aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-static_oper.adb
blob: b5ceee0097afca55670acd107ef2e36bd2b9c046 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
--  Operations synthesis.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Types; use Types;
with Types_Utils; use Types_Utils;

with Grt.Types; use Grt.Types;

with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;

with Netlists; use Netlists;

with Synth.Errors; use Synth.Errors;
with Synth.Source; use Synth.Source;
with Synth.Expr; use Synth.Expr;
with Synth.Oper;
with Synth.Ieee.Std_Logic_1164; use Synth.Ieee.Std_Logic_1164;
with Synth.Ieee.Numeric_Std; use Synth.Ieee.Numeric_Std;
with Synth.Files_Operations;
with Synth.Values; use Synth.Values;

package body Synth.Static_Oper is
   --  As log2(3m) is directly referenced, the program must be linked with -lm
   --  (math library) on unix systems.
   pragma Linker_Options ("-lm");

   function Create_Res_Bound (Prev : Type_Acc) return Type_Acc is
   begin
      if Prev.Vbound.Dir = Dir_Downto
        and then Prev.Vbound.Right = 0
      then
         --  Normalized range
         return Prev;
      end if;

      return Create_Vec_Type_By_Length (Prev.W, Prev.Vec_El);
   end Create_Res_Bound;

   function Synth_Vector_Dyadic (Left, Right : Memtyp;
                                 Op : Table_2d;
                                 Loc : Syn_Src) return Memtyp
   is
      Res : Memtyp;
   begin
      if Left.Typ.W /= Right.Typ.W then
         Error_Msg_Synth (+Loc, "length of operands mismatch");
         return Null_Memtyp;
      end if;

      Res := Create_Memory (Create_Res_Bound (Left.Typ));
      for I in 1 .. Uns32 (Vec_Length (Res.Typ)) loop
         declare
            Ls : constant Std_Ulogic := Read_Std_Logic (Left.Mem, I - 1);
            Rs : constant Std_Ulogic := Read_Std_Logic (Right.Mem, I - 1);
            V : constant Std_Ulogic := Op (Ls, Rs);
         begin
            Write_Std_Logic (Res.Mem, I - 1, V);
         end;
      end loop;

      return Res;
   end Synth_Vector_Dyadic;

   function Get_Static_Ulogic (Op : Memtyp) return Std_Ulogic is
   begin
      pragma Assert (Op.Typ.Kind = Type_Logic);
      return Std_Ulogic'Val (Read_U8 (Op.Mem));
   end Get_Static_Ulogic;

   procedure Check_Integer_Overflow
     (Val : in out Int64; Typ : Type_Acc; Loc : Syn_Src) is
   begin
      pragma Assert (Typ.Kind = Type_Discrete);
      case Typ.Sz is
         when 4 =>
            if Val < -2**31 or Val >= 2**31 then
               Error_Msg_Synth (+Loc, "integer overflow");
               --  Just keep the lower 32bit (and sign extend).
               Val := Int64
                 (To_Int32 (Uns32 (To_Uns64 (Val) and 16#ffff_ffff#)));
            end if;
         when 8 =>
            null;
         when others =>
            raise Internal_Error;
      end case;
   end Check_Integer_Overflow;

   function Synth_Static_Dyadic_Predefined (Syn_Inst : Synth_Instance_Acc;
                                            Imp : Node;
                                            Left : Memtyp;
                                            Right : Memtyp;
                                            Expr : Node) return Memtyp
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Res_Typ : constant Type_Acc :=
        Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
   begin
      case Def is
         when Iir_Predefined_Error =>
            return Null_Memtyp;

         when Iir_Predefined_Boolean_Xor =>
            return Create_Memory_U8
              (Boolean'Pos (Boolean'Val (Read_Discrete (Left))
                              xor Boolean'Val (Read_Discrete (Right))),
               Res_Typ);

         when Iir_Predefined_Enum_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) = Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Enum_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) /= Read_Discrete (Right)),
               Boolean_Type);

         when Iir_Predefined_Integer_Plus
           | Iir_Predefined_Physical_Plus =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) + Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Minus
            | Iir_Predefined_Physical_Minus =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) - Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Mul
           | Iir_Predefined_Physical_Integer_Mul
           | Iir_Predefined_Integer_Physical_Mul =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) * Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Div
           | Iir_Predefined_Physical_Physical_Div
           | Iir_Predefined_Physical_Integer_Div =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) / Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Mod =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) mod Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Rem =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) rem Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;

