1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
|
-- Statements synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Ada.Unchecked_Deallocation;
with Grt.Algos;
with Areapools;
with Std_Names;
with Errorout; use Errorout;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Types;
with Vhdl.Sem_Expr;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Std_Package;
with Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Evaluation;
with PSL.Types;
with PSL.Nodes;
with PSL.NFAs;
with PSL.Errors;
with Synth.Errors; use Synth.Errors;
with Synth.Decls; use Synth.Decls;
with Synth.Expr; use Synth.Expr;
with Synth.Insts; use Synth.Insts;
with Synth.Source;
with Netlists.Builders; use Netlists.Builders;
with Netlists.Gates;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Locations; use Netlists.Locations;
with Netlists.Butils; use Netlists.Butils;
package body Synth.Stmts is
procedure Synth_Sequential_Statements
(C : in out Seq_Context; Stmts : Node);
procedure Set_Location (N : Net; Loc : Node)
renames Synth.Source.Set_Location;
function Synth_Waveform (Syn_Inst : Synth_Instance_Acc;
Wf : Node;
Targ_Type : Type_Acc) return Value_Acc is
begin
if Get_Kind (Wf) = Iir_Kind_Unaffected_Waveform then
-- TODO
raise Internal_Error;
end if;
if Get_Chain (Wf) /= Null_Node then
-- Warning.
null;
end if;
if Get_Time (Wf) /= Null_Node then
-- Warning
null;
end if;
if Targ_Type = null then
return Synth_Expression (Syn_Inst, Get_We_Value (Wf));
else
return Synth_Expression_With_Type
(Syn_Inst, Get_We_Value (Wf), Targ_Type);
end if;
end Synth_Waveform;
procedure Synth_Assign (Wid : Wire_Id;
Typ : Type_Acc;
Val : Value_Acc;
Offset : Uns32;
Loc : Source.Syn_Src) is
begin
Phi_Assign (Build_Context, Wid,
Get_Net (Synth_Subtype_Conversion (Val, Typ, False, Loc)),
Offset);
end Synth_Assign;
procedure Synth_Assignment_Aggregate (Syn_Inst : Synth_Instance_Acc;
Target : Node;
Target_Type : Type_Acc;
Val : Value_Acc;
Loc : Node)
is
Choice : Node;
Assoc : Node;
Pos : Uns32;
begin
if Target_Type.Kind = Type_Vector then
Choice := Get_Association_Choices_Chain (Target);
Pos := Target_Type.W;
while Is_Valid (Choice) loop
Assoc := Get_Associated_Expr (Choice);
case Get_Kind (Choice) is
when Iir_Kind_Choice_By_None =>
Pos := Pos - 1;
Synth_Assignment
(Syn_Inst, Assoc, Bit_Extract (Val, Pos, Target), Loc);
when others =>
Error_Kind ("synth_assignment_aggregate", Choice);
end case;
Choice := Get_Chain (Choice);
end loop;
else
raise Internal_Error;
end if;
end Synth_Assignment_Aggregate;
procedure Synth_Assignment_Prefix (Syn_Inst : Synth_Instance_Acc;
Pfx : Node;
Dest_Obj : out Value_Acc;
Dest_Off : out Uns32;
Dest_Voff : out Net;
Dest_Rdwd : out Width;
Dest_Type : out Type_Acc) is
begin
case Get_Kind (Pfx) is
when Iir_Kind_Simple_Name =>
Synth_Assignment_Prefix (Syn_Inst, Get_Named_Entity (Pfx),
Dest_Obj, Dest_Off,
Dest_Voff, Dest_Rdwd, Dest_Type);
when Iir_Kind_Interface_Signal_Declaration
| Iir_Kind_Variable_Declaration
| Iir_Kind_Interface_Variable_Declaration
| Iir_Kind_Signal_Declaration
| Iir_Kind_Anonymous_Signal_Declaration
| Iir_Kind_Interface_Constant_Declaration
| Iir_Kind_Constant_Declaration
| Iir_Kind_Object_Alias_Declaration =>
declare
Targ : constant Value_Acc := Get_Value (Syn_Inst, Pfx);
begin
Dest_Voff := No_Net;
Dest_Rdwd := 0;
Dest_Type := Targ.Typ;
if Targ.Kind = Value_Alias then
Dest_Obj := Targ.A_Obj;
Dest_Off := Targ.A_Off;
else
Dest_Obj := Targ;
Dest_Off := 0;
end if;
end;
when Iir_Kind_Indexed_Name =>
declare
Voff : Net;
Off : Uns32;
W : Width;
Dest_W : Width;
begin
Synth_Assignment_Prefix
(Syn_Inst, Get_Prefix (Pfx),
Dest_Obj, Dest_Off, Dest_Voff, Dest_Rdwd, Dest_Type);
Dest_W := Dest_Type.W;
Synth_Indexed_Name (Syn_Inst, Pfx, Dest_Type, Voff, Off, W);
Dest_Type := Get_Array_Element (Dest_Type);
if Voff /= No_Net then
if Dest_Off /= 0 then
-- TODO: add addidx (addoff ?)
