1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2008 Wang Qingpei <Qingpei.Wang@amd.com>
* Copyright (C) 2008 Joe Bao <Zheng.Bao@amd.com>
* Copyright (C) 2008 Advanced Micro Devices, Inc.
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(__i386__) || defined(__x86_64__)
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
/* This struct is unused, but helps visualize the SB600 SPI BAR layout.
*struct sb600_spi_controller {
* unsigned int spi_cntrl0; / * 00h * /
* unsigned int restrictedcmd1; / * 04h * /
* unsigned int restrictedcmd2; / * 08h * /
* unsigned int spi_cntrl1; / * 0ch * /
* unsigned int spi_cmdvalue0; / * 10h * /
* unsigned int spi_cmdvalue1; / * 14h * /
* unsigned int spi_cmdvalue2; / * 18h * /
* unsigned int spi_fakeid; / * 1Ch * /
*};
*/
static uint8_t *sb600_spibar = NULL;
int sb600_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len)
{
/* Maximum read length is 8 bytes. */
return spi_read_chunked(flash, buf, start, len, 8);
}
int sb600_spi_write_256(struct flashchip *flash, uint8_t *buf, int start, int len)
{
return spi_write_chunked(flash, buf, start, len, 5);
}
static void reset_internal_fifo_pointer(void)
{
mmio_writeb(mmio_readb(sb600_spibar + 2) | 0x10, sb600_spibar + 2);
/* FIXME: This loop makes no sense at all. */
while (mmio_readb(sb600_spibar + 0xD) & 0x7)
msg_pspew("reset\n");
}
static int compare_internal_fifo_pointer(uint8_t want)
{
uint8_t tmp;
tmp = mmio_readb(sb600_spibar + 0xd) & 0x07;
want &= 0x7;
if (want != tmp) {
msg_perr("SB600 FIFO pointer corruption! Pointer is %d, wanted "
"%d\n", tmp, want);
msg_perr("Something else is accessing the flash chip and "
"causes random corruption.\nPlease stop all "
"applications and drivers and IPMI which access the "
"flash chip.\n");
return 1;
} else {
msg_pspew("SB600 FIFO pointer is %d, wanted %d\n", tmp, want);
return 0;
}
}
static int reset_compare_internal_fifo_pointer(uint8_t want)
{
int ret;
ret = compare_internal_fifo_pointer(want);
reset_internal_fifo_pointer();
return ret;
}
static void execute_command(void)
{
mmio_writeb(mmio_readb(sb600_spibar + 2) | 1, sb600_spibar + 2);
while (mmio_readb(sb600_spibar + 2) & 1)
;
}
int sb600_spi_send_command(unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr)
{
int count;
/* First byte is cmd which can not being sent through FIFO. */
unsigned char cmd = *writearr++;
unsigned int readoffby1;
unsigned char readwrite;
writecnt--;
msg_pspew("%s, cmd=%x, writecnt=%x, readcnt=%x\n",
__func__, cmd, writecnt, readcnt);
if (readcnt > 8) {
msg_pinfo("%s, SB600 SPI controller can not receive %d bytes, "
"it is limited to 8 bytes\n", __func__, readcnt);
return SPI_INVALID_LENGTH;
}
if (writecnt > 8) {
msg_pinfo("%s, SB600 SPI controller can not send %d bytes, "
"it is limited to 8 bytes\n", __func__, writecnt);
return SPI_INVALID_LENGTH;
}
/* This is a workaround for a bug in SB600 and SB700. If we only send
* an opcode and no additional data/address, the SPI controller will
* read one byte too few from the chip. Basically, the last byte of
* the chip response is discarded and will not end up in the FIFO.
* It is unclear if the CS# line is set high too early as well.
