aboutsummaryrefslogtreecommitdiffstats
path: root/tmk_core/common/backlight.h
blob: f5730926745c579426abd896010b2745193aff59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
Copyright 2013 Mathias Andersson <wraul@dbox.se>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef BACKLIGHT_H
#define BACKLIGHT_H

#include <stdint.h>
#include <stdbool.h>

typedef union {
    uint8_t raw;
    struct {
        bool    enable :1;
        uint8_t level  :7;
    };
} backlight_config_t;

void backlight_init(void);
void backlight_increase(void);
void backlight_decrease(void);
void backlight_toggle(void);
void backlight_step(void);
void backlight_set(uint8_t level);
void backlight_level(uint8_t level);
uint8_t get_backlight_level(void);

#endif
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
--  Inference in synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Netlists.Utils; use Netlists.Utils;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Gates_Ports; use Netlists.Gates_Ports;
with Netlists.Locations; use Netlists.Locations;
with Netlists.Errors; use Netlists.Errors;
with Netlists.Internings;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Memories; use Netlists.Memories;

with Synth.Source; use Synth.Source;
with Synth.Errors; use Synth.Errors;
with Synth.Flags;

package body Netlists.Inference is
   --  DFF inference.
   --  As an initial implementation, the following 'styles' must be
   --  supported:
   --  Note: rising_edge is any clock_edge; '<=' can be ':='.
   --
   --  1)
   --  if rising_edge(clk) then
   --    r <= x;
   --  end if;
   --
   --  2)
   --  if rst = '0' then
   --    r <= x;
   --  elsif rising_edge (clk) then
   --    r <= y;
   --  end if;
   --
   --  3)
   --  wait until rising_edge(clk);
   --   r <= x;
   --  Which is equivalent to 1) when the wait statement is the only and first
   --  statement, as it can be converted to an if statement.
   --
   --  Netlist derived from 1)
   --      +------+
   --      |      |
   --      |   /| |
   --      |  |0+-+
   --  Q --+--+ |
   --         |1+--- D
   --          \|
   --         CLK
   --  This is a memorizing element as there is a loop, the value is changed
   --  to D on a rising edge of the clock.
   --
   --  Netlist derived from 2)
   --      +------------+
   --      |         /| |
   --      |   /|   |0+-+
   --      |  |0+---+ |
   --  Q --+--+ |   |1+----- D
   --         |1+-+  \|
   --          \| | CLK
   --         RST +--------- '0'
   --  This is a memorizing element as there is a loop.  It is an asynchronous
   --  reset as Q is forced to '0' when RST is asserted.

   function Has_Clock (N : Net) return Boolean
   is
      Inst : constant Instance := Get_Net_Parent (N);
   begin
      case Get_Id (Inst) is
         when Edge_Module_Id =>
            return True;
         when Id_And =>
            --  Assume the condition is canonicalized, ie of the form:
            --  CLK and EXPR.
            --  FIXME: do it!
            return Has_Clock (Get_Input_Net (Inst, 0));
         when others =>
            return False;
      end case;
   end Has_Clock;

   --  Find the longest chain of mux starting from VAL with a final input
   --  of PREV_VAL.  Such a chain means this is a memorising element.
   --  RES is the last mux in the chain, DIST the number of mux in the chain.
   procedure Find_Longest_Loop
     (Val : Net; Prev_Val : Net; Res : out Instance; Dist : out Integer)
   is
      Inst : constant Instance := Get_Net_Parent (Val);
   begin
      if Get_Id (Inst) = Id_Mux2 then
         declare
            Res0, Res1 : Instance;
            Dist0, Dist1 : Integer;
         begin
            if Has_Clock (Get_Driver (Get_Mux2_Sel (Inst))) then
               Res := Inst;
               Dist := 1;
            else
               Find_Longest_Loop
                 (Get_Driver (Get_Mux2_I0 (Inst)), Prev_Val, Res0, Dist0);
               Find_Longest_Loop
                 (Get_Driver (Get_Mux2_I1 (Inst)), Prev_Val, Res1, Dist1);
               --  Input1 has an higher priority than input0 in case
               --  the selector is a clock.
               --  FIXME: improve algorithm.
               if Dist1 > Dist0 then
                  Dist := Dist1 + 1;
                  if Dist1 > 0 then
                     Res := Res1;
                  else
                     Res := Inst;
                  end if;
               elsif Dist0 >= 0 then
                  Dist := Dist0 + 1;
                  if Dist0 > 0 then
                     Res := Res0;
                  else
                     Res := Inst;
                  end if;
               else
                  pragma Assert (Dist1 < 0 and Dist0 < 0);
                  Res := No_Instance;
                  Dist := -1;
               end if;
            end if;
         end;
      elsif Val = Prev_Val then
         Res := No_Instance;
         Dist := 0;
      else
         Res := No_Instance;
         Dist := -1;
      end if;
   end Find_Longest_Loop;

