aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-stmts.adb
blob: 05003e40ecf8489857454397dc703cdd78ae8b14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#!/bin/sh
# Script to make a new quantum project
# Jack Humbert 2015

KEYBOARD=$1
KEYBOARD_TYPE=$2

if [ -z "$KEYBOARD" ]; then
    echo "Usage:   $0 <keyboard_name> <keyboard_type>"
    echo "Example: $0 gh60 avr"
    echo "Example: $0 bfake ps2avrgb"
    exit 1
elif [ -z "$KEYBOARD_TYPE" ]; then
  KEYBOARD_TYPE=avr
fi

if [ "$KEYBOARD_TYPE" != "avr" ] && [ "$KEYBOARD_TYPE" != "ps2avrgb" ]; then
  echo "Invalid keyboard type target"
  exit 1
fi

if [ -e "keyboards/$1" ]; then
	echo "Error! keyboards/$1 already exists!"
	exit 1
fi

cd "$(dirname "$0")/.." || exit

KEYBOARD_NAME=$(basename "$1")
KEYBOARD_NAME_UPPERCASE=$(echo "$KEYBOARD_NAME" | awk '{print toupper($0)}')
NEW_KBD=keyboards/${KEYBOARD}


cp -r quantum/template/base "$NEW_KBD"
cp -r "quantum/template/$KEYBOARD_TYPE/." "$NEW_KBD"

mv "${NEW_KBD}/template.c" "${NEW_KBD}/${KEYBOARD_NAME}.c"
mv "${NEW_KBD}/template.h" "${NEW_KBD}/${KEYBOARD_NAME}.h"
find "${NEW_KBD}" -type f -exec sed -i '' -e "s;%KEYBOARD%;${KEYBOARD_NAME};g" {} \;
find "${NEW_KBD}" -type f -exec sed -i '' -e "s;%KEYBOARD_UPPERCASE%;${KEYBOARD_NAME_UPPERCASE};g" {} \;

GIT=$(whereis git)
if [ "$GIT" != "" ]; then
  IS_GIT_REPO=$($GIT log >>/dev/null 2>&1; echo $?)
  if [ "$IS_GIT_REPO" -eq 0 ]; then
    ID="'$($GIT config --get user.name)'"
    echo "Using $ID as user name"

    for i in "$NEW_KBD/config.h" \
             "$NEW_KBD/$KEYBOARD_NAME.c" \
             "$NEW_KBD/$KEYBOARD_NAME.h" \
             "$NEW_KBD/keymaps/default/config.h" \
             "$NEW_KBD/keymaps/default/keymap.c"
    do
      awk -v id="$ID" '{sub(/REPLACE_WITH_YOUR_NAME/,id); print}' < "$i" > "$i.$$"
      mv "$i.$$" "$i"
    done
  fi
fi

cat <<-EOF
######################################################
# $NEW_KBD project created. To start
# working on things, cd into $NEW_KBD
######################################################
EOF
5'>495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
--  Statements synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Ada.Unchecked_Deallocation;

with Grt.Algos;
with Areapools;
with Std_Names;

with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Types;
with Vhdl.Sem_Expr;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Std_Package;
with Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Evaluation;

with PSL.Types;
with PSL.Nodes;
with PSL.NFAs;
with PSL.Errors;

with Synth.Errors; use Synth.Errors;
with Synth.Decls; use Synth.Decls;
with Synth.Expr; use Synth.Expr;
with Synth.Insts; use Synth.Insts;
with Synth.Source;

with Netlists.Builders; use Netlists.Builders;
with Netlists.Gates;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Locations; use Netlists.Locations;

package body Synth.Stmts is
   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node);

   procedure Set_Location (N : Net; Loc : Node)
     renames Synth.Source.Set_Location;

   function Synth_Waveform (Syn_Inst : Synth_Instance_Acc;
                            Wf : Node;
                            Targ_Type : Type_Acc) return Value_Acc is
   begin
      if Get_Kind (Wf) = Iir_Kind_Unaffected_Waveform then
         --  TODO
         raise Internal_Error;
      end if;
      if Get_Chain (Wf) /= Null_Node then
         --  Warning.
         null;
      end if;
      if Get_Time (Wf) /= Null_Node then
         --  Warning
         null;
      end if;
      if Targ_Type = null then
         return Synth_Expression (Syn_Inst, Get_We_Value (Wf));
      else
         return Synth_Expression_With_Type
           (Syn_Inst, Get_We_Value (Wf), Targ_Type);
      end if;
   end Synth_Waveform;

   procedure Synth_Assign (Wid : Wire_Id;
                           Typ : Type_Acc;
                           Val : Value_Acc;
                           Offset : Uns32;
                           Loc : Source.Syn_Src) is
   begin
      Phi_Assign (Build_Context, Wid,
                  Get_Net (Synth_Subtype_Conversion (Val, Typ, False, Loc)),
                  Offset);
   end Synth_Assign;

   procedure Synth_Assignment_Aggregate (Syn_Inst : Synth_Instance_Acc;
                                         Target : Node;
                                         Target_Type : Type_Acc;
                                         Val : Value_Acc;
                                         Loc : Node)
   is
      Choice : Node;
      Assoc : Node;
      Pos : Uns32;
   begin
      if Target_Type.Kind = Type_Vector then
         Choice := Get_Association_Choices_Chain (Target);
         Pos := Target_Type.W;
         while Is_Valid (Choice) loop
            Assoc := Get_Associated_Expr (Choice);
            case Get_Kind (Choice) is
               when Iir_Kind_Choice_By_None =>
                  Pos := Pos - 1;
                  Synth_Assignment
                    (Syn_Inst, Assoc, Bit_Extract (Val, Pos, Target), Loc);
               when others =>
                  Error_Kind ("synth_assignment_aggregate", Choice);
            end case;
            Choice := Get_Chain (Choice);
         end loop;
      else
         raise Internal_Error;
      end if;
   end Synth_Assignment_Aggregate;

   procedure Synth_Assignment_Prefix (Syn_Inst : Synth_Instance_Acc;
                                      Pfx : Node;
                                      Dest_Obj : out Value_Acc;
                                      Dest_Off : out Uns32;
                                      Dest_Voff : out Net;
                                      Dest_Rdwd : out Width;
                                      Dest_Type : out Type_Acc) is
   begin
      case Get_Kind (Pfx) is
         when Iir_Kind_Simple_Name =>
            Synth_Assignment_Prefix (Syn_Inst, Get_Named_Entity (Pfx),
                                     Dest_Obj, Dest_Off,
                                     Dest_Voff, Dest_Rdwd, Dest_Type);
         when Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Anonymous_Signal_Declaration
           | Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Constant_Declaration
           | Iir_Kind_Object_Alias_Declaration =>
            declare
               Targ : constant Value_Acc := Get_Value (Syn_Inst, Pfx);
            begin
               Dest_Voff := No_Net;
               Dest_Rdwd := 0;
               Dest_Type := Targ.Typ;

               if Targ.Kind = Value_Alias then
                  Dest_Obj := Targ.A_Obj;
                  Dest_Off := Targ.A_Off;
               else
                  Dest_Obj := Targ;
                  Dest_Off := 0;
               end if;
            end;
         when Iir_Kind_Indexed_Name =>
            declare
               Voff : Net;
               Off : Uns32;
               W : Width;
               Dest_W : Width;
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Obj, Dest_Off, Dest_Voff, Dest_Rdwd, Dest_Type);
               Dest_W := Dest_Type.W;
               Synth_Indexed_Name (Syn_Inst, Pfx, Dest_Type, Voff, Off, W);

               Dest_Off := Dest_Off + Off;
               Dest_Type := Get_Array_Element (Dest_Type);

               if Voff /= No_Net then
                  if Dest_Voff = No_Net then
                     Dest_Voff := Voff;
                     Dest_Rdwd := Dest_W;
                  else
                     Dest_Voff := Build_Addidx
                       (Get_Build (Syn_Inst), Dest_Voff, Voff);
                  end if;
               end if;
            end;

         when Iir_Kind_Selected_Element =>
            declare
               Idx : constant Iir_Index32 :=
                 Get_Element_Position (Get_Named_Entity (Pfx));
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Obj, Dest_Off, Dest_Voff, Dest_Rdwd, Dest_Type);
               Dest_Off := Dest_Off + Dest_Type.Rec.E (Idx + 1).Off;
               Dest_Type := Dest_Type.Rec.E (Idx + 1).Typ;
            end;

         when Iir_Kind_Slice_Name =>
            declare
               Pfx_Bnd : Bound_Type;
               El_Typ : Type_Acc;
               Res_Bnd : Bound_Type;
               Sl_Voff : Net;
               Sl_Off : Uns32;
               Wd : Uns32;
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Obj, Dest_Off, Dest_Voff, Dest_Rdwd, Dest_Type);

               Get_Onedimensional_Array_Bounds (Dest_Type, Pfx_Bnd, El_Typ);
               Synth_Slice_Suffix (Syn_Inst, Pfx, Pfx_Bnd, El_Typ.W,
                                   Res_Bnd, Sl_Voff, Sl_Off, Wd);