if Off /= 0 or else Dest_Type.W /= 1 then
raise Internal_Error;
end if;
else
Dest_Off := Off;
end if;
if Dest_Voff = No_Net then
Dest_Voff := Voff;
Dest_Rdwd := Dest_W;
else
Dest_Voff := Build_Addidx
(Get_Build (Syn_Inst), Dest_Voff, Voff);
end if;
else
if Dest_Voff = No_Net then
Dest_Off := Dest_Off + Off;
Strip_Const (Dest_Obj);
if Dest_Obj.Kind = Value_Const_Array then
Dest_Obj := Dest_Obj.Arr.V
(Iir_Index32 ((Dest_W - Dest_Off) / W));
Dest_Off := 0;
Dest_W := W;
end if;
else
if Dest_Off /= 0 then
-- TODO.
raise Internal_Error;
end if;
Dest_Off := Dest_Off + Off;
end if;
end if;
end;
when Iir_Kind_Selected_Element =>
declare
Idx : constant Iir_Index32 :=
Get_Element_Position (Get_Named_Entity (Pfx));
begin
Synth_Assignment_Prefix
(Syn_Inst, Get_Prefix (Pfx),
Dest_Obj, Dest_Off, Dest_Voff, Dest_Rdwd, Dest_Type);
if Dest_Off /= 0 and then Dest_Voff /= No_Net then
-- TODO.
raise Internal_Error;
end if;
Strip_Const (Dest_Obj);
Dest_Off := Dest_Off + Dest_Type.Rec.E (Idx + 1).Off;
Dest_Type := Dest_Type.Rec.E (Idx + 1).Typ;
end;
when Iir_Kind_Slice_Name =>
declare
Pfx_Bnd : Bound_Type;
El_Typ : Type_Acc;
Res_Bnd : Bound_Type;
Sl_Voff : Net;
Sl_Off : Uns32;
Wd : Uns32;
begin
Synth_Assignment_Prefix
(Syn_Inst, Get_Prefix (Pfx),
Dest_Obj, Dest_Off, Dest_Voff, Dest_Rdwd, Dest_Type);
Get_Onedimensional_Array_Bounds (Dest_Type, Pfx_Bnd, El_Typ);
Synth_Slice_Suffix (Syn_Inst, Pfx, Pfx_Bnd, El_Typ.W,
Res_Bnd, Sl_Voff, Sl_Off, Wd);
if Sl_Voff /= No_Net then
if Dest_Off /= 0 then
raise Internal_Error;
end if;
Dest_Off := Dest_Off + Sl_Off;
if Dest_Voff /= No_Net then
Dest_Voff := Build_Addidx
(Get_Build (Syn_Inst), Dest_Voff, Sl_Voff);
else
Dest_Rdwd := Dest_Type.W;
Dest_Voff := Sl_Voff;
end if;
Dest_Type := Create_Slice_Type (Wd, El_Typ);
else
if Dest_Voff /= No_Net then
-- Slice of a memory.
if Dest_Off /= 0 then
raise Internal_Error;
end if;
Dest_Off := Sl_Off;
else
-- Slice of a vector.