   procedure Extract_Clock_And (Ctxt : Context_Acc; Inst : Instance)
   is
   begin
      pragma Assert (Get_Id (Inst) = Id_And);

      declare
         I0 : constant Input := Get_Input (Inst, 0);
         N0 : constant Net := Get_Driver (I0);
         Inst0 : constant Instance := Get_Net_Parent (N0);
      begin
         case Get_Id (Inst0) is
            when Edge_Module_Id =>
               null;
            when Id_And =>
               Extract_Clock_And (Ctxt, Inst0);

               --  If we have:       AND      convert to:     AND
               --                    / \                      / \
               --                  N1  AND0       ==>     AND0   EDGE
               --                      /  \               /  \
               --                     N2  EDGE           N1   N2
               declare
                  I3 : constant Input := Get_Input (Inst0, 0);
                  N3 : constant Net := Get_Driver (I3);
                  Inst3 : constant Instance := Get_Net_Parent (N3);
               begin
                  if Get_Id (Inst3) in Edge_Module_Id then
                     declare
                        Can_Rotate : constant Boolean :=
                          Has_One_Connection (N0);
                        I2 : constant Input := Get_Input (Inst0, 1);
                        N2 : constant Net := Get_Driver (I2);
                        I1 : constant Input := Get_Input (Inst, 1);
                        N1 : constant Net := Get_Driver (I1);
                        N4 : Net;
                     begin
                        Disconnect (I0);
                        Disconnect (I1);
                        Connect (I0, N3);
                        if Can_Rotate then
                           Disconnect (I2);
                           Disconnect (I3);

                           Connect (I1, N0);
                           Connect (I3, N2);
                           Connect (I2, N1);
                        else
                           N4 := Build_Dyadic (Ctxt, Id_And, N2, N1);
                           Copy_Location (N4, Inst);
                           Connect (I1, N4);
                        end if;
                     end;
                  end if;
               end;
            when others =>
               null;
         end case;
      end;

      declare
         I0 : constant Input := Get_Input (Inst, 1);
         N0 : constant Net := Get_Driver (I0);
         Inst0 : constant Instance := Get_Net_Parent (N0);
      begin
         case Get_Id (Inst0) is
            when Edge_Module_Id =>
               --  Swap inputs 0 and 1.
               declare
                  I1 : constant Input := Get_Input (Inst, 0);
                  N1 : constant Net := Get_Driver (I1);
               begin
                  Disconnect (I0);
                  Disconnect (I1);
                  Connect (I1, N0);
                  Connect (I0, N1);
               end;
            when Id_And =>
               Extract_Clock_And (Ctxt, Inst0);

               --  If we have:       AND      convert to:     AND
               --                    / \                      / \
               --                 AND0  N1     ==>         AND0  EDGE
               --                 /  \                     /  \
               --                N2  EDGE                N2   N1
               declare
                  I3 : constant Input := Get_Input (Inst0, 0);
                  N3 : constant Net := Get_Driver (I3);
               begin
                  if Get_Id (Get_Net_Parent (N3)) in Edge_Module_Id then
                     declare
                        Can_Rotate : constant Boolean :=
                          Has_One_Connection (N0);
                        I1 : constant Input := Get_Input (Inst, 0);
                        N1 : constant Net := Get_Driver (I1);
                        N4 : Net;
                     begin
                        Disconnect (I3);
                        Disconnect (I1);
                        Connect (I1, N3);
                        if Can_Rotate then
                           Connect (I3, N1);
                        else
                           N4 := Build_Dyadic
                             (Ctxt, Id_And, N1, Get_Input_Net (Inst0, 1));
                           Connect (I3, N4);
                        end if;
                     end;
                  end if;
               end;
            when others =>
               null;
         end case;
      end;
   end Extract_Clock_And;