               Dest_Off := Dest_Off + Sl_Off;

               if Sl_Voff /= No_Net then
                  if Dest_Voff /= No_Net then
                     Dest_Voff := Build_Addidx
                       (Get_Build (Syn_Inst), Dest_Voff, Sl_Voff);
                  else
                     Dest_Rdwd := Dest_Type.W;
                     Dest_Voff := Sl_Voff;
                  end if;
                  Dest_Type := Create_Slice_Type (Wd, El_Typ);
               else
                  Dest_Type :=
                    Create_Onedimensional_Array_Subtype (Dest_Type, Res_Bnd);
               end if;
            end;

         when others =>
            Error_Kind ("synth_assignment_prefix", Pfx);
      end case;
   end Synth_Assignment_Prefix;

   type Target_Kind is
     (Target_Simple, Target_Aggregate, Target_Memory);

   type Target_Info (Kind : Target_Kind := Target_Simple) is record
      --  In all cases, the type of the target is known or computed.
      Targ_Type : Type_Acc;

      case Kind is
         when Target_Simple =>
            --  For a simple target, the destination is known.
            Obj : Value_Acc;
            Off : Uns32;
         when Target_Aggregate =>
            --  For an aggregate: the type is computed and the details will
            --  be handled at the assignment.
            Aggr : Node;
         when Target_Memory =>
            --  For a memory: the destination is known.
            Mem_Obj : Value_Acc;
            --  The width of the whole mrmory.
            Mem_Width : Width;
            --  The dynamic offset.
            Mem_Voff : Net;
            Mem_Off : Uns32;
      end case;
   end record;

   type Target_Info_Array is array (Natural range <>) of Target_Info;

   function Synth_Target (Syn_Inst : Synth_Instance_Acc;
                          Target : Node) return Target_Info is
   begin
      case Get_Kind (Target) is
         when Iir_Kind_Aggregate =>
            declare
               Targ_Type : constant Node := Get_Type (Target);
               Base_Typ : Type_Acc;
               Bnd : Bound_Type;
            begin
               Base_Typ :=
                 Get_Value_Type (Syn_Inst, Get_Base_Type (Targ_Type));
               case Base_Typ.Kind is
                  when Type_Unbounded_Vector =>
                     Bnd := Expr.Synth_Array_Bounds (Syn_Inst, Targ_Type, 0);
                     return Target_Info' (Kind => Target_Aggregate,
                                          Targ_Type => Create_Vector_Type
                                            (Bnd, Base_Typ.Uvec_El),
                                          Aggr => Target);
                  when others =>
                     raise Internal_Error;
               end case;
            end;
         when Iir_Kind_Simple_Name
           | Iir_Kind_Selected_Element
           | Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Anonymous_Signal_Declaration
           | Iir_Kind_Indexed_Name
           | Iir_Kind_Slice_Name =>
            declare
               Obj : Value_Acc;
               Off : Uns32;
               Typ : Type_Acc;

               Voff : Net;
               Rdwd : Width;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Target,
                                        Obj, Off, Voff, Rdwd, Typ);
               if Voff = No_Net then
                  --  FIXME: check index.
                  return Target_Info'(Kind => Target_Simple,
                                      Targ_Type => Typ,
                                      Obj => Obj,
                                      Off => Off);
               else
                  return Target_Info'(Kind => Target_Memory,
                                      Targ_Type => Typ,
                                      Mem_Obj => Obj,
                                      Mem_Width => Rdwd,
                                      Mem_Voff => Voff,
                                      Mem_Off => Off);
               end if;
            end;
         when others =>
            Error_Kind ("synth_target", Target);
      end case;
   end Synth_Target;

   procedure Assign_Value (Targ : Value_Acc; Val : Value_Acc; Loc : Node) is
   begin
      case Targ.Kind is
         when Value_Discrete =>
            Targ.Scal := Val.Scal;
         when Value_Array =>
            declare
               Len : constant Iir_Index32 := Val.Arr.Len;
            begin
               for I in 1 .. Len loop
                  Assign_Value (Targ.Arr.V (Targ.Arr.Len - Len + I),
                                Val.Arr.V (I), Loc);
               end loop;
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Assign_Value;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Target_Info;
                               Val : Value_Acc;
                               Loc : Node) is
   begin
      case Target.Kind is
         when Target_Aggregate =>
            Synth_Assignment_Aggregate
              (Syn_Inst, Target.Aggr, Target.Targ_Type, Val, Loc);
         when Target_Simple =>
            if Target.Obj.Kind = Value_Wire then
               Synth_Assign (Target.Obj.W, Target.Targ_Type,
                             Val, Target.Off, Loc);
            else
               pragma Assert (Target.Off = 0);
               Assign_Value (Target.Obj, Val, Loc);
            end if;
         when Target_Memory =>
            declare
               V : Net;
            begin
               V := Get_Current_Assign_Value
                 (Get_Build (Syn_Inst), Target.Mem_Obj.W, Target.Mem_Off,
                  Target.Mem_Width);
               V := Build_Dyn_Insert (Get_Build (Syn_Inst), V, Get_Net (Val),
                  Target.Mem_Voff, Target.Mem_Off);
               Set_Location (V, Loc);
               Synth_Assign
                 (Target.Mem_Obj.W, Target.Targ_Type,
                  Create_Value_Net (V, Target.Targ_Type), Target.Mem_Off, Loc);
            end;
      end case;
   end Synth_Assignment;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Node;
                               Val : Value_Acc;
                               Loc : Node)
   is
      Info : Target_Info;
   begin
      Info := Synth_Target (Syn_Inst, Target);
      Synth_Assignment (Syn_Inst, Info, Val, Loc);
   end Synth_Assignment;

   function Synth_Read_Memory (Syn_Inst : Synth_Instance_Acc;
                               Obj : Value_Acc;
                               Off : Uns32;
                               Voff : Net;
                               Typ : Type_Acc;
                               Loc : Node) return Value_Acc
   is
      N : Net;
   begin
      if Voff /= No_Net then
         N := Build_Dyn_Extract
           (Get_Build (Syn_Inst), Get_Net (Obj), Voff, Off, Typ.W);
      else
         if Off = 0 and then Typ.W = Obj.Typ.W then
            --  Nothing to do if extracting the whole object.
            return Obj;
         end if;
         N := Build_Extract (Get_Build (Syn_Inst), Get_Net (Obj), Off, Typ.W);
      end if;
      Set_Location (N, Loc);
      return Create_Value_Net (N, Typ);
   end Synth_Read_Memory;

   --  Concurrent or sequential simple signal assignment
   procedure Synth_Simple_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Value_Acc;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Val := Synth_Waveform
        (Syn_Inst, Get_Waveform_Chain (Stmt), Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Simple_Signal_Assignment;

   procedure Synth_Conditional_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Cond : Node;
      Cwf : Node;
      Val, Cond_Val : Value_Acc;
      First, Last : Net;
      V : Net;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Last := No_Net;
      Cwf := Get_Conditional_Waveform_Chain (Stmt);
      while Cwf /= Null_Node loop
         Val := Synth_Waveform
           (Syn_Inst, Get_Waveform_Chain (Cwf), Targ.Targ_Type);
         V := Get_Net (Val);
         Cond := Get_Condition (Cwf);
         if Cond /= Null_Node then
            Cond_Val := Synth_Expression (Syn_Inst, Cond);
            V := Build_Mux2 (Build_Context,
                             Get_Net (Cond_Val),
                             No_Net, V);
            Set_Location (V, Cwf);
         end if;

         if Last /= No_Net then
            Connect (Get_Input (Get_Net_Parent (Last), 1), V);
         else
            First := V;
         end if;
         Last := V;
         Cwf := Get_Chain (Cwf);
      end loop;
      Val := Create_Value_Net (First, Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Conditional_Signal_Assignment;

   procedure Synth_Variable_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Value_Acc;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Val := Synth_Expression_With_Type
        (Syn_Inst, Get_Expression (Stmt), Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Variable_Assignment;

   procedure Synth_Conditional_Variable_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Target : constant Node := Get_Target (Stmt);
      Targ_Type : Type_Acc;
      Cond : Node;
      Ce : Node;
      Val, Cond_Val : Value_Acc;
      V : Net;
      First, Last : Net;
   begin
      Targ_Type := Get_Value_Type (Syn_Inst, Get_Type (Target));
      Last := No_Net;
      Ce := Get_Conditional_Expression_Chain (Stmt);
      while Ce /= Null_Node loop
         Val := Synth_Expression_With_Type
           (Syn_Inst, Get_Expression (Ce), Targ_Type);
         V := Get_Net (Val);
         Cond := Get_Condition (Ce);
         if Cond /= Null_Node then
            Cond_Val := Synth_Expression (Syn_Inst, Cond);
            V := Build_Mux2 (Build_Context, Get_Net (Cond_Val), No_Net, V);
            Set_Location (V, Ce);
         end if;

         if Last /= No_Net then
            Connect (Get_Input (Get_Net_Parent (Last), 1), V);
         else
            First := V;
         end if;
         Last := V;
         Ce := Get_Chain (Ce);
      end loop;
      Val := Create_Value_Net (First, Targ_Type);
      Synth_Assignment (Syn_Inst, Target, Val, Stmt);
   end Synth_Conditional_Variable_Assignment;

   procedure Synth_If_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Els : constant Node := Get_Else_Clause (Stmt);
      Cond_Val : Value_Acc;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Cond_Val := Synth_Expression (C.Inst, Cond);
      if Is_Const (Cond_Val) then
         if Cond_Val.Scal = 1 then
            --  True.
            Synth_Sequential_Statements
              (C, Get_Sequential_Statement_Chain (Stmt));
         else
            pragma Assert (Cond_Val.Scal = 0);
            if Is_Valid (Els) then
               --  Else part
               if Is_Null (Get_Condition (Els)) then
                  --  Final else part.
                  Synth_Sequential_Statements
                    (C, Get_Sequential_Statement_Chain (Els));
               else
                  --  Elsif.  Handled as a nested if.
                  Synth_If_Statement (C, Els);
               end if;
            end if;
         end if;
      else
         Push_Phi;
         Synth_Sequential_Statements
           (C, Get_Sequential_Statement_Chain (Stmt));
         Pop_Phi (Phi_True);

         Push_Phi;
         if Is_Valid (Els) then
            if Is_Null (Get_Condition (Els)) then
               --  Final else part.
               Synth_Sequential_Statements
                 (C, Get_Sequential_Statement_Chain (Els));
            else
               --  Elsif.  Handled as a nested if.
               Synth_If_Statement (C, Els);
            end if;
         end if;
         Pop_Phi (Phi_False);

         Merge_Phis (Build_Context,
                     Get_Net (Cond_Val), Phi_True, Phi_False, Stmt);
      end if;
   end Synth_If_Statement;

   procedure Convert_Bv_To_Uns64 (Expr : Node; Val : out Uns64; Dc : out Uns64)
   is
      El_Type : constant Node :=
        Get_Base_Type (Get_Element_Subtype (Get_Type (Expr)));
   begin
      if El_Type = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_Type then
         declare
            use Vhdl.Evaluation.String_Utils;

            Info : constant Str_Info := Get_Str_Info (Expr);
         begin
            if Info.Len > 64 then
               raise Internal_Error;
            end if;
            Val := 0;
            Dc := 0;
            for I in 0 .. Info.Len - 1 loop
               Val := Shift_Left (Val, 1);
               Dc := Shift_Left (Dc, 1);
               case Get_Pos (Info, I) is
                  when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos =>
                     Val := Val or 0;
                  when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos =>
                     Val := Val or 1;
                  when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos
                    |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
                     Dc := Dc or 1;
                  when others =>
                     raise Internal_Error;
               end case;
            end loop;
         end;
      elsif El_Type = Vhdl.Std_Package.Bit_Type_Definition then
         declare
            use Vhdl.Evaluation.String_Utils;