*/
readoffby1 = (writecnt) ? 0 : 1;
readwrite = (readcnt + readoffby1) << 4 | (writecnt);
mmio_writeb(readwrite, sb600_spibar + 1);
mmio_writeb(cmd, sb600_spibar + 0);
/* Before we use the FIFO, reset it first. */
reset_internal_fifo_pointer();
/* Send the write byte to FIFO. */
msg_pspew("Writing: ");
for (count = 0; count < writecnt; count++, writearr++) {
msg_pspew("[%02x]", *writearr);
mmio_writeb(*writearr, sb600_spibar + 0xC);
}
msg_pspew("\n");
/*
* We should send the data by sequence, which means we need to reset
* the FIFO pointer to the first byte we want to send.
*/
if (reset_compare_internal_fifo_pointer(writecnt))
return SPI_PROGRAMMER_ERROR;
msg_pspew("Executing: \n");
execute_command();
/*
* After the command executed, we should find out the index of the
* received byte. Here we just reset the FIFO pointer and skip the
* writecnt.
* It would be possible to increase the FIFO pointer by one instead
* of reading and discarding one byte from the FIFO.
* The FIFO is implemented on top of an 8 byte ring buffer and the
* buffer is never cleared. For every byte that is shifted out after
* the opcode, the FIFO already stores the response from the chip.
* Usually, the chip will respond with 0x00 or 0xff.
*/
if (reset_compare_internal_fifo_pointer(writecnt + readcnt))
return SPI_PROGRAMMER_ERROR;
/* Skip the bytes we sent. */
msg_pspew("Skipping: ");
for (count = 0; count < writecnt; count++) {
cmd = mmio_readb(sb600_spibar + 0xC);
msg_pspew("[%02x]", cmd);
}
msg_pspew("\n");
if (compare_internal_fifo_pointer(writecnt))
return SPI_PROGRAMMER_ERROR;
msg_pspew("Reading: ");
for (count = 0; count < readcnt; count++, readarr++) {
*readarr = mmio_readb(sb600_spibar + 0xC);
msg_pspew("[%02x]", *readarr);
}
msg_pspew("\n");
if (reset_compare_internal_fifo_pointer(readcnt + writecnt))
return SPI_PROGRAMMER_ERROR;
if (mmio_readb(sb600_spibar + 1) != readwrite) {
msg_perr("Unexpected change in SB600 read/write count!\n");
msg_perr("Something else is accessing the flash chip and "
"causes random corruption.\nPlease stop all "
"applications and drivers and IPMI which access the "
"flash chip.\n");
return SPI_PROGRAMMER_ERROR;
}
return 0;
}
int sb600_probe_spi(struct pci_dev *dev)
{
struct pci_dev *smbus_dev;
uint32_t tmp;
uint8_t reg;
static const char *const speed_names[4] = {
"Reserved", "33", "22", "16.5"
};
/* Read SPI_BaseAddr */
tmp = pci_read_long(dev, 0xa0);
tmp &= 0xffffffe0; /* remove bits 4-0 (reserved) */
msg_pdbg("SPI base address is at 0x%x\n", tmp);
/* If the BAR has address 0, it is unlikely SPI is used. */
if (!tmp)
return 0;
/* Physical memory has to be mapped at page (4k) boundaries. */
sb600_spibar = physmap("SB600 SPI registers", tmp & 0xfffff000,
0x1000);
/* The low bits of the SPI base address are used as offset into
* the mapped page.
*/
sb600_spibar += tmp & 0xfff;
tmp = pci_read_long(dev, 0xa0);
msg_pdbg("AltSpiCSEnable=%i, SpiRomEnable=%i, "
"AbortEnable=%i\n", tmp & 0x1, (tmp & 0x2) >> 1,
(tmp & 0x4) >> 2);
tmp = (pci_read_byte(dev, 0xba) & 0x4) >> 2;
msg_pdbg("PrefetchEnSPIFromIMC=%i, ", tmp);
tmp = pci_read_byte(dev, 0xbb);
/* FIXME: Set bit 3,6,7 if not already set.
* Set bit 5, otherwise SPI accesses are pointless in LPC mode.
* See doc 42413 AMD SB700/710/750 RPR.