Dest_Off := Dest_Off + Sl_Off;
end if;
Dest_Type :=
Create_Onedimensional_Array_Subtype (Dest_Type, Res_Bnd);
end if;
end;
when others =>
Error_Kind ("synth_assignment_prefix", Pfx);
end case;
end Synth_Assignment_Prefix;
type Target_Kind is
(Target_Simple, Target_Aggregate, Target_Memory);
type Target_Info (Kind : Target_Kind := Target_Simple) is record
-- In all cases, the type of the target is known or computed.
Targ_Type : Type_Acc;
case Kind is
when Target_Simple =>
-- For a simple target, the destination is known.
Obj : Value_Acc;
Off : Uns32;
when Target_Aggregate =>
-- For an aggregate: the type is computed and the details will
-- be handled at the assignment.
Aggr : Node;
when Target_Memory =>
-- For a memory: the destination is known.
Mem_Obj : Value_Acc;
-- The dynamic offset.
Mem_Voff : Net;
-- Offset of the memory in the wire (usually 0).
Mem_Moff : Uns32;
-- Width of the whole memory
Mem_Mwidth : Width;
-- Offset of the data to be accessed from the memory.
Mem_Doff : Uns32;
end case;
end record;
type Target_Info_Array is array (Natural range <>) of Target_Info;
function Synth_Target (Syn_Inst : Synth_Instance_Acc;
Target : Node) return Target_Info is
begin
case Get_Kind (Target) is
when Iir_Kind_Aggregate =>
declare
Targ_Type : constant Node := Get_Type (Target);
Base_Typ : Type_Acc;
Bnd : Bound_Type;
begin
Base_Typ :=
Get_Value_Type (Syn_Inst, Get_Base_Type (Targ_Type));
case Base_Typ.Kind is
when Type_Unbounded_Vector =>
Bnd := Expr.Synth_Array_Bounds (Syn_Inst, Targ_Type, 0);
return Target_Info' (Kind => Target_Aggregate,
Targ_Type => Create_Vector_Type
(Bnd, Base_Typ.Uvec_El),
Aggr => Target);
when others =>
raise Internal_Error;
end case;
end;
when Iir_Kind_Simple_Name
| Iir_Kind_Selected_Element
| Iir_Kind_Interface_Signal_Declaration
| Iir_Kind_Variable_Declaration
| Iir_Kind_Signal_Declaration
| Iir_Kind_Anonymous_Signal_Declaration
| Iir_Kind_Indexed_Name
| Iir_Kind_Slice_Name =>
declare
Obj : Value_Acc;
Off : Uns32;
Typ : Type_Acc;
Voff : Net;
Rdwd : Width;
begin
Synth_Assignment_Prefix (Syn_Inst, Target,
Obj, Off, Voff, Rdwd, Typ);
if Voff = No_Net then
-- FIXME: check index.
return Target_Info'(Kind => Target_Simple,
Targ_Type => Typ,
Obj => Obj,
Off => Off);
else
return Target_Info'(Kind => Target_Memory,
Targ_Type => Typ,
Mem_Obj => Obj,
Mem_Mwidth => Rdwd,
Mem_Moff => 0,
Mem_Voff => Voff,
Mem_Doff => Off);
end if;
end;
when others =>
Error_Kind ("synth_target", Target);
end case;
end Synth_Target;
procedure Assign_Value (Targ : Value_Acc; Val : Value_Acc; Loc : Node) is
begin
case Targ.Kind is
when Value_Discrete =>
Targ.Scal := Val.Scal;
when Value_Array =>
declare
Len : constant Iir_Index32 := Val.Arr.Len;
begin
for I in 1 .. Len loop
Assign_Value (Targ.Arr.V (Targ.Arr.Len - Len + I),
Val.Arr.V (I), Loc);
end loop;
end;
when Value_Record =>
for I in Targ.Rec.V'Range loop
Assign_Value (Targ.Rec.V (I), Val.Rec.V (I), Loc);
end loop;
when others =>
raise Internal_Error;
end case;
end Assign_Value;
procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
Target : Target_Info;
Val : Value_Acc;
Loc : Node) is
begin
case Target.Kind is
when Target_Aggregate =>
Synth_Assignment_Aggregate
(Syn_Inst, Target.Aggr, Target.Targ_Type, Val, Loc);
when Target_Simple =>
if Target.Obj.Kind = Value_Wire then
Synth_Assign (Target.Obj.W, Target.Targ_Type,