   --  Walk the And-net N, and extract clock (posedge/negedge) if found.
   --  ENABLE is N without the clock.
   --  If not found, CLK and ENABLE are set to No_Net.
   procedure Extract_Clock
     (Ctxt : Context_Acc; N : Net; Clk : out Net; Enable : out Net)
   is
      Inst : constant Instance := Get_Net_Parent (N);
   begin
      Clk := No_Net;
      Enable := No_Net;

      case Get_Id (Inst) is
         when Edge_Module_Id =>
            Clk := N;
         when Id_And =>
            --  Canonicalize conditions.
            Extract_Clock_And (Ctxt, Inst);

            --  Condition should be in the form: CLK and EXPR
            declare
               I0 : constant Net := Get_Input_Net (Inst, 0);
               Inst0 : constant Instance := Get_Net_Parent (I0);
            begin
               if Get_Id (Inst0) in Edge_Module_Id then
                  --  INST is clearly not synthesizable (boolean operation on
                  --  an edge).  Will be removed at the end by
                  --  remove_unused_instances.  Do not remove it now as its
                  --  output may be used by other nets.
                  Clk := I0;
                  Enable := Get_Input_Net (Inst, 1);
                  return;
               end if;
            end;
         when others =>
            null;
      end case;
   end Extract_Clock;

   function Is_Prev_FF_Value (V : Net; Prev_Val : Net; Off : Uns32)
                             return Boolean
   is
      Inst : Instance;
   begin
      if V = Prev_Val then
         pragma Assert (Off = 0);
         return True;
      end if;
      Inst := Get_Net_Parent (V);
      return Get_Id (Inst) = Id_Extract
        and then Get_Param_Uns32 (Inst, 0) = Off
        and then Get_Input_Net (Inst, 0) = Prev_Val;
   end Is_Prev_FF_Value;

   --  Build the FF or the RAM according to the inputs.
   function Infere_FF_Create (Ctxt       : Context_Acc;
                              Prev_Val   : Net;
                              Off        : Uns32;
                              Last_Mux   : Instance;
                              Init       : Net;
                              Rst        : Net;
                              Rst_Val    : Net;
                              Data       : Net;
                              Els        : Net;
                              Clk        : Net;
                              Clk_Enable : Net;
                              Loc        : Location_Type) return Net
   is
      Ndata : Net;
      Res   : Net;
   begin
      if Off = 0
        and then not Synth.Flags.Flag_Debug_Nomemory1
        and then Can_Infere_RAM (Data, Prev_Val)
      then
         --  Maybe it is a RAM.
         Res := Infere_RAM (Ctxt, Data, Els, Clk, Clk_Enable);
      else
         if Clk_Enable /= No_Net then
            --  If there is a condition with the clock, that's an enable which
            --  keep the previous value if the condition is false.  Add the mux
            --  for it, to create a synchronous enable.
            declare
               Prev : Net;
            begin
               Prev := Build2_Extract (Ctxt, Prev_Val, Off, Get_Width (Data));

               Ndata := Build_Mux2 (Ctxt, Clk_Enable, Prev, Data);
               Copy_Location (Ndata, Clk_Enable);
            end;
         else
            Ndata := Data;
         end if;

         --  Create the FF.
         if Rst = No_Net then
            pragma Assert (Rst_Val = No_Net);
            if Els = No_Net then
               if Init /= No_Net then
                  Res := Build_Idff (Ctxt, Clk, D => Ndata, Init => Init);
               else
                  Res := Build_Dff (Ctxt, Clk, D => Ndata);
               end if;
            else
               if Init /= No_Net then
                  Res := Build_Midff (Ctxt, Clk, D => Ndata,
                                      Els => Els, Init => Init);
               else
                  Res := Build_Mdff (Ctxt, Clk, D => Ndata, Els => Els);
               end if;
            end if;
         else
            if Els /= No_Net then
               Error_Msg_Synth
                 (Loc, "synchronous code does not expect else part");
            end if;

            if Init /= No_Net then
               Res := Build_Iadff (Ctxt, Clk, D => Ndata,
                                   Rst => Rst, Rst_Val => Rst_Val,
                                   Init => Init);
            else
               Res := Build_Adff (Ctxt, Clk, D => Ndata,
                                  Rst => Rst, Rst_Val => Rst_Val);
            end if;
         end if;

         Set_Location (Res, Loc);
      end if;

      --  The output may already be used (if the target is a variable that
      --  is read).  So redirect the net.
      Redirect_Inputs (Get_Output (Last_Mux, 0), Res);
      return Res;
   end Infere_FF_Create;

