1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
|
-- Inference in synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Dyn_Interning;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Gates_Ports; use Netlists.Gates_Ports;
with Netlists.Locations; use Netlists.Locations;
with Netlists.Errors; use Netlists.Errors;
with Synth.Flags;
with Synth.Source; use Synth.Source;
with Synth.Errors; use Synth.Errors;
package body Synth.Inference is
-- DFF inference.
-- As an initial implementation, the following 'styles' must be
-- supported:
-- Note: rising_edge is any clock_edge; '<=' can be ':='.
--
-- 1)
-- if rising_edge(clk) then
-- r <= x;
-- end if;
--
-- 2)
-- if rst = '0' then
-- r <= x;
-- elsif rising_edge (clk) then
-- r <= y;
-- end if;
--
-- 3)
-- wait until rising_edge(clk);
-- r <= x;
-- Which is equivalent to 1) when the wait statement is the only and first
-- statement, as it can be converted to an if statement.
--
-- Netlist derived from 1)
-- +------+
-- | |
-- | /| |
-- | |0+-+
-- Q --+--+ |
-- |1+--- D
-- \|
-- CLK
-- This is a memorizing element as there is a loop, the value is changed
-- to D on a rising edge of the clock.
--
-- Netlist derived from 2)
-- +------------+
-- | /| |
-- | /| |0+-+
-- | |0+---+ |
-- Q --+--+ | |1+----- D
-- |1+-+ \|
-- \| | CLK
-- RST +--------- '0'
-- This is a memorizing element as there is a loop. It is an asynchronous
-- reset as Q is forced to '0' when RST is asserted.
function Has_Clock (N : Net) return Boolean
is
Inst : constant Instance := Get_Net_Parent (N);
begin
case Get_Id (Inst) is
when Id_Edge =>
return True;
when Id_And =>
-- Assume the condition is canonicalized, ie of the form:
-- CLK and EXPR.
-- FIXME: do it!
return Has_Clock (Get_Input_Net (Inst, 0));
when others =>
return False;
end case;
end Has_Clock;
-- Find the longest chain of mux starting from VAL with a final input
-- of PREV_VAL. Such a chain means this is a memorising element.
-- RES is the last mux in the chain, DIST the number of mux in the chain.
procedure Find_Longest_Loop
(Val : Net; Prev_Val : Net; Res : out Instance; Dist : out Integer)
is
Inst : constant Instance := Get_Net_Parent (Val);
begin
if Get_Id (Inst) = Id_Mux2 then
declare
Res0, Res1 : Instance;
Dist0, Dist1 : Integer;
begin
if Has_Clock (Get_Driver (Get_Mux2_Sel (Inst))) then
Res := Inst;
Dist := 1;
else
Find_Longest_Loop
(Get_Driver (Get_Mux2_I0 (Inst)), Prev_Val, Res0, Dist0);
Find_Longest_Loop
(Get_Driver (Get_Mux2_I1 (Inst)), Prev_Val, Res1, Dist1);
-- Input1 has an higher priority than input0 in case
-- the selector is a clock.
-- FIXME: improve algorithm.
if Dist1 > Dist0 then
Dist := Dist1 + 1;
if Dist1 > 0 then
Res := Res1;
else
Res := Inst;
end if;
elsif Dist0 >= 0 then
Dist := Dist0 + 1;
if Dist0 > 0 then
Res := Res0;
else
Res := Inst;
end if;
else
pragma Assert (Dist1 < 0 and Dist0 < 0);
Res := No_Instance;
Dist := -1;
end if;
end if;
end;
elsif Val = Prev_Val then
Res := No_Instance;
Dist := 0;
else
Res := No_Instance;
Dist := -1;
end if;
end Find_Longest_Loop;
-- Walk the And-net N, and extract clock (posedge/negedge) if found.
-- ENABLE is N without the clock.
procedure Extract_Clock (N : Net; Clk : out Net; Enable : out Net)
is
Inst : constant Instance := Get_Net_Parent (N);
begin
Clk := No_Net;
Enable := No_Net;
case Get_Id (Inst) is
when Id_Edge =>
-- Get rid of the edge gate, just return the signal.