         when Iir_Predefined_Integer_Exp =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) ** Natural (Read_Discrete (Right)),
               Res_Typ);

         when Iir_Predefined_Physical_Minimum
           | Iir_Predefined_Integer_Minimum =>
            return Create_Memory_Discrete
              (Int64'Min (Read_Discrete (Left), Read_Discrete (Right)),
               Res_Typ);
         when Iir_Predefined_Physical_Maximum
           | Iir_Predefined_Integer_Maximum =>
            return Create_Memory_Discrete
              (Int64'Max (Read_Discrete (Left), Read_Discrete (Right)),
               Res_Typ);

         when Iir_Predefined_Integer_Less_Equal
           | Iir_Predefined_Physical_Less_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) <= Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Less
           | Iir_Predefined_Physical_Less =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) < Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Greater_Equal
           | Iir_Predefined_Physical_Greater_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) >= Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Greater
           | Iir_Predefined_Physical_Greater =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) > Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Equality
           | Iir_Predefined_Physical_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) = Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Inequality
           | Iir_Predefined_Physical_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) /= Read_Discrete (Right)),
               Boolean_Type);

         when Iir_Predefined_Physical_Real_Mul =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) * Read_Fp64 (Right)),
               Res_Typ);
         when Iir_Predefined_Real_Physical_Mul =>
            return Create_Memory_Discrete
              (Int64 (Read_Fp64 (Left) * Fp64 (Read_Discrete (Right))),
               Res_Typ);
         when Iir_Predefined_Physical_Real_Div =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) / Read_Fp64 (Right)),
               Res_Typ);

         when Iir_Predefined_Floating_Less =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) < Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Less_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) <= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) = Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) /= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) > Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) >= Read_Fp64 (Right)),
               Boolean_Type);

         when Iir_Predefined_Floating_Plus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) + Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Minus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) - Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Mul =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) * Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Div =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) / Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Exp =>
            return Create_Memory_Fp64
              (Read_Fp64 (Left) ** Natural (Read_Discrete (Right)), Res_Typ);

         when Iir_Predefined_Array_Array_Concat =>
            declare
               L_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Left.Typ, 1));
               R_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Right.Typ, 1));
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
                  L_Len + R_Len);
               Res_St := Create_Onedimensional_Array_Subtype (Res_Typ, Bnd);
               Res := Create_Memory (Res_St);
               if Left.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               end if;
               if Right.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem + Left.Typ.Sz, Right.Mem, Right.Typ.Sz);
               end if;
               return Res;
            end;
         when Iir_Predefined_Element_Array_Concat =>
            declare
               Rlen : constant Iir_Index32 :=
                 Get_Array_Flat_Length (Right.Typ);
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0), 1 + Rlen);
               Res_St := Create_Onedimensional_Array_Subtype (Res_Typ, Bnd);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;
         when Iir_Predefined_Array_Element_Concat =>
            declare
               Llen : constant Iir_Index32 := Get_Array_Flat_Length (Left.Typ);
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0), Llen + 1);
               Res_St := Create_Onedimensional_Array_Subtype (Res_Typ, Bnd);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;

         when Iir_Predefined_Array_Equality
           | Iir_Predefined_Record_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Is_Equal (Left, Right)), Boolean_Type);
         when Iir_Predefined_Array_Inequality
            | Iir_Predefined_Record_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (not Is_Equal (Left, Right)), Boolean_Type);

         when Iir_Predefined_Access_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Access (Left) = Read_Access (Right)),
               Boolean_Type);
         when Iir_Predefined_Access_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Access (Left) /= Read_Access (Right)),
               Boolean_Type);

         when Iir_Predefined_Ieee_1164_Vector_And
           | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, And_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Or
           | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, Or_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Xor
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, Xor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Scalar_Or =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (Or_Table (Get_Static_Ulogic (Left),
                                         Get_Static_Ulogic (Right))),
               Res_Typ);

         when Iir_Predefined_Ieee_1164_Scalar_And =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (And_Table (Get_Static_Ulogic (Left),
                                          Get_Static_Ulogic (Right))),
               Res_Typ);