            Info : constant Str_Info := Get_Str_Info (Expr);
         begin
            if Info.Len > 64 then
               raise Internal_Error;
            end if;
            Val := 0;
            Dc := 0;
            for I in 0 .. Info.Len - 1 loop
               Val := Shift_Left (Val, 1);
               case Get_Pos (Info, I) is
                  when 0 =>
                     Val := Val or 0;
                  when 1 =>
                     Val := Val or 1;
                  when others =>
                     raise Internal_Error;
               end case;
            end loop;
         end;
      else
         raise Internal_Error;
      end if;
   end Convert_Bv_To_Uns64;

   --  EXPR is a choice, so a locally static literal.
   procedure Convert_To_Uns64 (Expr : Node; Val : out Uns64; Dc : out Uns64)
   is
      Expr_Type : constant Node := Get_Type (Expr);
   begin
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Array_Subtype_Definition =>
            Convert_Bv_To_Uns64 (Expr, Val, Dc);
         when Iir_Kind_Enumeration_Type_Definition =>
            Dc := 0;
            Val := Uns64 (Get_Enum_Pos (Strip_Denoting_Name (Expr)));
         when Iir_Kind_Integer_Type_Definition =>
            --  TODO: signed values.
            Dc := 0;
            Val := Uns64 (Get_Value (Expr));
         when others =>
            Error_Kind ("convert_to_uns64", Expr_Type);
      end case;
   end Convert_To_Uns64;

   type Alternative_Index is new Int32;

   type Choice_Data_Type is record
      --  Value of the choice
      Val : Uns64;

      --  Corresponding alternative
      Alt : Alternative_Index;
   end record;

   type Choice_Data_Array is array (Natural range <>) of Choice_Data_Type;
   type Choice_Data_Array_Acc is access Choice_Data_Array;
   procedure Free_Choice_Data_Array is new Ada.Unchecked_Deallocation
     (Choice_Data_Array, Choice_Data_Array_Acc);

   type Alternative_Data_Type is record
      Asgns : Seq_Assign;
      Val : Net;
   end record;
   type Alternative_Data_Array is
     array (Alternative_Index range <>) of Alternative_Data_Type;
   type Alternative_Data_Acc is access Alternative_Data_Array;
   procedure Free_Alternative_Data_Array is new Ada.Unchecked_Deallocation
     (Alternative_Data_Array, Alternative_Data_Acc);

   type Wire_Id_Array is array (Natural range <>) of Wire_Id;
   type Wire_Id_Array_Acc is access Wire_Id_Array;
   procedure Free_Wire_Id_Array is new Ada.Unchecked_Deallocation
     (Wire_Id_Array, Wire_Id_Array_Acc);

   procedure Sort_Wire_Id_Array (Arr : in out Wire_Id_Array)
   is
      function Lt (Op1, Op2 : Natural) return Boolean is
      begin
         return Is_Lt (Arr (Op1), Arr (Op2));
      end Lt;

      procedure Swap (From : Natural; To : Natural)
      is
         T : Wire_Id;
      begin
         T := Arr (From);
         Arr (From) := Arr (To);
         Arr (To) := T;
      end Swap;

      procedure Wid_Heap_Sort is
         new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
   begin
      Wid_Heap_Sort (Arr'Length);
   end Sort_Wire_Id_Array;

   function Count_Wires_In_Alternatives (Alts : Alternative_Data_Array)
                                        return Natural
   is
      Res : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Res := 0;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if not Get_Wire_Mark (W) then
               Res := Res + 1;
               Set_Wire_Mark (W, True);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      return Res;
   end Count_Wires_In_Alternatives;

   procedure Fill_Wire_Id_Array (Arr : out Wire_Id_Array;
                                 Alts : Alternative_Data_Array)
   is
      Idx : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Idx := Arr'First;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if Get_Wire_Mark (W) then
               Arr (Idx) := W;
               Idx := Idx + 1;
               Set_Wire_Mark (W, False);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      pragma Assert (Idx = Arr'Last + 1);
   end Fill_Wire_Id_Array;

   type Case_Element is record
      Sel : Uns64;
      Val : Net;
   end record;

   type Case_Element_Array is array (Natural range <>) of Case_Element;
   type Case_Element_Array_Acc is access Case_Element_Array;
   procedure Free_Case_Element_Array is new Ada.Unchecked_Deallocation
     (Case_Element_Array, Case_Element_Array_Acc);

   --  Generate a netlist for a 'big' mux selected by SEL.  The inputs are
   --  described by ELS: E.Val must be selected when SEL = E.Sel; if there
   --  is no E in Els for a value, DEFAULT is selected.
   --  The result of the netlist is stored in RES.
   --
   --  A tree of MUX4 is built.
   --
   --  ELS must be sorted by SEL values.
   --  ELS is overwritten/modified so after the call it contains garbage.  The
   --  reason is that ELS might be large, so temporary arrays are not allocated
   --  on the stack, and ELS is expected to be built only for this subprogram.
   procedure Synth_Case (Sel : Net;
                         Els : in out Case_Element_Array;
                         Default : Net;
                         Res : out Net)
   is
      Wd : constant Width := Get_Width (Sel);
      Mask : Uns64;
      Sub_Sel : Net;
      Lels : Natural;
      Iels : Natural;
      Oels : Natural;
   begin
      Lels := Els'Last;
      Iels := Els'First;

      if Lels < Iels then
         --  No choices
         Res := Default;
         return;
      end if;

      --  Handle SEL bits by 2, so group case_element by 4.
      for I in 1 .. Natural (Wd / 2) loop
         --  Extract 2 bits from the selector.
         Sub_Sel := Build_Extract (Build_Context,
                                   Sel, Width (2 * (I - 1)), 2);
         Mask := Shift_Left (not 0, Natural (2 * I));
         Iels := Els'First;
         Oels := Els'First;
         while Iels <= Lels loop
            declare
               type Net4 is array (0 .. 3) of Net;
               G : Net4;
               S_Group : constant Uns64 := Els (Iels).Sel and Mask;
               S_El : Uns64;
               El_Idx : Natural;
               Rsel : Net;
            begin
               G := (others => Default);
               for K in 0 .. 3 loop
                  exit when Iels > Lels;
                  S_El := Els (Iels).Sel;
                  exit when (S_El and Mask) /= S_Group;
                  El_Idx := Natural
                    (Shift_Right (S_El, Natural (2 * (I - 1))) and 3);
                  G (El_Idx) := Els (Iels).Val;
                  Iels := Iels + 1;
               end loop;
               if G (3) /= No_Net then
                  Rsel := Build_Mux4 (Build_Context,
                                      Sub_Sel, G (0), G (1), G (2), G (3));
               elsif G (2) /= No_Net then
                  Rsel := Build_Mux2
                    (Build_Context,
                     Build_Extract_Bit (Build_Context,
                                        Sel, Width (2 * (I - 1)) + 1),
                     Build_Mux2 (Build_Context,
                                 Build_Extract_Bit (Build_Context,
                                                    Sel, Width (2 * (I - 1))),
                                 G (0), G (1)),
                     G (2));
               elsif G (1) /= No_Net then
                  Rsel := Build_Mux2
                    (Build_Context,
                     Build_Extract_Bit (Build_Context,
                                        Sel, Width (2 * (I - 1))),
                     G (0), G (1));
               else
                  Rsel := G (0);
               end if;
               Els (Oels) := (Sel => S_Group, Val => Rsel);
               Oels := Oels + 1;
            end;
         end loop;
         Lels := Oels - 1;
      end loop;

      --  If the width is not a multiple of 2, handle the last level.
      if Wd mod 2 = 1 then
         if Wd = 1 then
            Sub_Sel := Sel;
         else
            Sub_Sel := Build_Extract_Bit (Build_Context, Sel, Wd - 1);
         end if;
         Iels := Els'First;
         Oels := Els'First;
         while Iels <= Lels loop
            declare
               type Net2 is array (0 .. 1) of Net;
               G : Net2;
               S_Group : constant Uns64 := Els (Iels).Sel and Mask;
               S_El : Uns64;
               El_Idx : Natural;
            begin
               G := (others => Default);
               for K in 0 .. 1 loop
                  exit when Iels > Lels;
                  S_El := Els (Iels).Sel;
                  El_Idx := Natural
                    (Shift_Right (S_El, Natural (Wd - 1)) and 1);
                  G (El_Idx) := Els (Iels).Val;
                  Iels := Iels + 1;
               end loop;
               Els (Oels) :=
                 (Sel => S_Group,
                  Val => Build_Mux2 (Build_Context, Sub_Sel, G (0), G (1)));
               Oels := Oels + 1;
            end;
         end loop;
         Lels := Oels - 1;
      end if;
      pragma Assert (Lels = Els'First);
      Res := Els (Els'First).Val;
   end Synth_Case;

   type Partial_Assign_Array_Acc is access Partial_Assign_Array;
   procedure Free_Partial_Assign_Array is new Ada.Unchecked_Deallocation
     (Partial_Assign_Array, Partial_Assign_Array_Acc);

   procedure Synth_Case_Statement (C : in out Seq_Context; Stmt : Node)
   is
      use Vhdl.Sem_Expr;

      Expr : constant Node := Get_Expression (Stmt);
      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);
      Choice : Node;

      Case_Info : Choice_Info_Type;
      Annex_Arr : Annex_Array_Acc;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      --  Array of choices.  Contains tuple of (Value, Alternative).
      Choice_Data : Choice_Data_Array_Acc;
      Choice_Idx : Natural;

      Case_El : Case_Element_Array_Acc;
      Pasgns : Partial_Assign_Array_Acc;
      Nets : Net_Array_Acc;

      Nbr_Wires : Natural;
      Wires : Wire_Id_Array_Acc;

      Sel : Value_Acc;
      Sel_Net : Net;
   begin
      --  Strategies to synthesize a case statement.  Assume the selector is
      --  a net of W bits
      --  - a large mux, with 2**W inputs
      --    - if the number of choices is dense
      --    - if W is small
      --  - a onehot mux.  Each choice is converted to an single bit condition
      --    by adding a comparison operator (equal for single choice,
      --    inequalities for ranges, or for multiple choices). Only one of
      --    these conditions is true (plus 'others').
      --    - if the number of choices is sparse
      --    - large range choices
      --  - a tree of mux/mux2
      --    - large number of choices, densily grouped but sparsed compared
      --       to 2**W (eg: a partially filled memory)
      --    - divide and conquier

