Test vectors ============ Testing the correctness of the primitives implemented in each ``cryptography`` backend requires trusted test vectors. Where possible these vectors are obtained from official sources such as `NIST`_ or `IETF`_ RFCs. When this is not possible ``cryptography`` has chosen to create a set of custom vectors using an official vector file as input to verify consistency between implemented backends. Vectors are kept in the `cryptography_vectors` package rather than within our main test suite. Sources ------- Asymmetric ciphers ~~~~~~~~~~~~~~~~~~ * RSA PKCS #1 from the RSA FTP site (ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/ and ftp://ftp.rsa.com/pub/rsalabs/tmp/). * RSA FIPS 186-2 and PKCS1 v1.5 vulnerability test vectors from `NIST CAVP`_. * FIPS 186-2 and FIPS 186-3 DSA test vectors from `NIST CAVP`_. * FIPS 186-2 and FIPS 186-3 ECDSA test vectors from `NIST CAVP`_. * DH and ECDH and ECDH+KDF(17.4) test vectors from `NIST CAVP`_. * Ed25519 test vectors from the `Ed25519 website_`. * OpenSSL PEM RSA serialization vectors from the `OpenSSL example key`_ and `GnuTLS key parsing tests`_. * OpenSSL PEM DSA serialization vectors from the `GnuTLS example keys`_. * PKCS #8 PEM serialization vectors from * GnuTLS: `enc-rsa-pkcs8.pem`_, `enc2-rsa-pkcs8.pem`_, `unenc-rsa-pkcs8.pem`_, `pkcs12_s2k_pem.c`_. The contents of `enc2-rsa-pkcs8.pem`_ was re-encrypted using a stronger PKCS#8 cipher. * `Botan's ECC private keys`_. * `asymmetric/public/PKCS1/dsa.pub.pem`_ is a PKCS1 DSA public key from the Ruby test suite. Custom asymmetric vectors ~~~~~~~~~~~~~~~~~~~~~~~~~ .. toctree:: :maxdepth: 1 custom-vectors/secp256k1 * ``asymmetric/PEM_Serialization/ec_private_key.pem`` and ``asymmetric/DER_Serialization/ec_private_key.der`` - Contains an Elliptic Curve key generated by OpenSSL from the curve ``secp256r1``. * ``asymmetric/PEM_Serialization/ec_private_key_encrypted.pem`` and ``asymmetric/DER_Serialization/ec_private_key_encrypted.der``- Contains the same Elliptic Curve key as ``ec_private_key.pem``, except that it is encrypted with AES-128 with the password "123456". * ``asymmetric/PEM_Serialization/ec_public_key.pem`` and ``asymmetric/DER_Serialization/ec_public_key.der``- Contains the public key corresponding to ``ec_private_key.pem``, generated using OpenSSL. * ``asymmetric/PEM_Serialization/rsa_private_key.pem`` - Contains an RSA 2048 bit key generated using OpenSSL, protected by the secret "123456" with DES3 encryption. * ``asymmetric/PEM_Serialization/rsa_public_key.pem`` and ``asymmetric/DER_Serialization/rsa_public_key.der``- Contains an RSA 2048 bit public generated using OpenSSL from ``rsa_private_key.pem``. * ``asymmetric/PEM_Serialization/dsaparam.pem`` - Contains 2048-bit DSA parameters generated using OpenSSL; contains no keys. * ``asymmetric/PEM_Serialization/dsa_private_key.pem`` - Contains a DSA 2048 bit key generated using OpenSSL from the parameters in ``dsaparam.pem``, protected by the secret "123456" with DES3 encryption. * ``asymmetric/PEM_Serialization/dsa_public_key.pem`` and ``asymmetric/DER_Serialization/dsa_public_key.der`` - Contains a DSA 2048 bit key generated using OpenSSL from ``dsa_private_key.pem``. * ``asymmetric/PKCS8/unenc-dsa-pkcs8.pem`` and ``asymmetric/DER_Serialization/unenc-dsa-pkcs8.der`` - Contains a DSA 1024 bit key generated using OpenSSL. * ``asymmetric/PKCS8/unenc-dsa-pkcs8.pub.pem`` and ``asymmetric/DER_Serialization/unenc-dsa-pkcs8.pub.der`` - Contains a DSA 2048 bit public