Val, Target.Off, Loc);
else
pragma Assert (Target.Off = 0);
Assign_Value (Target.Obj, Val, Loc);
end if;
when Target_Memory =>
declare
V : Net;
begin
V := Get_Current_Assign_Value
(Get_Build (Syn_Inst), Target.Mem_Obj.W, Target.Mem_Moff,
Target.Mem_Mwidth);
V := Build_Dyn_Insert (Get_Build (Syn_Inst), V, Get_Net (Val),
Target.Mem_Voff, Target.Mem_Doff);
Set_Location (V, Loc);
Synth_Assign
(Target.Mem_Obj.W, Target.Targ_Type,
Create_Value_Net (V, Target.Targ_Type),
Target.Mem_Moff, Loc);
end;
end case;
end Synth_Assignment;
procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
Target : Node;
Val : Value_Acc;
Loc : Node)
is
Info : Target_Info;
begin
Info := Synth_Target (Syn_Inst, Target);
Synth_Assignment (Syn_Inst, Info, Val, Loc);
end Synth_Assignment;
function Synth_Read_Memory (Syn_Inst : Synth_Instance_Acc;
Obj : Value_Acc;
Off : Uns32;
Voff : Net;
Typ : Type_Acc;
Loc : Node) return Value_Acc
is
N : Net;
begin
if Voff /= No_Net then
N := Build_Dyn_Extract
(Get_Build (Syn_Inst), Get_Net (Obj), Voff, Off, Typ.W);
else
pragma Assert (not Is_Const (Obj));
if Off = 0
and then Typ.W = Obj.Typ.W
and then Typ /= Get_Array_Element (Obj.Typ)
then
-- Nothing to do if extracting the whole object as a slice.
return Obj;
end if;
N := Build_Extract (Get_Build (Syn_Inst), Get_Net (Obj), Off, Typ.W);
end if;
Set_Location (N, Loc);
return Create_Value_Net (N, Typ);
end Synth_Read_Memory;
-- Concurrent or sequential simple signal assignment
procedure Synth_Simple_Signal_Assignment
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Targ : Target_Info;
Val : Value_Acc;
begin
Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
Val := Synth_Waveform
(Syn_Inst, Get_Waveform_Chain (Stmt), Targ.Targ_Type);
Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
end Synth_Simple_Signal_Assignment;
procedure Synth_Conditional_Signal_Assignment
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Targ : Target_Info;
Cond : Node;
Cwf : Node;
Val, Cond_Val : Value_Acc;
First, Last : Net;
V : Net;
begin
Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
Last := No_Net;
Cwf := Get_Conditional_Waveform_Chain (Stmt);
while Cwf /= Null_Node loop
Val := Synth_Waveform
(Syn_Inst, Get_Waveform_Chain (Cwf), Targ.Targ_Type);
V := Get_Net (Val);
Cond := Get_Condition (Cwf);
if Cond /= Null_Node then
Cond_Val := Synth_Expression (Syn_Inst, Cond);
V := Build_Mux2 (Build_Context,
Get_Net (Cond_Val),
No_Net, V);
Set_Location (V, Cwf);
end if;
if Last /= No_Net then
Connect (Get_Input (Get_Net_Parent (Last), 1), V);
else
First := V;
end if;
Last := V;
Cwf := Get_Chain (Cwf);
end loop;
Val := Create_Value_Net (First, Targ.Targ_Type);
Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
end Synth_Conditional_Signal_Assignment;
procedure Synth_Variable_Assignment
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Targ : Target_Info;
Val : Value_Acc;
begin
Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
Val := Synth_Expression_With_Type
(Syn_Inst, Get_Expression (Stmt), Targ.Targ_Type);
Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
end Synth_Variable_Assignment;
procedure Synth_Conditional_Variable_Assignment
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Target : constant Node := Get_Target (Stmt);
Targ_Type : Type_Acc;
Cond : Node;
Ce : Node;