      --  Create a net for the expression.
      Sel := Synth_Expression_With_Basetype (C.Inst, Expr);

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));
      Choice_Data := new Choice_Data_Array (1 .. Case_Info.Nbr_Choices);
      Annex_Arr := new Annex_Array (1 .. Case_Info.Nbr_Choices);
      Case_Info.Annex_Arr := Annex_Arr;

      --  Synth statements, extract choice value.
      Alt_Idx := 0;
      Others_Alt_Idx := 0;
      Choice_Idx := 0;
      Choice := Choices;
      while Is_Valid (Choice) loop
         if not Get_Same_Alternative_Flag (Choice) then
            Alt_Idx := Alt_Idx + 1;

            declare
               Phi : Phi_Type;
            begin
               Push_Phi;
               Synth_Sequential_Statements (C, Get_Associated_Chain (Choice));
               Pop_Phi (Phi);
               Alts (Alt_Idx).Asgns := Sort_Phi (Phi);
            end;
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Choice_Idx := Choice_Idx + 1;
               Annex_Arr (Choice_Idx) := Int32 (Choice_Idx);
               declare
                  Choice_Expr : constant Node :=
                    Get_Choice_Expression (Choice);
                  Val, Dc : Uns64;
               begin
                  Convert_To_Uns64 (Choice_Expr, Val, Dc);
                  if Dc = 0 then
                     Choice_Data (Choice_Idx) := (Val => Val,
                                                  Alt => Alt_Idx);
                  else
                     Error_Msg_Synth (+Choice_Expr, "meta-values never match");
                     Choice_Data (Choice_Idx) := (Val => 0,
                                                  Alt => 0);
                  end if;
               end;
            when Iir_Kind_Choice_By_Others =>
               Others_Alt_Idx := Alt_Idx;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
      pragma Assert (Choice_Idx = Choice_Data'Last);

      --  Sort by order.
      if Get_Kind (Get_Type (Expr)) in Iir_Kinds_Discrete_Type_Definition then
         Sort_Discrete_Choices (Case_Info);
      else
         Sort_String_Choices (Case_Info);
      end if;

      --  Create list of wire_id, sort it.
      Nbr_Wires := Count_Wires_In_Alternatives (Alts.all);
      Wires := new Wire_Id_Array (1 .. Nbr_Wires);
      Fill_Wire_Id_Array (Wires.all, Alts.all);
      Sort_Wire_Id_Array (Wires.all);

      --  Associate each choice with the assign node
      --  For each wire_id:
      --    Build mux2/mux4 tree (group by 4)
      Case_El := new Case_Element_Array (1 .. Case_Info.Nbr_Choices);

      Pasgns := new Partial_Assign_Array (1 .. Int32 (Alts'Last));
      Nets := new Net_Array (1 .. Int32 (Alts'Last));

      Sel_Net := Get_Net (Sel);

      --  For each wire, compute the result.
      for I in Wires'Range loop
         declare
            Wi : constant Wire_Id := Wires (I);
            Last_Val : Net;
            Res : Net;
            Default : Net;
            C : Natural;
            Min_Off, Off : Uns32;
            Wd : Width;
            List : Partial_Assign_List;
         begin
            --  Extract the value for each branch.
            for I in Alts'Range loop
               --  If there is an assignment to Wi in Alt, it will define the
               --  value.
               if Get_Wire_Id (Alts (I).Asgns) = Wi then
                  Pasgns (Int32 (I)) := Get_Assign_Partial (Alts (I).Asgns);
                  Alts (I).Asgns := Get_Assign_Chain (Alts (I).Asgns);
               else
                  Pasgns (Int32 (I)) := No_Partial_Assign;
               end if;
            end loop;

            Partial_Assign_Init (List);
            Min_Off := 0;
            loop
               Off := Min_Off;

               -- Extract value of partial assignments to NETS.
               Extract_Merge_Partial_Assigns
                 (Build_Context, Pasgns.all, Nets.all, Off, Wd);
               exit when Off = Uns32'Last and Wd = Width'Last;

               --  If a branch has no value, use the value before the case.
               Last_Val := No_Net;
               for I in Nets'Range loop
                  if Nets (I) = No_Net then
                     if Last_Val = No_Net then
                        Last_Val := Get_Current_Assign_Value
                          (Build_Context, Wi, Off, Wd);
                     end if;
                     Nets (I) := Last_Val;
                  end if;
               end loop;

               --  Build the map between choices and values.
               for J in Annex_Arr'Range loop
                  C := Natural (Annex_Arr (J));
                  Case_El (J) := (Sel => Choice_Data (C).Val,
                                  Val => Nets (Int32 (Choice_Data (C).Alt)));
               end loop;

               --  Extract default value (for missing alternative).
               if Others_Alt_Idx /= 0 then
                  Default := Nets (Int32 (Others_Alt_Idx));
               else
                  Default := No_Net;
               end if;

               --  Generate the muxes tree.
               Synth_Case (Sel_Net, Case_El.all, Default, Res);

               Partial_Assign_Append (List, New_Partial_Assign (Res, Off));
               Min_Off := Off + Wd;
            end loop;

            Merge_Partial_Assigns (Build_Context, Wi, List);
         end;
      end loop;

      --  free.
      Free_Case_Element_Array (Case_El);
      Free_Wire_Id_Array (Wires);
      Free_Choice_Data_Array (Choice_Data);
      Free_Annex_Array (Annex_Arr);
      Free_Alternative_Data_Array (Alts);
      Free_Partial_Assign_Array (Pasgns);
      Free_Net_Array (Nets);
   end Synth_Case_Statement;

   procedure Synth_Selected_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use Vhdl.Sem_Expr;

      Targ : constant Node := Get_Target (Stmt);

      Expr : constant Node := Get_Expression (Stmt);
      Choices : constant Node := Get_Selected_Waveform_Chain (Stmt);
      Choice : Node;

      Targ_Type : Type_Acc;

      Case_Info : Choice_Info_Type;
      Annex_Arr : Annex_Array_Acc;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      --  Array of choices.  Contains tuple of (Value, Alternative).
      Choice_Data : Choice_Data_Array_Acc;
      Choice_Idx : Natural;

      Case_El : Case_Element_Array_Acc;

      Sel : Value_Acc;
      Sel_Net : Net;
   begin
      Targ_Type := Get_Value_Type (Syn_Inst, Get_Type (Targ));
      --  Create a net for the expression.
      Sel := Synth_Expression_With_Basetype (Syn_Inst, Expr);

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));
      Choice_Data := new Choice_Data_Array (1 .. Case_Info.Nbr_Choices);
      Annex_Arr := new Annex_Array (1 .. Case_Info.Nbr_Choices);
      Case_Info.Annex_Arr := Annex_Arr;

      --  Synth statements, extract choice value.
      Alt_Idx := 0;
      Others_Alt_Idx := 0;
      Choice_Idx := 0;
      Choice := Choices;
      while Is_Valid (Choice) loop
         if not Get_Same_Alternative_Flag (Choice) then
            Alt_Idx := Alt_Idx + 1;

            Alts (Alt_Idx).Val := Get_Net
              (Synth_Waveform
                 (Syn_Inst, Get_Associated_Chain (Choice), Targ_Type));
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Choice_Idx := Choice_Idx + 1;
               Annex_Arr (Choice_Idx) := Int32 (Choice_Idx);
               declare
                  Choice_Expr : constant Node :=
                    Get_Choice_Expression (Choice);
                  Val, Dc : Uns64;
               begin
                  Convert_To_Uns64 (Choice_Expr, Val, Dc);
                  if Dc = 0 then
                     Choice_Data (Choice_Idx) := (Val => Val,
                                                  Alt => Alt_Idx);
                  else
                     Error_Msg_Synth (+Choice_Expr, "meta-values never match");
                     Choice_Data (Choice_Idx) := (Val => 0,
                                                  Alt => 0);
                  end if;
               end;
            when Iir_Kind_Choice_By_Others =>
               Others_Alt_Idx := Alt_Idx;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
      pragma Assert (Choice_Idx = Choice_Data'Last);

      --  Sort by order.
      if Get_Kind (Get_Type (Expr)) in Iir_Kinds_Discrete_Type_Definition then
         Sort_Discrete_Choices (Case_Info);
      else
         Sort_String_Choices (Case_Info);
      end if;

      --  Associate each choice with the assign node
      --  For each wire_id:
      --    Build mux2/mux4 tree (group by 4)
      Case_El := new Case_Element_Array (1 .. Case_Info.Nbr_Choices);

      Sel_Net := Get_Net (Sel);

      declare
         Res : Net;
         Default : Net;
         C : Natural;
      begin
         --  Build the map between choices and values.
         for J in Annex_Arr'Range loop
            C := Natural (Annex_Arr (J));
            Case_El (J) := (Sel => Choice_Data (C).Val,
                            Val => Alts (Choice_Data (C).Alt).Val);
         end loop;

         --  Extract default value (for missing alternative).
         if Others_Alt_Idx /= 0 then
            Default := Alts (Others_Alt_Idx).Val;
         else
            Default := No_Net;
         end if;

         --  Generate the muxes tree.
         Synth_Case (Sel_Net, Case_El.all, Default, Res);
         Synth_Assignment (Syn_Inst, Get_Target (Stmt),
                           Create_Value_Net (Res, Targ_Type),
                           Stmt);
      end;

      --  free.
      Free_Case_Element_Array (Case_El);
      Free_Choice_Data_Array (Choice_Data);
      Free_Annex_Array (Annex_Arr);
      Free_Alternative_Data_Array (Alts);
   end Synth_Selected_Signal_Assignment;

   procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
                                           Caller_Inst : Synth_Instance_Acc;
                                           Inter_Chain : Node;
                                           Assoc_Chain : Node;
                                           Infos : out Target_Info_Array)
   is
      pragma Assert (Infos'First = 1);
      Inter : Node;
      Inter_Type : Type_Acc;
      Assoc : Node;
      Assoc_Inter : Node;
      Actual : Node;
      Val : Value_Acc;
      Nbr_Inout : Natural;
   begin
      Set_Instance_Const (Subprg_Inst, True);

