aboutsummaryrefslogtreecommitdiffstats
path: root/cryptography/hazmat/backends/openssl/backend.py
blob: bb1a3f3dcfc12ee4941d710edd4227f46f896898 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import collections
import itertools
import warnings
from contextlib import contextmanager

import six

from cryptography import utils
from cryptography.exceptions import (
    InternalError, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import (
    CMACBackend, CipherBackend, DSABackend, EllipticCurveBackend, HMACBackend,
    HashBackend, PBKDF2HMACBackend, PEMSerializationBackend,
    PKCS8SerializationBackend, RSABackend,
    TraditionalOpenSSLSerializationBackend
)
from cryptography.hazmat.backends.openssl.ciphers import (
    _AESCTRCipherContext, _CipherContext
)
from cryptography.hazmat.backends.openssl.cmac import _CMACContext
from cryptography.hazmat.backends.openssl.dsa import (
    _DSAParameters, _DSAPrivateKey, _DSAPublicKey
)
from cryptography.hazmat.backends.openssl.ec import (
    _EllipticCurvePrivateKey, _EllipticCurvePublicKey
)
from cryptography.hazmat.backends.openssl.hashes import _HashContext
from cryptography.hazmat.backends.openssl.hmac import _HMACContext
from cryptography.hazmat.backends.openssl.rsa import (
    _RSAPrivateKey, _RSAPublicKey
)
from cryptography.hazmat.bindings.openssl.binding import Binding
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa
from cryptography.hazmat.primitives.asymmetric.padding import (
    MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.ciphers.algorithms import (
    AES, ARC4, Blowfish, CAST5, Camellia, IDEA, SEED, TripleDES
)
from cryptography.hazmat.primitives.ciphers.modes import (
    CBC, CFB, CFB8, CTR, ECB, GCM, OFB
)


_MemoryBIO = collections.namedtuple("_MemoryBIO", ["bio", "char_ptr"])
_OpenSSLError = collections.namedtuple("_OpenSSLError",
                                       ["code", "lib", "func", "reason"])


@utils.register_interface(CipherBackend)
@utils.register_interface(CMACBackend)
@utils.register_interface(DSABackend)
@utils.register_interface(EllipticCurveBackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
@utils.register_interface(PKCS8SerializationBackend)
@utils.register_interface(RSABackend)
@utils.register_interface(TraditionalOpenSSLSerializationBackend)
@utils.register_interface(PEMSerializationBackend)
class Backend(object):
    """
    OpenSSL API binding interfaces.
    """
    name = "openssl"

    def __init__(self):
        self._binding = Binding()
        self._ffi = self._binding.ffi
        self._lib = self._binding.lib

        self._binding.init_static_locks()

        # adds all ciphers/digests for EVP
        self._lib.OpenSSL_add_all_algorithms()
        # registers available SSL/TLS ciphers and digests
        self._lib.SSL_library_init()
        # loads error strings for libcrypto and libssl functions
        self._lib.SSL_load_error_strings()

        self._cipher_registry = {}
        self._register_default_ciphers()
        self.activate_osrandom_engine()

    def activate_builtin_random(self):
        # Obtain a new structural reference.
        e = self._lib.ENGINE_get_default_RAND()
        if e != self._ffi.NULL:
            self._lib.ENGINE_unregister_RAND(e)
            # Reset the RNG to use the new engine.
            self._lib.RAND_cleanup()
            # decrement the structural reference from get_default_RAND
            res = self._lib.ENGINE_finish(e)
            assert res == 1

    def activate_osrandom_engine(self):
        # Unregister and free the current engine.
        self.activate_builtin_random()
        # Fetches an engine by id and returns it. This creates a structural
        # reference.
        e = self._lib.ENGINE_by_id(self._lib.Cryptography_osrandom_engine_id)
        assert e != self._ffi.NULL
        # Initialize the engine for use. This adds a functional reference.
        res = self._lib.ENGINE_init(e)
        assert res == 1
        # Set the engine as the default RAND provider.
        res = self._lib.ENGINE_set_default_RAND(e)
        assert res == 1
        # Decrement the structural ref incremented by ENGINE_by_id.
        res = self._lib.ENGINE_free(e)
        assert res == 1
        # Decrement the functional ref incremented by ENGINE_init.
        res = self._lib.ENGINE_finish(e)
        assert res == 1
        # Reset the RNG to use the new engine.
        self._lib.RAND_cleanup()

    def openssl_version_text(self):
        """
        Friendly string name of the loaded OpenSSL library. This is not
        necessarily the same version as it was compiled against.

