if;
		return arg2;
	end function;
	
	-- Calculates: max(arg1, arg2) for times
	function tmax(arg1 : TIME; arg2 : TIME) return TIME is
	begin
		if (arg1 > arg2) then return arg1; end if;
		return arg2;
	end function;

	-- Calculates: max(arg1, arg2) for frequencies
	function fmax(arg1 : FREQ; arg2 : FREQ) return FREQ is
	begin
		if (arg1 > arg2) then return arg1; end if;
		return arg2;
	end function;

	-- Calculates: max(arg1, arg2) for symbols per second
	function bmax(arg1 : BAUD; arg2 : BAUD) return BAUD is
	begin
		if (arg1 > arg2) then return arg1; end if;
		return arg2;
	end function;

	-- Calculates: max(arg1, arg2) for memory
	function mmax(arg1 : MEMORY; arg2 : MEMORY) return MEMORY is
	begin
		if (arg1 > arg2) then return arg1; end if;
		return arg2;
	end function;
	
	-- min/max/sum as vector aggregation
	-- ===========================================================================
	-- Calculates: min(vec) for a time vector
	function tmin(vec : T_TIMEVEC)	return TIME is
		variable  res : TIME := TIME'high;
	begin
		for i in vec'range loop
			if (vec(i) < res) then
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: min(vec) for a frequency vector
	function fmin(vec : T_FREQVEC)	return FREQ is
		variable  res : FREQ := FREQ'high;
	begin
		for i in vec'range loop
			if (integer(FREQ'pos(vec(i))) < integer(FREQ'pos(res))) then -- Quartus workaround
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: min(vec) for a baud vector
	function bmin(vec : T_BAUDVEC)	return BAUD is
		variable  res : BAUD := BAUD'high;
	begin
		for i in vec'range loop
			if (integer(BAUD'pos(vec(i))) < integer(BAUD'pos(res))) then -- Quartus workaround
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: min(vec) for a memory vector
	function mmin(vec : T_MEMVEC)	return MEMORY is
		variable  res : MEMORY := MEMORY'high;
	begin
		for i in vec'range loop
			if (integer(MEMORY'pos(vec(i))) < integer(MEMORY'pos(res))) then -- Quartus workaround
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: max(vec) for a time vector
	function tmax(vec : T_TIMEVEC)	return TIME is
		variable  res : TIME := TIME'low;
	begin
		for i in vec'range loop
			if (vec(i) > res) then
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: max(vec) for a frequency vector
	function fmax(vec : T_FREQVEC)	return FREQ is
		variable  res : FREQ := FREQ'low;
	begin
		for i in vec'range loop
			if (integer(FREQ'pos(vec(i))) > integer(FREQ'pos(res))) then -- Quartus workaround
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: max(vec) for a baud vector
	function bmax(vec : T_BAUDVEC)	return BAUD is
		variable  res : BAUD := BAUD'low;
	begin
		for i in vec'range loop
			if (integer(BAUD'pos(vec(i))) > integer(BAUD'pos(res))) then -- Quartus workaround
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: max(vec) for a memory vector
	function mmax(vec : T_MEMVEC)	return MEMORY is
		variable  res : MEMORY := MEMORY'low;
	begin
		for i in vec'range loop
			if (integer(MEMORY'pos(vec(i))) > integer(MEMORY'pos(res))) then -- Quartus workaround
				res := vec(i);
			end if;
		end loop;
		return  res;
	end;
	
	-- Calculates: sum(vec) for a time vector
	function tsum(vec : T_TIMEVEC)	return TIME is
		variable  res : TIME := 0 fs;
	begin
		for i in vec'range loop
			res	:= res + vec(i);
		end loop;
		return  res;
	end;
	
	-- Calculates: sum(vec) for a frequency vector
	function fsum(vec : T_FREQVEC)	return FREQ is
		variable  res : FREQ := 0 Hz;
	begin
		for i in vec'range loop
			res	:= res + vec(i);
		end loop;
		return  res;
	end;
	
