aboutsummaryrefslogtreecommitdiffstats
path: root/at45db.c
blob: 5c904184457da99ca95418941aba1dffa2a788ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
 * Support for Atmel AT45DB series DataFlash chips.
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2012 Aidan Thornton
 * Copyright (C) 2013 Stefan Tauner
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

#include <string.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"

/* Status register bits */
#define AT45DB_READY	(1<<7)
#define AT45DB_CMP	(1<<6)
#define AT45DB_PROT	(1<<1)
#define AT45DB_POWEROF2	(1<<0)

/* Opcodes */
#define AT45DB_STATUS 0xD7 /* NB: this is a block erase command on most other chips(!). */
#define AT45DB_DISABLE_PROTECT 0x3D, 0x2A, 0x7F, 0x9A
#define AT45DB_READ_ARRAY 0xE8
#define AT45DB_READ_PROTECT 0x32
#define AT45DB_READ_LOCKDOWN 0x35
#define AT45DB_PAGE_ERASE 0x81
#define AT45DB_BLOCK_ERASE 0x50
#define AT45DB_SECTOR_ERASE 0x7C
#define AT45DB_CHIP_ERASE 0xC7
#define AT45DB_CHIP_ERASE_ADDR 0x94809A /* Magic address. See usage. */
#define AT45DB_BUFFER1_WRITE 0x84
#define AT45DB_BUFFER1_PAGE_PROGRAM 0x88
/* Buffer 2 is unused yet.
#define AT45DB_BUFFER2_WRITE 0x87
#define AT45DB_BUFFER2_PAGE_PROGRAM 0x89
*/

static uint8_t at45db_read_status_register(struct flashctx *flash, uint8_t *status)
{
	static const uint8_t cmd[] = { AT45DB_STATUS };

	int ret = spi_send_command(flash, sizeof(cmd), 1, cmd, status);
	if (ret != 0)
		msg_cerr("Reading the status register failed!\n");
	else
		msg_cspew("Status register: 0x%02x.\n", *status);
	return ret;
}

int spi_disable_blockprotect_at45db(struct flashctx *flash)
{
	static const uint8_t cmd[4] = { AT45DB_DISABLE_PROTECT }; /* NB: 4 bytes magic number */
	int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
	if (ret != 0) {
		msg_cerr("Sending disable lockdown failed!\n");
		return ret;
	}
	uint8_t status;
	ret = at45db_read_status_register(flash, &status);
	if (ret != 0 || ((status & AT45DB_PROT) != 0)) {
		msg_cerr("Disabling lockdown failed!\n");
		return 1;
	}

	return 0;
}

static unsigned int at45db_get_sector_count(struct flashctx *flash)
{
	unsigned int i, j;
	unsigned int cnt = 0;
	for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
		if (flash->chip->block_erasers[i].block_erase == &spi_erase_at45db_sector) {
			for (j = 0; j < NUM_ERASEREGIONS; j++) {
				cnt += flash->chip->block_erasers[i].eraseblocks[j].count;
			}
		}
	}
	msg_cspew("%s: number of sectors=%u\n", __func__, cnt);
	return cnt;
}

/* Reads and prettyprints protection/lockdown registers.
 * Some elegance of the printouts had to be cut down a bit to share this code. */
static uint8_t at45db_prettyprint_protection_register(struct flashctx *flash, uint8_t opcode, const char *regname)
{
	const uint8_t cmd[] = { opcode, 0, 0, 0 };
	/* The first two sectors share the first result byte. */
	uint8_t buf[at45db_get_sector_count(flash) - 1];

	int ret = spi_send_command(flash, sizeof(cmd), sizeof(buf), cmd, buf);
	if (ret != 0) {
		msg_cerr("Reading the %s register failed!\n", regname);
		return ret;
	}

	unsigned int i;
	for (i = 0; i < sizeof(buf); i++) {
		if (buf[i] != 0x00)
			break;
		if (i == sizeof(buf) - 1) {
			msg_cdbg("No Sector is %sed.\n", regname);
			return 0;
		}
	}

	/* TODO: print which addresses are mapped to (un)locked sectors. */
	msg_cdbg("Sector 0a is %s%sed.\n", ((buf[0] & 0xC0) == 0x00) ? "un" : "", regname);
	msg_cdbg("Sector 0b is %s%sed.\n", ((buf[0] & 0x30) == 0x00) ? "un" : "", regname);
	for (i = 1; i < sizeof(buf); i++)
		msg_cdbg("Sector %2u is %s%sed.\n", i, (buf[i] == 0x00) ? "un" : "", regname);

	return 0;
}

/* bit 7: busy flag
 * bit 6: memory/buffer compare result
 * bit 5-2: density (encoding see below)
 * bit 1: protection enabled (soft or hard)
 * bit 0: "power of 2" page size indicator (e.g. 1 means 256B; 0 means 264B)
 *
 * 5-2 encoding: bit 2 is always 1, bits 3-5 encode the density as "2^(bits - 1)" in Mb e.g.:
 * AT45DB161D  1011  16Mb */
int spi_prettyprint_status_register_at45db(struct flashctx *flash)
{
	uint8_t status;
	if (at45db_read_status_register(flash, &status) != 0) {
		return 1;
	}

