summaryrefslogtreecommitdiffstats
path: root/src/map/if/ifDec16.c
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2011-09-27 15:10:53 +0700
committerAlan Mishchenko <alanmi@berkeley.edu>2011-09-27 15:10:53 +0700
commit519b03e8e89c1fd07343d6883ea2c77d259a79e1 (patch)
treed390635a74434d13b359c1f2e6a728658946011a /src/map/if/ifDec16.c
parent976f5f5a1230ff80e1050f6bc840e35941fe637b (diff)
downloadabc-519b03e8e89c1fd07343d6883ea2c77d259a79e1.tar.gz
abc-519b03e8e89c1fd07343d6883ea2c77d259a79e1.tar.bz2
abc-519b03e8e89c1fd07343d6883ea2c77d259a79e1.zip
Changes to the matching procedure and new abstraction code.
Diffstat (limited to 'src/map/if/ifDec16.c')
-rw-r--r--src/map/if/ifDec16.c708
1 files changed, 708 insertions, 0 deletions
diff --git a/src/map/if/ifDec16.c b/src/map/if/ifDec16.c
new file mode 100644
index 00000000..5e988ae5
--- /dev/null
+++ b/src/map/if/ifDec16.c
@@ -0,0 +1,708 @@
+/**CFile****************************************************************
+
+ FileName [ifDec10f.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [FPGA mapping based on priority cuts.]
+
+ Synopsis [Fast checking procedures.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - November 21, 2006.]
+
+ Revision [$Id: ifDec10f.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "if.h"
+
+ABC_NAMESPACE_IMPL_START
+
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+#define CLU_VAR_MAX 16
+#define CLU_WRD_MAX (1 << ((CLU_VAR_MAX)-6))
+
+// decomposition
+typedef struct If_Grp_t_ If_Grp_t;
+struct If_Grp_t_
+{
+ char nVars;
+ char nMyu;
+ char pVars[6];
+};
+
+// the bit count for the first 256 integer numbers
+static int BitCount8[256] = {
+ 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
+ 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
+};
+// variable swapping code
+static word PMasks[5][3] = {
+ { 0x9999999999999999, 0x2222222222222222, 0x4444444444444444 },
+ { 0xC3C3C3C3C3C3C3C3, 0x0C0C0C0C0C0C0C0C, 0x3030303030303030 },
+ { 0xF00FF00FF00FF00F, 0x00F000F000F000F0, 0x0F000F000F000F00 },
+ { 0xFF0000FFFF0000FF, 0x0000FF000000FF00, 0x00FF000000FF0000 },
+ { 0xFFFF00000000FFFF, 0x00000000FFFF0000, 0x0000FFFF00000000 }
+};
+// elementary truth tables
+static word Truth6[6] = {
+ 0xAAAAAAAAAAAAAAAA,
+ 0xCCCCCCCCCCCCCCCC,
+ 0xF0F0F0F0F0F0F0F0,
+ 0xFF00FF00FF00FF00,
+ 0xFFFF0000FFFF0000,
+ 0xFFFFFFFF00000000
+};
+static word TruthAll[CLU_VAR_MAX][CLU_WRD_MAX];
+
+extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );
+extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits );
+
+// group representation (MSB <-> LSB)
+// nVars | nMyu | v5 | v4 | v3 | v2 | v1 | v0
+// if nCofs > 2, v0 is the shared variable
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+void If_CluInitTruthTables()
+{
+ int i, k;
+ assert( CLU_VAR_MAX <= 16 );
+ for ( i = 0; i < 6; i++ )
+ for ( k = 0; k < CLU_WRD_MAX; k++ )
+ TruthAll[i][k] = Truth6[i];
+ for ( i = 6; i < CLU_VAR_MAX; i++ )
+ for ( k = 0; k < CLU_WRD_MAX; k++ )
+ TruthAll[i][k] = ((k >> i) & 1) ? ~0 : 0;
+}
+
+// variable permutation for large functions
+static inline int If_CluWordNum( int nVars )
+{
+ return nVars <= 6 ? 1 : 1 << (nVars-6);
+}