   --  Remove the Mux2 and handle the 'else' branch.
   procedure Infere_FF_Mux (Ctxt : Context_Acc;
                            Prev_Val : Net;
                            Off : Uns32;
                            Last_Mux : Instance;
                            Els : out Net;
                            Data : out Net)
   is
      Mux_Loc  : constant Location_Type := Get_Location (Last_Mux);
      Sel      : constant Input := Get_Mux2_Sel (Last_Mux);
      I0       : constant Input := Get_Mux2_I0 (Last_Mux);
      I1       : constant Input := Get_Mux2_I1 (Last_Mux);
      Els_Inst : Instance;
      Els_Clk  : Net;
      Els_En   : Net;
      Els_Data : Net;
      Els_Els  : Net;
   begin
      Els := Get_Driver (I0);
      if Is_Prev_FF_Value (Els, Prev_Val, Off) then
         --  The 'else' part of the mux2 is the logical loop.
         Els := No_Net;
      else
         --  The 'else' part is not a loop.  It should be a second FF for a
         --  DDR (not yet supported) or a true-dual-port RAM.
         Els_Inst := Get_Net_Parent (Els);
         if Get_Id (Els_Inst) = Id_Mux2 then
            Extract_Clock (Ctxt, Get_Driver (Get_Mux2_Sel (Els_Inst)),
                           Els_Clk, Els_En);
         else
            Els_Clk := No_Net;
         end if;
         if Els_Clk = No_Net then
            Error_Msg_Synth
              (Mux_Loc, "clocked logic requires clocked logic on else part");
            Els := No_Net;
         else
            --  Create and return the DFF.

            --  1. Remove the mux that creates the loop (will be replaced by
            --     the dff).
            Infere_FF_Mux (Ctxt, Prev_Val, Off, Els_Inst, Els_Els, Els_Data);

            Els := Infere_FF_Create (Ctxt, Prev_Val, Off, Els_Inst, No_Net,
                                     No_Net, No_Net, Els_Data, Els_Els,
                                     Els_Clk, Els_En, Get_Location (Els_Inst));
            Remove_Instance (Els_Inst);
         end if;
      end if;

      Disconnect (Sel);
      --  Don't try to free driver of I0 as this is Prev_Val or a selection
      --  of it.
      Disconnect (I0);
      Data := Get_Driver (I1);
      --  Don't try to free driver of I1 as it is reconnected.
      Disconnect (I1);
   end Infere_FF_Mux;

   --  A Mux2 with a logical loop and a clock has been found.
   --  Determine the kind of FF and extract the asynchronous reset.
   --  Build the FF (or the RAM).
   --
   --  CLOCK_MUX is the mux whose input 0 is the loop and clock for selector.
   function Infere_FF (Ctxt : Context_Acc;
                       Val : Net;
                       Prev_Val : Net;
                       Off : Uns32;
                       Clock_Mux : Instance;
                       Clk : Net;
                       Clk_Enable : Net;
                       Stmt : Synth.Source.Syn_Src) return Net
   is
      O : constant Net := Get_Output (Clock_Mux, 0);
      Mux_Loc : constant Location_Type := Get_Location (Clock_Mux);
      Data : Net;
      Res : Net;
      Sig : Instance;
      Init : Net;
      Rst : Net;
      Rst_Val : Net;
      Enable : Net;
      Els : Net;
      Last_Mux : Instance;
      --  Previous mux to be free.
      Prev_Mux : Instance;
   begin
      --  Create and return the DFF.

      --  1. Remove the mux that creates the loop (will be replaced by the
      --     dff).
      Infere_FF_Mux (Ctxt, Prev_Val, Off, Clock_Mux, Els, Data);

      --  If the signal declaration has an initial value, get it.
      Sig := Get_Net_Parent (Prev_Val);
      case Get_Id (Get_Module (Sig)) is
         when Id_Isignal
           | Id_Ioutput =>
            Init := Get_Input_Net (Sig, 1);
            Init := Build2_Extract (Ctxt, Init, Off, Get_Width (O));
         when others =>
            Init := No_Net;
      end case;

      --  As an enable signal, start with the enable extracted from the clock
      --  to handle conditions like: `rising_edge(clk) and en`
      Enable := Clk_Enable;