         when Iir_Predefined_Ieee_1164_Scalar_Xor =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (Xor_Table (Get_Static_Ulogic (Left),
                                          Get_Static_Ulogic (Right))),
               Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, Expr) = Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, Expr) = Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, Expr) = Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, Expr) = Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Less, Expr) = Greater;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, Expr) = Greater;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Less, Expr) = Greater;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Less, Expr) = Greater;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Ge_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, Expr) >= Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, Expr) >= Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, Expr) <= Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, Expr) <= Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, Expr) <= Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, Expr) < Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, Expr) < Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Greater, Expr) < Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, Expr) < Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Log
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Log
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Slv
           | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Uns_Slv =>
            return Add_Uns_Uns (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Int =>
            return Add_Sgn_Int (Left, Read_Discrete (Right), Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Int =>
            return Add_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Sgn =>
            return Add_Sgn_Sgn (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Uns =>
            return Sub_Uns_Uns (Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Nat =>
            return Sub_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Int =>
            return Sub_Sgn_Int (Left, Read_Discrete (Right), Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Sgn =>
            return Sub_Sgn_Sgn (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Uns =>
            return Mul_Uns_Uns (Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Nat_Uns =>
            return Mul_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Nat =>
            return Mul_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Sgn =>
            return Mul_Sgn_Sgn (Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Int =>
            return Mul_Sgn_Int (Left, Read_Discrete (Right), Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Int_Sgn =>
            return Mul_Int_Sgn (Read_Discrete (Left), Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Srl_Uns_Int
           |  Iir_Predefined_Ieee_Numeric_Std_Srl_Sgn_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Read_Discrete (Right);
               if Amt >= 0 then
                  return Shift_Vec (Left, Uns32 (Amt), True, False);
               else
                  return Shift_Vec (Left, Uns32 (-Amt), False, False);
               end if;
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Sll_Uns_Int
           |  Iir_Predefined_Ieee_Numeric_Std_Sll_Sgn_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Read_Discrete (Right);
               if Amt >= 0 then
                  return Shift_Vec (Left, Uns32 (Amt), False, False);
               else
                  return Shift_Vec (Left, Uns32 (-Amt), True, False);
               end if;
            end;

         when others =>
            Error_Msg_Synth
              (+Expr, "synth_static_dyadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            return Null_Memtyp;
      end case;
   end Synth_Static_Dyadic_Predefined;

   function Synth_Vector_Monadic (Vec : Memtyp; Op : Table_1d) return Memtyp
   is
      Len : constant Iir_Index32 := Vec_Length (Vec.Typ);
      Res : Memtyp;
   begin
      Res := Create_Memory (Create_Res_Bound (Vec.Typ));
      for I in 1 .. Uns32 (Len) loop
         declare
            V : constant Std_Ulogic := Read_Std_Logic (Vec.Mem, I - 1);
         begin
            Write_Std_Logic (Res.Mem, I - 1, Op (V));
         end;
      end loop;
      return Res;
   end Synth_Vector_Monadic;

   function Synth_Vector_Reduce
     (Init : Std_Ulogic; Vec : Memtyp; Op : Table_2d) return Memtyp
   is
      El_Typ : constant Type_Acc := Vec.Typ.Vec_El;
      Res : Std_Ulogic;
   begin
      Res := Init;
      for I in 1 .. Uns32 (Vec_Length (Vec.Typ)) loop
         declare
            V : constant Std_Ulogic := Read_Std_Logic (Vec.Mem, I - 1);
         begin
            Res := Op (Res, V);
         end;
      end loop;

      return Create_Memory_U8 (Std_Ulogic'Pos (Res), El_Typ);
   end Synth_Vector_Reduce;

   function Synth_Static_Monadic_Predefined (Syn_Inst : Synth_Instance_Acc;
                                             Imp : Node;
                                             Operand : Memtyp;
                                             Expr : Node) return Memtyp
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Inter_Chain : constant Node :=
        Get_Interface_Declaration_Chain (Imp);
      Oper_Type : constant Node := Get_Type (Inter_Chain);
      Oper_Typ : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Oper_Type);
   begin
      case Def is
         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Bit_Not =>
            return Create_Memory_U8 (1 - Read_U8 (Operand), Oper_Typ);

         when Iir_Predefined_Integer_Negation
           | Iir_Predefined_Physical_Negation =>
            return Create_Memory_Discrete (-Read_Discrete (Operand), Oper_Typ);
         when Iir_Predefined_Integer_Absolute
           | Iir_Predefined_Physical_Absolute =>
            return Create_Memory_Discrete
              (abs Read_Discrete(Operand), Oper_Typ);
         when Iir_Predefined_Integer_Identity
           | Iir_Predefined_Physical_Identity =>
            return Operand;