	-- Calculates: sum(vec) for a baud vector
	function bsum(vec : T_BAUDVEC)	return BAUD is
		variable  res : BAUD := 0 Bd;
	begin
		for i in vec'range loop
			res	:= res + vec(i);
		end loop;
		return  res;
	end;
	
	-- Calculates: sum(vec) for a memory vector
	function msum(vec : T_MEMVEC)	return MEMORY is
		variable  res : MEMORY := 0 Byte;
	begin
		for i in vec'range loop
			res	:= res + vec(i);
		end loop;
		return  res;
	end;
	
	-- convert standard types (NATURAL, REAL) to time (TIME)
	-- ===========================================================================
	function fs2Time(t_fs : INTEGER) return TIME is
	begin
		return t_fs * 1 fs;
	end function;
	
	function ps2Time(t_ps : INTEGER) return TIME is
	begin
		return t_ps * 1 ps;
	end function;
	
	function ns2Time(t_ns : INTEGER) return TIME is
	begin
		return t_ns * 1 ns;
	end function;
	
	function us2Time(t_us : INTEGER) return TIME is
	begin
		return t_us * 1 us;
	end function;
	
	function ms2Time(t_ms : INTEGER) return TIME is
	begin
		return t_ms * 1 ms;
	end function;
	
	function sec2Time(t_sec : INTEGER) return TIME is
	begin
		return t_sec * 1 sec;
	end function;
	
	function fs2Time(t_fs : REAL) return TIME is
	begin
		return t_fs * 1 fs;
	end function;
	
	function ps2Time(t_ps : REAL) return TIME is
	begin
		return t_ps * 1 ps;
	end function;
	
	function ns2Time(t_ns : REAL) return TIME is
	begin
		return t_ns * 1 ns;
	end function;
	
	function us2Time(t_us : REAL) return TIME is
	begin
		return t_us * 1 us;
	end function;
	
	function ms2Time(t_ms : REAL) return TIME is
	begin
		return t_ms * 1 ms;
	end function;
	
	function sec2Time(t_sec : REAL) return TIME is
	begin
		return t_sec * 1 sec;
	end function;
	
	-- convert standard types (NATURAL, REAL) to period (TIME)
	-- ===========================================================================
	function Hz2Time(f_Hz : NATURAL) return TIME is
	begin
		return 1 sec / f_Hz;
	end function;
	
	function kHz2Time(f_kHz : NATURAL) return TIME is
	begin
		return 1 ms / f_kHz;
	end function;
	
	function MHz2Time(f_MHz : NATURAL) return TIME
	 is
	begin
		return 1 us / f_MHz;
	end function;
	
	function GHz2Time(f_GHz : NATURAL) return TIME is
	begin
		return 1 ns / f_GHz;
	end function;
	
	function Hz2Time(f_Hz : REAL) return TIME is
	begin
		return 1 sec / f_Hz;
	end function;
	
	function kHz2Time(f_kHz : REAL) return TIME is
	begin
		return 1 ms / f_kHz;
	end function;
	
	function MHz2Time(f_MHz : REAL) return TIME is
	begin
		return 1 us / f_MHz;
	end function;
	
	function GHz2Time(f_GHz : REAL) return TIME is
	begin
		return 1 ns / f_GHz;
	end function;
	
	-- convert standard types (NATURAL, REAL) to frequency (FREQ)
	-- ===========================================================================
	function Hz2Freq(f_Hz : NATURAL) return FREQ is
	begin
		return f_Hz * 1 Hz;
	end function;
	
	function kHz2Freq(f_kHz : NATURAL) return FREQ is
	begin
		return f_kHz * 1 kHz;
	end function;
	
	function MHz2Freq(f_MHz : NATURAL) return FREQ is
	begin
		return f_MHz * 1 MHz;
	end function;
	
	function GHz2Freq(f_GHz : NATURAL) return FREQ is
	begin
		return f_GHz * 1 GHz;
	end function;
	
	function Hz2Freq(f_Hz : REAL) return FREQ is
	begin
		return f_Hz * 1 Hz;
	end function;
	
	function kHz2Freq(f_kHz : REAL )return FREQ is
	begin
		return f_kHz * 1 kHz;
	end function;
	
	function MHz2Freq(f_MHz : REAL )return FREQ is
	begin
		return f_MHz * 1 MHz;
	end function;
	
	function GHz2Freq(f_GHz : REAL )return FREQ is
	begin
		return f_GHz * 1 GHz;
	end function;
	