      --  Look for asynchronous set/reset.  They are muxes after the loop
      --  mux.  In theory, there can be many set/reset with a defined order.
      Rst_Val := No_Net;
      Rst := No_Net;
      declare
         Mux : Instance;
         Sel : Net;
         Last_Out : Net;
         Mux_Not_Rst : Net;
         Mux_Rst : Net;
         Mux_Rst_Val : Net;
         Prev_Input : Input;
      begin
         Prev_Mux := Clock_Mux;

         --  LAST_MUX is the last handled mux and LAST_OUT its output.
         Last_Mux := Clock_Mux;
         Last_Out := O;

         --  Initially, the final output is not connected.  So walk from the
         --  clocked mux until reaching the final output.
         while Last_Out /= Val loop
            if not Has_One_Connection (Last_Out)
              and then not Is_Const_Net (Last_Out)
            then
               --  TODO.
               raise Internal_Error;
            end if;

            --  The parent must be a mux (it's a chain of muxes).
            Mux := Get_Input_Parent (Get_First_Sink (Last_Out));
            if Get_Id (Mux) = Id_Nop then
               --  Should have stopped.
               exit;
            end if;
            pragma Assert (Get_Id (Mux) = Id_Mux2);

            --  Extract the reset condition and the reset value.
            Sel := Get_Driver (Get_Mux2_Sel (Mux));
            Prev_Input := Get_Mux2_I0 (Mux);
            if Get_Driver (Prev_Input) = Last_Out then
               --  Normal reset
               Mux_Rst_Val := Get_Driver (Get_Mux2_I1 (Mux));
               Mux_Rst := Sel;
            else
               --  Inverted reset.
               Prev_Input := Get_Mux2_I1 (Mux);
               pragma Assert (Get_Driver (Prev_Input) = Last_Out);
               Mux_Rst_Val := Get_Driver (Get_Mux2_I0 (Mux));
               Mux_Rst := Build_Monadic (Ctxt, Id_Not, Sel);
            end if;

            --  Disconnect this mux.
            Disconnect (Get_Mux2_I0 (Mux));
            Disconnect (Get_Mux2_I1 (Mux));
            Disconnect (Get_Mux2_Sel (Mux));

            --  Next net to be handled.
            Last_Mux := Mux;
            Last_Out := Get_Output (Mux, 0);

            if Is_Prev_FF_Value (Mux_Rst_Val, Prev_Val, Off) then
               --  The mux is like an enable.  Like in this example, q2 is not
               --  assigned when RST is true:
               --    if rst then
               --      q1 <= '0';
               --    elsif rising_edge(clk) then
               --      q2 <= d2;
               --      q1 <= d1;
               --    end if;

               --  Add the negation of the condition to the enable signal.
               --  Negate the condition for the current reset.
               Mux_Not_Rst := Build_Monadic (Ctxt, Id_Not, Mux_Rst);
               Set_Location (Mux_Not_Rst, Stmt);
               if Rst /= No_Net then
                  Rst := Build_Dyadic (Ctxt, Id_And, Rst, Mux_Not_Rst);
                  Set_Location (Rst, Stmt);
               end if;
               if Enable = No_Net then
                  Enable := Mux_Not_Rst;
               else
                  Enable := Build_Dyadic (Ctxt, Id_And, Enable, Mux_Not_Rst);
                  Set_Location (Enable, Stmt);
               end if;

               if Prev_Mux /= No_Instance then
                  Remove_Instance (Prev_Mux);
               end if;
               Prev_Mux := Mux;
            else
               --  Assume this is a reset value.
               --  FIXME: check for no logical loop.

               if Rst = No_Net then
                  --  First async reset condition.

                  --  Keep reset value and condition
                  Rst := Mux_Rst;
                  Rst_Val := Mux_Rst_Val;

                  --  Remove the last mux.  Will free this mux.
                  if Prev_Mux /= No_Instance then
                     Remove_Instance (Prev_Mux);
                  end if;
                  Prev_Mux := Mux;
               else
                  --  New async reset condition.
                  Rst := Build_Dyadic (Ctxt, Id_Or, Mux_Rst, Rst);
                  Copy_Location (Rst, Mux_Rst);

                  --  Use prev_mux to select the reset value.
                  Connect (Get_Mux2_Sel (Prev_Mux), Mux_Rst);
                  Connect (Get_Mux2_I0 (Prev_Mux), Rst_Val);
                  Connect (Get_Mux2_I1 (Prev_Mux), Mux_Rst_Val);