+static inline void If_CluCopy( word * pOut, word * pIn, int nVars )
+{
+ int w, nWords = If_CluWordNum( nVars );
+ for ( w = 0; w < nWords; w++ )
+ pOut[w] = pIn[w];
+}
+static inline int If_CluEqual( word * pOut, word * pIn, int nVars )
+{
+ int w, nWords = If_CluWordNum( nVars );
+ for ( w = 0; w < nWords; w++ )
+ if ( pOut[w] != pIn[w] )
+ return 0;
+ return 1;
+}
+static inline void If_CluSwapAdjacent( word * pOut, word * pIn, int iVar, int nVars )
+{
+ int i, k, nWords = If_CluWordNum( nVars );
+ assert( iVar < nVars - 1 );
+ if ( iVar < 5 )
+ {
+ int Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift);
+ }
+ else if ( iVar > 5 )
+ {
+ int Step = (1 << (iVar - 6));
+ for ( k = 0; k < nWords; k += 4*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ pOut[i] = pIn[i];
+ for ( i = 0; i < Step; i++ )
+ pOut[Step+i] = pIn[2*Step+i];
+ for ( i = 0; i < Step; i++ )
+ pOut[2*Step+i] = pIn[Step+i];
+ for ( i = 0; i < Step; i++ )
+ pOut[3*Step+i] = pIn[3*Step+i];
+ pIn += 4*Step;
+ pOut += 4*Step;
+ }
+ }
+ else // if ( iVar == 5 )
+ {
+ for ( i = 0; i < nWords; i += 2 )
+ {
+ pOut[i] = (pIn[i] & 0x00000000FFFFFFFF) | ((pIn[i+1] & 0x00000000FFFFFFFF) << 32);
+ pOut[i+1] = (pIn[i+1] & 0xFFFFFFFF00000000) | ((pIn[i] & 0xFFFFFFFF00000000) >> 32);
+ }
+ }
+}
+
+// moves one var (v) to the given position (p)
+void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p )
+{
+ word pG[CLU_WRD_MAX], * pIn = pF, * pOut = pG, * pTemp;
+ int iPlace0, iPlace1, Count = 0;
+ assert( v >= 0 && v < nVars );
+ if ( Var2Pla[v] <= p )
+ {
+ while ( Var2Pla[v] < p )
+ {
+ iPlace0 = Var2Pla[v];
+ iPlace1 = Var2Pla[v]+1;
+ If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
+ pTemp = pIn; pIn = pOut, pOut = pTemp;
+ Var2Pla[Pla2Var[iPlace0]]++;
+ Var2Pla[Pla2Var[iPlace1]]--;
+ Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
+ Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
+ Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
+ Count++;
+ }
+ }
+ else
+ {
+ while ( Var2Pla[v] > p )
+ {
+ iPlace0 = Var2Pla[v]-1;
+ iPlace1 = Var2Pla[v];
+ If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars );
+ pTemp = pIn; pIn = pOut, pOut = pTemp;
+ Var2Pla[Pla2Var[iPlace0]]++;
+ Var2Pla[Pla2Var[iPlace1]]--;
+ Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
+ Pla2Var[iPlace1] ^= Pla2Var[iPlace0];
+ Pla2Var[iPlace0] ^= Pla2Var[iPlace1];
+ Count++;
+ }
+ }
+ if ( Count & 1 )
+ If_CluCopy( pF, pIn, nVars );
+ assert( Pla2Var[p] == v );
+}
+
+// moves vars to be the most signiticant ones (Group[0] is MSB)
+void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g )
+{
+ int v;
+ for ( v = 0; v < g->nVars; v++ )
+ If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[g->nVars - 1 - v], nVars - 1 - v );
+}
+
+// return the number of cofactors w.r.t. the topmost vars (nBSsize)
+int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift, word * pCofs[2] )
+{
+ word iCofs[64], iCof;
+ int i, c, w, nMints = (1 << nBSsize), nCofs;
+
+ assert( nBSsize < nVars );
+ assert( nBSsize >= 3 && nBSsize <= 6 );
+
+ if ( nVars - nBSsize >= 6 )
+ {
+ word * pCofA, * pCofB;
+ int nWords = (1 << (nVars - nBSsize - 6));
+ assert( nWords * nMints == If_CluWordNum(nVars) );