key generated using OpenSSL from ``unenc-dsa-pkcs8.pem``. * DER conversions of the `GnuTLS example keys`_ for DSA as well as the `OpenSSL example key`_ for RSA. * DER conversions of `enc-rsa-pkcs8.pem`_, `enc2-rsa-pkcs8.pem`_, and `unenc-rsa-pkcs8.pem`_. * ``asymmetric/public/PKCS1/rsa.pub.pem`` and ``asymmetric/public/PKCS1/rsa.pub.der`` are PKCS1 conversions of the public key from ``asymmetric/PKCS8/unenc-rsa-pkcs8.pem`` using PEM and DER encoding. Key exchange ~~~~~~~~~~~~ * ``vectors/cryptography_vectors/asymmetric/DH/RFC5114.txt`` contains Diffie-Hellman examples from appendix A.1, A.2 and A.3 of :rfc:`5114`. X.509 ~~~~~ * PKITS test suite from `NIST PKI Testing`_. * ``v1_cert.pem`` from the OpenSSL source tree (`testx509.pem`_). * ``ecdsa_root.pem`` - `DigiCert Global Root G3`_, a ``secp384r1`` ECDSA root certificate. * ``verisign-md2-root.pem`` - A legacy Verisign public root signed using the MD2 algorithm. This is a PEM conversion of the `root data`_ in the NSS source tree. * ``cryptography.io.pem`` - A leaf certificate issued by RapidSSL for the cryptography website. * ``rapidssl_sha256_ca_g3.pem`` - The intermediate CA that issued the ``cryptography.io.pem`` certificate. * ``wildcard_san.pem`` - A leaf certificate issued by a public CA for ``langui.sh`` that contains wildcard entries in the SAN extension. * ``san_edipartyname.der`` - A DSA certificate from a `Mozilla bug`_ containing a SAN extension with an ``ediPartyName`` general name. * ``san_x400address.der`` - A DSA certificate from a `Mozilla bug`_ containing a SAN extension with an ``x400Address`` general name. * ``department-of-state-root.pem`` - The intermediary CA for the Department of State, issued by the United States Federal Government's Common Policy CA. Notably has a ``critical`` policy constraints extensions. * ``e-trust.ru.der`` - A certificate from a `Russian CA`_ signed using the GOST cipher and containing numerous unusual encodings such as NUMERICSTRING in the subject DN.
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "process_unicodemap.h"
#include "process_unicode_common.h"
__attribute__((weak))
const uint32_t PROGMEM unicode_map[] = {
};
void register_hex32(uint32_t hex) {
bool onzerostart = true;
for(int i = 7; i >= 0; i--) {
if (i <= 3) {
onzerostart = false;
}
uint8_t digit = ((hex >> (i*4)) & 0xF);
if (digit == 0) {
if (!onzerostart) {
register_code(hex_to_keycode(digit));
unregister_code(hex_to_keycode(digit));
}
} else {
register_code(hex_to_keycode(digit));
unregister_code(hex_to_keycode(digit));
onzerostart = false;
}
}
}
__attribute__((weak))
void unicode_map_input_error() {}
bool process_unicode_map(uint16_t keycode, keyrecord_t *record) {
uint8_t input_mode = get_unicode_input_mode();
if ((keycode & QK_UNICODE_MAP) == QK_UNICODE_MAP && record->event.pressed) {
const uint32_t* map = unicode_map;
uint16_t index = keycode - QK_UNICODE_MAP;
uint32_t code = pgm_read_dword_far(&map[index]);
if (code > 0xFFFF && code <= 0x10ffff && input_mode == UC_OSX) {
// Convert to UTF-16 surrogate pair
code -= 0x10000;
uint32_t lo = code & 0x3ff;
uint32_t hi = (code & 0xffc00) >> 10;
unicode_input_start();
register_hex32(hi + 0xd800);
register_hex32(lo + 0xdc00);
unicode_input_finish();
} else if ((code > 0x10ffff && input_mode == UC_OSX) || (code > 0xFFFFF && input_mode == UC_LNX)) {
// when character is out of range supported by the OS
unicode_map_input_error();
} else {
unicode_input_start();
register_hex32(code);
unicode_input_finish();
}
}
return true;
}