                  --  The reset value is the output of prev_mux.
                  Rst_Val := Get_Output (Prev_Mux, 0);

                  --  Allow to free this mux.
                  Prev_Mux := Mux;
               end if;
            end if;
         end loop;

         pragma Assert (Prev_Mux = No_Instance or else Prev_Mux = Last_Mux);
      end;

      Res := Infere_FF_Create (Ctxt, Prev_Val, Off, Last_Mux, Init,
                               Rst, Rst_Val, Data, Els, Clk, Enable, Mux_Loc);

      if Prev_Mux /= No_Instance then
         Remove_Instance (Prev_Mux);
      end if;

      return Res;
   end Infere_FF;

   --  Detect false combinational loop.  They can easily appear when variables
   --  are only used in one branch:
   --    process (all)
   --      variable a : std_logic;
   --    begin
   --      r <= '1';
   --      if sel = '1' then
   --        a := '1';
   --        r <= '0';
   --      end if;
   --    end process;
   --  There is a combinational path from 'a' to 'a' as
   --    a := (sel = '1') ? '1' : a;
   --  But this is a false loop because the value of 'a' is never used.  In
   --  that case, 'a' is assigned to 'x' and all the unused logic will be
   --  removed during clean-up.
   --
   --  Detection is very simple: the closure of readers of 'a' must be only
   --  muxes (which were inserted by controls).
   function Is_False_Loop (Prev_Val : Net) return Boolean
   is
      package Inst_Interning renames
        Netlists.Internings.Dyn_Instance_Interning;
      use Inst_Interning;
      T : Inst_Interning.Instance;

      function Add_From_Net (N : Net) return Boolean
      is
         Inst : Netlists.Instance;
         Inp : Input;
      begin
         Inp := Get_First_Sink (N);
         while Inp /= No_Input loop
            Inst := Get_Input_Parent (Inp);
            case Get_Id (Inst) is
               when Mux_Module_Id
                 | Id_Pmux =>
                  null;
               when others =>
                  return False;
            end case;

            --  Add to T (if not already).
            Get (T, Inst, Inst);

            Inp := Get_Next_Sink (Inp);
         end loop;

         return True;
      end Add_From_Net;

      function Walk_Nets (N : Net) return Boolean
      is
         Inst : Netlists.Instance;
      begin
         --  Put gates that read the value.
         if not Add_From_Net (N) then
            return False;
         end if;

         --  Follow the outputs.
         for I in First_Index .. Index_Type'Last loop
            exit when I > Inst_Interning.Last_Index (T);
            Inst := Get_By_Index (T, I);
            if not Add_From_Net (Get_Output (Inst, 0)) then
               return False;
            end if;
         end loop;

         --  No external readers.
         return True;
      end Walk_Nets;

      Res : Boolean;
   begin
      Inst_Interning.Init (T);

      Res := Walk_Nets (Prev_Val);

      Inst_Interning.Free (T);

      return Res;
   end Is_False_Loop;

   function Infere_Latch (Ctxt : Context_Acc;
                          Val : Net;
                          Prev_Val : Net;
                          Stmt : Synth.Source.Syn_Src) return Net
   is
      Name : Sname;
   begin
      --  In case of false loop, do not close the loop but assign X.
      if Is_False_Loop (Prev_Val) then
         return Build_Const_X (Ctxt, Get_Width (Val));
      end if;

      --  Latch or combinational loop.
      if Get_Id (Get_Net_Parent (Prev_Val)) = Id_Output then
         --  Outputs are connected to a port.  The port is the first connection
         --  made, so it is the last sink.  Be more tolerant and look for
         --  the (only) port connected to the output.
         declare
            Inp : Input;
            Inst : Instance;
         begin
            Inp := Get_First_Sink (Prev_Val);
            loop
               pragma Assert (Inp /= No_Input);
               Inst := Get_Input_Parent (Inp);
               if Get_Id (Inst) >= Id_User_None then
                  Name := Get_Output_Desc (Get_Module (Inst),
                                           Get_Port_Idx (Inp)).Name;
                  exit;
               end if;
               Inp := Get_Next_Sink (Inp);
            end loop;
         end;
      else
         Name := Get_Instance_Name (Get_Net_Parent (Prev_Val));
      end if;
      Error_Msg_Synth (+Stmt, "latch infered for net %n", +Name);

      return Val;
   end Infere_Latch;