	-- convert physical types to standard type (REAL)
	-- ===========================================================================
	function to_real(t : TIME; scale : TIME) return REAL is
	begin
		if		(scale = 1	fs) then	return div(t, 1	 fs);
		elsif	(scale = 1	ps) then	return div(t, 1	 ps);
		elsif	(scale = 1	ns) then	return div(t, 1	 ns);
		elsif	(scale = 1	us) then	return div(t, 1	 us);
		elsif	(scale = 1	ms) then	return div(t, 1	 ms);
		elsif	(scale = 1 sec) then	return div(t, 1 sec);
		else	report "to_real: scale must have a value of '1 <unit>'" severity failure;
		end if;
	end;

	function to_real(f : FREQ; scale : FREQ) return REAL is
	begin
		if		(scale = 1	Hz) then	return div(f, 1	 Hz);
		elsif	(scale = 1 kHz) then	return div(f, 1 kHz);
		elsif	(scale = 1 MHz) then	return div(f, 1 MHz);
		elsif	(scale = 1 GHz) then	return div(f, 1 GHz);
--	elsif	(scale = 1 THz) then	return div(f, 1 THz);
		else	report "to_real: scale must have a value of '1 <unit>'" severity failure;
		end if;
	end;

	function to_real(br : BAUD; scale : BAUD) return REAL is
	begin
		if		(scale = 1	Bd) then	return div(br, 1	Bd);
		elsif	(scale = 1 kBd) then	return div(br, 1 kBd);
		elsif	(scale = 1 MBd) then	return div(br, 1 MBd);
		elsif	(scale = 1 GBd) then	return div(br, 1 GBd);
		else	report "to_real: scale must have a value of '1 <unit>'" severity failure;
		end if;
	end;
	
	function to_real(mem : MEMORY; scale : MEMORY) return REAL is
	begin
		if		(scale = 1 Byte)	then	return div(mem, 1	Byte);
		elsif	(scale = 1 KiB)		then	return div(mem, 1 KiB);
		elsif	(scale = 1 MiB)		then	return div(mem, 1 MiB);
		elsif	(scale = 1 GiB)		then	return div(mem, 1 GiB);
		else	report "to_real: scale must have a value of '1 <unit>'" severity failure;
		end if;
	end;
	
	-- convert physical types to standard type (INTEGER)
	-- ===========================================================================
	function to_int(t : TIME; scale : TIME; RoundingStyle : T_ROUNDING_STYLE := ROUND_TO_NEAREST) return INTEGER is
	begin
		case RoundingStyle is
			when ROUND_UP =>					return integer(ceil(to_real(t, scale)));
			when ROUND_DOWN =>				return integer(floor(to_real(t, scale)));
			when ROUND_TO_NEAREST =>	return integer(round(to_real(t, scale)));
			when others =>						null;
		end case;
		report "to_int: unsupported RoundingStyle: " & T_ROUNDING_STYLE'image(RoundingStyle) severity failure;
	end;

	function to_int(f : FREQ; scale : FREQ; RoundingStyle : T_ROUNDING_STYLE := ROUND_TO_NEAREST) return INTEGER is
	begin
		case RoundingStyle is
			when ROUND_UP =>					return integer(ceil(to_real(f, scale)));
			when ROUND_DOWN =>				return integer(floor(to_real(f, scale)));
			when ROUND_TO_NEAREST =>	return integer(round(to_real(f, scale)));
			when others =>						null;
		end case;
		report "to_int: unsupported RoundingStyle: " & T_ROUNDING_STYLE'image(RoundingStyle) severity failure;
	end;