        Example: OpenSSL 1.0.1e 11 Feb 2013
        """
        return self._ffi.string(
            self._lib.SSLeay_version(self._lib.SSLEAY_VERSION)
        ).decode("ascii")

    def create_hmac_ctx(self, key, algorithm):
        return _HMACContext(self, key, algorithm)

    def hash_supported(self, algorithm):
        digest = self._lib.EVP_get_digestbyname(algorithm.name.encode("ascii"))
        return digest != self._ffi.NULL

    def hmac_supported(self, algorithm):
        return self.hash_supported(algorithm)

    def create_hash_ctx(self, algorithm):
        return _HashContext(self, algorithm)

    def cipher_supported(self, cipher, mode):
        if self._evp_cipher_supported(cipher, mode):
            return True
        elif isinstance(mode, CTR) and isinstance(cipher, AES):
            return True
        else:
            return False

    def _evp_cipher_supported(self, cipher, mode):
        try:
            adapter = self._cipher_registry[type(cipher), type(mode)]
        except KeyError:
            return False
        evp_cipher = adapter(self, cipher, mode)
        return self._ffi.NULL != evp_cipher

    def register_cipher_adapter(self, cipher_cls, mode_cls, adapter):
        if (cipher_cls, mode_cls) in self._cipher_registry:
            raise ValueError("Duplicate registration for: {0} {1}.".format(
                cipher_cls, mode_cls)
            )
        self._cipher_registry[cipher_cls, mode_cls] = adapter

    def _register_default_ciphers(self):
        for mode_cls in [CBC, CTR, ECB, OFB, CFB, CFB8]:
            self.register_cipher_adapter(
                AES,
                mode_cls,
                GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
            )
        for mode_cls in [CBC, CTR, ECB, OFB, CFB]:
            self.register_cipher_adapter(
                Camellia,
                mode_cls,
                GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
            )
        for mode_cls in [CBC, CFB, CFB8, OFB]:
            self.register_cipher_adapter(
                TripleDES,
                mode_cls,
                GetCipherByName("des-ede3-{mode.name}")
            )
        self.register_cipher_adapter(
            TripleDES,
            ECB,
            GetCipherByName("des-ede3")
        )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                Blowfish,
                mode_cls,
                GetCipherByName("bf-{mode.name}")
            )
        for mode_cls in [CBC, CFB, OFB, ECB]:
            self.register_cipher_adapter(
                SEED,
                mode_cls,
                GetCipherByName("seed-{mode.name}")
            )
        for cipher_cls, mode_cls in itertools.product(
            [CAST5, IDEA],
            [CBC, OFB, CFB, ECB],
        ):
            self.register_cipher_adapter(
                cipher_cls,
                mode_cls,
                GetCipherByName("{cipher.name}-{mode.name}")
            )
        self.register_cipher_adapter(
            ARC4,
            type(None),
            GetCipherByName("rc4")
        )
        self.register_cipher_adapter(
            AES,
            GCM,
            GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}")
        )

    def create_symmetric_encryption_ctx(self, cipher, mode):
        if (isinstance(mode, CTR) and isinstance(cipher, AES)
                and not self._evp_cipher_supported(cipher, mode)):
            # This is needed to provide support for AES CTR mode in OpenSSL
            # 0.9.8. It can be removed when we drop 0.9.8 support (RHEL 5
            # extended life ends 2020).
            return _AESCTRCipherContext(self, cipher, mode)
        else:
            return _CipherContext(self, cipher, mode, _CipherContext._ENCRYPT)

    def create_symmetric_decryption_ctx(self, cipher, mode):
        if (isinstance(mode, CTR) and isinstance(cipher, AES)
                and not self._evp_cipher_supported(cipher, mode)):
            # This is needed to provide support for AES CTR mode in OpenSSL
            # 0.9.8. It can be removed when we drop 0.9.8 support (RHEL 5
            # extended life ends 2020).
            return _AESCTRCipherContext(self, cipher, mode)
        else:
            return _CipherContext(self, cipher, mode, _CipherContext._DECRYPT)

