aboutsummaryrefslogtreecommitdiffstats
path: root/cryptography/hazmat/backends/openssl/rsa.py
blob: 0a2a7f9663e70ae33aa7fa1f327c977334b17977 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import, division, print_function

import math

from cryptography import utils
from cryptography.exceptions import (
    AlreadyFinalized, InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import hashes, interfaces
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives.asymmetric.padding import (
    MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.interfaces import (
    RSAPrivateKeyWithNumbers, RSAPublicKeyWithNumbers
)


def _get_rsa_pss_salt_length(pss, key_size, digest_size):
    salt = pss._salt_length

    if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
        # bit length - 1 per RFC 3447
        emlen = int(math.ceil((key_size - 1) / 8.0))
        salt_length = emlen - digest_size - 2
        assert salt_length >= 0
        return salt_length
    else:
        return salt


def _enc_dec_rsa(backend, key, data, padding):
    if not isinstance(padding, interfaces.AsymmetricPadding):
        raise TypeError("Padding must be an instance of AsymmetricPadding.")

    if isinstance(padding, PKCS1v15):
        padding_enum = backend._lib.RSA_PKCS1_PADDING
    elif isinstance(padding, OAEP):
        padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
        if not isinstance(padding._mgf, MGF1):
            raise UnsupportedAlgorithm(
                "Only MGF1 is supported by this backend.",
                _Reasons.UNSUPPORTED_MGF
            )

        if not isinstance(padding._mgf._algorithm, hashes.SHA1):
            raise UnsupportedAlgorithm(
                "This backend supports only SHA1 inside MGF1 when "
                "using OAEP.",
                _Reasons.UNSUPPORTED_HASH
            )

        if padding._label is not None and padding._label != b"":
            raise ValueError("This backend does not support OAEP labels.")

        if not isinstance(padding._algorithm, hashes.SHA1):
            raise UnsupportedAlgorithm(
                "This backend only supports SHA1 when using OAEP.",
                _Reasons.UNSUPPORTED_HASH
            )
    else:
        raise UnsupportedAlgorithm(
            "{0} is not supported by this backend.".format(
                padding.name
            ),
            _Reasons.UNSUPPORTED_PADDING
        )

    if backend._lib.Cryptography_HAS_PKEY_CTX:
        return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum)
    else:
        return _enc_dec_rsa_098(backend, key, data, padding_enum)


def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum):
    if isinstance(key, _RSAPublicKey):
        init = backend._lib.EVP_PKEY_encrypt_init
        crypt = backend._lib.Cryptography_EVP_PKEY_encrypt
    else:
        init = backend._lib.EVP_PKEY_decrypt_init
        crypt = backend._lib.Cryptography_EVP_PKEY_decrypt

    pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
        key._evp_pkey, backend._ffi.NULL
    )
    assert pkey_ctx != backend._ffi.NULL
    pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
    res = init(pkey_ctx)
    assert res == 1
    res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
        pkey_ctx, padding_enum)
    assert res > 0
    buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
    assert buf_size > 0
    outlen = backend._ffi.new("size_t *", buf_size)
    buf = backend._ffi.new("char[]", buf_size)
    res = crypt(pkey_ctx, buf, outlen, data, len(data))
    if res <= 0:
        _handle_rsa_enc_dec_error(backend, key)

    return backend._ffi.buffer(buf)[:outlen[0]]


def _enc_dec_rsa_098(backend, key, data, padding_enum):
    if isinstance(key, _RSAPublicKey):
        crypt = backend._lib.RSA_public_encrypt
    else:
        crypt = backend._lib.RSA_private_decrypt

    key_size = backend._lib.RSA_size(key._rsa_cdata)
    assert key_size > 0
    buf = backend._ffi.new("unsigned char[]", key_size)
    res = crypt(len(data), data, buf, key._rsa_cdata, padding_enum)
    if res < 0:
        _handle_rsa_enc_dec_error(backend, key)

    return backend._ffi.buffer(buf)[:res]


def _handle_rsa_enc_dec_error(backend, key):
    errors = backend._consume_errors()
    assert errors
    assert errors[0].lib == backend._lib.ERR_LIB_RSA
    if isinstance(key, _RSAPublicKey):
        assert (errors[0].reason ==
                backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
        raise ValueError(
            "Data too long for key size. Encrypt less data or use a "
            "larger key size."
        )
    else:
        decoding_errors = [
            backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_01,
            backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_02,
        ]
        if backend._lib.Cryptography_HAS_RSA_R_PKCS_DECODING_ERROR:
            decoding_errors.append(backend._lib.RSA_R_PKCS_DECODING_ERROR)

        assert errors[0].reason in decoding_errors
        raise ValueError("Decryption failed.")