	function to_int(br : BAUD; scale : BAUD; RoundingStyle : T_ROUNDING_STYLE := ROUND_TO_NEAREST) return INTEGER is
	begin
		case RoundingStyle is
			when ROUND_UP =>					return integer(ceil(to_real(br, scale)));
			when ROUND_DOWN =>				return integer(floor(to_real(br, scale)));
			when ROUND_TO_NEAREST =>	return integer(round(to_real(br, scale)));
			when others =>						null;
		end case;
		report "to_int: unsupported RoundingStyle: " & T_ROUNDING_STYLE'image(RoundingStyle) severity failure;
	end;
	
	function to_int(mem : MEMORY; scale : MEMORY; RoundingStyle : T_ROUNDING_STYLE := ROUND_UP) return INTEGER is
	begin
		case RoundingStyle is
			when ROUND_UP =>					return integer(ceil(to_real(mem, scale)));
			when ROUND_DOWN =>				return integer(floor(to_real(mem, scale)));
			when ROUND_TO_NEAREST =>	return integer(round(to_real(mem, scale)));
			when others =>						null;
		end case;
		report "to_int: unsupported RoundingStyle: " & T_ROUNDING_STYLE'image(RoundingStyle) severity failure;
	end;
	
	-- calculate needed counter cycles to achieve a given 1. timing/delay and 2. frequency/period
	-- ===========================================================================
	--	@param Timing					A given timing or delay, which should be achived
	--	@param Clock_Period		The period of the circuits clock
	--	@RoundingStyle				Default = round to nearest; other choises: ROUND_UP, ROUND_DOWN
	function TimingToCycles(Timing : TIME; Clock_Period : TIME; RoundingStyle : T_ROUNDING_STYLE := ROUND_UP) return NATURAL is
		variable res_real	: REAL;
		variable res_nat	: NATURAL;
		variable res_time	: TIME;
		variable res_dev	: REAL;
	begin
		res_real := div(Timing, Clock_Period);	
		case RoundingStyle is
			when ROUND_TO_NEAREST =>	res_nat := natural(round(res_real));
			when ROUND_UP =>					res_nat := natural(ceil(res_real));
			when ROUND_DOWN =>				res_nat := natural(floor(res_real));
			when others =>	report "RoundingStyle '" & T_ROUNDING_STYLE'image(RoundingStyle) & "' not supported." severity failure;
		end case;
		res_time	:= CyclesToDelay(res_nat, Clock_Period);
		res_dev		:= (div(res_time, Timing) - 1.0) * 100.0;
		
		if (POC_VERBOSE = TRUE) then
			report "TimingToCycles: " & 	CR &
						 "  Timing: " &					to_string(Timing, 3) & CR &
						 "  Clock_Period: " &		to_string(Clock_Period, 3) & CR &
						 "  RoundingStyle: " &	str_substr(T_ROUNDING_STYLE'image(RoundingStyle), 7) & CR &
						 "  res_real = " &			str_format(res_real, 3) & CR &
						 "  => " &							INTEGER'image(res_nat)
			severity note;
		end if;
			
		if (C_PHYSICAL_REPORT_TIMING_DEVIATION = TRUE) then
			report "TimingToCycles (timing deviation report): " & CR &
						 "  timing to achieve: " & to_string(Timing, 3) & CR &
						 "  calculated cycles: " & INTEGER'image(res_nat) & " cy" & CR &
						 "  resulting timing:  " & to_string(res_time, 3) & CR &
						 "  deviation:         " & to_string(res_time - Timing, 3) & " (" & str_format(res_dev, 2) & "%)"
			severity note;
		end if;
		
		return res_nat;
	end;
	
	function TimingToCycles(Timing : TIME; Clock_Frequency	: FREQ; RoundingStyle : T_ROUNDING_STYLE := ROUND_UP) return NATURAL is
	begin
		return TimingToCycles(Timing, to_time(Clock_Frequency), RoundingStyle);
	end function;

	function CyclesToDelay(Cycles : NATURAL; Clock_Period : TIME) return TIME is
	begin
		return Clock_Period * Cycles;
	end function;

	function CyclesToDelay(Cycles : NATURAL; Clock_Frequency : FREQ) return TIME is
	begin
		return CyclesToDelay(Cycles, to_time(Clock_Frequency));
	end function;
	