    def pbkdf2_hmac_supported(self, algorithm):
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            return self.hmac_supported(algorithm)
        else:
            # OpenSSL < 1.0.0 has an explicit PBKDF2-HMAC-SHA1 function,
            # so if the PBKDF2_HMAC function is missing we only support
            # SHA1 via PBKDF2_HMAC_SHA1.
            return isinstance(algorithm, hashes.SHA1)

    def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
                           key_material):
        buf = self._ffi.new("char[]", length)
        if self._lib.Cryptography_HAS_PBKDF2_HMAC:
            evp_md = self._lib.EVP_get_digestbyname(
                algorithm.name.encode("ascii"))
            assert evp_md != self._ffi.NULL
            res = self._lib.PKCS5_PBKDF2_HMAC(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                evp_md,
                length,
                buf
            )
            assert res == 1
        else:
            if not isinstance(algorithm, hashes.SHA1):
                raise UnsupportedAlgorithm(
                    "This version of OpenSSL only supports PBKDF2HMAC with "
                    "SHA1.",
                    _Reasons.UNSUPPORTED_HASH
                )
            res = self._lib.PKCS5_PBKDF2_HMAC_SHA1(
                key_material,
                len(key_material),
                salt,
                len(salt),
                iterations,
                length,
                buf
            )
            assert res == 1

        return self._ffi.buffer(buf)[:]

    def _err_string(self, code):
        err_buf = self._ffi.new("char[]", 256)
        self._lib.ERR_error_string_n(code, err_buf, 256)
        return self._ffi.string(err_buf, 256)[:]

    def _consume_errors(self):
        errors = []
        while True:
            code = self._lib.ERR_get_error()
            if code == 0:
                break

            lib = self._lib.ERR_GET_LIB(code)
            func = self._lib.ERR_GET_FUNC(code)
            reason = self._lib.ERR_GET_REASON(code)

            errors.append(_OpenSSLError(code, lib, func, reason))
        return errors

    def _unknown_error(self, error):
        return InternalError(
            "Unknown error code {0} from OpenSSL, "
            "you should probably file a bug. {1}.".format(
                error.code, self._err_string(error.code)
            )
        )

    def _bn_to_int(self, bn):
        if six.PY3:
            # Python 3 has constant time from_bytes, so use that.

            bn_num_bytes = (self._lib.BN_num_bits(bn) + 7) // 8
            bin_ptr = self._ffi.new("unsigned char[]", bn_num_bytes)
            bin_len = self._lib.BN_bn2bin(bn, bin_ptr)
            assert bin_len > 0
            assert bin_ptr != self._ffi.NULL
            return int.from_bytes(self._ffi.buffer(bin_ptr)[:bin_len], "big")

        else:
            # Under Python 2 the best we can do is hex()

            hex_cdata = self._lib.BN_bn2hex(bn)
            assert hex_cdata != self._ffi.NULL
            hex_str = self._ffi.string(hex_cdata)
            self._lib.OPENSSL_free(hex_cdata)
            return int(hex_str, 16)

    def _int_to_bn(self, num, bn=None):
        """
        Converts a python integer to a BIGNUM. The returned BIGNUM will not
        be garbage collected (to support adding them to structs that take
        ownership of the object). Be sure to register it for GC if it will
        be discarded after use.
        """

        if bn is None:
            bn = self._ffi.NULL

        if six.PY3:
            # Python 3 has constant time to_bytes, so use that.

            binary = num.to_bytes(int(num.bit_length() / 8.0 + 1), "big")
            bn_ptr = self._lib.BN_bin2bn(binary, len(binary), bn)
            assert bn_ptr != self._ffi.NULL
            return bn_ptr

        else:
            # Under Python 2 the best we can do is hex()

            hex_num = hex(num).rstrip("L").lstrip("0x").encode("ascii") or b"0"
            bn_ptr = self._ffi.new("BIGNUM **")
            bn_ptr[0] = bn
            res = self._lib.BN_hex2bn(bn_ptr, hex_num)
            assert res != 0
            assert bn_ptr[0] != self._ffi.NULL
            return bn_ptr[0]

    def generate_rsa_private_key(self, public_exponent, key_size):
        rsa._verify_rsa_parameters(public_exponent, key_size)