Clk := Get_Input_Net (Inst, 0);
when Id_And =>
-- Assume the condition is canonicalized, ie of the form:
-- CLK and EXPR
-- EXPR and CLK
declare
I0 : constant Net := Get_Input_Net (Inst, 0);
Inst0 : constant Instance := Get_Net_Parent (I0);
begin
if Get_Id (Inst0) = Id_Edge then
-- INST is clearly not synthesizable (boolean operation on
-- an edge). Will be removed at the end by
-- remove_unused_instances. Do not remove it now as its
-- output may be used by other nets.
Clk := Get_Input_Net (Inst0, 0);
Enable := Get_Input_Net (Inst, 1);
return;
end if;
end;
declare
I1 : constant Net := Get_Input_Net (Inst, 1);
Inst1 : constant Instance := Get_Net_Parent (I1);
begin
if Get_Id (Inst1) = Id_Edge then
-- INST is clearly not synthesizable (boolean operation on
-- an edge). Will be removed at the end by
-- remove_unused_instances. Do not remove it now as its
-- output may be used by other nets.
Clk := Get_Input_Net (Inst1, 0);
Enable := Get_Input_Net (Inst, 0);
return;
end if;
end;
when others =>
null;
end case;
end Extract_Clock;
procedure Check_FF_Else (Els : Net; Prev_Val : Net; Off : Uns32)
is
Inst : Instance;
begin
if Els = Prev_Val then
if Off /= 0 then
raise Internal_Error;
end if;
return;
end if;
Inst := Get_Net_Parent (Els);
if Get_Id (Inst) /= Id_Extract then
raise Internal_Error;
end if;
if Get_Param_Uns32 (Inst, 0) /= Off then
raise Internal_Error;
end if;
if Get_Input_Net (Inst, 0) /= Prev_Val then
raise Internal_Error;
end if;
end Check_FF_Else;
-- LAST_MUX is the mux whose input 0 is the loop and clock for selector.
procedure Infere_FF (Ctxt : Context_Acc;
Wid : Wire_Id;
Prev_Val : Net;
Off : Uns32;
Last_Mux : Instance;
Clk : Net;
Clk_Enable : Net;
Stmt : Source.Syn_Src)
is
O : constant Net := Get_Output (Last_Mux, 0);
Data : Net;
Res : Net;
Sig : Instance;
Init : Net;
Rst : Net;
Rst_Val : Net;
Enable : Net;
begin
-- Create and return the DFF.
-- 1. Remove the mux that creates the loop (will be replaced by the
-- dff).
declare
Sel : constant Input := Get_Mux2_Sel (Last_Mux);
I0 : constant Input := Get_Mux2_I0 (Last_Mux);
I1 : constant Input := Get_Mux2_I1 (Last_Mux);
begin
Disconnect (Sel);
-- There must be no 'else' part for clock expression.
Check_FF_Else (Get_Driver (I0), Prev_Val, Off);
-- Don't try to free driver of I0 as this is Prev_Val or a selection
-- of it.
Disconnect (I0);
Data := Get_Driver (I1);
-- Don't try to free driver of I1 as it is reconnected.
Disconnect (I1);
end;
-- If the signal declaration has an initial value, get it.
Sig := Get_Net_Parent (Prev_Val);
if Get_Id (Get_Module (Sig)) = Id_Isignal then
Init := Get_Input_Net (Sig, 1);
Init := Build2_Extract (Ctxt, Init, Off, Get_Width (O));
else
Init := No_Net;
end if;
Enable := Clk_Enable;
-- Look for asynchronous set/reset. They are muxes after the loop
-- mux. In theory, there can be many set/reset with a defined order.
Rst_Val := No_Net;
Rst := No_Net;
declare
Mux : Instance;
Sel : Net;
Last_Out : Net;
Mux_Not_Rst : Net;
Mux_Rst : Net;
Mux_Rst_Val : Net;
begin
Last_Out := O;
while Is_Connected (Last_Out) loop
if not Has_One_Connection (Last_Out) then
-- TODO.
raise Internal_Error;
end if;
-- The parent must be a mux (it's a chain of muxes).
Mux := Get_Input_Parent (Get_First_Sink (Last_Out));
pragma Assert (Get_Id (Mux) = Id_Mux2);
-- Extract the reset condition and the reset value.
