aboutsummaryrefslogtreecommitdiffstats
path: root/coreboot_tables.h
blob: c4c2d4d17e7b81f8c327646d86e7e3ae9a08192e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#ifndef COREBOOT_TABLES_H
#define COREBOOT_TABLES_H

#include <stdint.h>

/* The coreboot table information is for conveying information
 * from the firmware to the loaded OS image.  Primarily this
 * is expected to be information that cannot be discovered by
 * other means, such as quering the hardware directly.
 *
 * All of the information should be Position Independent Data.  
 * That is it should be safe to relocated any of the information
 * without it's meaning/correctnes changing.   For table that
 * can reasonably be used on multiple architectures the data
 * size should be fixed.  This should ease the transition between
 * 32 bit and 64 bit architectures etc.
 *
 * The completeness test for the information in this table is:
 * - Can all of the hardware be detected?
 * - Are the per motherboard constants available?
 * - Is there enough to allow a kernel to run that was written before
 *   a particular motherboard is constructed? (Assuming the kernel
 *   has drivers for all of the hardware but it does not have
 *   assumptions on how the hardware is connected together).
 *
 * With this test it should be straight forward to determine if a
 * table entry is required or not.  This should remove much of the
 * long term compatibility burden as table entries which are
 * irrelevant or have been replaced by better alternatives may be
 * dropped.  Of course it is polite and expidite to include extra
 * table entries and be backwards compatible, but it is not required.
 */

/* Since coreboot is usually compiled 32bit, gcc will align 64bit 
 * types to 32bit boundaries. If the coreboot table is dumped on a 
 * 64bit system, a uint64_t would be aligned to 64bit boundaries, 
 * breaking the table format.
 *
 * lb_uint64 will keep 64bit coreboot table values aligned to 32bit
 * to ensure compatibility. They can be accessed with the two functions
 * below: unpack_lb64() and pack_lb64()
 *
 * See also: util/lbtdump/lbtdump.c
 */

struct lb_uint64 {
	uint32_t lo;
	uint32_t hi;
};

static inline uint64_t unpack_lb64(struct lb_uint64 value)
{
	uint64_t result;
	result = value.hi;
	result = (result << 32) + value.lo;
	return result;
}

static inline struct lb_uint64 pack_lb64(uint64_t value)
{
	struct lb_uint64 result;
	result.lo = (value >> 0) & 0xffffffff;
	result.hi = (value >> 32) & 0xffffffff;
	return result;
}

struct lb_header {
	uint8_t signature[4];	/* LBIO */
	uint32_t header_bytes;
	uint32_t header_checksum;
	uint32_t table_bytes;
	uint32_t table_checksum;
	uint32_t table_entries;
};

/* Every entry in the boot enviroment list will correspond to a boot
 * info record.  Encoding both type and size.  The type is obviously
 * so you can tell what it is.  The size allows you to skip that
 * boot enviroment record if you don't know what it easy.  This allows
 * forward compatibility with records not yet defined.
 */
struct lb_record {
	uint32_t tag;		/* tag ID */
	uint32_t size;		/* size of record (in bytes) */
};

#define LB_TAG_UNUSED	0x0000

#define LB_TAG_MEMORY	0x0001

struct lb_memory_range {
	struct lb_uint64 start;
	struct lb_uint64 size;
	uint32_t type;
#define LB_MEM_RAM       1	/* Memory anyone can use */
#define LB_MEM_RESERVED  2	/* Don't use this memory region */
#define LB_MEM_TABLE     16	/* Ram configuration tables are kept in */
};

struct lb_memory {
	uint32_t tag;
	uint32_t size;
	struct lb_memory_range map[0];
};

#define LB_TAG_HWRPB	0x0002
struct lb_hwrpb {
	uint32_t tag;
	uint32_t size;
	uint64_t hwrpb;
};

#define LB_TAG_MAINBOARD	0x0003
struct lb_mainboard {
	uint32_t tag;
	uint32_t size;
	uint8_t vendor_idx;
	uint8_t part_number_idx;
	uint8_t strings[0];
};

#define LB_TAG_VERSION		0x0004
#define LB_TAG_EXTRA_VERSION	0x0005
#define LB_TAG_BUILD		0x0006
#define LB_TAG_COMPILE_TIME	0x0007
#define LB_TAG_COMPILE_BY	0x0008
#define LB_TAG_COMPILE_HOST	0x0009
#define LB_TAG_COMPILE_DOMAIN	0x000a
#define LB_TAG_COMPILER		0x000b
#define LB_TAG_LINKER		0x000c
#define LB_TAG_ASSEMBLER	0x000d
struct lb_string {
	uint32_t tag;
	uint32_t size;
	uint8_t string[0];
};

/* The following structures are for the cmos definitions table */
#define LB_TAG_CMOS_OPTION_TABLE 200
/* cmos header record */
struct cmos_option_table {
	uint32_t tag;		/* CMOS definitions table type */
	uint32_t size;		/* size of the entire table */
	uint32_t header_length;	/* length of header */
};

/* cmos entry record
        This record is variable length.  The name field may be
        shorter than CMOS_MAX_NAME_LENGTH. The entry may start
        anywhere in the byte, but can not span bytes unless it
        starts at the beginning of the byte and the length is
        fills complete bytes.
*/
#define LB_TAG_OPTION 201
struct cmos_entries {
	uint32_t tag;		/* entry type */
	uint32_t size;		/* length of this record */
	uint32_t bit;		/* starting bit from start of image */
	uint32_t length;	/* length of field in bits */
	uint32_t config;	/* e=enumeration, h=hex, r=reserved */
	uint32_t config_id;	/* a number linking to an enumeration record */
#define CMOS_MAX_NAME_LENGTH 32
	uint8_t name[CMOS_MAX_NAME_LENGTH];	/* name of entry in ascii, 
						   variable length int aligned */
};

/* cmos enumerations record
        This record is variable length.  The text field may be
        shorter than CMOS_MAX_TEXT_LENGTH.
*/
#define LB_TAG_OPTION_ENUM 202
struct cmos_enums {
	uint32_t tag;		/* enumeration type */
	uint32_t size;		/* length of this record */
	uint32_t config_id;	/* a number identifying the config id */
	uint32_t value;		/* the value associated with the text */
#define CMOS_MAX_TEXT_LENGTH 32
	uint8_t text[CMOS_MAX_TEXT_LENGTH];	/* enum description in ascii, 
						   variable length int aligned */
};

/* cmos defaults record
        This record contains default settings for the cmos ram.
*/
#define LB_TAG_OPTION_DEFAULTS 203
struct cmos_defaults {
	uint32_t tag;		/* default type */
	uint32_t size;		/* length of this record */
	uint32_t name_length;	/* length of the following name field */
	uint8_t name[CMOS_MAX_NAME_LENGTH];	/* name identifying the default */
#define CMOS_IMAGE_BUFFER_SIZE 128
	uint8_t default_set[CMOS_IMAGE_BUFFER_SIZE];	/* default settings */
};

#define LB_TAG_OPTION_CHECKSUM 204
struct cmos_checksum {
	uint32_t tag;
	uint32_t size;
	/* In practice everything is byte aligned, but things are measured
	 * in bits to be consistent.
	 */
	uint32_t range_start;	/* First bit that is checksummed (byte aligned) */
	uint32_t range_end;	/* Last bit that is checksummed (byte aligned) */
	uint32_t location;	/* First bit of the checksum (byte aligned) */
	uint32_t type;		/* Checksum algorithm that is used */
#define CHECKSUM_NONE	0
#define CHECKSUM_PCBIOS	1
};

#endif				/* COREBOOT_TABLES_H */