        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)

        bn = self._int_to_bn(public_exponent)
        bn = self._ffi.gc(bn, self._lib.BN_free)

        res = self._lib.RSA_generate_key_ex(
            rsa_cdata, key_size, bn, self._ffi.NULL
        )
        assert res == 1

        return _RSAPrivateKey(self, rsa_cdata)

    def generate_rsa_parameters_supported(self, public_exponent, key_size):
        return (public_exponent >= 3 and public_exponent & 1 != 0 and
                key_size >= 512)

    def load_rsa_private_numbers(self, numbers):
        rsa._check_private_key_components(
            numbers.p,
            numbers.q,
            numbers.d,
            numbers.dmp1,
            numbers.dmq1,
            numbers.iqmp,
            numbers.public_numbers.e,
            numbers.public_numbers.n
        )
        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
        rsa_cdata.p = self._int_to_bn(numbers.p)
        rsa_cdata.q = self._int_to_bn(numbers.q)
        rsa_cdata.d = self._int_to_bn(numbers.d)
        rsa_cdata.dmp1 = self._int_to_bn(numbers.dmp1)
        rsa_cdata.dmq1 = self._int_to_bn(numbers.dmq1)
        rsa_cdata.iqmp = self._int_to_bn(numbers.iqmp)
        rsa_cdata.e = self._int_to_bn(numbers.public_numbers.e)
        rsa_cdata.n = self._int_to_bn(numbers.public_numbers.n)
        res = self._lib.RSA_blinding_on(rsa_cdata, self._ffi.NULL)
        assert res == 1

        return _RSAPrivateKey(self, rsa_cdata)

    def load_rsa_public_numbers(self, numbers):
        rsa._check_public_key_components(numbers.e, numbers.n)
        rsa_cdata = self._lib.RSA_new()
        assert rsa_cdata != self._ffi.NULL
        rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
        rsa_cdata.e = self._int_to_bn(numbers.e)
        rsa_cdata.n = self._int_to_bn(numbers.n)
        res = self._lib.RSA_blinding_on(rsa_cdata, self._ffi.NULL)
        assert res == 1

        return _RSAPublicKey(self, rsa_cdata)

    def _bytes_to_bio(self, data):
        """
        Return a _MemoryBIO namedtuple of (BIO, char*).

        The char* is the storage for the BIO and it must stay alive until the
        BIO is finished with.
        """
        data_char_p = self._ffi.new("char[]", data)
        bio = self._lib.BIO_new_mem_buf(
            data_char_p, len(data)
        )
        assert bio != self._ffi.NULL

        return _MemoryBIO(self._ffi.gc(bio, self._lib.BIO_free), data_char_p)

    def _evp_pkey_to_private_key(self, evp_pkey):
        """
        Return the appropriate type of PrivateKey given an evp_pkey cdata
        pointer.
        """

        type = evp_pkey.type

        if type == self._lib.EVP_PKEY_RSA:
            rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
            assert rsa_cdata != self._ffi.NULL
            rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
            return _RSAPrivateKey(self, rsa_cdata)
        elif type == self._lib.EVP_PKEY_DSA:
            dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
            assert dsa_cdata != self._ffi.NULL
            dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
            return _DSAPrivateKey(self, dsa_cdata)
        elif (self._lib.Cryptography_HAS_EC == 1 and
              type == self._lib.EVP_PKEY_EC):
            ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
            return _EllipticCurvePrivateKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm("Unsupported key type.")

    def _evp_pkey_to_public_key(self, evp_pkey):
        """
        Return the appropriate type of PublicKey given an evp_pkey cdata
        pointer.
        """

        type = evp_pkey.type

        if type == self._lib.EVP_PKEY_RSA:
            rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey)
            assert rsa_cdata != self._ffi.NULL
            rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free)
            return _RSAPublicKey(self, rsa_cdata)
        elif type == self._lib.EVP_PKEY_DSA:
            dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey)
            assert dsa_cdata != self._ffi.NULL
            dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)
            return _DSAPublicKey(self, dsa_cdata)
        elif (self._lib.Cryptography_HAS_EC == 1 and
              type == self._lib.EVP_PKEY_EC):
            ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)
            return _EllipticCurvePublicKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm("Unsupported key type.")

    def _pem_password_cb(self, password):
        """
        Generate a pem_password_cb function pointer that copied the password to
        OpenSSL as required and returns the number of bytes copied.

        typedef int pem_password_cb(char *buf, int size,
                                    int rwflag, void *userdata);

        Useful for decrypting PKCS8 files and so on.