Val, Cond_Val : Value_Acc;
V : Net;
First, Last : Net;
begin
Targ_Type := Get_Value_Type (Syn_Inst, Get_Type (Target));
Last := No_Net;
Ce := Get_Conditional_Expression_Chain (Stmt);
while Ce /= Null_Node loop
Val := Synth_Expression_With_Type
(Syn_Inst, Get_Expression (Ce), Targ_Type);
V := Get_Net (Val);
Cond := Get_Condition (Ce);
if Cond /= Null_Node then
Cond_Val := Synth_Expression (Syn_Inst, Cond);
V := Build_Mux2 (Build_Context, Get_Net (Cond_Val), No_Net, V);
Set_Location (V, Ce);
end if;
if Last /= No_Net then
Connect (Get_Input (Get_Net_Parent (Last), 1), V);
else
First := V;
end if;
Last := V;
Ce := Get_Chain (Ce);
end loop;
Val := Create_Value_Net (First, Targ_Type);
Synth_Assignment (Syn_Inst, Target, Val, Stmt);
end Synth_Conditional_Variable_Assignment;
procedure Synth_If_Statement (C : in out Seq_Context; Stmt : Node)
is
Cond : constant Node := Get_Condition (Stmt);
Els : constant Node := Get_Else_Clause (Stmt);
Cond_Val : Value_Acc;
Phi_True : Phi_Type;
Phi_False : Phi_Type;
begin
Cond_Val := Synth_Expression (C.Inst, Cond);
if Is_Const (Cond_Val) then
if Cond_Val.Scal = 1 then
-- True.
Synth_Sequential_Statements
(C, Get_Sequential_Statement_Chain (Stmt));
else
pragma Assert (Cond_Val.Scal = 0);
if Is_Valid (Els) then
-- Else part
if Is_Null (Get_Condition (Els)) then
-- Final else part.
Synth_Sequential_Statements
(C, Get_Sequential_Statement_Chain (Els));
else
-- Elsif. Handled as a nested if.
Synth_If_Statement (C, Els);
end if;
end if;
end if;
else
Push_Phi;
Synth_Sequential_Statements
(C, Get_Sequential_Statement_Chain (Stmt));
Pop_Phi (Phi_True);
Push_Phi;
if Is_Valid (Els) then
if Is_Null (Get_Condition (Els)) then
-- Final else part.
Synth_Sequential_Statements
(C, Get_Sequential_Statement_Chain (Els));
else
-- Elsif. Handled as a nested if.
Synth_If_Statement (C, Els);
end if;
end if;
Pop_Phi (Phi_False);
Merge_Phis (Get_Build (C.Inst),
Get_Net (Cond_Val), Phi_True, Phi_False, Stmt);
end if;
end Synth_If_Statement;
procedure Convert_Bv_To_Uns64 (Expr : Node; Val : out Uns64; Dc : out Uns64)
is
El_Type : constant Node :=
Get_Base_Type (Get_Element_Subtype (Get_Type (Expr)));
begin
if El_Type = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_Type then
declare
use Vhdl.Evaluation.String_Utils;
Info : constant Str_Info := Get_Str_Info (Expr);
begin
if Info.Len > 64 then
raise Internal_Error;
end if;
Val := 0;
Dc := 0;
for I in 0 .. Info.Len - 1 loop
Val := Shift_Left (Val, 1);
Dc := Shift_Left (Dc, 1);
case Get_Pos (Info, I) is
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos =>
Val := Val or 0;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos =>
Val := Val or 1;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
Dc := Dc or 1;
when others =>
raise Internal_Error;
end case;
end loop;
end;
elsif El_Type = Vhdl.Std_Package.Bit_Type_Definition then
declare
use Vhdl.Evaluation.String_Utils;
Info : constant Str_Info := Get_Str_Info (Expr);
begin
if Info.Len > 64 then
raise Internal_Error;
end if;
Val := 0;
Dc := 0;
for I in 0 .. Info.Len - 1 loop
Val := Shift_Left (Val, 1);
case Get_Pos (Info, I) is
when 0 =>
Val := Val or 0;
when 1 =>
Val := Val or 1;
when others =>
raise Internal_Error;
end case;
end loop;
end;
else
raise Internal_Error;
end if;
end Convert_Bv_To_Uns64;
-- EXPR is a choice, so a locally static literal.