   --  VAL is the value to be assigned to a wire at offset OFF.
   --  Note: PREV_VAL is the wire gate, so with full width and no offset.
   function Infere (Ctxt : Context_Acc;
                    Val : Net;
                    Off : Uns32;
                    Prev_Val : Net;
                    Stmt : Synth.Source.Syn_Src;
                    Last_Use : Boolean) return Net
   is
      pragma Assert (Val /= No_Net);
      pragma Assert (Prev_Val /= No_Net);
      First_Mux, Last_Mux : Instance;
      Len : Integer;
      Sel : Input;
      Clk : Net;
      Enable : Net;
      Res : Net;
   begin
      if Get_First_Sink (Prev_Val) = No_Input then
         --  PREV_VAL is never read, so there cannot be any loop.
         --  This is an important optimization for control signals.
         return Val;
      end if;

      --  Infere tri-buf.
      First_Mux := Get_Net_Parent (Val);
      if Get_Id (First_Mux) = Id_Mux2 then
         declare
            Nsel, N0, N1 : Net;
         begin
            --  Check for VAL <= SEL ? N1 : 'Z'
            if Get_Id (Get_Input_Instance (First_Mux, 1)) = Id_Const_Z then
               --  Disconnect the mux.
               Nsel := Disconnect_And_Get (First_Mux, 0);
               N0 := Disconnect_And_Get (First_Mux, 1);
               N1 := Disconnect_And_Get (First_Mux, 2);
               --  Build the tri buf.
               Res := Build_Tri (Ctxt, Nsel, N1);
               --  Remove the 'Z' (shouldn't be connected).
               Remove_Instance (Get_Net_Parent (N0));
               --  Copy location.
               Copy_Location (Res, First_Mux);
               --  Redirect tri output.
               Redirect_Inputs (Get_Output (First_Mux, 0), Res);
               Remove_Instance (First_Mux);
               return Res;
            end if;
         end;
      end if;

      Find_Longest_Loop (Val, Prev_Val, Last_Mux, Len);
      if Len <= 0 then
         --  No logical loop or self assignment.
         return Val;
      end if;
      if Last_Use
        and then Has_One_Connection (Prev_Val)
        and then not Is_Connected (Val)
      then
         --  Value is not used, to be removed.  Do not try to infere anything.
         --  Conditions:
         --   * last_use must be true: the signal won't be use after the call
         --     to infere (because it goes out of scope).
         --   * Prev_val must be connected once (to create a loop).
         --   * Val must not be connected (for variables).
         return Val;
      end if;

      --  So there is a logical loop.
      Sel := Get_Mux2_Sel (Last_Mux);
      Extract_Clock (Ctxt, Get_Driver (Sel), Clk, Enable);
      if Clk = No_Net then
         --  No clock -> latch or combinational loop
         Res := Infere_Latch (Ctxt, Val, Prev_Val, Stmt);
      else
         --  Clock -> FF
         First_Mux := Get_Net_Parent (Val);
         pragma Assert (Get_Id (First_Mux) = Id_Mux2);

         Res := Infere_FF (Ctxt, Val, Prev_Val, Off, Last_Mux,
                           Clk, Enable, Stmt);
      end if;

      return Res;
   end Infere;

   --  INST is a mux2 of a condition chain.
   --  Return the input that is not 0.  Could be either a mux2 or a const.
   function Find_Condition_Chain_Next (Inst : Instance) return Instance
   is
      Mux_In0, Mux_In1 : Net;
      In0_Inst, In1_Inst : Instance;
   begin
      Mux_In0 := Get_Input_Net (Inst, 1);
      In0_Inst := Get_Net_Parent (Mux_In0);

      Mux_In1 := Get_Input_Net (Inst, 2);
      In1_Inst := Get_Net_Parent (Mux_In1);

      if Get_Id (In0_Inst) /= Id_Const_UB32 then
         --  The other input must be const 0.
         pragma Assert (Get_Id (In1_Inst) = Id_Const_UB32
                          and then Get_Param_Uns32 (In1_Inst, 0) = 0);
         return In0_Inst;
      else
         --  Either both are const, or the other input must be const 0.
         if Get_Id (In1_Inst) = Id_Const_UB32 then
            --  Both are const.  Return the const 1.
            if Get_Param_Uns32 (In1_Inst, 0) = 0 then
               pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 1);
               return In0_Inst;
            else
               pragma Assert (Get_Param_Uns32 (In1_Inst, 0) = 1);
               pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 0);
               return In1_Inst;
            end if;
         end if;

         pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 0);
         return In1_Inst;
      end if;
   end Find_Condition_Chain_Next;