        Returns a tuple of (cdata function pointer, callback function).
        """

        def pem_password_cb(buf, size, writing, userdata):
            pem_password_cb.called += 1

            if not password:
                pem_password_cb.exception = TypeError(
                    "Password was not given but private key is encrypted."
                )
                return 0
            elif len(password) < size:
                pw_buf = self._ffi.buffer(buf, size)
                pw_buf[:len(password)] = password
                return len(password)
            else:
                pem_password_cb.exception = ValueError(
                    "Passwords longer than {0} bytes are not supported "
                    "by this backend.".format(size - 1)
                )
                return 0

        pem_password_cb.called = 0
        pem_password_cb.exception = None

        return (
            self._ffi.callback("int (char *, int, int, void *)",
                               pem_password_cb),
            pem_password_cb
        )

    def _mgf1_hash_supported(self, algorithm):
        if self._lib.Cryptography_HAS_MGF1_MD:
            return self.hash_supported(algorithm)
        else:
            return isinstance(algorithm, hashes.SHA1)

    def rsa_padding_supported(self, padding):
        if isinstance(padding, PKCS1v15):
            return True
        elif isinstance(padding, PSS) and isinstance(padding._mgf, MGF1):
            return self._mgf1_hash_supported(padding._mgf._algorithm)
        elif isinstance(padding, OAEP) and isinstance(padding._mgf, MGF1):
            return isinstance(padding._mgf._algorithm, hashes.SHA1)
        else:
            return False

    def generate_dsa_parameters(self, key_size):
        if key_size not in (1024, 2048, 3072):
            raise ValueError(
                "Key size must be 1024 or 2048 or 3072 bits.")

        if (self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f and
                key_size > 1024):
            raise ValueError(
                "Key size must be 1024 because OpenSSL < 1.0.0 doesn't "
                "support larger key sizes.")

        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)

        res = self._lib.DSA_generate_parameters_ex(
            ctx, key_size, self._ffi.NULL, 0,
            self._ffi.NULL, self._ffi.NULL, self._ffi.NULL
        )

        assert res == 1

        return _DSAParameters(self, ctx)

    def generate_dsa_private_key(self, parameters):
        ctx = self._lib.DSA_new()
        assert ctx != self._ffi.NULL
        ctx = self._ffi.gc(ctx, self._lib.DSA_free)
        ctx.p = self._lib.BN_dup(parameters._dsa_cdata.p)
        ctx.q = self._lib.BN_dup(parameters._dsa_cdata.q)
        ctx.g = self._lib.BN_dup(parameters._dsa_cdata.g)

        self._lib.DSA_generate_key(ctx)

        return _DSAPrivateKey(self, ctx)

    def generate_dsa_private_key_and_parameters(self, key_size):
        parameters = self.generate_dsa_parameters(key_size)
        return self.generate_dsa_private_key(parameters)

    def load_dsa_private_numbers(self, numbers):
        dsa._check_dsa_private_numbers(numbers)
        parameter_numbers = numbers.public_numbers.parameter_numbers

        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(parameter_numbers.p)
        dsa_cdata.q = self._int_to_bn(parameter_numbers.q)
        dsa_cdata.g = self._int_to_bn(parameter_numbers.g)
        dsa_cdata.pub_key = self._int_to_bn(numbers.public_numbers.y)
        dsa_cdata.priv_key = self._int_to_bn(numbers.x)

        return _DSAPrivateKey(self, dsa_cdata)

    def load_dsa_public_numbers(self, numbers):
        dsa._check_dsa_parameters(numbers.parameter_numbers)
        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(numbers.parameter_numbers.p)
        dsa_cdata.q = self._int_to_bn(numbers.parameter_numbers.q)
        dsa_cdata.g = self._int_to_bn(numbers.parameter_numbers.g)
        dsa_cdata.pub_key = self._int_to_bn(numbers.y)

