summaryrefslogtreecommitdiffstats
path: root/src/misc/espresso/cvrm.c
blob: 8fe4837d65c0ea0a3dbd7a10a4c250dfa133e32a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
/*
    module: cvrm.c
    Purpose: miscellaneous cover manipulation
    a) verify two covers are equal, check consistency of a cover
    b) unravel a multiple-valued cover into minterms
    c) sort covers
*/

#include "espresso.h"

ABC_NAMESPACE_IMPL_START



static void cb_unravel(c, start, end, startbase, B1)
IN register pcube c;
IN int start, end;
IN pcube startbase;
INOUT pcover B1;
{
    pcube base = cube.temp[0], p, last;
    int expansion, place, skip, var, size, offset;
    register int i, j, k, n;

    /* Determine how many cubes it will blow up into, and create a mask
    for those parts that have only a single coordinate
    */
    expansion = 1;
    (void) set_copy(base, startbase);
    for(var = start; var <= end; var++) {
    if ((size = set_dist(c, cube.var_mask[var])) < 2) {
        (void) set_or(base, base, cube.var_mask[var]);
    } else {
        expansion *= size;
    }
    }
    (void) set_and(base, c, base);

    /* Add the unravelled sets starting at the last element of B1 */
    offset = B1->count;
    B1->count += expansion;
    foreach_remaining_set(B1, last, GETSET(B1, offset-1), p) {
    INLINEset_copy(p, base);
    }

    place = expansion;
    for(var = start; var <= end; var++) {
    if ((size = set_dist(c, cube.var_mask[var])) > 1) {
        skip = place;
        place = place / size;
        n = 0;
        for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
        if (is_in_set(c, i)) {
            for(j = n; j < expansion; j += skip) {
            for(k = 0; k < place; k++) {
                p = GETSET(B1, j+k+offset);
                (void) set_insert(p, i);
            }
            }
            n += place;
        }
        }
    }
    }
}


pcover unravel_range(B, start, end)
IN pcover B;
IN int start, end;
{
    pcover B1;
    int var, total_size, expansion, size;
    register pcube p, last, startbase = cube.temp[1];

    /* Create the starting base for those variables not being unravelled */
    (void) set_copy(startbase, cube.emptyset);
    for(var = 0; var < start; var++)
    (void) set_or(startbase, startbase, cube.var_mask[var]);
    for(var = end+1; var < cube.num_vars; var++)
    (void) set_or(startbase, startbase, cube.var_mask[var]);

    /* Determine how many cubes it will blow up into */
    total_size = 0;
    foreach_set(B, last, p) {
    expansion = 1;
    for(var = start; var <= end; var++)
        if ((size = set_dist(p, cube.var_mask[var])) >= 2)
        if ((expansion *= size) > 1000000)
            fatal("unreasonable expansion in unravel");
    total_size += expansion;
    }

    /* We can now allocate a cover of exactly the correct size */
    B1 = new_cover(total_size);
    foreach_set(B, last, p) {
    cb_unravel(p, start, end, startbase, B1);
    }
    free_cover(B);
    return B1;
}


pcover unravel(B, start)
IN pcover B;
IN int start;
{
    return unravel_range(B, start, cube.num_vars-1);
}

/* lex_sort -- sort cubes in a standard lexical fashion */
pcover lex_sort(T)
pcover T;
{
    pcover T1 = sf_unlist(sf_sort(T, lex_order), T->count, T->sf_size);
    free_cover(T);
    return T1;
}


/* size_sort -- sort cubes by their size */
pcover size_sort(T)
pcover T;
{
    pcover T1 = sf_unlist(sf_sort(T, descend), T->count, T->sf_size);
    free_cover(T);
    return T1;
}


/*  mini_sort -- sort cubes according to the heuristics of mini */
pcover mini_sort(F, compare)
pcover F;
int (*compare)();
{
    register int *count, cnt, n = cube.size, i;
    register pcube p, last;
    pcover F_sorted;
    pcube *F1;

    /* Perform a column sum over the set family */
    count = sf_count(F);

    /* weight is "inner product of the cube and the column sums" */
    foreach_set(F, last, p) {
    cnt = 0;
    for(i = 0; i < n; i++)
        if (is_in_set(p, i))
        cnt += count[i];
    PUTSIZE(p, cnt);
    }
    FREE(count);

