aboutsummaryrefslogtreecommitdiffstats
path: root/hwaccess.c
blob: 9bfd8ea550adca06c70cbb9e6b479e34ae8e4b8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2009,2010 Carl-Daniel Hailfinger
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__)
/* No file access needed/possible to get hardware access permissions. */
#include <unistd.h>
#include <fcntl.h>
#endif
#include "flash.h"
#include "programmer.h"
#include "hwaccess.h"

#if USE_IOPERM
#include <sys/io.h>
#endif

#if (defined (__i386__) || defined (__x86_64__) || defined(__amd64__)) && USE_DEV_IO
int io_fd;
#endif

/* Prevent reordering and/or merging of reads/writes to hardware.
 * Such reordering and/or merging would break device accesses which depend on the exact access order.
 */
static inline void sync_primitive(void)
{
/* This is not needed for...
 * - x86: uses uncached accesses which have a strongly ordered memory model.
 * - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
 * - ARM: uses a strongly ordered memory model for device memories.
 *
 * See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
 */
// cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
#if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \
      defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \
      defined(_ARCH_PPC64) || defined(__ppc)
	asm("eieio" : : : "memory");
#elif (__sparc__) || defined (__sparc)
#if defined(__sparc_v9__) || defined(__sparcv9)
	/* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
	 * RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
	 * use the strongest hardware memory barriers that exist on Sparc V9. */
	asm volatile ("membar #Sync" ::: "memory");
#elif defined(__sparc_v8__) || defined(__sparcv8)
	/* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
	 * on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
	 * operation in the V8 instruction set anyway. If you know better then please tell us. */
	asm volatile ("stbar");
#else
	#error Unknown and/or unsupported SPARC instruction set version detected.
#endif
#endif
}

#if (defined (__i386__) || defined (__x86_64__) || defined(__amd64__)) && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__))
static int release_io_perms(void *p)
{
#if defined (__sun)
	sysi86(SI86V86, V86SC_IOPL, 0);
#elif USE_DEV_IO
	close(io_fd);
#elif USE_IOPERM
	ioperm(0, 65536, 0);
#elif USE_IOPL
	iopl(0);
#endif
	return 0;
}

/* Get I/O permissions with automatic permission release on shutdown. */
int rget_io_perms(void)
{
	#if defined (__sun)
	if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) {
#elif USE_DEV_IO
	if ((io_fd = open("/dev/io", O_RDWR)) < 0) {
#elif USE_IOPERM
	if (ioperm(0, 65536, 1) != 0) {
#elif USE_IOPL
	if (iopl(3) != 0) {
#endif
		msg_perr("ERROR: Could not get I/O privileges (%s).\n", strerror(errno));
		msg_perr("You need to be root.\n");
#if defined (__OpenBSD__)
		msg_perr("If you are root already please set securelevel=-1 in /etc/rc.securelevel and\n"
			 "reboot, or reboot into single user mode.\n");
#elif defined(__NetBSD__)
		msg_perr("If you are root already please reboot into single user mode or make sure\n"
			 "that your kernel configuration has the option INSECURE enabled.\n");
#endif
		return 1;
	} else {
		register_shutdown(release_io_perms, NULL);
	}
	return 0;
}

#else

/* DJGPP and libpayload environments have full PCI port I/O permissions by default. */
/* PCI port I/O support is unimplemented on PPC/MIPS and unavailable on ARM. */
int rget_io_perms(void)
{
	return 0;
}
#endif

void mmio_writeb(uint8_t val, void *addr)
{
	*(volatile uint8_t *) addr = val;
	sync_primitive();
}

void mmio_writew(uint16_t val, void *addr)
{
	*(volatile uint16_t *) addr = val;
	sync_primitive();
}

void mmio_writel(uint32_t val, void *addr)
{
	*(volatile uint32_t *) addr = val;
	sync_primitive();
}

uint8_t mmio_readb(const void *addr)
{
	return *(volatile const uint8_t *) addr;
}

uint16_t mmio_readw(const void *addr)
{
	return *(volatile const uint16_t *) addr;
}

uint32_t mmio_readl(const void *addr)
{
	return *(volatile const uint32_t *) addr;
}

void mmio_readn(const void *addr, uint8_t *buf, size_t len)
{
	memcpy(buf, addr, len);
	return;
}

void mmio_le_writeb(uint8_t val, void *addr)
{
	mmio_writeb(cpu_to_le8(val), addr);
}

void mmio_le_writew(uint16_t val, void *addr)
{
	mmio_writew(cpu_to_le16(val), addr);
}

void mmio_le_writel(uint32_t val, void *addr)
{
	mmio_writel(cpu_to_le32(val), addr);
}

uint8_t mmio_le_readb(const void *addr)
{
	return le_to_cpu8(mmio_readb(addr));
}

uint16_t mmio_le_readw(const void *addr)
{
	return le_to_cpu16(mmio_readw(addr));
}

uint32_t mmio_le_readl(const void *addr)
{
	return le_to_cpu32(mmio_readl(addr));
}

enum mmio_write_type {
	mmio_write_type_b,
	mmio_write_type_w,
	mmio_write_type_l,
};

struct undo_mmio_write_data {
	void *addr;
	int reg;
	enum mmio_write_type type;
	union {
		uint8_t bdata;
		uint16_t wdata;
		uint32_t ldata;
	};
};

static int undo_mmio_write(void *p)
{
	struct undo_mmio_write_data *data = p;
	msg_pdbg("Restoring MMIO space at %p\n", data->addr);
	switch (data->type) {
	case mmio_write_type_b:
		mmio_writeb(data->bdata, data->addr);
		break;
	case mmio_write_type_w:
		mmio_writew(data->wdata, data->addr);
		break;
	case mmio_write_type_l:
		mmio_writel(data->ldata, data->addr);
		break;
	}
	/* p was allocated in register_undo_mmio_write. */
	free(p);
	return 0;
}

#define register_undo_mmio_write(a, c)					\
{									\
	struct undo_mmio_write_data *undo_mmio_write_data;		\
	undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data));	\
	if (!undo_mmio_write_data) {					\
		msg_gerr("Out of memory!\n");				\
		exit(1);						\
	}								\
	undo_mmio_write_data->addr = a;					\
	undo_mmio_write_data->type = mmio_write_type_##c;		\
	undo_mmio_write_data->c##data = mmio_read##c(a);		\
	register_shutdown(undo_mmio_write, undo_mmio_write_data);	\
}

#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)

void rmmio_writeb(uint8_t val, void *addr)
{
	register_undo_mmio_writeb(addr);
	mmio_writeb(val, addr);
}

void rmmio_writew(uint16_t val, void *addr)
{
	register_undo_mmio_writew(addr);
	mmio_writew(val, addr);
}

void rmmio_writel(uint32_t val, void *addr)
{
	register_undo_mmio_writel(addr);
	mmio_writel(val, addr);
}

void rmmio_le_writeb(uint8_t val, void *addr)
{
	register_undo_mmio_writeb(addr);
	mmio_le_writeb(val, addr);
}

void rmmio_le_writew(uint16_t val, void *addr)
{
	register_undo_mmio_writew(addr);
	mmio_le_writew(val, addr);
}

void rmmio_le_writel(uint32_t val, void *addr)
{
	register_undo_mmio_writel(addr);
	mmio_le_writel(val, addr);
}

void rmmio_valb(void *addr)
{
	register_undo_mmio_writeb(addr);
}

void rmmio_valw(void *addr)
{
	register_undo_mmio_writew(addr);
}

void rmmio_vall(void *addr)
{
	register_undo_mmio_writel(addr);
}