1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
"""
mitmproxy protocol architecture
In mitmproxy, protocols are implemented as a set of layers, which are composed on top each other.
For example, the following scenarios depict possible scenarios (lowest layer first):
Transparent HTTP proxy, no SSL:
TransparentModeLayer
HttpLayer
Regular proxy, CONNECT request with WebSockets over SSL:
RegularModeLayer
HttpLayer
SslLayer
WebsocketLayer (or TcpLayer)
Automated protocol detection by peeking into the buffer:
TransparentModeLayer
AutoLayer
SslLayer
AutoLayer
Http2Layer
Communication between layers is done as follows:
- lower layers provide context information to higher layers
- higher layers can "yield" commands to lower layers,
which are propagated until they reach a suitable layer.
Further goals:
- Connections should always be peekable to make automatic protocol detection work.
- Upstream connections should be established as late as possible;
inline scripts shall have a chance to handle everything locally.
"""
from __future__ import (absolute_import, print_function, division)
import Queue
import threading
from netlib import tcp
from ..proxy import ProxyError2, Log
from ..proxy.connection import ServerConnection
from .messages import Connect, Reconnect, ChangeServer
class RootContext(object):
"""
The outmost context provided to the root layer.
As a consequence, every layer has .client_conn, .channel and .config.
"""
def __init__(self, client_conn, config, channel):
self.client_conn = client_conn # Client Connection
self.channel = channel # provides .ask() method to communicate with FlowMaster
self.config = config # Proxy Configuration
class _LayerCodeCompletion(object):
"""
Dummy class that provides type hinting in PyCharm, which simplifies development a lot.
"""
def __init__(self):
if True:
return
self.config = None
"""@type: libmproxy.proxy.config.ProxyConfig"""
self.client_conn = None
"""@type: libmproxy.proxy.connection.ClientConnection"""
self.channel = None
"""@type: libmproxy.controller.Channel"""
class Layer(_LayerCodeCompletion):
def __init__(self, ctx):
"""
Args:
ctx: The (read-only) higher layer.
"""
super(Layer, self).__init__()
self.ctx = ctx
def __call__(self):
"""
Logic of the layer.
Raises:
ProxyError2 in case of protocol exceptions.
"""
raise NotImplementedError
def __getattr__(self, name):
"""
Attributes not present on the current layer may exist on a higher layer.
"""
return getattr(self.ctx, name)
def log(self, msg, level, subs=()):
full_msg = [
"%s:%s: %s" %
(self.client_conn.address.host,
self.client_conn.address.port,
msg)]
for i in subs:
full_msg.append(" -> " + i)
full_msg = "\n".join(full_msg)
self.channel.tell("log", Log(full_msg, level))
class ServerConnectionMixin(object):
"""
Mixin that provides a layer with the capabilities to manage a server connection.
"""
def __init__(self):
self._server_address = None
self.server_conn = None
def _handle_server_message(self, message):
if message == Reconnect:
self._disconnect()
self._connect()
return True
elif message == Connect:
self._connect()
return True
elif message == ChangeServer:
raise NotImplementedError
return False
@property
def server_address(self):
return self._server_address
@server_address.setter
def server_address(self, address):
self._server_address = tcp.Address.wrap(address)
self.log("Set new server address: " + repr(self.server_address), "debug")
def _disconnect(self):
"""
Deletes (and closes) an existing server connection.
"""
self.log("serverdisconnect", "debug", [repr(self.server_address)])
self.server_conn.finish()
self.server_conn.close()
# self.channel.tell("serverdisconnect", self)
self.server_conn = None
def _connect(self):
self.log("serverconnect", "debug", [repr(self.server_address)])
self.server_conn = ServerConnection(self.server_address)
try:
self.server_conn.connect()
except tcp.NetLibError as e:
raise ProxyError2("Server connection to '%s' failed: %s" % (self.server_address, e), e)
def yield_from_callback(fun):
"""
Decorator which makes it possible to yield from callbacks in the original thread.
As a use case, take the pyOpenSSL handle_sni callback: If we receive a new SNI from the client,
we need to reconnect to the server with the new SNI. Reconnecting would normally be done using "yield Reconnect()",
but we're in a pyOpenSSL callback here, outside of the main program flow. With this decorator, it looks as follows:
def handle_sni(self):
# ...
self.yield_from_callback(Reconnect())
@yield_from_callback
def establish_ssl_with_client():
self.client_conn.convert_to_ssl(...)
for message in self.establish_ssl_with_client(): # will yield Reconnect at some point
yield message
Limitations:
- You cannot yield True.
"""
yield_queue = Queue.Queue()
def do_yield(self, msg):
yield_queue.put(msg)
yield_queue.get()
def wrapper(self, *args, **kwargs):
self.yield_from_callback = do_yield
def run():
try:
fun(self, *args, **kwargs)
yield_queue.put(True)
except Exception as e:
yield_queue.put(e)
threading.Thread(target=run, name="YieldFromCallbackThread").start()
while True:
e = yield_queue.get()
if e is True:
break
elif isinstance(e, Exception):
# TODO: Include func name?
raise ProxyError2("Error from callback: " + repr(e), e)
else:
yield e
yield_queue.put(None)
self.yield_from_callback = None
return wrapper
|