    /* use qsort to sort the array */
    qsort((char *) (F1 = sf_list(F)), (size_t)F->count, sizeof(pcube), compare);
    F_sorted = sf_unlist(F1, F->count, F->sf_size);
    free_cover(F);

    return F_sorted;
}


/* sort_reduce -- Espresso strategy for ordering the cubes before reduction */
pcover sort_reduce(T)
IN pcover T;
{
    register pcube p, last, largest = NULL;
    register int bestsize = -1, size, n = cube.num_vars;
    pcover T_sorted;
    pcube *T1;

    if (T->count == 0)
    return T;

    /* find largest cube */
    foreach_set(T, last, p)
    if ((size = set_ord(p)) > bestsize)
        largest = p, bestsize = size;

    foreach_set(T, last, p)
    PUTSIZE(p, ((n - cdist(largest,p)) << 7) + MIN(set_ord(p),127));

    qsort((char *) (T1 = sf_list(T)), (size_t)T->count, sizeof(pcube), (int (*)()) descend);
    T_sorted = sf_unlist(T1, T->count, T->sf_size);
    free_cover(T);

    return T_sorted;
}

pcover random_order(F)
register pcover F;
{
    pset temp;
    register int i, k;
#ifdef RANDOM
    long random();
#endif

    temp = set_new(F->sf_size);
    for(i = F->count - 1; i > 0; i--) {
    /* Choose a random number between 0 and i */
#ifdef RANDOM
    k = random() % i;
#else
    /* this is not meant to be really used; just provides an easy
       "out" if random() and srandom() aren't around
    */
    k = (i*23 + 997) % i;
#endif
    /* swap sets i and k */
    (void) set_copy(temp, GETSET(F, k));
    (void) set_copy(GETSET(F, k), GETSET(F, i));
    (void) set_copy(GETSET(F, i), temp);
    }
    set_free(temp);
    return F;
}

/*
 *  cubelist_partition -- take a cubelist T and see if it has any components;
 *  if so, return cubelist's of the two partitions A and B; the return value
 *  is the size of the partition; if not, A and B
 *  are undefined and the return value is 0
 */
int cubelist_partition(T, A, B, comp_debug)
pcube *T;            /* a list of cubes */
pcube **A, **B;            /* cubelist of partition and remainder */
unsigned int comp_debug;
{
    register pcube *T1, p, seed, cof;
    pcube *A1, *B1;
    bool change;
    int count, numcube;

    numcube = CUBELISTSIZE(T);

    /* Mark all cubes -- covered cubes belong to the partition */
    for(T1 = T+2; (p = *T1++) != NULL; ) {
    RESET(p, COVERED);
    }

    /*
     *  Extract a partition from the cubelist T; start with the first cube as a
     *  seed, and then pull in all cubes which share a variable with the seed;
     *  iterate until no new cubes are brought into the partition.
     */
    seed = set_save(T[2]);
    cof = T[0];
    SET(T[2], COVERED);
    count = 1;

    do {
    change = FALSE;
    for(T1 = T+2; (p = *T1++) != NULL; ) {
        if (! TESTP(p, COVERED) && ccommon(p, seed, cof)) {
        INLINEset_and(seed, seed, p);
        SET(p, COVERED);
        change = TRUE;
        count++;
        }
    
    }
    } while (change);

    set_free(seed);

    if (comp_debug) {
    (void) printf("COMPONENT_REDUCTION: split into %d %d\n",
        count, numcube - count);
    }

    if (count != numcube) {
    /* Allocate and setup the cubelist's for the two partitions */
    *A = A1 = ALLOC(pcube, numcube+3);
    *B = B1 = ALLOC(pcube, numcube+3);
    (*A)[0] = set_save(T[0]);
    (*B)[0] = set_save(T[0]);
    A1 = *A + 2;
    B1 = *B + 2;

    /* Loop over the cubes in T and distribute to A and B */
    for(T1 = T+2; (p = *T1++) != NULL; ) {
        if (TESTP(p, COVERED)) {
        *A1++ = p;
        } else {
        *B1++ = p;
        }
    }

    /* Stuff needed at the end of the cubelist's */
    *A1++ = NULL;
    (*A)[1] = (pcube) A1;
    *B1++ = NULL;
    (*B)[1] = (pcube) B1;
    }

    return numcube - count;
}

/*
 *  quick cofactor against a single output function
 */
pcover cof_output(T, i)
pcover T;
register int i;
{
    pcover T1;
    register pcube p, last, pdest, mask;

    mask = cube.var_mask[cube.output];
    T1 = new_cover(T->count);
    foreach_set(T, last, p) {
    if (is_in_set(p, i)) {
        pdest = GETSET(T1, T1->count++);
        INLINEset_or(pdest, p, mask);
        RESET(pdest, PRIME);
    }
    }
    return T1;
}