        return _DSAPublicKey(self, dsa_cdata)

    def load_dsa_parameter_numbers(self, numbers):
        dsa._check_dsa_parameters(numbers)
        dsa_cdata = self._lib.DSA_new()
        assert dsa_cdata != self._ffi.NULL
        dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free)

        dsa_cdata.p = self._int_to_bn(numbers.p)
        dsa_cdata.q = self._int_to_bn(numbers.q)
        dsa_cdata.g = self._int_to_bn(numbers.g)

        return _DSAParameters(self, dsa_cdata)

    def dsa_hash_supported(self, algorithm):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return isinstance(algorithm, hashes.SHA1)
        else:
            return self.hash_supported(algorithm)

    def dsa_parameters_supported(self, p, q, g):
        if self._lib.OPENSSL_VERSION_NUMBER < 0x1000000f:
            return (utils.bit_length(p) <= 1024 and utils.bit_length(q) <= 160)
        else:
            return True

    def cmac_algorithm_supported(self, algorithm):
        return (
            self._lib.Cryptography_HAS_CMAC == 1
            and self.cipher_supported(algorithm, CBC(
                b"\x00" * algorithm.block_size))
        )

    def create_cmac_ctx(self, algorithm):
        return _CMACContext(self, algorithm)

    def load_pem_private_key(self, data, password):
        return self._load_key(
            self._lib.PEM_read_bio_PrivateKey,
            self._evp_pkey_to_private_key,
            data,
            password,
        )

    def load_pem_public_key(self, data):
        return self._load_key(
            self._lib.PEM_read_bio_PUBKEY,
            self._evp_pkey_to_public_key,
            data,
            None,
        )

    def load_traditional_openssl_pem_private_key(self, data, password):
        warnings.warn(
            "load_traditional_openssl_pem_private_key is deprecated and will "
            "be removed in a future version, use load_pem_private_key "
            "instead.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_pem_private_key(data, password)

    def load_pkcs8_pem_private_key(self, data, password):
        warnings.warn(
            "load_pkcs8_pem_private_key is deprecated and will be removed in a"
            " future version, use load_pem_private_key instead.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_pem_private_key(data, password)

    def _load_key(self, openssl_read_func, convert_func, data, password):
        mem_bio = self._bytes_to_bio(data)

        password_callback, password_func = self._pem_password_cb(password)

        evp_pkey = openssl_read_func(
            mem_bio.bio,
            self._ffi.NULL,
            password_callback,
            self._ffi.NULL
        )

        if evp_pkey == self._ffi.NULL:
            if password_func.exception is not None:
                errors = self._consume_errors()
                assert errors
                raise password_func.exception
            else:
                self._handle_key_loading_error()

        evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free)

        if password is not None and password_func.called == 0:
            raise TypeError(
                "Password was given but private key is not encrypted.")

        assert (
            (password is not None and password_func.called == 1) or
            password is None
        )

        return convert_func(evp_pkey)

    def _handle_key_loading_error(self):
        errors = self._consume_errors()

        if not errors:
            raise ValueError("Could not unserialize key data.")

        elif errors[0][1:] in (
            (
                self._lib.ERR_LIB_EVP,
                self._lib.EVP_F_EVP_DECRYPTFINAL_EX,
                self._lib.EVP_R_BAD_DECRYPT
            ),
            (
                self._lib.ERR_LIB_PKCS12,
                self._lib.PKCS12_F_PKCS12_PBE_CRYPT,
                self._lib.PKCS12_R_PKCS12_CIPHERFINAL_ERROR,
            )
        ):
            raise ValueError("Bad decrypt. Incorrect password?")

        elif errors[0][1:] in (
            (
                self._lib.ERR_LIB_PEM,
                self._lib.PEM_F_PEM_GET_EVP_CIPHER_INFO,
                self._lib.PEM_R_UNSUPPORTED_ENCRYPTION
            ),