         when Iir_Predefined_Floating_Negation =>
            return Create_Memory_Fp64 (-Read_Fp64 (Operand), Oper_Typ);
         when Iir_Predefined_Floating_Identity =>
            return Operand;
         when Iir_Predefined_Floating_Absolute =>
            return Create_Memory_Fp64 (abs Read_Fp64 (Operand), Oper_Typ);

         when Iir_Predefined_Ieee_1164_Condition_Operator =>
            --  Constant std_logic: need to convert.
            declare
               Val : Uns32;
               Zx : Uns32;
            begin
               From_Std_Logic (Int64 (Read_U8 (Operand)), Val, Zx);
               return Create_Memory_U8
                 (Boolean'Pos (Val = 1 and Zx = 0), Boolean_Type);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Neg_Sgn =>
            return Neg_Vec (Operand, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Not
           | Iir_Predefined_Ieee_Numeric_Std_Not_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Not_Sgn =>
            return Synth_Vector_Monadic (Operand, Not_Table);

         when Iir_Predefined_Ieee_1164_Scalar_Not =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (Not_Table (Read_Std_Logic (Operand.Mem, 0))),
               Oper_Typ);

         when Iir_Predefined_Ieee_1164_Or_Suv =>
            return Synth_Vector_Reduce ('0', Operand, Or_Table);

         when others =>
            Error_Msg_Synth
              (+Expr, "synth_static_monadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            raise Internal_Error;
      end case;
   end Synth_Static_Monadic_Predefined;

   function Eval_To_Vector (Arg : Uns64; Sz : Int64; Res_Type : Type_Acc)
                           return Memtyp
   is
      Len : constant Iir_Index32 := Iir_Index32 (Sz);
      El_Type : constant Type_Acc := Get_Array_Element (Res_Type);
      Res : Memtyp;
      Bnd : Type_Acc;
      B : Uns64;
   begin
      Bnd := Create_Vec_Type_By_Length (Width (Len), El_Type);
      Res := Create_Memory (Bnd);
      for I in 1 .. Len loop
         B := Shift_Right_Arithmetic (Arg, Natural (I - 1)) and 1;
         Write_Std_Logic (Res.Mem, Uns32 (Len - I),
                          Std_Ulogic'Val (Std_Logic_0_Pos + B));
      end loop;
      return Res;
   end Eval_To_Vector;

   function Eval_Unsigned_To_Integer (Arg : Memtyp; Loc : Node) return Int64
   is
      Res : Uns64;
      V : Std_Ulogic;
   begin
      Res := 0;
      for I in 1 .. Vec_Length (Arg.Typ) loop
         V := Std_Ulogic'Val (Read_U8 (Arg.Mem + Size_Type (I - 1)));
         case To_X01 (V) is
            when '0' =>
               Res := Res * 2;
            when '1' =>
               Res := Res * 2 + 1;
            when 'X' =>
               Warning_Msg_Synth
                 (+Loc, "metavalue detected, returning 0");
               Res := 0;
               exit;
         end case;
      end loop;
      return To_Int64 (Res);
   end Eval_Unsigned_To_Integer;

   function Eval_Signed_To_Integer (Arg : Memtyp; Loc : Node) return Int64
   is
      Len : constant Iir_Index32 := Vec_Length (Arg.Typ);
      Res : Uns64;
      E : Std_Ulogic;
   begin
      if Len = 0 then
         Warning_Msg_Synth
           (+Loc, "numeric_std.to_integer: null detected, returning 0");
         return 0;
      end if;

      E := Std_Ulogic'Val (Read_U8 (Arg.Mem));
      case To_X01 (E) is
         when '0' =>
            Res := 0;
         when '1' =>
            Res := not 0;
         when 'X' =>
            Warning_Msg_Synth (+Loc, "metavalue detected, returning 0");
            return 0;
      end case;
      for I in 2 .. Len loop
         E := Std_Ulogic'Val (Read_U8 (Arg.Mem + Size_Type (I - 1)));
         case To_X01 (E) is
            when '0' =>
               Res := Res * 2;
            when '1' =>
               Res := Res * 2 + 1;
            when 'X' =>
               Warning_Msg_Synth (+Loc, "metavalue detected, returning 0");
               return 0;
         end case;
      end loop;
      return To_Int64 (Res);
   end Eval_Signed_To_Integer;