	/* AT45DB321C does not support lockdown or a page size of a power of 2... */
	const bool isAT45DB321C = (strcmp(flash->chip->name, "AT45DB321C") == 0);
	msg_cdbg("Chip status register is 0x%02x\n", status);
	msg_cdbg("Chip status register: Bit 7 / Ready is %sset\n", (status & AT45DB_READY) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 6 / Compare match is %sset\n", (status & AT45DB_CMP) ? "" : "not ");
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bit(status, 4);
	spi_prettyprint_status_register_bit(status, 3);
	spi_prettyprint_status_register_bit(status, 2);
	const uint8_t dens = (status >> 3) & 0x7; /* Bit 2 is always 1, we use the other bits only */
	msg_cdbg("Chip status register: Density is %u Mb\n", 1 << (dens - 1));
	msg_cdbg("Chip status register: Bit 1 / Protection is %sset\n", (status & AT45DB_PROT) ? "" : "not ");

	if (isAT45DB321C)
		spi_prettyprint_status_register_bit(status, 0);
	else
		msg_cdbg("Chip status register: Bit 0 / \"Power of 2\" is %sset\n",
			 (status & AT45DB_POWEROF2) ? "" : "not ");

	if (status & AT45DB_PROT)
		at45db_prettyprint_protection_register(flash, AT45DB_READ_PROTECT, "protect");

	if (!isAT45DB321C)
		at45db_prettyprint_protection_register(flash, AT45DB_READ_LOCKDOWN, "lock");

	return 0;
}

/* Probe function for AT45DB* chips that support multiple page sizes. */
int probe_spi_at45db(struct flashctx *flash)
{
	uint8_t status;
	struct flashchip *chip = flash->chip;

	if (!probe_spi_rdid(flash))
		return 0;

	/* Some AT45DB* chips support two different page sizes each (e.g. 264 and 256 B). In order to tell which
	 * page size this chip has we need to read the status register. */
	if (at45db_read_status_register(flash, &status) != 0)
		return 0;

	/* We assume sane power-of-2 page sizes and adjust the chip attributes in case this is not the case. */
	if ((status & AT45DB_POWEROF2) == 0) {
		chip->total_size = (chip->total_size / 32) * 33;
		chip->page_size = (chip->page_size / 32) * 33;

		unsigned int i, j;
		for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
			struct block_eraser *eraser = &chip->block_erasers[i];
			for (j = 0; j < NUM_ERASEREGIONS; j++) {
				eraser->eraseblocks[j].size = (eraser->eraseblocks[j].size / 32) * 33;
			}
		}
	}

	switch (chip->page_size) {
	case 256: chip->gran = write_gran_256bytes; break;
	case 264: chip->gran = write_gran_264bytes; break;
	case 512: chip->gran = write_gran_512bytes; break;
	case 528: chip->gran = write_gran_528bytes; break;
	case 1024: chip->gran = write_gran_1024bytes; break;
	case 1056: chip->gran = write_gran_1056bytes; break;
	default:
		msg_cerr("%s: unknown page size %d.\n", __func__, chip->page_size);
		return 0;
	}

	msg_cdbg2("%s: total size %i kB, page size %i B\n", __func__, chip->total_size * 1024, chip->page_size);

	return 1;
}

/* Returns the minimum number of bits needed to represent the given address.
 * FIXME: use mind-blowing implementation.
 * FIXME: move to utility module. */
static uint32_t address_to_bits(uint32_t addr)
{
	unsigned int lzb = 0;
	while (((1 << (31 - lzb)) & ~addr) != 0)
		lzb++;
	return 32 - lzb;
}

/* In case of non-power-of-two page sizes we need to convert the address flashrom uses to the address the
 * DataFlash chips use. The latter uses a segmented address space where the page address is encoded in the
 * more significant bits and the offset within the page is encoded in the less significant bits. The exact
 * partition depends on the page size.
 */
static unsigned int at45db_convert_addr(unsigned int addr, unsigned int page_size)
{
	unsigned int page_bits = address_to_bits(page_size - 1);
	unsigned int at45db_addr = ((addr / page_size) << page_bits) | (addr % page_size);
	msg_cspew("%s: addr=0x%x, page_size=%u, page_bits=%u -> at45db_addr=0x%x\n",
		  __func__, addr, page_size, page_bits, at45db_addr);
	return at45db_addr;
}

int spi_read_at45db(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	if ((addr + len) > total_size) {
		msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
			 __func__, addr, len, total_size);
		return 1;
	}