      Nbr_Inout := 0;
      Assoc := Assoc_Chain;
      Assoc_Inter := Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);
         Inter_Type := Get_Value_Type (Caller_Inst, Get_Type (Inter));

         case Iir_Parameter_Modes (Get_Mode (Inter)) is
            when Iir_In_Mode =>
               case Get_Kind (Assoc) is
                  when Iir_Kind_Association_Element_Open =>
                     Actual := Get_Default_Value (Inter);
                     Val := Synth_Expression_With_Type
                       (Subprg_Inst, Actual, Inter_Type);
                  when Iir_Kind_Association_Element_By_Expression =>
                     Actual := Get_Actual (Assoc);
                     Val := Synth_Expression_With_Type
                       (Caller_Inst, Actual, Inter_Type);
                  when others =>
                     raise Internal_Error;
               end case;
            when Iir_Out_Mode | Iir_Inout_Mode =>
               Nbr_Inout := Nbr_Inout + 1;
               Actual := Get_Actual (Assoc);
               Infos (Nbr_Inout) := Synth_Target (Caller_Inst, Actual);
               declare
                  Info : Target_Info renames Infos (Nbr_Inout);
               begin
                  if Info.Kind /= Target_Simple then
                     raise Internal_Error;
                  end if;
                  case Iir_Kinds_Interface_Object_Declaration
                    (Get_Kind (Inter))
                  is
                     when Iir_Kind_Interface_Constant_Declaration =>
                        raise Internal_Error;
                     when Iir_Kind_Interface_Variable_Declaration =>
                        --  Always pass by value.
                        Val := Synth_Read_Memory
                          (Caller_Inst, Info.Obj, Info.Off, No_Net,
                           Info.Targ_Type, Assoc);
                     when Iir_Kind_Interface_Signal_Declaration =>
                        --  Always pass by reference (use an alias).
                        Val := Create_Value_Alias
                          (Info.Obj, Info.Off, Info.Targ_Type);
                     when Iir_Kind_Interface_File_Declaration =>
                        raise Internal_Error;
                  end case;
               end;
         end case;

         --  FIXME: conversion only for constants, reshape for all.
         Val := Synth_Subtype_Conversion (Val, Inter_Type, True, Assoc);

         if Get_Instance_Const (Subprg_Inst) and then not Is_Const (Val) then
            Set_Instance_Const (Subprg_Inst, False);
         end if;

         case Iir_Kinds_Interface_Object_Declaration (Get_Kind (Inter)) is
            when Iir_Kind_Interface_Constant_Declaration =>
               --  Pass by reference.
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Variable_Declaration =>
               --  FIXME: Arguments are passed by copy.
               Create_Object (Subprg_Inst, Inter, Val);
               raise Internal_Error;
            when Iir_Kind_Interface_Signal_Declaration =>
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_File_Declaration =>
               raise Internal_Error;
         end case;

         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
   end Synth_Subprogram_Association;

   procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
                                           Caller_Inst : Synth_Instance_Acc;
                                           Inter_Chain : Node;
                                           Assoc_Chain : Node)
   is
      Infos : Target_Info_Array (1 .. 0);
      pragma Unreferenced (Infos);
   begin
      Synth_Subprogram_Association (Subprg_Inst, Caller_Inst,
                                    Inter_Chain, Assoc_Chain, Infos);
   end Synth_Subprogram_Association;

   procedure Synth_Subprogram_Back_Association
     (Subprg_Inst : Synth_Instance_Acc;
      Caller_Inst : Synth_Instance_Acc;
      Inter_Chain : Node;
      Assoc_Chain : Node;
      Infos : Target_Info_Array)
   is
      pragma Assert (Infos'First = 1);
      Inter : Node;
      Assoc : Node;
      Assoc_Inter : Node;
      Val : Value_Acc;
      Nbr_Inout : Natural;
   begin
      Nbr_Inout := 0;
      Assoc := Assoc_Chain;
      Assoc_Inter := Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);

         case Iir_Parameter_Modes (Get_Mode (Inter)) is
            when Iir_In_Mode =>
               null;
            when Iir_Out_Mode | Iir_Inout_Mode =>
               Nbr_Inout := Nbr_Inout + 1;
               if False then
                  Val := Synth_Expression (Subprg_Inst, Inter);
                  Synth_Assignment
                    (Caller_Inst, Infos (Nbr_Inout), Val, Assoc);
               end if;
         end case;

         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
      pragma Assert (Nbr_Inout = Infos'Last);
   end Synth_Subprogram_Back_Association;

   function Synth_Label (Stmt : Node) return Sname
   is
      Label : constant Name_Id := Get_Label (Stmt);
   begin
      if Label = Null_Identifier then
         return No_Sname;
      else
         return New_Sname_User (Label);
      end if;
   end Synth_Label;

   procedure Count_Associations
     (Inter_Chain : Node; Assoc_Chain : Node; Nbr_Inout : out Natural)
   is
      Assoc : Node;
      Assoc_Inter : Node;
      Inter : Node;
   begin
      Nbr_Inout := 0;

      Assoc := Assoc_Chain;
      Assoc_Inter := Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);

         case Iir_Parameter_Modes (Get_Mode (Inter)) is
            when Iir_In_Mode =>
               null;
            when Iir_Out_Mode | Iir_Inout_Mode =>
               Nbr_Inout := Nbr_Inout + 1;
         end case;

         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
   end Count_Associations;

   function Synth_Subprogram_Call
     (Syn_Inst : Synth_Instance_Acc; Call : Node) return Value_Acc
   is
      Imp  : constant Node := Get_Implementation (Call);
      Is_Func : constant Boolean := Is_Function_Declaration (Imp);
      Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Call);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Bod : constant Node := Get_Subprogram_Body (Imp);
      Area_Mark : Areapools.Mark_Type;
      Res : Value_Acc;
      C : Seq_Context;
      Wire_Mark : Wire_Id;
      Subprg_Phi : Phi_Type;
      Nbr_Inout : Natural;
   begin
      Mark (Wire_Mark);
      Areapools.Mark (Area_Mark, Instance_Pool.all);
      C := (Inst => Make_Instance (Syn_Inst, Bod,
                                   New_Internal_Name (Build_Context)),
            Cur_Loop => null,
            W_En => Alloc_Wire (Wire_Variable, Imp),
            W_Ret => Alloc_Wire (Wire_Variable, Imp),
            W_Val => No_Wire_Id,
            Ret_Init => No_Net,
            Ret_Value => null,
            Ret_Typ => null,
            Nbr_Ret => 0);

      if Is_Func then
         C.W_Val := Alloc_Wire (Wire_Variable, Imp);
      end if;

      Count_Associations (Inter_Chain, Assoc_Chain, Nbr_Inout);

      declare
         Infos : Target_Info_Array (1 .. Nbr_Inout);
      begin
         Synth_Subprogram_Association
           (C.Inst, Syn_Inst, Inter_Chain, Assoc_Chain, Infos);

         Push_Phi;

         if Is_Func then
            --  Set a default value for the return.
            C.Ret_Typ := Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
            Set_Wire_Gate (C.W_Val,
                           Build_Signal (Build_Context,
                                         New_Internal_Name (Build_Context),
                                         C.Ret_Typ.W));
            C.Ret_Init := Build_Const_X (Build_Context, C.Ret_Typ.W);
            Phi_Assign (Build_Context, C.W_Val, C.Ret_Init, 0);
         end if;

         Set_Wire_Gate
           (C.W_En, Build_Signal (Build_Context,
                                  New_Internal_Name (Build_Context), 1));
         Phi_Assign (Build_Context, C.W_En, Get_Inst_Bit1 (Syn_Inst), 0);

         Set_Wire_Gate
           (C.W_Ret, Build_Signal (Build_Context,
                                   New_Internal_Name (Build_Context), 1));
         Phi_Assign (Build_Context, C.W_Ret, Get_Inst_Bit1 (Syn_Inst), 0);

         Decls.Synth_Declarations (C.Inst, Get_Declaration_Chain (Bod), True);

         Synth_Sequential_Statements
           (C, Get_Sequential_Statement_Chain (Bod));

         if Is_Func then
            if C.Nbr_Ret = 0 then
               raise Internal_Error;
            elsif C.Nbr_Ret = 1 and then Is_Const (C.Ret_Value) then
               Res := C.Ret_Value;
            else
               Res := Create_Value_Net
                 (Get_Current_Value (Build_Context, C.W_Val), C.Ret_Value.Typ);
            end if;
         else
            Res := null;
            Synth_Subprogram_Back_Association
              (C.Inst, Syn_Inst, Inter_Chain, Assoc_Chain, Infos);
         end if;

         Pop_Phi (Subprg_Phi);

         Decls.Finalize_Declarations
           (C.Inst, Get_Declaration_Chain (Bod), True);
         pragma Unreferenced (Infos);

         --  Propagate assignments.
         Propagate_Phi_Until_Mark (Get_Build (C.Inst), Subprg_Phi, Wire_Mark);
      end;

      --  Free wires.
      Free_Wire (C.W_En);
      Free_Wire (C.W_Ret);
      if Is_Func then
         Free_Wire (C.W_Val);
      end if;

      Free_Instance (C.Inst);
      Areapools.Release (Area_Mark, Instance_Pool.all);

      Release (Wire_Mark);

      return Res;
   end Synth_Subprogram_Call;

   procedure Synth_Procedure_Call (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Call : constant Node := Get_Procedure_Call (Stmt);
      Imp  : constant Node := Get_Implementation (Call);
      Res : Value_Acc;
   begin
      if Get_Implicit_Definition (Imp) in Iir_Predefined_Implicit then
         Error_Msg_Synth (+Stmt, "call to implicit %n is not supported", +Imp);
         return;
      elsif Get_Foreign_Flag (Imp) then
         Error_Msg_Synth (+Stmt, "call to foreign %n is not supported", +Imp);
         return;
      end if;