@utils.register_interface(interfaces.AsymmetricSignatureContext)
class _RSASignatureContext(object):
    def __init__(self, backend, private_key, padding, algorithm):
        self._backend = backend
        self._private_key = private_key

        if not isinstance(padding, interfaces.AsymmetricPadding):
            raise TypeError(
                "Expected provider of interfaces.AsymmetricPadding.")

        self._pkey_size = self._backend._lib.EVP_PKEY_size(
            self._private_key._evp_pkey
        )

        if isinstance(padding, PKCS1v15):
            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._finalize_method = self._finalize_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
            else:
                self._finalize_method = self._finalize_pkcs1
        elif isinstance(padding, PSS):
            if not isinstance(padding._mgf, MGF1):
                raise UnsupportedAlgorithm(
                    "Only MGF1 is supported by this backend.",
                    _Reasons.UNSUPPORTED_MGF
                )

            # Size of key in bytes - 2 is the maximum
            # PSS signature length (salt length is checked later)
            assert self._pkey_size > 0
            if self._pkey_size - algorithm.digest_size - 2 < 0:
                raise ValueError("Digest too large for key size. Use a larger "
                                 "key.")

            if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
                raise UnsupportedAlgorithm(
                    "When OpenSSL is older than 1.0.1 then only SHA1 is "
                    "supported with MGF1.",
                    _Reasons.UNSUPPORTED_HASH
                )

            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._finalize_method = self._finalize_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
            else:
                self._finalize_method = self._finalize_pss
        else:
            raise UnsupportedAlgorithm(
                "{0} is not supported by this backend.".format(padding.name),
                _Reasons.UNSUPPORTED_PADDING
            )

        self._padding = padding
        self._algorithm = algorithm
        self._hash_ctx = hashes.Hash(self._algorithm, self._backend)

    def update(self, data):
        self._hash_ctx.update(data)

    def finalize(self):
        evp_md = self._backend._lib.EVP_get_digestbyname(
            self._algorithm.name.encode("ascii"))
        assert evp_md != self._backend._ffi.NULL

        return self._finalize_method(evp_md)

    def _finalize_pkey_ctx(self, evp_md):
        pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
            self._private_key._evp_pkey, self._backend._ffi.NULL
        )
        assert pkey_ctx != self._backend._ffi.NULL
        pkey_ctx = self._backend._ffi.gc(pkey_ctx,
                                         self._backend._lib.EVP_PKEY_CTX_free)
        res = self._backend._lib.EVP_PKEY_sign_init(pkey_ctx)
        assert res == 1
        res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
            pkey_ctx, evp_md)
        assert res > 0

        res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
            pkey_ctx, self._padding_enum)
        assert res > 0
        if isinstance(self._padding, PSS):
            res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
                pkey_ctx,
                _get_rsa_pss_salt_length(
                    self._padding,
                    self._private_key.key_size,
                    self._hash_ctx.algorithm.digest_size
                )
            )
            assert res > 0

            if self._backend._lib.Cryptography_HAS_MGF1_MD:
                # MGF1 MD is configurable in OpenSSL 1.0.1+
                mgf1_md = self._backend._lib.EVP_get_digestbyname(
                    self._padding._mgf._algorithm.name.encode("ascii"))
                assert mgf1_md != self._backend._ffi.NULL
                res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
                    pkey_ctx, mgf1_md
                )
                assert res > 0
        data_to_sign = self._hash_ctx.finalize()
        buflen = self._backend._ffi.new("size_t *")
        res = self._backend._lib.EVP_PKEY_sign(
            pkey_ctx,
            self._backend._ffi.NULL,
            buflen,
            data_to_sign,
            len(data_to_sign)
        )
        assert res == 1
        buf = self._backend._ffi.new("unsigned char[]", buflen[0])
        res = self._backend._lib.EVP_PKEY_sign(
            pkey_ctx, buf, buflen, data_to_sign, len(data_to_sign))
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            reason = None
            if (errors[0].reason ==
                    self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
                reason = ("Salt length too long for key size. Try using "
                          "MAX_LENGTH instead.")
            elif (errors[0].reason ==
                    self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY):
                reason = "Digest too large for key size. Use a larger key."
            assert reason is not None
            raise ValueError(reason)

        return self._backend._ffi.buffer(buf)[:]

    def _finalize_pkcs1(self, evp_md):
        if self._hash_ctx._ctx is None:
            raise AlreadyFinalized("Context has already been finalized.")

        sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
        sig_len = self._backend._ffi.new("unsigned int *")
        res = self._backend._lib.EVP_SignFinal(
            self._hash_ctx._ctx._ctx,
            sig_buf,
            sig_len,
            self._private_key._evp_pkey
        )
        self._hash_ctx.finalize()
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            assert (errors[0].reason ==
                    self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
            raise ValueError("Digest too large for key size. Use a larger "
                             "key.")