+ for ( nCofs = i = 0; i < nMints; i++ )
+ {
+ for ( c = 0; c < nCofs; c++ )
+ {
+ pCofA = pF + i * nWords;
+ pCofB = pF + iCofs[c] * nWords;
+ for ( w = 0; w < nWords; w++ )
+ if ( pCofA[w] != pCofB[w] )
+ break;
+ if ( w == nWords )
+ break;
+ }
+ if ( c == nCofs )
+ iCofs[nCofs++] = i;
+ if ( nCofs == 5 )
+ break;
+ }
+ if ( nCofs == 2 && pCofs )
+ {
+ for ( c = 0; c < nCofs; c++ )
+ {
+ word * pCofA = pF + iCofs[c] * nWords;
+ for ( w = 0; w < nWords; w++ )
+ pCofs[c][w] = pCofA[w];
+ }
+ }
+ }
+ else
+ {
+ int nShift = (1 << (nVars - nBSsize));
+ word Mask = ((((word)1) << nShift) - 1);
+ for ( nCofs = i = 0; i < nMints; i++ )
+ {
+ iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask;
+ for ( c = 0; c < nCofs; c++ )
+ if ( iCof == iCofs[c] )
+ break;
+ if ( c == nCofs )
+ iCofs[nCofs++] = iCof;
+ if ( nCofs == 5 )
+ break;
+ }
+ }
+ assert( nCofs >= 2 && nCofs <= 5 );
+ return nCofs;
+}
+
+void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1 )
+{
+ int nWords = If_CluWordNum( nVars );
+ assert( iVar < nVars );
+ if ( iVar < 6 )
+ {
+ int i, Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ {
+ pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift);
+ pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift);
+ }
+ return;
+ }
+ else
+ {
+ int i, k, Step = (1 << (iVar - 6));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ {
+ pCof0[i] = pCof0[Step+i] = pF[i];
+ pCof1[i] = pCof1[Step+i] = pF[Step+i];
+ }
+ pF += 2*Step;
+ pCof0 += 2*Step;
+ pCof1 += 2*Step;
+ }
+ return;
+ }
+}
+
+// derives non-disjoint decomposition (assumes the shared var in pG->pVars[pG->nVars-1]
+word If_CluDeriveNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * pG )
+{
+ /*
+ word Truth, Truth0, Truth1;
+ word Cof[2][CLU_WRD_MAX], Cof0[2][CLU_WRD_MAX], Cof1[2][CLU_WRD_MAX];
+ int i, nFSvars, nFSHalfBits, nBSHalfBits;
+ assert( pG->nVars >= 3 && pG->nVar <= 6 );
+ assert( pG->nMyu == 3 || pG->nMyu == 4 );
+
+ If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, pG );
+
+ If_CluCofactors( pF, nVars, nVars - 1, Cof[0], Cof[1] );
+
+ assert( 2 >= If_Dec6CofCount2(c0) );
+ assert( 2 >= If_Dec6CofCount2(c1) );
+
+ assert( 2 >= If_CluCountCofs( Cof[0], nVars - 1, pG->nVars - 1, 0 ) );
+ assert( 2 >= If_CluCountCofs( Cof[1], nVars - 1, pG->nVars - 1, 0 ) );
+
+ Truth0 = If_CluExtract2Cofs( Cof[0], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] );
+ Truth1 = If_CluExtract2Cofs( Cof[1], nVars - 1, pG->nVars - 1, &Cof0[0], &Cof0[1] );
+
+ nFSHalfBits = (1 << (nVars - pG->nVars - 1));
+ nBSHalfBits = (1 << (pG->nVars - 1))
+
+ Truth = ((Truth0 && ((1 << nBSHalfBits) - 1)) << nBSHalfBits) | (Truth0 && ((1 << nBSHalfBits) - 1))
+
+
+ for ( i = 0; i < 4; i++ )
+ z |= (((word)Pla2Var[i+2]) << (16 + 4*i));
+ z |= ((word)((Cof0[1] << 4) | Cof0[0]) << 32);
+ z |= ((word)((Cof1[1] << 4) | Cof1[0]) << 40);
+ for ( i = 0; i < 2; i++ )
+ z |= (((word)Pla2Var[i]) << (48 + 4*i));
+ z |= (((word)7) << (48 + 4*i++));
+ z |= (((word)Pla2Var[5]) << (48 + 4*i++));
+ assert( i == 4 );
+ return z;
+ */
+ return 0;
+}
+
+
+// check non-disjoint decomposition
+int If_CluCheckNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g )
+{
+ int v, i, nCofsBest2;