      Res := Synth_Subprogram_Call (Syn_Inst, Call);
      pragma Assert (Res = null);
   end Synth_Procedure_Call;

   function In_Range (Rng : Discrete_Range_Type; V : Int64) return Boolean is
   begin
      case Rng.Dir is
         when Iir_To =>
            return V >= Rng.Left and then V <= Rng.Right;
         when Iir_Downto =>
            return V <= Rng.Left and then V >= Rng.Right;
      end case;
   end In_Range;

   procedure Update_Index (Rng : Discrete_Range_Type; Idx : in out Int64) is
   begin
      case Rng.Dir is
         when Iir_To =>
            Idx := Idx + 1;
         when Iir_Downto =>
            Idx := Idx - 1;
      end case;
   end Update_Index;

   procedure Loop_Control_Init (C : Seq_Context; Stmt : Node)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;

   begin
      Mark (C.Cur_Loop.Wire_Mark);

      if (Lc.Prev_Loop /= null and then Lc.Prev_Loop.Need_Quit) then
         Lc.W_Quit := Alloc_Wire (Wire_Variable, Lc.Loop_Stmt);
         Set_Wire_Gate
           (Lc.W_Quit, Build_Signal (Get_Build (C.Inst),
                                     New_Internal_Name (Build_Context), 1));
         Phi_Assign (Get_Build (C.Inst), Lc.W_Quit, Get_Inst_Bit1 (C.Inst), 0);
      end if;

      if Get_Exit_Flag (Stmt) or else Get_Next_Flag (Stmt) then
         Lc.Saved_En := Get_Current_Value (null, C.W_En);
         Lc.Need_Quit := True;
      end if;

      if Get_Exit_Flag (Stmt) then
         --  Exit statement for this loop.
         Lc.W_Exit := Alloc_Wire (Wire_Variable, Lc.Loop_Stmt);
         Set_Wire_Gate
           (Lc.W_Exit, Build_Signal (Get_Build (C.Inst),
                                     New_Internal_Name (Build_Context), 1));
         Phi_Assign (Get_Build (C.Inst), Lc.W_Exit, Get_Inst_Bit1 (C.Inst), 0);
      end if;
   end Loop_Control_Init;

   function Loop_Control_And (C : Seq_Context; L, R : Net) return Net
   is
      B1 : constant Net := Get_Inst_Bit1 (C.Inst);
   begin
      --  Optimize common cases.
      if L = B1 then
         return R;
      elsif R = B1 then
         return L;
      else
         return Build_Dyadic (Get_Build (C.Inst), Netlists.Gates.Id_And, L, R);
      end if;
   end Loop_Control_And;

   procedure Loop_Control_Update (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      Res : Net;
   begin
      --  Execution continue iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Res := Lc.Saved_En;
      if Res = No_Net then
         --  No loop control.
         return;
      end if;

      --  2. No return (C.W_Ret)
      if C.W_Ret /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, C.W_Ret));
      end if;

      --  3. No exit.
      if Lc.W_Exit /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Exit));
      end if;

      --  4. No quit.
      if Lc.W_Quit /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Quit));
      end if;

      Phi_Assign (Get_Build (C.Inst), C.W_En, Res, 0);
   end Loop_Control_Update;

   procedure Loop_Control_Finish (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      Res : Net;
   begin
      --  Execute continue iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Res := Lc.Saved_En;
      if Res = No_Net then
         --  No loop control.
         return;
      end if;

      --  2. No return (C.W_Ret)
      if C.W_Ret /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, C.W_Ret));
      end if;

      --  3. No quit (C.W_Quit)
      if Lc.W_Quit /= No_Wire_Id then
         Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Quit));
      end if;

      Phi_Discard_Wires (Lc.W_Quit, Lc.W_Exit);

      if Lc.W_Quit /= No_Wire_Id then
         Free_Wire (Lc.W_Quit);
      end if;

      if Lc.W_Exit /= No_Wire_Id then
         Free_Wire (Lc.W_Exit);
      end if;

      Release (C.Cur_Loop.Wire_Mark);

      Phi_Assign (Get_Build (C.Inst), C.W_En, Res, 0);
   end Loop_Control_Finish;

   procedure Synth_Exit_Next_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Is_Exit : constant Boolean := Get_Kind (Stmt) = Iir_Kind_Exit_Statement;
      Loop_Label : Node;
      Lc : Loop_Context_Acc;
      Cond_Val : Value_Acc;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin

      if Cond /= Null_Node then
         Cond_Val := Synth_Expression (C.Inst, Cond);
         Push_Phi;
      end if;

      --  Execution is suspended.
      Phi_Assign (Get_Build (C.Inst), C.W_En, Get_Inst_Bit0 (C.Inst), 0);

      Lc := C.Cur_Loop;

      Loop_Label := Get_Loop_Label (Stmt);
      if Loop_Label = Null_Node then
         Loop_Label := Lc.Loop_Stmt;
      else
         Loop_Label := Get_Named_Entity (Loop_Label);
      end if;

      loop
         if Lc.Loop_Stmt = Loop_Label then
            if Is_Exit then
               Phi_Assign (Get_Build (C.Inst), Lc.W_Exit,
                           Get_Inst_Bit0 (C.Inst), 0);
            end if;
            exit;
         else
            Phi_Assign (Get_Build (C.Inst), Lc.W_Quit,
                        Get_Inst_Bit0 (C.Inst), 0);
         end if;
         Lc := Lc.Prev_Loop;
      end loop;

      if Cond /= Null_Node then
         Pop_Phi (Phi_True);
         Push_Phi;
         Pop_Phi (Phi_False);
         Merge_Phis (Build_Context,
                     Get_Net (Cond_Val), Phi_True, Phi_False, Stmt);
      end if;
   end Synth_Exit_Next_Statement;

   procedure Synth_For_Loop_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
      It_Rng : Type_Acc;
      Val : Value_Acc;
      Lc : aliased Loop_Context;
   begin
      Lc := (Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             Need_Quit => False,
             Saved_En => No_Net,
             W_Exit => No_Wire_Id,
             W_Quit => No_Wire_Id,
             Wire_Mark => No_Wire_Id);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Loop_Control_Init (C, Stmt);

      if It_Type /= Null_Node then
         Synth_Subtype_Indication (C.Inst, It_Type);
      end if;

      --  Initial value.
      It_Rng := Get_Value_Type (C.Inst, Get_Type (Iterator));
      Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);
      Create_Object (C.Inst, Iterator, Val);

      while In_Range (It_Rng.Drange, Val.Scal) loop
         Synth_Sequential_Statements (C, Stmts);
         Update_Index (It_Rng.Drange, Val.Scal);
         Loop_Control_Update (C);
      end loop;
      Loop_Control_Finish (C);

      Destroy_Object (C.Inst, Iterator);
      if It_Type /= Null_Node then
         Destroy_Object (C.Inst, It_Type);
      end if;

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_For_Loop_Statement;

   procedure Synth_While_Loop_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Cond : constant Node := Get_Condition (Stmt);
      Val : Value_Acc;
      Lc : aliased Loop_Context;
   begin
      Lc := (Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             Need_Quit => False,
             Saved_En => No_Net,
             W_Exit => No_Wire_Id,
             W_Quit => No_Wire_Id,
             Wire_Mark => No_Wire_Id);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Loop_Control_Init (C, Stmt);

      loop
         if Cond /= Null_Node then
            Val := Synth_Expression_With_Type (C.Inst, Cond, Boolean_Type);
            if not Is_Const (Val) then
               Error_Msg_Synth (+Cond, "loop condition must be static");
               exit;
            end if;
            exit when Val.Scal = 0;
         end if;

         Synth_Sequential_Statements (C, Stmts);

         Loop_Control_Update (C);
      end loop;
      Loop_Control_Finish (C);

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_While_Loop_Statement;

   procedure Synth_Return_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Val : Value_Acc;
      Expr : constant Node := Get_Expression (Stmt);
   begin
      if Expr /= Null_Node then
         --  Return in function.
         Val := Synth_Expression_With_Type (C.Inst, Expr, C.Ret_Typ);
         Val := Synth_Subtype_Conversion (Val, C.Ret_Typ, False, Stmt);

         if C.Nbr_Ret = 0 then
            C.Ret_Value := Val;
            if not Is_Bounded_Type (C.Ret_Typ) then
               --  The function was declared with an unconstrained return type.
               --  Now that a value has been returned, we know the subtype of
               --  the returned values.  So adjust it.
               --  All the returned values must have the same length.
               C.Ret_Typ := Val.Typ;
               Set_Width (Get_Wire_Gate (C.W_Val), C.Ret_Typ.W);
               Set_Width (C.Ret_Init, C.Ret_Typ.W);
            end if;
         end if;
         Phi_Assign (Get_Build (C.Inst), C.W_Val, Get_Net (Val), 0);
      end if;

      --  The subprogram has returned.  Do not execute further statements.
      Phi_Assign (Get_Build (C.Inst), C.W_En, Get_Inst_Bit0 (C.Inst), 0);

      if C.W_Ret /= No_Wire_Id then
         Phi_Assign (Get_Build (C.Inst), C.W_Ret, Get_Inst_Bit0 (C.Inst), 0);
      end if;

      C.Nbr_Ret := C.Nbr_Ret + 1;
   end Synth_Return_Statement;

   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node)
   is
      Stmt : Node;
      Phi_T, Phi_F : Phi_Type;
      Has_Phi : Boolean;
      En : Net;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         En := Get_Current_Value (null, C.W_En);
         pragma Assert (En /= Get_Inst_Bit0 (C.Inst));
         Has_Phi := En /= Get_Inst_Bit1 (C.Inst);
         if Has_Phi then
            Push_Phi;
         end if;
         case Get_Kind (Stmt) is
            when Iir_Kind_If_Statement =>
               Synth_If_Statement (C, Stmt);
            when Iir_Kind_Simple_Signal_Assignment_Statement =>
               Synth_Simple_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Conditional_Signal_Assignment_Statement =>
               Synth_Conditional_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Variable_Assignment_Statement =>
               Synth_Variable_Assignment (C.Inst, Stmt);
            when Iir_Kind_Conditional_Variable_Assignment_Statement =>
               Synth_Conditional_Variable_Assignment (C.Inst, Stmt);
            when Iir_Kind_Case_Statement =>
               Synth_Case_Statement (C, Stmt);
            when Iir_Kind_For_Loop_Statement =>
               Synth_For_Loop_Statement (C, Stmt);
            when Iir_Kind_While_Loop_Statement =>
               Synth_While_Loop_Statement (C, Stmt);
            when Iir_Kind_Null_Statement =>
               --  Easy
               null;
            when Iir_Kind_Return_Statement =>
               Synth_Return_Statement (C, Stmt);
            when Iir_Kind_Procedure_Call_Statement =>
               Synth_Procedure_Call (C.Inst, Stmt);
            when Iir_Kind_Report_Statement
              | Iir_Kind_Assertion_Statement =>
               --  TODO ?
               null;
            when Iir_Kind_Exit_Statement
              | Iir_Kind_Next_Statement =>
               Synth_Exit_Next_Statement (C, Stmt);
            when others =>
               Error_Kind ("synth_sequential_statements", Stmt);
         end case;
         if Has_Phi then
            Pop_Phi (Phi_T);
            Push_Phi;
            Pop_Phi (Phi_F);
            Merge_Phis (Build_Context,
                        Get_Current_Value (Build_Context, C.W_En),
                        Phi_T, Phi_F, Stmt);
         end if;
         if Get_Current_Value (null, C.W_En) = Get_Inst_Bit0 (C.Inst) then
            return;
         end if;
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Sequential_Statements;

