# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import absolute_import, division, print_function import binascii import collections import re from contextlib import contextmanager import pytest import six from cryptography.exceptions import UnsupportedAlgorithm import cryptography_vectors HashVector = collections.namedtuple("HashVector", ["message", "digest"]) KeyedHashVector = collections.namedtuple( "KeyedHashVector", ["message", "digest", "key"] ) def select_backends(names, backend_list): if names is None: return backend_list split_names = [x.strip() for x in names.split(',')] selected_backends = [] for backend in backend_list: if backend.name in split_names: selected_backends.append(backend) if len(selected_backends) > 0: return selected_backends else: raise ValueError( "No backend selected. Tried to select: {0}".format(split_names) ) def skip_if_empty(backend_list, required_interfaces): if not backend_list: pytest.skip( "No backends provided supply the interface: {0}".format( ", ".join(iface.__name__ for iface in required_interfaces) ) ) def check_backend_support(item): supported = item.keywords.get("supported") if supported and "backend" in item.funcargs: if not supported.kwargs["only_if"](item.funcargs["backend"]): pytest.skip("{0} ({1})".format( supported.kwargs["skip_message"], item.funcargs["backend"] )) elif supported: raise ValueError("This mark is only available on methods that take a " "backend") @contextmanager def raises_unsupported_algorithm(reason): with pytest.raises(UnsupportedAlgorithm) as exc_info: yield exc_info assert exc_info.value._reason is reason def load_vectors_from_file(filename, loader, mode="r"): with cryptography_vectors.open_vector_file(filename, mode) as vector_file: return loader(vector_file) def load_nist_vectors(vector_data): test_data = None data = [] for line in vector_data: line = line.strip() # Blank lines, comments, and section headers are ignored if not line or line.startswith("#") or (line.startswith("[") and line.endswith("]")): continue if line.strip() == "FAIL": test_data["fail"] = True continue # Build our data using a simple Key = Value format name, value = [c.strip() for c in line.split("=")] # Some tests (PBKDF2) contain \0, which should be interpreted as a # null character rather than literal. value = value.replace("\\0", "\0") # COUNT is a special token that indicates a new block of data if name.upper() == "COUNT": test_data = {} data.append(test_data) continue # For all other tokens we simply want the name, value stored in # the dictionary else: test_data[name.lower()] = value.encode("ascii") return data def load_cryptrec_vectors(vector_data): cryptrec_list = [] for line in vector_data: line = line.strip() # Blank lines and comments are ignored if not line or line.startswith("#"): continue if line.startswith("K"): key = line.split(" : ")[1].replace(" ", "").encode("ascii") elif line.startswith("P"): pt = line.split(" : ")[1].replace(" ", "").encode("ascii") elif line.startswith("C"): ct = line.split(" : ")[1].replace(" ", "").encode("ascii") # after a C is found the K+P+C tuple is complete # there are many P+C pairs for each K cryptrec_list.append({ "key": key, "plaintext": pt, "ciphertext": ct }) else: raise ValueError("Invalid line in file '{}'".format(line)) return cryptrec_list def load_hash_vectors(vector_data): vectors = [] key = None msg = None md = None for line in vector_data: line = line.strip() if not line or line.startswith("#") or line.startswith("["): continue if line.startswith("Len"): length = int(line.split(" = ")[1]) elif line.startswith("Key"): # HMAC vectors contain a key attribute. Hash vectors do not. key = line.split(" = ")[1].encode("ascii") elif line.startswith("Msg"): # In the NIST vectors they have chosen to represent an empty # string as hex 00, which is of course not actually an empty # string. So we parse the provided length and catch this edge case. msg = line.split(" = ")[1].encode("ascii") if length > 0 else b"" elif line.startswith("MD"): md = line.split(" = ")[1] # after MD is found the Msg+MD (+ potential key) tuple is complete if key is not None: vectors.append(KeyedHashVector(msg, md, key)) key = None msg = None md = None else: vectors.append(HashVector(msg, md)) msg = None md = None else: raise ValueError("Unknown line in hash vector") return vectors def load_pkcs1_vectors(vector_data): """ Loads data out of RSA PKCS #1 vector files. """ private_key_vector = None public_key_vecto
/* Copyright 2017 Fred Sundvik
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "lcd_backlight_keyframes.h"
bool lcd_backlight_keyframe_animate_color(keyframe_animation_t* animation, visualizer_state_t* state) {
int frame_length = animation->frame_lengths[animation->current_frame];
int current_pos = frame_length - animation->time_left_in_frame;
uint8_t t_h = LCD_HUE(state->target_lcd_color);
uint8_t t_s = LCD_SAT(state->target_lcd_color);
uint8_t t_i = LCD_INT(state->target_lcd_color);
uint8_t p_h = LCD_HUE(state->prev_lcd_color);
uint8_t p_s = LCD_SAT(state->prev_lcd_color);
uint8_t p_i = LCD_INT(state->prev_lcd_color);
uint8_t d_h1 = t_h - p_h; //Modulo arithmetic since we want to wrap around
int d_h2 = t_h - p_h;
// Chose the shortest way around
int d_h = abs(d_h2) < d_h1 ? d_h2 : d_h1;
int d_s = t_s - p_s;
int d_i = t_i - p_i;
int hue = (d_h * current_pos) / frame_length;
int sat = (d_s * current_pos) / frame_length;
int intensity = (d_i * current_pos) / frame_length;
//dprintf("%X -> %X = %X\n", p_h, t_h, hue);
hue += p_h;
sat += p_s;
intensity += p_i;
state->current_lcd_color = LCD_COLOR(hue, sat, intensity);
lcd_backlight_color(
LCD_HUE(state->current_lcd_color),
LCD_SAT(state->current_lcd_color),
LCD_INT(state->current_lcd_color));
return true;
}
bool lcd_backlight_keyframe_set_color(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
state->prev_lcd_color = state->target_lcd_color;
state->current_lcd_color = state->target_lcd_color;
lcd_backlight_color(
LCD_HUE(state->current_lcd_color),
LCD_SAT(state->current_lcd_color),
LCD_INT(state->current_lcd_color));
return false;
}
bool lcd_backlight_keyframe_disable(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
(void)state;
lcd_backlight_hal_color(0, 0, 0);
return false;
}
bool lcd_backlight_keyframe_enable(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
(void)state;
lcd_backlight_color(LCD_HUE(state->current_lcd_color),
LCD_SAT(state->current_lcd_color),
LCD_INT(state->current_lcd_color));
return false;
}