   function Synth_Static_Predefined_Function_Call
     (Subprg_Inst : Synth_Instance_Acc; Expr : Node) return Memtyp
   is
      Imp  : constant Node := Get_Implementation (Expr);
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Param1 : Valtyp;
      Param2 : Valtyp;
      Res_Typ : Type_Acc;
      Inter : Node;
   begin
      Inter := Inter_Chain;
      if Inter /= Null_Node then
         Param1 := Get_Value (Subprg_Inst, Inter);
         Strip_Const (Param1);
         Inter := Get_Chain (Inter);
      else
         Param1 := No_Valtyp;
      end if;
      if Inter /= Null_Node then
         Param2 := Get_Value (Subprg_Inst, Inter);
         Strip_Const (Param2);
         Inter := Get_Chain (Inter);
      else
         Param2 := No_Valtyp;
      end if;

      Res_Typ := Get_Subtype_Object (Subprg_Inst, Get_Type (Imp));

      case Def is
         when Iir_Predefined_Endfile =>
            declare
               Res : Boolean;
            begin
               Res := Synth.Files_Operations.Endfile (Param1.Val.File, Expr);
               return Create_Memory_U8 (Boolean'Pos (Res), Boolean_Type);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Touns_Nat_Nat_Uns
           | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Unsigned_Int =>
            return Eval_To_Vector
              (Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Tosgn_Int_Nat_Sgn
           | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Vector_Int =>
            return Eval_To_Vector
              (To_Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Toint_Uns_Nat
           | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Integer_Uns
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Conv_Integer =>
            --  UNSIGNED to Natural.
            return Create_Memory_Discrete
              (Eval_Unsigned_To_Integer (Get_Memtyp (Param1), Expr), Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Toint_Sgn_Int =>
            --  SIGNED to Integer
            return Create_Memory_Discrete
              (Eval_Signed_To_Integer (Get_Memtyp (Param1), Expr), Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Shf_Left_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Shf_Left_Sgn_Nat =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               False, False);
         when Iir_Predefined_Ieee_Numeric_Std_Shf_Right_Uns_Nat =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               True, False);
         when Iir_Predefined_Ieee_Numeric_Std_Shf_Right_Sgn_Nat =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               True, True);

         when Iir_Predefined_Ieee_1164_To_Stdlogicvector_Bv =>
            declare
               El_Type : constant Type_Acc := Get_Array_Element (Res_Typ);
               Res : Memtyp;
               Bnd : Type_Acc;
               B : Std_Ulogic;
            begin
               Bnd := Create_Vec_Type_By_Length
                 (Uns32 (Vec_Length (Param1.Typ)), El_Type);
               Res := Create_Memory (Bnd);
               for I in 1 .. Vec_Length (Param1.Typ) loop
                  if Read_U8 (Param1.Val.Mem + Size_Type (I - 1)) = 0 then
                     B := '0';
                  else
                     B := '1';
                  end if;
                  Write_Std_Logic (Res.Mem, Uns32 (I - 1), B);
               end loop;
               return Res;
            end;
         when Iir_Predefined_Ieee_Math_Real_Log2 =>
            declare
               function Log2 (Arg : Fp64) return Fp64;
               pragma Import (C, Log2);
            begin
               return Create_Memory_Fp64 (Log2 (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Ceil =>
            declare
               function Ceil (Arg : Fp64) return Fp64;
               pragma Import (C, Ceil);
            begin
               return Create_Memory_Fp64 (Ceil (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Floor =>
            declare
               function Floor (Arg : Fp64) return Fp64;
               pragma Import (C, Floor);
            begin
               return Create_Memory_Fp64 (Floor (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Round =>
            declare
               function Round (Arg : Fp64) return Fp64;
               pragma Import (C, Round);
            begin
               return Create_Memory_Fp64 (Round (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Sin =>
            declare
               function Sin (Arg : Fp64) return Fp64;
               pragma Import (C, Sin);
            begin
               return Create_Memory_Fp64 (Sin (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Cos =>
            declare
               function Cos (Arg : Fp64) return Fp64;
               pragma Import (C, Cos);
            begin
               return Create_Memory_Fp64 (Cos (Read_Fp64 (Param1)), Res_Typ);
            end;
         when others =>
            Error_Msg_Synth
              (+Expr, "unhandled (static) function: "
                 & Iir_Predefined_Functions'Image (Def));
            return Null_Memtyp;
      end case;
   end Synth_Static_Predefined_Function_Call;

end Synth.Static_Oper;