+ if ( (g->nMyu == 3 || g->nMyu == 4) )
+ {
+ word pCof0[CLU_WRD_MAX];
+ word pCof1[CLU_WRD_MAX];
+ // try cofactoring w.r.t. each variable
+ for ( v = 0; v < g->nVars; v++ )
+ {
+ If_CluCofactors( pF, nVars, V2P[g->pVars[v]], pCof0, pCof1 );
+ nCofsBest2 = If_CluCountCofs( pCof0, nVars, g->nVars, 0, NULL );
+ if ( nCofsBest2 > 2 )
+ continue;
+ nCofsBest2 = If_CluCountCofs( pCof1, nVars, g->nVars, 0, NULL );
+ if ( nCofsBest2 > 2 )
+ continue;
+ // found good shared variable - move to the end
+ If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[v], nVars-1 );
+ for ( i = 0; i < g->nVars; i++ )
+ g->pVars[i] = P2V[nVars-g->nVars+i];
+ return 1;
+ }
+ }
+ return 0;
+}
+
+void If_CluPrintGroup( If_Grp_t * g )
+{
+ int i;
+ for ( i = 0; i < g->nVars; i++ )
+ printf( "%d ", g->pVars[i] );
+ printf( "\n" );
+ printf( "Cofs = %d", g->nMyu );
+ printf( "\n" );
+ printf( "Vars = %d", g->nVars );
+ printf( "\n" );
+}
+
+
+// finds a good var group (cof count < 6; vars are MSBs)
+If_Grp_t If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint )
+{
+ If_Grp_t G = {0}, * g = &G;
+ int i, r, v, nCofs, VarBest, nCofsBest2;
+ assert( nVars >= nBSsize + iVarStart && nVars <= CLU_VAR_MAX );
+ assert( nBSsize >= 3 && nBSsize <= 6 );
+ // start with the default group
+ g->nVars = nBSsize;
+ g->nMyu = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
+ for ( i = 0; i < nBSsize; i++ )
+ g->pVars[i] = P2V[nVars-nBSsize+i];
+ // check if good enough
+ if ( g->nMyu == 2 )
+ return G;
+ if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) )
+ return G;
+
+ printf( "Iter %d ", -1 );
+ If_CluPrintGroup( g );
+
+ // try to find better group
+ for ( r = 0; r < nBSsize; r++ )
+ {
+ // find the best var to add
+ VarBest = P2V[nVars-1-nBSsize];
+ nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
+ for ( v = nVars-2-nBSsize; v >= iVarStart; v-- )
+ {
+ If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
+ nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
+ if ( nCofsBest2 >= nCofs )
+ {
+ nCofsBest2 = nCofs;
+ VarBest = P2V[nVars-1-nBSsize];
+ }
+ }
+ // go back
+ If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
+ // update best bound set
+ nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL );
+ assert( nCofs == nCofsBest2 );
+
+ // find the best var to remove
+ VarBest = P2V[nVars-1-nBSsize];
+ nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
+ for ( v = nVars-nBSsize; v < nVars; v++ )
+ {
+ If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize );
+ nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
+ if ( nCofsBest2 >= nCofs )
+ {
+ nCofsBest2 = nCofs;
+ VarBest = P2V[nVars-1-nBSsize];
+ }
+ }
+
+ // go back
+ If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize );
+ // update best bound set
+ nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL );
+ assert( nCofs == nCofsBest2 );
+ if ( g->nMyu >= nCofs )
+ {
+ g->nVars = nBSsize;
+ g->nMyu = nCofs;
+ for ( i = 0; i < nBSsize; i++ )
+ g->pVars[i] = P2V[nVars-nBSsize+i];
+ }
+
+ printf( "Iter %d ", r );
+ If_CluPrintGroup( g );
+
+ // check if good enough
+ if ( g->nMyu == 2 )
+ return G;
+ if ( If_CluCheckNonDisjoint( pF, nVars, V2P, P2V, g ) )