            (
                self._lib.ERR_LIB_EVP,
                self._lib.EVP_F_EVP_PBE_CIPHERINIT,
                self._lib.EVP_R_UNKNOWN_PBE_ALGORITHM
            )
        ):
            raise UnsupportedAlgorithm(
                "PEM data is encrypted with an unsupported cipher",
                _Reasons.UNSUPPORTED_CIPHER
            )

        elif any(
            error[1:] == (
                self._lib.ERR_LIB_EVP,
                self._lib.EVP_F_EVP_PKCS82PKEY,
                self._lib.EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM
            )
            for error in errors
        ):
            raise UnsupportedAlgorithm(
                "Unsupported public key algorithm.",
                _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
            )

        else:
            assert errors[0][1] in (
                self._lib.ERR_LIB_EVP,
                self._lib.ERR_LIB_PEM,
                self._lib.ERR_LIB_ASN1,
            )
            raise ValueError("Could not unserialize key data.")

    def elliptic_curve_supported(self, curve):
        if self._lib.Cryptography_HAS_EC != 1:
            return False

        try:
            curve_nid = self._elliptic_curve_to_nid(curve)
        except UnsupportedAlgorithm:
            curve_nid = self._lib.NID_undef

        ctx = self._lib.EC_GROUP_new_by_curve_name(curve_nid)

        if ctx == self._ffi.NULL:
            errors = self._consume_errors()
            assert (
                curve_nid == self._lib.NID_undef or
                errors[0][1:] == (
                    self._lib.ERR_LIB_EC,
                    self._lib.EC_F_EC_GROUP_NEW_BY_CURVE_NAME,
                    self._lib.EC_R_UNKNOWN_GROUP
                )
            )
            return False
        else:
            assert curve_nid != self._lib.NID_undef
            self._lib.EC_GROUP_free(ctx)
            return True

    def elliptic_curve_signature_algorithm_supported(
        self, signature_algorithm, curve
    ):
        if self._lib.Cryptography_HAS_EC != 1:
            return False

        # We only support ECDSA right now.
        if not isinstance(signature_algorithm, ec.ECDSA):
            return False

        # Before 0.9.8m OpenSSL can't cope with digests longer than the curve.
        if (
            self._lib.OPENSSL_VERSION_NUMBER < 0x009080df and
            curve.key_size < signature_algorithm.algorithm.digest_size * 8
        ):
            return False

        return self.elliptic_curve_supported(curve)

    def generate_elliptic_curve_private_key(self, curve):
        """
        Generate a new private key on the named curve.
        """

        if self.elliptic_curve_supported(curve):
            curve_nid = self._elliptic_curve_to_nid(curve)

            ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
            assert ec_cdata != self._ffi.NULL
            ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)

            res = self._lib.EC_KEY_generate_key(ec_cdata)
            assert res == 1

            res = self._lib.EC_KEY_check_key(ec_cdata)
            assert res == 1

            return _EllipticCurvePrivateKey(self, ec_cdata)
        else:
            raise UnsupportedAlgorithm(
                "Backend object does not support {0}.".format(curve.name),
                _Reasons.UNSUPPORTED_ELLIPTIC_CURVE
            )

    def elliptic_curve_private_key_from_numbers(self, numbers):
        warnings.warn(
            "elliptic_curve_private_key_from_numbers is deprecated and will "
            "be removed in a future version.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_elliptic_curve_private_numbers(numbers)

    def load_elliptic_curve_private_numbers(self, numbers):
        public = numbers.public_numbers

        curve_nid = self._elliptic_curve_to_nid(public.curve)

        ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
        assert ec_cdata != self._ffi.NULL
        ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)

        ec_cdata = self._ec_key_set_public_key_affine_coordinates(
            ec_cdata, public.x, public.y)

        res = self._lib.EC_KEY_set_private_key(
            ec_cdata, self._int_to_bn(numbers.private_value))
        assert res == 1

        return _EllipticCurvePrivateKey(self, ec_cdata)

    def elliptic_curve_public_key_from_numbers(self, numbers):
        warnings.warn(
            "elliptic_curve_public_key_from_numbers is deprecated and will be "
            "removed in a future version.",
            utils.DeprecatedIn06,
            stacklevel=2
        )
        return self.load_elliptic_curve_public_numbers(numbers)

    def load_elliptic_curve_public_numbers(self, numbers):
        curve_nid = self._elliptic_curve_to_nid(numbers.curve)

        ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid)
        assert ec_cdata != self._ffi.NULL
        ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free)

        ec_cdata = self._ec_key_set_public_key_affine_coordinates(
            ec_cdata, numbers.x, numbers.y)

        return _EllipticCurvePublicKey(self, ec_cdata)

    def _elliptic_curve_to_nid(self, curve):
        """
        Get the NID for a curve name.
        """

        curve_aliases = {
            "secp192r1": "prime192v1",
            "secp256r1": "prime256v1"
        }

        curve_name = curve_aliases.get(curve.name, curve.name)

        curve_nid = self._lib.OBJ_sn2nid(curve_name.encode())
        if curve_nid == self._lib.NID_undef:
            raise UnsupportedAlgorithm(
                "{0} is not a supported elliptic curve".format(curve.name),
                _Reasons.UNSUPPORTED_ELLIPTIC_CURVE
            )
        return curve_nid

    @contextmanager
    def _tmp_bn_ctx(self):
        bn_ctx = self._lib.BN_CTX_new()
        assert bn_ctx != self._ffi.NULL
        bn_ctx = self._ffi.gc(bn_ctx, self._lib.BN_CTX_free)
        self._lib.BN_CTX_start(bn_ctx)
        try:
            yield bn_ctx
        finally:
            self._lib.BN_CTX_end(bn_ctx)

    def _ec_key_determine_group_get_set_funcs(self, ctx):
        """
        Given an EC_KEY determine the group and what methods are required to
        get/set point coordinates.
        """
        assert ctx != self._ffi.NULL

        nid_two_field = self._lib.OBJ_sn2nid(b"characteristic-two-field")
        assert nid_two_field != self._lib.NID_undef

        group = self._lib.EC_KEY_get0_group(ctx)
        assert group != self._ffi.NULL

        method = self._lib.EC_GROUP_method_of(group)
        assert method != self._ffi.NULL

        nid = self._lib.EC_METHOD_get_field_type(method)
        assert nid != self._lib.NID_undef

        if nid == nid_two_field and self._lib.Cryptography_HAS_EC2M:
            set_func = self._lib.EC_POINT_set_affine_coordinates_GF2m
            get_func = self._lib.EC_POINT_get_affine_coordinates_GF2m
        else:
            set_func = self._lib.EC_POINT_set_affine_coordinates_GFp
            get_func = self._lib.EC_POINT_get_affine_coordinates_GFp

        assert set_func and get_func

        return set_func, get_func, group

    def _ec_key_set_public_key_affine_coordinates(self, ctx, x, y):
        """
        This is a port of EC_KEY_set_public_key_affine_coordinates that was
        added in 1.0.1.

        Sets the public key point in the EC_KEY context to the affine x and y
        values.
        """

        if x < 0 or y < 0:
            raise ValueError(
                "Invalid EC key. Both x and y must be non-negative."
            )

        bn_x = self._int_to_bn(x)
        bn_y = self._int_to_bn(y)

        set_func, get_func, group = (
            self._ec_key_determine_group_get_set_funcs(ctx)
        )

        point = self._lib.EC_POINT_new(group)
        assert point != self._ffi.NULL
        point = self._ffi.gc(point, self._lib.EC_POINT_free)

        with self._tmp_bn_ctx() as bn_ctx:
            check_x = self._lib.BN_CTX_get(bn_ctx)
            check_y = self._lib.BN_CTX_get(bn_ctx)

            res = set_func(group, point, bn_x, bn_y, bn_ctx)
            assert res == 1

            res = get_func(group, point, check_x, check_y, bn_ctx)
            assert res == 1

            assert self._lib.BN_cmp(bn_x, check_x) == 0
            assert self._lib.BN_cmp(bn_y, check_y) == 0

        res = self._lib.EC_KEY_set_public_key(ctx, point)
        assert res == 1

        res = self._lib.EC_KEY_check_key(ctx)
        if res != 1:
            self._consume_errors()
            raise ValueError("Invalid EC key.")

        return ctx


class GetCipherByName(object):
    def __init__(self, fmt):
        self._fmt = fmt

    def __call__(self, backend, cipher, mode):
        cipher_name = self._fmt.format(cipher=cipher, mode=mode).lower()
        return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii"))


backend = Backend()