Sel := Get_Driver (Get_Mux2_Sel (Mux));
if Get_Driver (Get_Mux2_I0 (Mux)) = Last_Out then
Mux_Rst_Val := Get_Driver (Get_Mux2_I1 (Mux));
Mux_Rst := Sel;
elsif Get_Driver (Get_Mux2_I1 (Mux)) = Last_Out then
Mux_Rst_Val := Get_Driver (Get_Mux2_I0 (Mux));
Mux_Rst := Build_Monadic (Ctxt, Id_Not, Sel);
else
-- Cannot happen.
raise Internal_Error;
end if;
Last_Out := Get_Output (Mux, 0);
if Mux_Rst_Val = Prev_Val then
-- The mux is like an enable. Like in this example, q2 is not
-- assigned when RST is true:
-- if rst then
-- q1 <= '0';
-- elsif rising_edge(clk) then
-- q2 <= d2;
-- q1 <= d1;
-- end if;
-- Remove the mux
Disconnect (Get_Mux2_I0 (Mux));
Disconnect (Get_Mux2_I1 (Mux));
Disconnect (Get_Mux2_Sel (Mux));
-- Add the negation of the condition to the enable signal.
-- Negate the condition for the current reset.
Mux_Not_Rst := Build_Monadic (Ctxt, Id_Not, Mux_Rst);
if Rst /= No_Net then
Rst := Build_Dyadic (Ctxt, Id_And, Rst, Mux_Not_Rst);
end if;
if Enable = No_Net then
Enable := Mux_Not_Rst;
else
Enable := Build_Dyadic (Ctxt, Id_And, Enable, Mux_Not_Rst);
end if;
else
-- Assume this is a reset value.
-- FIXME: check for no logical loop.
if Rst = No_Net then
-- Remove the last mux. Dedicated inputs on the FF
-- are used.
Disconnect (Get_Mux2_I0 (Mux));
Disconnect (Get_Mux2_I1 (Mux));
Disconnect (Get_Mux2_Sel (Mux));
Redirect_Inputs (Last_Out, Mux_Rst_Val);
Free_Instance (Mux);
Rst := Mux_Rst;
Rst_Val := Mux_Rst_Val;
Last_Out := Mux_Rst_Val;
else
Rst := Build_Dyadic (Ctxt, Id_Or, Mux_Rst, Rst);
Rst_Val := Last_Out;
end if;
end if;
end loop;
end;
-- If there is a condition with the clock, that's an enable which
-- keep the previous value if the condition is false. Add the mux
-- for it.
if Enable /= No_Net then
Data := Build_Mux2 (Ctxt, Enable, Prev_Val, Data);
Copy_Location (Data, Enable);
end if;
-- Create the FF.
if Rst = No_Net then
pragma Assert (Rst_Val = No_Net);
if Init /= No_Net then
Res := Build_Idff (Ctxt, Clk, D => Data, Init => Init);
else
Res := Build_Dff (Ctxt, Clk, D => Data);
end if;
else
if Init /= No_Net then
Res := Build_Iadff (Ctxt, Clk, D => Data,
Rst => Rst, Rst_Val => Rst_Val,
Init => Init);
else
Res := Build_Adff (Ctxt, Clk, D => Data,
Rst => Rst, Rst_Val => Rst_Val);
end if;
end if;
Copy_Location (Res, Last_Mux);
-- The output of the mux may be read later in the process,
-- like this:
-- if clk'event and clk = '1' then
-- d := i + 1;
-- end if;
-- d1 := d + 1;
-- So connections to the mux output are redirected to dff
-- output.
Redirect_Inputs (O, Res);
Free_Instance (Last_Mux);
Add_Conc_Assign (Wid, Res, Off, Stmt);
end Infere_FF;
function Id_Instance (Param : Instance) return Instance is
begin
return Param;
end Id_Instance;
package Inst_Interning is new Dyn_Interning
(Params_Type => Instance,
Object_Type => Instance,
Hash => Netlists.Hash,
Build => Id_Instance,
Equal => "=");
-- Detect false combinational loop. They can easily appear when variables
-- are only used in one branch:
-- process (all)
-- variable a : std_logic;
-- begin
-- r <= '1';
-- if sel = '1' then
-- a := '1';
-- r <= '0';
-- end if;
-- end process;
-- There is a combinational path from 'a' to 'a' as
-- a := (sel = '1') ? '1' : a;
-- But this is a false loop because the value of 'a' is never used. In
-- that case, 'a' is assigned to 'x' and all the unused logic will be
-- removed during clean-up.