procedure Convert_To_Uns64 (Expr : Node; Val : out Uns64; Dc : out Uns64)
is
Expr_Type : constant Node := Get_Type (Expr);
begin
case Get_Kind (Expr_Type) is
when Iir_Kind_Array_Type_Definition
| Iir_Kind_Array_Subtype_Definition =>
Convert_Bv_To_Uns64 (Expr, Val, Dc);
when Iir_Kind_Enumeration_Type_Definition =>
Dc := 0;
Val := Uns64 (Get_Enum_Pos (Strip_Denoting_Name (Expr)));
when Iir_Kind_Integer_Type_Definition =>
-- TODO: signed values.
Dc := 0;
Val := Uns64 (Get_Value (Expr));
when others =>
Error_Kind ("convert_to_uns64", Expr_Type);
end case;
end Convert_To_Uns64;
type Alternative_Index is new Int32;
type Choice_Data_Type is record
-- Value of the choice
Val : Uns64;
-- Corresponding alternative
Alt : Alternative_Index;
end record;
type Choice_Data_Array is array (Natural range <>) of Choice_Data_Type;
type Choice_Data_Array_Acc is access Choice_Data_Array;
procedure Free_Choice_Data_Array is new Ada.Unchecked_Deallocation
(Choice_Data_Array, Choice_Data_Array_Acc);
type Alternative_Data_Type is record
Asgns : Seq_Assign;
Val : Net;
end record;
type Alternative_Data_Array is
array (Alternative_Index range <>) of Alternative_Data_Type;
type Alternative_Data_Acc is access Alternative_Data_Array;
procedure Free_Alternative_Data_Array is new Ada.Unchecked_Deallocation
(Alternative_Data_Array, Alternative_Data_Acc);
type Wire_Id_Array is array (Natural range <>) of Wire_Id;
type Wire_Id_Array_Acc is access Wire_Id_Array;
procedure Free_Wire_Id_Array is new Ada.Unchecked_Deallocation
(Wire_Id_Array, Wire_Id_Array_Acc);
procedure Sort_Wire_Id_Array (Arr : in out Wire_Id_Array)
is
function Lt (Op1, Op2 : Natural) return Boolean is
begin
return Is_Lt (Arr (Op1), Arr (Op2));
end Lt;
procedure Swap (From : Natural; To : Natural)
is
T : Wire_Id;
begin
T := Arr (From);
Arr (From) := Arr (To);
Arr (To) := T;
end Swap;
procedure Wid_Heap_Sort is
new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
begin
Wid_Heap_Sort (Arr'Length);
end Sort_Wire_Id_Array;
function Count_Wires_In_Alternatives (Alts : Alternative_Data_Array)
return Natural
is
Res : Natural;
Asgn : Seq_Assign;
W : Wire_Id;
begin
Res := 0;
for I in Alts'Range loop
Asgn := Alts (I).Asgns;
while Asgn /= No_Seq_Assign loop
W := Get_Wire_Id (Asgn);
if not Get_Wire_Mark (W) then
Res := Res + 1;
Set_Wire_Mark (W, True);
end if;
Asgn := Get_Assign_Chain (Asgn);
end loop;
end loop;
return Res;
end Count_Wires_In_Alternatives;
procedure Fill_Wire_Id_Array (Arr : out Wire_Id_Array;
Alts : Alternative_Data_Array)
is
Idx : Natural;
Asgn : Seq_Assign;
W : Wire_Id;
begin
Idx := Arr'First;
for I in Alts'Range loop
Asgn := Alts (I).Asgns;
while Asgn /= No_Seq_Assign loop
W := Get_Wire_Id (Asgn);
if Get_Wire_Mark (W) then
Arr (Idx) := W;
Idx := Idx + 1;
Set_Wire_Mark (W, False);
end if;
Asgn := Get_Assign_Chain (Asgn);
end loop;
end loop;
pragma Assert (Idx = Arr'Last + 1);
end Fill_Wire_Id_Array;
type Partial_Assign_Array_Acc is access Partial_Assign_Array;
procedure Free_Partial_Assign_Array is new Ada.Unchecked_Deallocation
(Partial_Assign_Array, Partial_Assign_Array_Acc);
procedure Synth_Case_Statement (C : in out Seq_Context; Stmt : Node)
is
use Vhdl.Sem_Expr;
Expr : constant Node := Get_Expression (Stmt);
Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);
Choice : Node;
Case_Info : Choice_Info_Type;
Annex_Arr : Annex_Array_Acc;
-- Array of alternatives
Alts : Alternative_Data_Acc;
Alt_Idx : Alternative_Index;
Others_Alt_Idx : Alternative_Index;
-- Array of choices. Contains tuple of (Value, Alternative).