	-- convert and format physical types to STRING
	function to_string(t : TIME; precision : NATURAL) return STRING is
		variable tt     : TIME;
		variable unit		: STRING(1 to 3)	:= (others => C_POC_NUL);
		variable value	: REAL;
	begin
		tt := abs t;
		if (tt < 1 ps) then
			unit(1 to 2)	:= "fs";
			value					:= to_real(tt, 1 fs);
		elsif (tt < 1 ns) then
			unit(1 to 2)	:= "ps";
			value					:= to_real(tt, 1 ps);
		elsif (tt < 1 us) then
			unit(1 to 2)	:= "ns";
			value					:= to_real(tt, 1 ns);
		elsif (tt < 1 ms) then
			unit(1 to 2)	:= "us";
			value					:= to_real(tt, 1 us);
		elsif (tt < 1 sec) then
			unit(1 to 2)	:= "ms";
			value					:= to_real(tt, 1 ms);
		else
			unit					:= "sec";
			value					:= to_real(tt, 1 sec);
		end if;

		return ite(t >= 0 fs, str_format(value, precision) & " " & str_trim(unit),
							      '-' & str_format(value, precision) & " " & str_trim(unit));
	end function;
		
	function to_string(f : FREQ; precision : NATURAL) return STRING is
		variable unit		: STRING(1 to 3)	:= (others => C_POC_NUL);
		variable value	: REAL;
	begin
		if (f < 1 kHz) then
			unit(1 to 2)	:= "Hz";
			value					:= to_real(f, 1 Hz);
		elsif (f < 1 MHz) then
			unit					:= "kHz";
			value					:= to_real(f, 1 kHz);
		elsif (f < 1 GHz) then
			unit					:= "MHz";
			value					:= to_real(f, 1 MHz);
		else
			unit					:= "GHz";
			value					:= to_real(f, 1 GHz);
		end if;

		return str_format(value, precision) & " " & str_trim(unit);
	end function;
		
	function to_string(br : BAUD; precision : NATURAL) return STRING is
		variable unit		: STRING(1 to 3)	:= (others => C_POC_NUL);
		variable value	: REAL;
	begin
		if (br < 1 kBd) then
			unit(1 to 2)	:= "Bd";
			value					:= to_real(br, 1 Bd);
		elsif (br < 1 MBd) then
			unit					:= "kBd";
			value					:= to_real(br, 1 kBd);
		elsif (br < 1 GBd) then
			unit					:= "MBd";
			value					:= to_real(br, 1 MBd);
		else
			unit					:= "GBd";
			value					:= to_real(br, 1 GBd);
		end if;

		return str_format(value, precision) & " " & str_trim(unit);
	end function;
		
	function to_string(mem : MEMORY; precision : NATURAL) return STRING is
		variable unit		: STRING(1 to 3)	:= (others => C_POC_NUL);
		variable value	: REAL;
	begin
		if (mem < 1 KiB) then
			unit(1)				:= 'B';
			value					:= to_real(mem, 1 Byte);
		elsif (mem < 1 MiB) then
			unit					:= "KiB";
			value					:= to_real(mem, 1 KiB);
		elsif (mem < 1 GiB) then
			unit					:= "MiB";
			value					:= to_real(mem, 1 MiB);
		else
			unit					:= "GiB";
			value					:= to_real(mem, 1 GiB);
		end if;

		return str_format(value, precision) & " " & str_trim(unit);
	end function;
	
end package body;