+ return G;
+ }
+ assert( r == nBSsize );
+ g->nVars = 0;
+ return G;
+}
+
+
+// double check that the given group has a decomposition
+void If_CluCheckGroup( word * pTruth, int nVars, If_Grp_t * g )
+{
+ word pF[CLU_WRD_MAX];
+ int v, nCofs, V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX];
+ assert( g->nVars >= 3 && g->nVars <= 6 ); // vars
+ assert( g->nMyu >= 2 && g->nMyu <= 4 ); // cofs
+ // create permutation
+ for ( v = 0; v < nVars; v++ )
+ V2P[v] = P2V[v] = v;
+ // create truth table
+ If_CluCopy( pF, pTruth, nVars );
+ // move group up
+ If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, g );
+ // check the number of cofactors
+ nCofs = If_CluCountCofs( pF, nVars, g->nVars, 0, NULL );
+ if ( nCofs != g->nMyu )
+ printf( "Group check 0 has failed.\n" );
+ // check compatible
+ if ( nCofs > 2 )
+ {
+ nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, 0, NULL );
+ if ( nCofs > 2 )
+ printf( "Group check 1 has failed.\n" );
+ nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, (1 << (nVars-1)), NULL );
+ if ( nCofs > 2 )
+ printf( "Group check 2 has failed.\n" );
+ }
+}
+
+
+// double check that the permutation derived is correct
+void If_CluCheckPerm( word * pTruth, word * pF, int nVars, int * V2P, int * P2V )
+{
+ int i;
+ for ( i = 0; i < nVars; i++ )
+ If_CluMoveVar( pF, nVars, V2P, P2V, i, i );
+
+ if ( If_CluEqual( pTruth, pF, nVars ) )
+ printf( "Permutation successful\n" );
+ else
+ printf( "Permutation FAILED.\n" );
+}
+
+
+
+
+static inline int If_CluSuppIsMinBase( int Supp )
+{
+ return (Supp & (Supp+1)) == 0;
+}
+static inline int If_CluHasVar( word * t, int nVars, int iVar )
+{
+ int nWords = If_CluWordNum( nVars );
+ assert( iVar < nVars );
+ if ( iVar < 6 )
+ {
+ int i, Shift = (1 << iVar);
+ for ( i = 0; i < nWords; i++ )
+ if ( (t[i] & ~Truth6[iVar]) != ((t[i] & Truth6[iVar]) >> Shift) )
+ return 1;
+ return 0;
+ }
+ else
+ {
+ int i, k, Step = (1 << (iVar - 6));
+ for ( k = 0; k < nWords; k += 2*Step )
+ {
+ for ( i = 0; i < Step; i++ )
+ if ( t[i] != t[Step+i] )
+ return 1;
+ t += 2*Step;
+ }
+ return 0;
+ }
+}
+static inline int If_CluSupport( word * t, int nVars )
+{
+ int v, Supp = 0;
+ for ( v = 0; v < nVars; v++ )
+ if ( If_CluHasVar( t, nVars, v ) )
+ Supp |= (1 << v);
+ return Supp;
+}
+
+// returns the best group found
+If_Grp_t If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot )
+{
+ int V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX];
+ word pF[CLU_WRD_MAX];
+ If_Grp_t G1 = {0};
+ int i, nSupp;
+ assert( nVars <= CLU_VAR_MAX );
+ assert( nVars <= nLutLeaf + nLutRoot - 1 );
+
+ // check minnimum base
+ If_CluCopy( pF, pTruth, nVars );
+ nSupp = If_CluSupport( pF, nVars );
+ if ( !nSupp || !If_CluSuppIsMinBase(nSupp) )
+ return G1;
+
+ // perform testing
+ for ( i = 0; i < nVars; i++ )
+ V2P[i] = P2V[i] = i;
+ G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 );
+
+ // check permutation
+ If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V );
+
+ if ( G1.nVars == 0 )
+ return G1;
+
+ // perform checking
+ If_CluCheckGroup( pTruth, nVars, &G1 );
+ return G1;
+}
+
+
+// computes delay of the decomposition