	/* We have to split this up into chunks to fit within the programmer's read size limit, but those
	 * chunks can cross page boundaries. */
	const unsigned int max_data_read = flash->pgm->spi.max_data_read;
	const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
	while (addr < len) {
		unsigned int chunk = min(max_chunk, len);
		int ret = spi_nbyte_read(flash, at45db_convert_addr(addr, page_size), buf + addr, chunk);
		if (ret) {
			msg_cerr("%s: error sending read command!\n", __func__);
			return ret;
		}
		addr += chunk;
	}

	return 0;
}

/* Legacy continuous read, used where spi_read_at45db() is not available.
 * The first 4 (dummy) bytes read need to be discarded. */
int spi_read_at45db_e8(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	if ((addr + len) > total_size) {
		msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
			 __func__, addr, len, total_size);
		return 1;
	}

	/* We have to split this up into chunks to fit within the programmer's read size limit, but those
	 * chunks can cross page boundaries. */
	const unsigned int max_data_read = flash->pgm->spi.max_data_read;
	const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
	while (addr < len) {
		const unsigned int addr_at45 = at45db_convert_addr(addr, page_size);
		const unsigned char cmd[] = {
			AT45DB_READ_ARRAY,
			(addr_at45 >> 16) & 0xff,
			(addr_at45 >> 8) & 0xff,
			(addr_at45 >> 0) & 0xff
		};
		/* We need to leave place for 4 dummy bytes and handle them explicitly. */
		unsigned int chunk = min(max_chunk, len + 4);
		uint8_t tmp[chunk];
		int ret = spi_send_command(flash, sizeof(cmd), chunk, cmd, tmp);
		if (ret) {
			msg_cerr("%s: error sending read command!\n", __func__);
			return ret;
		}
		/* Copy result without dummy bytes into buf and advance address counter respectively. */
		memcpy(buf + addr, tmp + 4, chunk - 4);
		addr += chunk - 4;
	}
	return 0;
}

/* Returns 0 when ready, 1 on errors and timeouts. */
static int at45db_wait_ready (struct flashctx *flash, unsigned int us, unsigned int retries)
{
	while (true) {
		uint8_t status;
		int ret = at45db_read_status_register(flash, &status);
		if ((status & AT45DB_READY) == AT45DB_READY)
			return 0;
		if (ret != 0 || retries-- == 0)
			return 1;
		programmer_delay(us);
	}
}

static int at45db_erase(struct flashctx *flash, uint8_t opcode, unsigned int at45db_addr, unsigned int stepsize, unsigned int retries)
{
	const uint8_t cmd[] = {
		opcode,
		(at45db_addr >> 16) & 0xff,
		(at45db_addr >> 8) & 0xff,
		(at45db_addr >> 0) & 0xff
	};

	/* Send erase command. */
	int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
	if (ret != 0) {
		msg_cerr("%s: error sending erase command!\n", __func__);
		return ret;
	}

	/* Wait for completion. */
	ret = at45db_wait_ready(flash, stepsize, retries);
	if (ret != 0)
		msg_cerr("%s: chip did not became ready again after sending the erase command!\n", __func__);

	return ret;
}

int spi_erase_at45db_page(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr % page_size) != 0 || (blocklen % page_size) != 0) {
		msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically about 35 ms for completion, so let's wait 100 ms in 500 us steps. */
	return at45db_erase(flash, AT45DB_PAGE_ERASE, at45db_convert_addr(addr, page_size), 500, 200);
}

int spi_erase_at45db_block(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check blocks not pages
		msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically between 20 and 100 ms for completion, so let's wait 300 ms in 1 ms steps. */
	return at45db_erase(flash, AT45DB_BLOCK_ERASE, at45db_convert_addr(addr, page_size), 1000, 300);
}

int spi_erase_at45db_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check sectors not pages
		msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically about 5 s for completion, so let's wait 20 seconds in 200 ms steps. */
	return at45db_erase(flash, AT45DB_SECTOR_ERASE, at45db_convert_addr(addr, page_size), 200000, 100);
}

int spi_erase_at45db_chip(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically from about 5 to over 60 s for completion, so let's wait 100 s in 500 ms steps.
	 * NB: the address is not a real address but a magic number. This hack allows to share code. */
	return at45db_erase(flash, AT45DB_CHIP_ERASE, AT45DB_CHIP_ERASE_ADDR, 500000, 200);
}