   Proc_Pool : aliased Areapools.Areapool;

   --  Synthesis of statements of a non-sensitized process.
   procedure Synth_Process_Sequential_Statements
     (C : in out Seq_Context; Proc : Node)
   is
      Stmt : Node;
      Cond : Node;
      Cond_Val : Value_Acc;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Stmt := Get_Sequential_Statement_Chain (Proc);

      --  The first statement must be a wait statement.
      if Get_Kind (Stmt) /= Iir_Kind_Wait_Statement then
         Error_Msg_Synth (+Stmt, "expect wait as the first statement");
         return;
      end if;

      --  Handle the condition as an if.
      Cond := Get_Condition_Clause (Stmt);
      Cond_Val := Synth_Expression (C.Inst, Cond);

      Push_Phi;
      Synth_Sequential_Statements (C, Get_Chain (Stmt));
      Pop_Phi (Phi_True);
      Push_Phi;
      Pop_Phi (Phi_False);

      Merge_Phis (Build_Context, Get_Net (Cond_Val),
                  Phi_True, Phi_False, Stmt);
   end Synth_Process_Sequential_Statements;

   procedure Synth_Process_Statement
     (Syn_Inst : Synth_Instance_Acc; Proc : Node)
   is
      use Areapools;
      Label : constant Name_Id := Get_Identifier (Proc);
      Decls_Chain : constant Node := Get_Declaration_Chain (Proc);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      M : Areapools.Mark_Type;
      C_Sname : Sname;
      C : Seq_Context;
   begin
      if Label = Null_Identifier then
         C_Sname := New_Internal_Name (Build_Context, Get_Sname (Syn_Inst));
      else
         C_Sname := New_Sname (Get_Sname (Syn_Inst), Label);
      end if;
      C := (Inst => Make_Instance (Syn_Inst, Proc, C_Sname),
            Cur_Loop => null,
            W_En => Alloc_Wire (Wire_Variable, Proc),
            W_Ret => No_Wire_Id,
            W_Val => No_Wire_Id,
            Ret_Init => No_Net,
            Ret_Value => null,
            Ret_Typ => null,
            Nbr_Ret => 0);


      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      if Is_Valid (Decls_Chain) then
         Synth_Declarations (C.Inst, Decls_Chain);
      end if;

      Set_Wire_Gate (C.W_En, Build_Signal (Build_Context,
                                           New_Internal_Name (Build_Context),
                                           1));
      Phi_Assign (Build_Context, C.W_En, Get_Inst_Bit1 (Syn_Inst), 0);

      case Iir_Kinds_Process_Statement (Get_Kind (Proc)) is
         when Iir_Kind_Sensitized_Process_Statement =>
            Synth_Sequential_Statements
              (C, Get_Sequential_Statement_Chain (Proc));
            --  FIXME: check sensitivity list.
         when Iir_Kind_Process_Statement =>
            Synth_Process_Sequential_Statements (C, Proc);
      end case;

      --  FIXME: free W_En ?

      Free_Instance (C.Inst);
      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Process_Statement;

   function Synth_User_Function_Call
     (Syn_Inst : Synth_Instance_Acc; Expr : Node) return Value_Acc is
   begin
      --  Is it a call to an ieee function ?
      declare
         Imp  : constant Node := Get_Implementation (Expr);
         Pkg : constant Node := Get_Parent (Imp);
         Unit : Node;
         Lib : Node;
      begin
         if Get_Kind (Pkg) = Iir_Kind_Package_Declaration then
            Unit := Get_Parent (Pkg);
            if Get_Kind (Unit) = Iir_Kind_Design_Unit then
               Lib := Get_Library (Get_Design_File (Unit));
               if Get_Identifier (Lib) = Std_Names.Name_Ieee then
                  Error_Msg_Synth
                    (+Expr, "unhandled call to an ieee function");
                  raise Internal_Error;
               end if;
            end if;
         end if;
      end;

      return Synth_Subprogram_Call (Syn_Inst, Expr);
   end Synth_User_Function_Call;

   procedure Synth_Concurrent_Assertion_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Cond : constant Node := Get_Assertion_Condition (Stmt);
      Val : Value_Acc;
      Inst : Instance;
   begin
      Val := Synth_Expression (Syn_Inst, Cond);
      if Is_Const (Val) then
         if Val.Scal /= 1 then
            raise Internal_Error;
         end if;
         return;
      end if;
      Inst := Build_Assert (Build_Context, Synth_Label (Stmt), Get_Net (Val));
      Set_Location (Inst, Get_Location (Stmt));
   end Synth_Concurrent_Assertion_Statement;

   procedure Synth_Block_Statement (Syn_Inst : Synth_Instance_Acc; Blk : Node)
   is
      use Areapools;
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Blk_Inst : Synth_Instance_Acc;
      Blk_Sname : Sname;
      M : Areapools.Mark_Type;
   begin
      --  No support for guard or header.
      if Get_Block_Header (Blk) /= Null_Node
        or else Get_Guard_Decl (Blk) /= Null_Node
      then
         raise Internal_Error;
      end if;

      Blk_Sname := New_Sname (Get_Sname (Syn_Inst), Get_Identifier (Blk));
      Blk_Inst := Make_Instance (Syn_Inst, Blk, Blk_Sname);
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Synth_Declarations (Blk_Inst, Get_Declaration_Chain (Blk));
      Synth_Concurrent_Statements
        (Blk_Inst, Get_Concurrent_Statement_Chain (Blk));

      Free_Instance (Blk_Inst);
      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Block_Statement;

   function Synth_PSL_Expression
     (Syn_Inst : Synth_Instance_Acc; Expr : PSL.Types.PSL_Node) return Net
   is
      use PSL.Types;
      use PSL.Nodes;
   begin
      case Get_Kind (Expr) is
         when N_HDL_Expr =>
            declare
               E : constant Vhdl.Types.Vhdl_Node := Get_HDL_Node (Expr);
            begin
               return Get_Net (Synth_Expression (Syn_Inst, E));
            end;
         when N_Not_Bool =>
            return Build_Monadic
              (Build_Context, Netlists.Gates.Id_Not,
               Synth_PSL_Expression (Syn_Inst, Get_Boolean (Expr)));
         when N_And_Bool =>
            declare
               L : constant PSL_Node := Get_Left (Expr);
               R : constant PSL_Node := Get_Right (Expr);
               Edge : Net;
            begin
               --  Handle edge (as it can be in default clock).
               if Get_Kind (L) = N_HDL_Expr and then Get_Kind (R) = N_HDL_Expr
               then
                  Edge := Synth_Clock_Edge
                    (Syn_Inst, Get_HDL_Node (L), Get_HDL_Node (R));
                  if Edge /= No_Net then
                     return Edge;
                  end if;
               end if;
               return Build_Dyadic
                 (Build_Context, Netlists.Gates.Id_And,
                  Synth_PSL_Expression (Syn_Inst, L),
                  Synth_PSL_Expression (Syn_Inst, R));
            end;
         when N_Or_Bool =>
            return Build_Dyadic
              (Build_Context, Netlists.Gates.Id_Or,
               Synth_PSL_Expression (Syn_Inst, Get_Left (Expr)),
               Synth_PSL_Expression (Syn_Inst, Get_Right (Expr)));
         when N_True =>
            return Build_Const_UB32 (Build_Context, 1, 1);
         when N_False =>
            return Build_Const_UB32 (Build_Context, 0, 1);
         when others =>
            PSL.Errors.Error_Kind ("translate_psl_expr", Expr);
      end case;
   end Synth_PSL_Expression;

   function Synth_Psl_NFA (Syn_Inst : Synth_Instance_Acc;
                           NFA : PSL.Types.PSL_NFA;
                           Nbr_States : Int32;
                           States : Net) return Net
   is
      use PSL.NFAs;
      S : NFA_State;
      S_Num : Int32;
      D_Num : Int32;
      I : Net;
      Cond : Net;
      E : NFA_Edge;
      D_Arr : Net_Array_Acc;
      Res : Net;
   begin
      D_Arr := new Net_Array'(0 .. Nbr_States - 1 => No_Net);
      S := Get_First_State (NFA);
      while S /= No_State loop
         S_Num := Get_State_Label (S);
         I := Build_Extract_Bit (Build_Context, States, Uns32 (S_Num));

         E := Get_First_Src_Edge (S);
         while E /= No_Edge loop
            Cond := Build_Dyadic
              (Build_Context, Netlists.Gates.Id_And,
               I, Synth_PSL_Expression (Syn_Inst, Get_Edge_Expr (E)));

            D_Num := Nbr_States - 1 - Get_State_Label (Get_Edge_Dest (E));
            if D_Arr (D_Num) = No_Net then
               D_Arr (D_Num) := Cond;
            else
               D_Arr (D_Num) := Build_Dyadic
                 (Build_Context, Netlists.Gates.Id_Or, D_Arr (D_Num), Cond);
            end if;

            E := Get_Next_Src_Edge (E);
         end loop;

         S := Get_Next_State (S);
      end loop;

      if D_Arr (Nbr_States - 1) = No_Net then
         D_Arr (Nbr_States - 1) := Build_Const_UB32 (Build_Context, 0, 1);
      end if;

