diff options
author | Alex Stapleton <alexs@prol.etari.at> | 2014-04-18 16:10:06 +0100 |
---|---|---|
committer | Alex Stapleton <alexs@prol.etari.at> | 2014-04-18 16:26:44 +0100 |
commit | 5a79ee4f9b831fd11c6f25bc9636d069cc243c75 (patch) | |
tree | 87aa3775a50a3fcfb06d2d26e1860887fb3edfc8 | |
parent | 9fa31c6353af3ab32edd6f6988725886d0e2aa4c (diff) | |
download | cryptography-5a79ee4f9b831fd11c6f25bc9636d069cc243c75.tar.gz cryptography-5a79ee4f9b831fd11c6f25bc9636d069cc243c75.tar.bz2 cryptography-5a79ee4f9b831fd11c6f25bc9636d069cc243c75.zip |
Utility methods for RSA CRT params
-rw-r--r-- | cryptography/hazmat/primitives/asymmetric/rsa.py | 36 | ||||
-rw-r--r-- | docs/hazmat/primitives/asymmetric/rsa.rst | 35 | ||||
-rw-r--r-- | tests/hazmat/primitives/test_rsa.py | 21 |
3 files changed, 75 insertions, 17 deletions
diff --git a/cryptography/hazmat/primitives/asymmetric/rsa.py b/cryptography/hazmat/primitives/asymmetric/rsa.py index 94cc4645..5b15350a 100644 --- a/cryptography/hazmat/primitives/asymmetric/rsa.py +++ b/cryptography/hazmat/primitives/asymmetric/rsa.py @@ -73,6 +73,42 @@ class RSAPublicKey(object): return self.modulus +def _modinv(e, m): + """ + Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1 + """ + x1, y1, x2, y2 = 1, 0, 0, 1 + a, b = e, m + while b > 0: + q, r = divmod(a, b) + xn, yn = x1 - q * x2, y1 - q * y2 + a, b, x1, y1, x2, y2 = b, r, x2, y2, xn, yn + return x1 % m + + +def rsa_crt_iqmp(p, q): + """ + Compute the CRT (q ** -1) % p value from RSA primes p and q. + """ + return _modinv(q, p) + + +def rsa_crt_dmp1(private_exponent, p): + """ + Compute the CRT private_exponent % (p - 1) value from the RSA + private_exponent and p. + """ + return private_exponent % (p - 1) + + +def rsa_crt_dmq1(private_exponent, q): + """ + Compute the CRT private_exponent % (q - 1) value from the RSA + private_exponent and q. + """ + return private_exponent % (q - 1) + + @utils.register_interface(interfaces.RSAPrivateKey) class RSAPrivateKey(object): def __init__(self, p, q, private_exponent, dmp1, dmq1, iqmp, diff --git a/docs/hazmat/primitives/asymmetric/rsa.rst b/docs/hazmat/primitives/asymmetric/rsa.rst index 5074f1c5..c9de2831 100644 --- a/docs/hazmat/primitives/asymmetric/rsa.rst +++ b/docs/hazmat/primitives/asymmetric/rsa.rst @@ -214,7 +214,42 @@ RSA too large for the key size. +Handling partial RSA private keys +--------------------------------- + +If you are trying to load RSA private keys yourself you may find that not all +parameters required by ``RSAPrivateKey`` are available. In particular the +`Chinese Remainder Theorem`_ (CRT) values ``dmp1``, ``dmq1``, ``iqmp`` may be +missing or present in a different form. For example `OpenPGP`_ does not include +the ``iqmp``, ``dmp1`` or ``dmq1`` parameters. + +The following functions are provided for users who want to work with keys like +this without having to do the math themselves. + +.. function:: rsa_crt_iqmp(p, q) + + .. versionadded:: 0.4 + + Generates the ``iqmp`` (also known as ``qInv``) parameter from the RSA + primes ``p`` and ``q``. + +.. function:: rsa_crt_dmp1(private_exponent, p) + + .. versionadded:: 0.4 + + Generates the ``dmp1`` parameter from the RSA private exponent and prime + ``p``. + +.. function:: rsa_crt_dmq1(private_exponent, q) + + .. versionadded:: 0.4 + + Generates the ``dmq1`` parameter from the RSA private exponent and prime + ``q``. + .. _`RSA`: https://en.wikipedia.org/wiki/RSA_(cryptosystem) .. _`public-key`: https://en.wikipedia.org/wiki/Public-key_cryptography .. _`use 65537`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html .. _`at least 2048`: http://www.ecrypt.eu.org/documents/D.SPA.20.pdf +.. _`OpenPGP`: https://en.wikipedia.org/wiki/Pretty_Good_Privacy +.. _`Chinese Remainder Theorem`: http://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm diff --git a/tests/hazmat/primitives/test_rsa.py b/tests/hazmat/primitives/test_rsa.py index 236a3bb1..4071c89a 100644 --- a/tests/hazmat/primitives/test_rsa.py +++ b/tests/hazmat/primitives/test_rsa.py @@ -42,19 +42,6 @@ class DummyMGF(object): _salt_length = 0 -def _modinv(e, m): - """ - Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1 - """ - x1, y1, x2, y2 = 1, 0, 0, 1 - a, b = e, m - while b > 0: - q, r = divmod(a, b) - xn, yn = x1 - q * x2, y1 - q * y2 - a, b, x1, y1, x2, y2 = b, r, x2, y2, xn, yn - return x1 % m - - def _check_rsa_private_key(skey): assert skey assert skey.modulus @@ -62,9 +49,9 @@ def _check_rsa_private_key(skey): assert skey.private_exponent assert skey.p * skey.q == skey.modulus assert skey.key_size - assert skey.dmp1 == skey.d % (skey.p - 1) - assert skey.dmq1 == skey.d % (skey.q - 1) - assert skey.iqmp == _modinv(skey.q, skey.p) + assert skey.dmp1 == rsa.rsa_crt_dmp1(skey.d, skey.p) + assert skey.dmq1 == rsa.rsa_crt_dmq1(skey.d, skey.q) + assert skey.iqmp == rsa.rsa_crt_iqmp(skey.p, skey.q) pkey = skey.public_key() assert pkey @@ -97,7 +84,7 @@ def test_modular_inverse(): "b2347cfcd669133088d1c159518531025297c2d67c9da856a12e80222cd03b4c6ec0f" "86c957cb7bb8de7a127b645ec9e820aa94581e4762e209f01", 16 ) - assert _modinv(q, p) == int( + assert rsa._modinv(q, p) == int( "0275e06afa722999315f8f322275483e15e2fb46d827b17800f99110b269a6732748f" "624a382fa2ed1ec68c99f7fc56fb60e76eea51614881f497ba7034c17dde955f92f15" "772f8b2b41f3e56d88b1e096cdd293eba4eae1e82db815e0fadea0c4ec971bc6fd875" |