   --  VAL is a chain of mux2 that define the conditions to enable assertions.
   function Infere_Assert (Ctxt : Context_Acc;
                           Val : Net;
                           En_Gate : Net;
                           Stmt : Synth.Source.Syn_Src) return Net
   is
      Loc        : constant Location_Type := Synth.Source."+" (Stmt);
      Inst       : Instance;
      First_Inst : Instance;
      Last_Inst  : Instance;
      Clk, En    : Net;
      Areset     : Net;
      One        : Net;
   begin
      --  Extract clock (if any) from VAL.  Return VAL is no clock.
      First_Inst := Get_Net_Parent (Val);
      Inst := First_Inst;
      loop
         case Get_Id (Inst) is
            when Id_Mux2 =>
               null;
            when Id_Const_UB32
               | Id_Pmux =>
               return Val;
            when others =>
               raise Internal_Error;
         end case;
         Extract_Clock (Ctxt, Get_Input_Net (Inst, 0), Clk, En);
         exit when Clk /= No_Net;

         --  No clock.  Try the father.
         Inst := Find_Condition_Chain_Next (Inst);
      end loop;

      --  INST is the mux2 with clock CLK.

      --  Extract enable and asynchronous reset (if any).
      Last_Inst := Inst;
      Areset := No_Net;
      Inst := First_Inst;
      while Inst /= Last_Inst loop
         declare
            Cond : Net;
            Next_Inst : Instance;
         begin
            Cond := Get_Input_Net (Inst, 0);

            --  Find the next mux.
            Next_Inst := Find_Condition_Chain_Next (Inst);

            --  If the next mux is in1, negate COND.
            if Next_Inst = Get_Net_Parent (Get_Input_Net (Inst, 2)) then
               Cond := Build_Monadic (Ctxt, Id_Not, Cond);
               Synth.Source.Set_Location (Cond, Stmt);
            end if;

            --  'And' COND to Areset.
            Areset := Build2_And (Ctxt, Areset, Cond, Loc);

            Inst := Next_Inst;
         end;
      end loop;

      --  Same for LAST_INST, but check it is on in1.
      declare
         Next_Inst : Instance;
      begin
         Next_Inst := Find_Condition_Chain_Next (Last_Inst);
         if Next_Inst /= Get_Net_Parent (Get_Input_Net (Inst, 2)) then
            Error_Msg_Synth
              (+Last_Inst, "assertion checked on else branch of an edge");
            return Val;
         end if;

         En := Build2_And (Ctxt, En, Get_Output (Next_Inst, 0), Loc);
      end;

      One := Build_Const_UB32 (Ctxt, 1, 1);

      --  Build an idff/iadff for each condition of the assertions.
      --  The caller will connect the returned value (En) to the enable gate.
      declare
         En_Inp : Input;
         Assert_Inp : Input;
         N : Net;
         Dff : Net;
      begin
         En_Inp := Get_First_Sink (En_Gate);
         pragma Assert (En_Inp /= No_Input);
         while En_Inp /= No_Input loop
            --  The Enable gate is connected to an implication.
            Inst := Get_Input_Parent (En_Inp);
            pragma Assert (Get_Id (Inst) = Id_Not);
            N := Get_Output (Inst, 0);
            pragma Assert (Has_One_Connection (N));
            Inst := Get_Input_Parent (Get_First_Sink (N));
            pragma Assert (Get_Id (Inst) = Id_Or);

            N := Get_Output (Inst, 0);
            pragma Assert (Has_One_Connection (N));
            Inst := Get_Input_Parent (Get_First_Sink (N));

            pragma Assert (Get_Id (Inst) = Id_Assert);

            Assert_Inp := Get_Input (Inst, 0);
            Disconnect (Assert_Inp);

            if Areset = No_Net then
               Dff := Build_Idff (Ctxt, Clk, N, One);
            else
               Dff := Build_Iadff (Ctxt, Clk, N, Areset, One, One);
            end if;
            Set_Location (Dff, Loc);

            Connect (Assert_Inp, Dff);

            En_Inp := Get_Next_Sink (En_Inp);
         end loop;
      end;

      return En;
   end Infere_Assert;

end Netlists.Inference;