--
-- Detection is very simple: the closure of readers of 'a' must be only
-- muxes (which were inserted by controls).
function Is_False_Loop (Prev_Val : Net) return Boolean
is
use Inst_Interning;
T : Inst_Interning.Instance;
function Add_From_Net (N : Net) return Boolean
is
Inst : Netlists.Instance;
Inp : Input;
begin
Inp := Get_First_Sink (N);
while Inp /= No_Input loop
Inst := Get_Input_Parent (Inp);
if Get_Id (Inst) not in Mux_Module_Id then
return False;
end if;
-- Add to T (if not already).
Get (T, Inst, Inst);
Inp := Get_Next_Sink (Inp);
end loop;
return True;
end Add_From_Net;
function Walk_Nets (N : Net) return Boolean
is
Inst : Netlists.Instance;
begin
-- Put gates that read the value.
if not Add_From_Net (N) then
return False;
end if;
-- Follow the outputs.
for I in First_Index .. Index_Type'Last loop
exit when I > Inst_Interning.Last_Index (T);
Inst := Get_By_Index (T, I);
if not Add_From_Net (Get_Output (Inst, 0)) then
return False;
end if;
end loop;
-- No external readers.
return True;
end Walk_Nets;
Res : Boolean;
begin
Inst_Interning.Init (T);
Res := Walk_Nets (Prev_Val);
Inst_Interning.Free (T);
return Res;
end Is_False_Loop;
procedure Infere_Latch (Ctxt : Context_Acc;
Wid : Wire_Id;
Val : Net;
Off : Uns32;
Prev_Val : Net;
Stmt : Source.Syn_Src)
is
X : Net;
Name : Sname;
begin
-- In case of false loop, do not close the loop but assign X.
if Is_False_Loop (Prev_Val) then
X := Build_Const_X (Ctxt, Get_Width (Val));
Connect (Get_Input (Get_Net_Parent (Prev_Val), 0), X);
return;
end if;
-- Latch or combinational loop.
if Get_Id (Get_Net_Parent (Prev_Val)) = Id_Output then
-- Outputs are connected to a port. The port is the first connection
-- made, so it is the last sink. Be more tolerant and look for
-- the (only) port connected to the output.
declare
Inp : Input;
Inst : Instance;
begin
Inp := Get_First_Sink (Prev_Val);
loop
pragma Assert (Inp /= No_Input);
Inst := Get_Input_Parent (Inp);
if Get_Id (Inst) >= Id_User_None then
Name := Get_Output_Desc (Get_Module (Inst),
Get_Port_Idx (Inp)).Name;
exit;
end if;
Inp := Get_Next_Sink (Inp);
end loop;
end;
else
Name := Get_Instance_Name (Get_Net_Parent (Prev_Val));
end if;
Error_Msg_Synth (+Stmt, "latch infered for net %n", +Name);
Add_Conc_Assign (Wid, Val, Off, Stmt);
end Infere_Latch;
procedure Infere (Ctxt : Context_Acc;
Wid : Wire_Id;
Val : Net;
Off : Uns32;
Prev_Val : Net;
Stmt : Source.Syn_Src)
is
pragma Assert (Val /= No_Net);
pragma Assert (Prev_Val /= No_Net);
Last_Mux : Instance;
Len : Integer;
Sel : Input;
Clk : Net;
Enable : Net;
begin
if not Flags.Flag_Debug_Noinference then
if Get_First_Sink (Prev_Val) = No_Input then
-- PREV_VAL is never read, so there cannot be any loop.
-- This is an important optimization for control signals.
Len := -1;
else
Find_Longest_Loop (Val, Prev_Val, Last_Mux, Len);
end if;
else
Len := -1;
end if;
if Len <= 0 then
-- No logical loop or self assignment.
Add_Conc_Assign (Wid, Val, Off, Stmt);
else
-- So there is a logical loop.
Sel := Get_Mux2_Sel (Last_Mux);
Extract_Clock (Get_Driver (Sel), Clk, Enable);
if Clk = No_Net then
-- No clock -> latch or combinational loop
Infere_Latch (Ctxt, Wid, Val, Off, Prev_Val, Stmt);
else
-- Clock -> FF
Infere_FF (Ctxt, Wid, Prev_Val, Off, Last_Mux, Clk, Enable, Stmt);
end if;
end if;
end Infere;
end Synth.Inference;
|