        return self._backend._ffi.buffer(sig_buf)[:sig_len[0]]

    def _finalize_pss(self, evp_md):
        data_to_sign = self._hash_ctx.finalize()
        padded = self._backend._ffi.new("unsigned char[]", self._pkey_size)
        res = self._backend._lib.RSA_padding_add_PKCS1_PSS(
            self._private_key._rsa_cdata,
            padded,
            data_to_sign,
            evp_md,
            _get_rsa_pss_salt_length(
                self._padding,
                self._private_key.key_size,
                len(data_to_sign)
            )
        )
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
            assert (errors[0].reason ==
                    self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
            raise ValueError("Salt length too long for key size. Try using "
                             "MAX_LENGTH instead.")

        sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
        sig_len = self._backend._lib.RSA_private_encrypt(
            self._pkey_size,
            padded,
            sig_buf,
            self._private_key._rsa_cdata,
            self._backend._lib.RSA_NO_PADDING
        )
        assert sig_len != -1
        return self._backend._ffi.buffer(sig_buf)[:sig_len]


@utils.register_interface(interfaces.AsymmetricVerificationContext)
class _RSAVerificationContext(object):
    def __init__(self, backend, public_key, signature, padding, algorithm):
        self._backend = backend
        self._public_key = public_key
        self._signature = signature

        if not isinstance(padding, interfaces.AsymmetricPadding):
            raise TypeError(
                "Expected provider of interfaces.AsymmetricPadding.")

        self._pkey_size = self._backend._lib.EVP_PKEY_size(
            self._public_key._evp_pkey
        )

        if isinstance(padding, PKCS1v15):
            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._verify_method = self._verify_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
            else:
                self._verify_method = self._verify_pkcs1
        elif isinstance(padding, PSS):
            if not isinstance(padding._mgf, MGF1):
                raise UnsupportedAlgorithm(
                    "Only MGF1 is supported by this backend.",
                    _Reasons.UNSUPPORTED_MGF
                )

            # Size of key in bytes - 2 is the maximum
            # PSS signature length (salt length is checked later)
            assert self._pkey_size > 0
            if self._pkey_size - algorithm.digest_size - 2 < 0:
                raise ValueError(
                    "Digest too large for key size. Check that you have the "
                    "correct key and digest algorithm."
                )

            if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
                raise UnsupportedAlgorithm(
                    "When OpenSSL is older than 1.0.1 then only SHA1 is "
                    "supported with MGF1.",
                    _Reasons.UNSUPPORTED_HASH
                )

            if self._backend._lib.Cryptography_HAS_PKEY_CTX:
                self._verify_method = self._verify_pkey_ctx
                self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
            else:
                self._verify_method = self._verify_pss
        else:
            raise UnsupportedAlgorithm(
                "{0} is not supported by this backend.".format(padding.name),
                _Reasons.UNSUPPORTED_PADDING
            )

        self._padding = padding
        self._algorithm = algorithm
        self._hash_ctx = hashes.Hash(self._algorithm, self._backend)

    def update(self, data):
        self._hash_ctx.update(data)

    def verify(self):
        evp_md = self._backend._lib.EVP_get_digestbyname(
            self._algorithm.name.encode("ascii"))
        assert evp_md != self._backend._ffi.NULL

        self._verify_method(evp_md)

    def _verify_pkey_ctx(self, evp_md):
        pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
            self._public_key._evp_pkey, self._backend._ffi.NULL
        )
        assert pkey_ctx != self._backend._ffi.NULL
        pkey_ctx = self._backend._ffi.gc(pkey_ctx,
                                         self._backend._lib.EVP_PKEY_CTX_free)
        res = self._backend._lib.EVP_PKEY_verify_init(pkey_ctx)
        assert res == 1
        res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
            pkey_ctx, evp_md)
        assert res > 0

        res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
            pkey_ctx, self._padding_enum)
        assert res > 0
        if isinstance(self._padding, PSS):
            res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
                pkey_ctx,
                _get_rsa_pss_salt_length(
                    self._padding,
                    self._public_key.key_size,
                    self._hash_ctx.algorithm.digest_size
                )
            )
            assert res > 0
            if self._backend._lib.Cryptography_HAS_MGF1_MD:
                # MGF1 MD is configurable in OpenSSL 1.0.1+
                mgf1_md = self._backend._lib.EVP_get_digestbyname(
                    self._padding._mgf._algorithm.name.encode("ascii"))
                assert mgf1_md != self._backend._ffi.NULL
                res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
                    pkey_ctx, mgf1_md
                )
                assert res > 0

        data_to_verify = self._hash_ctx.finalize()
        res = self._backend._lib.EVP_PKEY_verify(
            pkey_ctx,
            self._signature,
            len(self._signature),
            data_to_verify,
            len(data_to_verify)
        )
        # The previous call can return negative numbers in the event of an
        # error. This is not a signature failure but we need to fail if it
        # occurs.
        assert res >= 0
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

    def _verify_pkcs1(self, evp_md):
        if self._hash_ctx._ctx is None:
            raise AlreadyFinalized("Context has already been finalized.")