+float If_CluDelayMax( If_Grp_t * g, float * pDelays )
+{
+ float Delay = 0.0;
+ int i;
+ for ( i = 0; i < g->nVars; i++ )
+ Delay = Abc_MaxFloat( Delay, pDelays[g->pVars[i]] );
+ return Delay;
+}
+
+// returns delay of the decomposition; sets area of the cut as its cost
+float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay )
+{
+ float Delays[CLU_VAR_MAX+2];
+ int fUsed[CLU_VAR_MAX+2] = {0};
+ If_Obj_t * pLeaf;
+ If_Grp_t G1 = {0}, G2 = {0}, G3 = {0};
+ int nLeaves = If_CutLeaveNum(pCut);
+ int i, nLutLeaf, nLutRoot;
+ // mark the cut as user cut
+ pCut->fUser = 1;
+ // quit if parameters are wrong
+ if ( strlen(pStr) != 2 )
+ {
+ printf( "Wrong LUT struct (%s)\n", pStr );
+ return ABC_INFINITY;
+ }
+ nLutLeaf = pStr[0] - '0';
+ if ( nLutLeaf < 3 || nLutLeaf > 6 )
+ {
+ printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf );
+ return ABC_INFINITY;
+ }
+ nLutRoot = pStr[1] - '0';
+ if ( nLutRoot < 3 || nLutRoot > 6 )
+ {
+ printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutRoot );
+ return ABC_INFINITY;
+ }
+ if ( nLeaves > nLutLeaf + nLutRoot - 1 )
+ {
+ printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", If_CutLeaveNum(pCut), nLutLeaf, nLutRoot );
+ return ABC_INFINITY;
+ }
+
+ // remember the delays
+ If_CutForEachLeaf( p, pCut, pLeaf, i )
+ Delays[nLeaves-1-i] = If_ObjCutBest(pLeaf)->Delay;
+
+ // consider easy case
+ if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) )
+ {
+ assert( nLeaves <= 6 );
+ for ( i = 0; i < nLeaves; i++ )
+ {
+ pCut->pPerm[i] = 1;
+ G1.pVars[i] = i;
+ }
+ G1.nVars = nLeaves;
+ pCut->Cost = 1;
+ return 1.0 + If_CluDelayMax( &G1, Delays );
+ }
+
+ // derive the first group
+ G1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot );
+ if ( G1.nVars == 0 )
+ return ABC_INFINITY;
+ // compute the delay
+ Delays[nLeaves] = If_CluDelayMax( &G1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
+ if ( G2.nVars )
+ Delays[nLeaves+1] = If_CluDelayMax( &G2, Delays ) + (WireDelay == 0.0)?1.0:WireDelay;
+
+ // mark used groups
+ for ( i = 0; i < G1.nVars; i++ )
+ fUsed[G1.pVars[i]] = 1;
+ for ( i = 0; i < G2.nVars; i++ )
+ fUsed[G2.pVars[i]] = 1;
+ // mark unused groups
+ assert( G1.nMyu >= 2 && G1.nMyu <= 4 );
+ if ( G1.nMyu > 2 )
+ fUsed[G1.pVars[G1.nVars-1]] = 0;
+ assert( G2.nMyu >= 2 && G2.nMyu <= 4 );
+ if ( G2.nMyu > 2 )
+ fUsed[G2.pVars[G2.nVars-1]] = 0;
+
+ // create remaining group
+ assert( G3.nVars == 0 );
+ for ( i = 0; i < nLeaves; i++ )
+ if ( !fUsed[i] )
+ G3.pVars[G3.nVars++] = i;
+ G3.pVars[G3.nVars++] = nLeaves;
+ if ( G2.nVars )
+ G3.pVars[G3.nVars++] = nLeaves+1;
+ assert( G1.nVars + G2.nVars + G3.nVars == nLeaves +
+ (G1.nVars > 0) + (G2.nVars > 0) + (G1.nMyu > 2) + (G2.nMyu > 2) );
+ // what if both non-disjoint vars are the same???
+
+ pCut->Cost = 2 + (G2.nVars > 0);
+ return 1.0 + If_CluDelayMax( &G3, Delays );
+}
+
+// testing procedure
+void If_CluTest()
+{
+// word t = 0xff00f0f0ccccaaaa;
+ word t = 0xfedcba9876543210;
+ int nLeaves = 6;
+ int nLutLeaf = 4;
+ int nLutRoot = 4;
+ If_Grp_t G;
+
+ G = If_CluCheck( &t, nLeaves, nLutLeaf, nLutRoot );
+
+ If_CluPrintGroup( &G );
+}
+
+
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
+ABC_NAMESPACE_IMPL_END
+