*/
msg_pdbg("PrefetchEnSPIFromHost=%i, SpiOpEnInLpcMode=%i\n",
tmp & 0x1, (tmp & 0x20) >> 5);
tmp = mmio_readl(sb600_spibar);
/* FIXME: If SpiAccessMacRomEn or SpiHostAccessRomEn are zero on
* SB700 or later, reads and writes will be corrupted. Abort in this
* case. Make sure to avoid this check on SB600.
*/
msg_pdbg("SpiArbEnable=%i, SpiAccessMacRomEn=%i, "
"SpiHostAccessRomEn=%i, ArbWaitCount=%i, "
"SpiBridgeDisable=%i, DropOneClkOnRd=%i\n",
(tmp >> 19) & 0x1, (tmp >> 22) & 0x1,
(tmp >> 23) & 0x1, (tmp >> 24) & 0x7,
(tmp >> 27) & 0x1, (tmp >> 28) & 0x1);
tmp = (mmio_readb(sb600_spibar + 0xd) >> 4) & 0x3;
msg_pdbg("NormSpeed is %s MHz\n", speed_names[tmp]);
/* Look for the SMBus device. */
smbus_dev = pci_dev_find(0x1002, 0x4385);
if (!smbus_dev) {
msg_perr("ERROR: SMBus device not found. Not enabling SPI.\n");
return ERROR_NONFATAL;
}
/* Note about the bit tests below: If a bit is zero, the GPIO is SPI. */
/* GPIO11/SPI_DO and GPIO12/SPI_DI status */
reg = pci_read_byte(smbus_dev, 0xAB);
reg &= 0xC0;
msg_pdbg("GPIO11 used for %s\n", (reg & (1 << 6)) ? "GPIO" : "SPI_DO");
msg_pdbg("GPIO12 used for %s\n", (reg & (1 << 7)) ? "GPIO" : "SPI_DI");
if (reg != 0x00) {
msg_pdbg("Not enabling SPI");
return 0;
}
/* GPIO31/SPI_HOLD and GPIO32/SPI_CS status */
reg = pci_read_byte(smbus_dev, 0x83);
reg &= 0xC0;
msg_pdbg("GPIO31 used for %s\n", (reg & (1 << 6)) ? "GPIO" : "SPI_HOLD");
msg_pdbg("GPIO32 used for %s\n", (reg & (1 << 7)) ? "GPIO" : "SPI_CS");
/* SPI_HOLD is not used on all boards, filter it out. */
if ((reg & 0x80) != 0x00) {
msg_pdbg("Not enabling SPI");
return 0;
}
/* GPIO47/SPI_CLK status */
reg = pci_read_byte(smbus_dev, 0xA7);
reg &= 0x40;
msg_pdbg("GPIO47 used for %s\n", (reg & (1 << 6)) ? "GPIO" : "SPI_CLK");
if (reg != 0x00) {
msg_pdbg("Not enabling SPI");
return 0;
}
reg = pci_read_byte(dev, 0x40);
msg_pdbg("SB700 IMC is %sactive.\n", (reg & (1 << 7)) ? "" : "not ");
if (reg & (1 << 7)) {
/* If we touch any region used by the IMC, the IMC and the SPI
* interface will lock up, and the only way to recover is a
* hard reset, but that is a bad choice for a half-erased or
* half-written flash chip.
* There appears to be an undocumented register which can freeze
* or disable the IMC, but for now we want to play it safe.
*/
msg_perr("The SB700 IMC is active and may interfere with SPI "
"commands. Disabling write.\n");
/* FIXME: Should we only disable SPI writes, or will the lockup
* affect LPC/FWH chips as well?
*/
programmer_may_write = 0;
}
/* Bring the FIFO to a clean state. */
reset_internal_fifo_pointer();
buses_supported |= CHIP_BUSTYPE_SPI;
spi_controller = SPI_CONTROLLER_SB600;
return 0;
}
#endif
|