/*
 *  quick intersection against a single output function
 */
pcover uncof_output(T, i)
pcover T;
int i;
{
    register pcube p, last, mask;

    if (T == NULL) {
    return T;
    }

    mask = cube.var_mask[cube.output];
    foreach_set(T, last, p) {
    INLINEset_diff(p, p, mask);
    set_insert(p, i);
    }
    return T;
}


/*
 *  A generic routine to perform an operation for each output function
 *
 *  func() is called with a PLA for each output function (with the output
 *  part effectively removed).
 *  func1() is called after reforming the equivalent output function
 *
 *  Each function returns TRUE if process is to continue
 */
void foreach_output_function(PLA, func, func1)
pPLA PLA;
int (*func)();
int (*func1)();
{
    pPLA PLA1;
    int i;

    /* Loop for each output function */
    for(i = 0; i < cube.part_size[cube.output]; i++) {

    /* cofactor on the output part */
    PLA1 = new_PLA();
    PLA1->F = cof_output(PLA->F, i + cube.first_part[cube.output]);
    PLA1->R = cof_output(PLA->R, i + cube.first_part[cube.output]);
    PLA1->D = cof_output(PLA->D, i + cube.first_part[cube.output]);

    /* Call a routine to do something with the cover */
    if ((*func)(PLA1, i) == 0) {
        free_PLA(PLA1);
        return;
    }

    /* intersect with the particular output part again */
    PLA1->F = uncof_output(PLA1->F, i + cube.first_part[cube.output]);
    PLA1->R = uncof_output(PLA1->R, i + cube.first_part[cube.output]);
    PLA1->D = uncof_output(PLA1->D, i + cube.first_part[cube.output]);

    /* Call a routine to do something with the final result */
    if ((*func1)(PLA1, i) == 0) {
        free_PLA(PLA1);
        return;
    }

    /* Cleanup for next go-around */
    free_PLA(PLA1);
    

    }
}

static pcover Fmin;
static pcube phase;

/*
 *  minimize each output function individually
 */
void so_espresso(PLA, strategy)
pPLA PLA;
int strategy;
{
    Fmin = new_cover(PLA->F->count);
    if (strategy == 0) {
    foreach_output_function(PLA, so_do_espresso, so_save);
    } else {
    foreach_output_function(PLA, so_do_exact, so_save);
    }
    sf_free(PLA->F);
    PLA->F = Fmin;
}


/*
 *  minimize each output function, choose function or complement based on the
 *  one with the fewer number of terms
 */
void so_both_espresso(PLA, strategy)
pPLA PLA;
int strategy;
{
    phase = set_save(cube.fullset);
    Fmin = new_cover(PLA->F->count);
    if (strategy == 0) {
    foreach_output_function(PLA, so_both_do_espresso, so_both_save);
    } else {
    foreach_output_function(PLA, so_both_do_exact, so_both_save);
    }
    sf_free(PLA->F);
    PLA->F = Fmin;
    PLA->phase = phase;
}


int so_do_espresso(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    skip_make_sparse = 1;
    (void) sprintf(word, "ESPRESSO-POS(%d)", i);
    EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F);
    return 1;
}


int so_do_exact(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    skip_make_sparse = 1;
    (void) sprintf(word, "EXACT-POS(%d)", i);
    EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F);
    return 1;
}


/*ARGSUSED*/
int so_save(PLA, i)
pPLA PLA;
int i;
{
    Fmin = sf_append(Fmin, PLA->F);    /* disposes of PLA->F */
    PLA->F = NULL;
    return 1;
}


int so_both_do_espresso(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    (void) sprintf(word, "ESPRESSO-POS(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F);

    /* minimize the single-output function (off-set) */
    (void) sprintf(word, "ESPRESSO-NEG(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->R = espresso(PLA->R, PLA->D, PLA->F), word, PLA->R);

    return 1;
}


int so_both_do_exact(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    (void) sprintf(word, "EXACT-POS(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F);

    /* minimize the single-output function (off-set) */
    (void) sprintf(word, "EXACT-NEG(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->R = minimize_exact(PLA->R, PLA->D, PLA->F, 1), word, PLA->R);

    return 1;
}


int so_both_save(PLA, i)
pPLA PLA;
int i;
{
    if (PLA->F->count > PLA->R->count) {
    sf_free(PLA->F);
    PLA->F = PLA->R;
    PLA->R = NULL;
    i += cube.first_part[cube.output];
    set_remove(phase, i);
    } else {
    sf_free(PLA->R);
    PLA->R = NULL;
    }
    Fmin = sf_append(Fmin, PLA->F);
    PLA->F = NULL;
    return 1;
}
ABC_NAMESPACE_IMPL_END