/* This one is really special and works only for AT45CS1282. It uses two different opcodes depending on the
 * address and has an asymmetric layout. */
int spi_erase_at45cs_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	const struct block_eraser be = flash->chip->block_erasers[0];
	const unsigned int sec_0a_top = be.eraseblocks[0].size;
	const unsigned int sec_0b_top = be.eraseblocks[0].size + be.eraseblocks[1].size;

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	bool partial_range = false;
	uint8_t opcode = 0x7C; /* Used for all but sector 0a. */
	if (addr < sec_0a_top) {
		opcode = 0x50;
		/* One single sector of 8 pages at address 0. */
		if (addr != 0 || blocklen != (8 * page_size))
			partial_range = true;
	} else if (addr < sec_0b_top) {
		/* One single sector of 248 pages adjacent to the first. */
		if (addr != sec_0a_top || blocklen != (248 * page_size))
			partial_range = true;
	} else {
		/* The rest is filled by 63 aligned sectors of 256 pages. */
		if ((addr % (256 * page_size)) != 0 || (blocklen % (256 * page_size)) != 0)
			partial_range = true;
	}
	if (partial_range) {
		msg_cerr("%s: cannot erase partial sectors: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	/* Needs up to 4 s for completion, so let's wait 20 seconds in 200 ms steps. */
	return at45db_erase(flash, opcode, at45db_convert_addr(addr, page_size), 200000, 100);
}

static int at45db_fill_buffer1(struct flashctx *flash, uint8_t *bytes, unsigned int off, unsigned int len)
{
	const unsigned int page_size = flash->chip->page_size;
	if ((off + len) > page_size) {
		msg_cerr("Tried to write %u bytes at offset %u into a buffer of only %u B.\n",
			 len, off, page_size);
		return 1;
	}

	/* Create a suitable buffer to store opcode, address and data chunks for buffer1. */
	const unsigned int max_data_write = flash->pgm->spi.max_data_write;
	const unsigned int max_chunk = (max_data_write > 0 && max_data_write <= page_size) ?
				       max_data_write : page_size;
	uint8_t buf[4 + max_chunk];

	buf[0] = AT45DB_BUFFER1_WRITE;
	while (off < page_size) {
		unsigned int cur_chunk = min(max_chunk, page_size - off);
		buf[1] = (off >> 16) & 0xff;
		buf[2] = (off >> 8) & 0xff;
		buf[3] = (off >> 0) & 0xff;
		memcpy(&buf[4], bytes + off, cur_chunk);
		int ret = spi_send_command(flash, 4 + cur_chunk, 0, buf, NULL);
		if (ret != 0) {
			msg_cerr("%s: error sending buffer write!\n", __func__);
			return ret;
		}
		off += cur_chunk;
	}
	return 0;
}

static int at45db_commit_buffer1(struct flashctx *flash, unsigned int at45db_addr)
{
	const uint8_t cmd[] = {
		AT45DB_BUFFER1_PAGE_PROGRAM,
		(at45db_addr >> 16) & 0xff,
		(at45db_addr >> 8) & 0xff,
		(at45db_addr >> 0) & 0xff
	};

	/* Send buffer to device. */
	int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
	if (ret != 0) {
		msg_cerr("%s: error sending buffer to main memory command!\n", __func__);
		return ret;
	}

	/* Wait for completion (typically a few ms). */
	ret = at45db_wait_ready(flash, 250, 200); // 50 ms
	if (ret != 0) {
		msg_cerr("%s: chip did not became ready again!\n", __func__);
		return ret;
	}

	return 0;
}

static int at45db_program_page(struct flashctx *flash, uint8_t *buf, unsigned int at45db_addr)
{
	int ret = at45db_fill_buffer1(flash, buf, 0, flash->chip->page_size);
	if (ret != 0) {
		msg_cerr("%s: filling the buffer failed!\n", __func__);
		return ret;
	}

	ret = at45db_commit_buffer1(flash, at45db_addr);
	if (ret != 0) {
		msg_cerr("%s: committing page failed!\n", __func__);
		return ret;
	}

	return 0;
}

int spi_write_at45db(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size;
	
	if ((start % page_size) != 0 || (len % page_size) != 0) {
		msg_cerr("%s: cannot write partial pages: start=%u, len=%u\n", __func__, start, len);
		return 1;
	}

	if ((start + len) > (total_size * 1024)) {
		msg_cerr("%s: tried to write beyond flash boundary: start=%u, len=%u, size=%u\n",
			 __func__, start, len, total_size);
		return 1;
	}

	unsigned int i;
	for (i = 0; i < len; i += page_size) {
		if (at45db_program_page(flash, buf + i, at45db_convert_addr(start + i, page_size)) != 0) {
			msg_cerr("Writing page %u failed!\n", i);
			return 1;
		}
	}
	return 0;
}