      Res := Concat_Array (D_Arr);
      Free_Net_Array (D_Arr);

      return Res;
   end Synth_Psl_NFA;

   function Synth_Psl_Sequence_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node) return Net
   is
      use Netlists.Gates;
      Nbr_States : constant Int32 := Get_PSL_Nbr_States (Stmt);
      Init : Net;
      Clk : Net;
      Clk_Inst : Instance;
      States : Net;
      Next_States : Net;
   begin
      --  create init net, clock net
      pragma Assert (Nbr_States <= 32);
      Init := Build_Const_UB32 (Build_Context, 1, Uns32 (Nbr_States));
      Clk := Synth_PSL_Expression (Syn_Inst, Get_PSL_Clock (Stmt));

      --  Check the clock is an edge and extract it.
      Clk_Inst := Get_Net_Parent (Clk);
      if Get_Id (Clk_Inst) /= Id_Edge then
         Error_Msg_Synth (+Stmt, "clock is not an edge");
         return No_Net;
      end if;

      Clk := Get_Input_Net (Clk_Inst, 0);

      --  build idff
      States := Build_Idff (Build_Context, Clk, No_Net, Init);

      --  create update nets
      --  For each state: if set, evaluate all outgoing edges.
      Next_States :=
        Synth_Psl_NFA (Syn_Inst, Get_PSL_NFA (Stmt), Nbr_States, States);
      Connect (Get_Input (Get_Net_Parent (States), 1), Next_States);

      --  The NFA state is correct as long as there is a 1.
      return Build_Reduce (Build_Context,
                           Netlists.Gates.Id_Red_Or, Next_States);
   end Synth_Psl_Sequence_Directive;

   procedure Synth_Psl_Restrict_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Res := Synth_Psl_Sequence_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Assume (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Restrict_Directive;

   procedure Synth_Psl_Cover_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build cover gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Res := Synth_Psl_Sequence_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Cover (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Cover_Directive;

   function Synth_Psl_Property_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node) return Net
   is
      use PSL.Types;
      use PSL.NFAs;
      use Netlists.Gates;
      NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
      Nbr_States : constant Int32 := Get_PSL_Nbr_States (Stmt);
      Init : Net;
      Clk : Net;
      Clk_Inst : Instance;
      States : Net;
      Next_States : Net;
   begin
      --  create init net, clock net
      pragma Assert (Nbr_States <= 32);
      Init := Build_Const_UB32 (Build_Context, 1, Uns32 (Nbr_States));
      Clk := Synth_PSL_Expression (Syn_Inst, Get_PSL_Clock (Stmt));

      --  Check the clock is an edge and extract it.
      Clk_Inst := Get_Net_Parent (Clk);
      if Get_Id (Clk_Inst) /= Id_Edge then
         Error_Msg_Synth (+Stmt, "clock is not an edge");
         return No_Net;
      end if;

      Clk := Get_Input_Net (Clk_Inst, 0);

      --  build idff
      States := Build_Idff (Build_Context, Clk, No_Net, Init);

      --  create update nets
      --  For each state: if set, evaluate all outgoing edges.
      Next_States := Synth_Psl_NFA (Syn_Inst, NFA, Nbr_States, States);
      Connect (Get_Input (Get_Net_Parent (States), 1), Next_States);

      return Build_Monadic
        (Build_Context, Netlists.Gates.Id_Not,
         Build_Extract_Bit
           (Build_Context, Next_States,
            Uns32 (Get_State_Label (Get_Final_State (NFA)))));
   end Synth_Psl_Property_Directive;

   procedure Synth_Psl_Assume_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Res := Synth_Psl_Property_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Assume (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Assume_Directive;

   procedure Synth_Psl_Assert_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Res : Net;
      Inst : Instance;
   begin
      --  Build assert gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assert on States, then the first cycle is ignored).
      Res := Synth_Psl_Property_Directive (Syn_Inst, Stmt);
      if Res /= No_Net then
         Inst := Build_Assert (Build_Context, Synth_Label (Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Assert_Directive;

   procedure Synth_Generate_Statement_Body (Syn_Inst : Synth_Instance_Acc;
                                            Bod : Node;
                                            Name : Sname;
                                            Iterator : Node := Null_Node;
                                            Iterator_Val : Value_Acc := null)
   is
      use Areapools;
      Decls_Chain : constant Node := Get_Declaration_Chain (Bod);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Bod_Inst : Synth_Instance_Acc;
      M : Areapools.Mark_Type;
   begin
      Bod_Inst := Make_Instance (Syn_Inst, Bod, Name);
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      if Iterator /= Null_Node then
         --  Add the iterator (for for-generate).
         Create_Object (Bod_Inst, Iterator, Iterator_Val);
      end if;

      Synth_Declarations (Bod_Inst, Decls_Chain);

      Synth_Concurrent_Statements
        (Bod_Inst, Get_Concurrent_Statement_Chain (Bod));

      Free_Instance (Bod_Inst);
      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Generate_Statement_Body;

   procedure Synth_For_Generate_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      Bod : constant Node := Get_Generate_Statement_Body (Stmt);
      Configs : constant Node := Get_Generate_Block_Configuration (Bod);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
      Config : Node;
      It_Rng : Type_Acc;
      Val : Value_Acc;
      Name : Sname;
      Lname : Sname;
   begin
      if It_Type /= Null_Node then
         Synth_Subtype_Indication (Syn_Inst, It_Type);
      end if;

      --  Initial value.
      It_Rng := Get_Value_Type (Syn_Inst, Get_Type (Iterator));
      Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);

      Name := New_Sname (Get_Sname (Syn_Inst), Get_Identifier (Stmt));

      while In_Range (It_Rng.Drange, Val.Scal) loop
         --  Find and apply the config block.
         declare
            Spec : Node;
         begin
            Config := Configs;
            while Config /= Null_Node loop
               Spec := Get_Block_Specification (Config);
               case Get_Kind (Spec) is
                  when Iir_Kind_Simple_Name =>
                     exit;
                  when others =>
                     Error_Kind ("synth_for_generate_statement", Spec);
               end case;
               Config := Get_Prev_Block_Configuration (Config);
            end loop;
            if Config = Null_Node then
               raise Internal_Error;
            end if;
            Apply_Block_Configuration (Config, Bod);
         end;

         --  FIXME: get position ?
         Lname := New_Sname_Version (Name, Uns32 (Val.Scal));

         Synth_Generate_Statement_Body (Syn_Inst, Bod, Lname, Iterator, Val);
         Update_Index (It_Rng.Drange, Val.Scal);
      end loop;
   end Synth_For_Generate_Statement;

   procedure Synth_Concurrent_Statements
     (Syn_Inst : Synth_Instance_Acc; Stmts : Node)
   is
      Stmt : Node;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         case Get_Kind (Stmt) is
            when Iir_Kind_Concurrent_Simple_Signal_Assignment =>
               Push_Phi;
               Synth_Simple_Signal_Assignment (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_Concurrent_Conditional_Signal_Assignment =>
               Push_Phi;
               Synth_Conditional_Signal_Assignment (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_Concurrent_Selected_Signal_Assignment =>
               Push_Phi;
               Synth_Selected_Signal_Assignment (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_Concurrent_Procedure_Call_Statement =>
               Push_Phi;
               Synth_Procedure_Call (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kinds_Process_Statement =>
               Push_Phi;
               Synth_Process_Statement (Syn_Inst, Stmt);
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_If_Generate_Statement =>
               declare
                  Gen : Node;
                  Bod : Node;
                  Cond : Value_Acc;
                  Name : Sname;
               begin
                  Gen := Stmt;
                  Name := New_Sname (Get_Sname (Syn_Inst),
                                     Get_Identifier (Stmt));
                  loop
                     Cond := Synth_Expression (Syn_Inst, Get_Condition (Gen));
                     pragma Assert (Cond.Kind = Value_Discrete);
                     if Cond.Scal = 1 then
                        Bod := Get_Generate_Statement_Body (Gen);
                        Synth_Generate_Statement_Body (Syn_Inst, Bod, Name);
                        exit;
                     end if;
                     Gen := Get_Generate_Else_Clause (Gen);
                     exit when Gen = Null_Node;
                  end loop;
               end;
            when Iir_Kind_For_Generate_Statement =>
               Synth_For_Generate_Statement (Syn_Inst, Stmt);
            when Iir_Kind_Component_Instantiation_Statement =>
               Push_Phi;
               if Is_Component_Instantiation (Stmt) then
                  declare
                     Comp_Config : constant Node :=
                       Get_Component_Configuration (Stmt);
                  begin
                     if Get_Binding_Indication (Comp_Config) = Null_Node then
                        --  Not bound.
                        Synth_Blackbox_Instantiation_Statement
                          (Syn_Inst, Stmt);
                     else
                        Synth_Component_Instantiation_Statement
                          (Syn_Inst, Stmt);
                     end if;
                  end;
               else
                  Synth_Design_Instantiation_Statement (Syn_Inst, Stmt);
               end if;
               Pop_And_Merge_Phi (Build_Context, Stmt);
            when Iir_Kind_Block_Statement =>
               Synth_Block_Statement (Syn_Inst, Stmt);
            when Iir_Kind_Psl_Default_Clock =>
               null;
            when Iir_Kind_Psl_Restrict_Directive =>
               Synth_Psl_Restrict_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Psl_Assume_Directive =>
               Synth_Psl_Assume_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Psl_Cover_Directive =>
               Synth_Psl_Cover_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Psl_Assert_Directive =>
               Synth_Psl_Assert_Directive (Syn_Inst, Stmt);
            when Iir_Kind_Concurrent_Assertion_Statement =>
               --  Passive statement.
               Synth_Concurrent_Assertion_Statement (Syn_Inst, Stmt);
            when others =>
               Error_Kind ("synth_statements", Stmt);
         end case;
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Concurrent_Statements;

   procedure Synth_Verification_Unit
     (Syn_Inst : Synth_Instance_Acc; Unit : Node)
   is
      Item : Node;
   begin
      Item := Get_Vunit_Item_Chain (Unit);
      while Item /= Null_Node loop
         case Get_Kind (Item) is
            when Iir_Kind_Psl_Default_Clock =>
               null;
            when Iir_Kind_Psl_Assert_Directive =>
               Synth_Psl_Assert_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Assume_Directive =>
               Synth_Psl_Assume_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Cover_Directive =>
               Synth_Psl_Cover_Directive (Syn_Inst, Item);
            when others =>
               Error_Kind ("synth_verification_unit", Item);
         end case;
         Item := Get_Chain (Item);
      end loop;
   end Synth_Verification_Unit;
end Synth.Stmts;