        res = self._backend._lib.EVP_VerifyFinal(
            self._hash_ctx._ctx._ctx,
            self._signature,
            len(self._signature),
            self._public_key._evp_pkey
        )
        self._hash_ctx.finalize()
        # The previous call can return negative numbers in the event of an
        # error. This is not a signature failure but we need to fail if it
        # occurs.
        assert res >= 0
        if res == 0:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

    def _verify_pss(self, evp_md):
        buf = self._backend._ffi.new("unsigned char[]", self._pkey_size)
        res = self._backend._lib.RSA_public_decrypt(
            len(self._signature),
            self._signature,
            buf,
            self._public_key._rsa_cdata,
            self._backend._lib.RSA_NO_PADDING
        )
        if res != self._pkey_size:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature

        data_to_verify = self._hash_ctx.finalize()
        res = self._backend._lib.RSA_verify_PKCS1_PSS(
            self._public_key._rsa_cdata,
            data_to_verify,
            evp_md,
            buf,
            _get_rsa_pss_salt_length(
                self._padding,
                self._public_key.key_size,
                len(data_to_verify)
            )
        )
        if res != 1:
            errors = self._backend._consume_errors()
            assert errors
            raise InvalidSignature


@utils.register_interface(RSAPrivateKeyWithNumbers)
class _RSAPrivateKey(object):
    def __init__(self, backend, rsa_cdata):
        self._backend = backend
        self._rsa_cdata = rsa_cdata

        evp_pkey = self._backend._lib.EVP_PKEY_new()
        assert evp_pkey != self._backend._ffi.NULL
        evp_pkey = self._backend._ffi.gc(
            evp_pkey, self._backend._lib.EVP_PKEY_free
        )
        res = self._backend._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
        assert res == 1
        self._evp_pkey = evp_pkey

        self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)

    key_size = utils.read_only_property("_key_size")

    def signer(self, padding, algorithm):
        return _RSASignatureContext(self._backend, self, padding, algorithm)

    def decrypt(self, ciphertext, padding):
        key_size_bytes = int(math.ceil(self.key_size / 8.0))
        if key_size_bytes != len(ciphertext):
            raise ValueError("Ciphertext length must be equal to key size.")

        return _enc_dec_rsa(self._backend, self, ciphertext, padding)

    def public_key(self):
        ctx = self._backend._lib.RSA_new()
        assert ctx != self._backend._ffi.NULL
        ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
        ctx.e = self._backend._lib.BN_dup(self._rsa_cdata.e)
        ctx.n = self._backend._lib.BN_dup(self._rsa_cdata.n)
        res = self._backend._lib.RSA_blinding_on(ctx, self._backend._ffi.NULL)
        assert res == 1
        return _RSAPublicKey(self._backend, ctx)

    def private_numbers(self):
        return rsa.RSAPrivateNumbers(
            p=self._backend._bn_to_int(self._rsa_cdata.p),
            q=self._backend._bn_to_int(self._rsa_cdata.q),
            d=self._backend._bn_to_int(self._rsa_cdata.d),
            dmp1=self._backend._bn_to_int(self._rsa_cdata.dmp1),
            dmq1=self._backend._bn_to_int(self._rsa_cdata.dmq1),
            iqmp=self._backend._bn_to_int(self._rsa_cdata.iqmp),
            public_numbers=rsa.RSAPublicNumbers(
                e=self._backend._bn_to_int(self._rsa_cdata.e),
                n=self._backend._bn_to_int(self._rsa_cdata.n),
            )
        )


@utils.register_interface(RSAPublicKeyWithNumbers)
class _RSAPublicKey(object):
    def __init__(self, backend, rsa_cdata):
        self._backend = backend
        self._rsa_cdata = rsa_cdata

        evp_pkey = self._backend._lib.EVP_PKEY_new()
        assert evp_pkey != self._backend._ffi.NULL
        evp_pkey = self._backend._ffi.gc(
            evp_pkey, self._backend._lib.EVP_PKEY_free
        )
        res = self._backend._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
        assert res == 1
        self._evp_pkey = evp_pkey

        self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)

    key_size = utils.read_only_property("_key_size")

    def verifier(self, signature, padding, algorithm):
        return _RSAVerificationContext(
            self._backend, self, signature, padding, algorithm
        )

    def encrypt(self, plaintext, padding):
        return _enc_dec_rsa(self._backend, self, plaintext, padding)

    def public_numbers(self):
        return rsa.RSAPublicNumbers(
            e=self._backend._bn_to_int(self._rsa_cdata.e),
            n=self._backend._bn_to_int(self._rsa_cdata.n),
        )