Choice_Data : Choice_Data_Array_Acc;
Choice_Idx : Natural;
Case_El : Case_Element_Array_Acc;
Pasgns : Partial_Assign_Array_Acc;
Nets : Net_Array_Acc;
Nbr_Wires : Natural;
Wires : Wire_Id_Array_Acc;
Sel : Value_Acc;
Sel_Net : Net;
begin
-- Strategies to synthesize a case statement. Assume the selector is
-- a net of W bits
-- - a large mux, with 2**W inputs
-- - if the number of choices is dense
-- - if W is small
-- - a onehot mux. Each choice is converted to an single bit condition
-- by adding a comparison operator (equal for single choice,
-- inequalities for ranges, or for multiple choices). Only one of
-- these conditions is true (plus 'others').
-- - if the number of choices is sparse
-- - large range choices
-- - a tree of mux/mux2
-- - large number of choices, densily grouped but sparsed compared
-- to 2**W (eg: a partially filled memory)
-- - divide and conquier
-- Create a net for the expression.
Sel := Synth_Expression_With_Basetype (C.Inst, Expr);
-- Count choices and alternatives.
Count_Choices (Case_Info, Choices);
Fill_Choices_Array (Case_Info, Choices);
-- Allocate structures.
-- Because there is no 1-1 link between choices and alternatives,
-- create an array for the choices and an array for the alternatives.
Alts := new Alternative_Data_Array
(1 .. Alternative_Index (Case_Info.Nbr_Alternatives));
Choice_Data := new Choice_Data_Array (1 .. Case_Info.Nbr_Choices);
Annex_Arr := new Annex_Array (1 .. Case_Info.Nbr_Choices);
Case_Info.Annex_Arr := Annex_Arr;
-- Synth statements, extract choice value.
Alt_Idx := 0;
Others_Alt_Idx := 0;
Choice_Idx := 0;
Choice := Choices;
while Is_Valid (Choice) loop
if not Get_Same_Alternative_Flag (Choice) then
Alt_Idx := Alt_Idx + 1;
declare
Phi : Phi_Type;
begin
Push_Phi;
Synth_Sequential_Statements (C, Get_Associated_Chain (Choice));
Pop_Phi (Phi);
Alts (Alt_Idx).Asgns := Sort_Phi (Phi);
end;
end if;
case Get_Kind (Choice) is
when Iir_Kind_Choice_By_Expression =>
Choice_Idx := Choice_Idx + 1;
Annex_Arr (Choice_Idx) := Int32 (Choice_Idx);
declare
Choice_Expr : constant Node :=
Get_Choice_Expression (Choice);
Val, Dc : Uns64;
begin
Convert_To_Uns64 (Choice_Expr, Val, Dc);
if Dc = 0 then
Choice_Data (Choice_Idx) := (Val => Val,
Alt => Alt_Idx);
else
Error_Msg_Synth (+Choice_Expr, "meta-values never match");
Choice_Data (Choice_Idx) := (Val => 0,
Alt => 0);
end if;
end;
when Iir_Kind_Choice_By_Others =>
Others_Alt_Idx := Alt_Idx;
when others =>
raise Internal_Error;
end case;
Choice := Get_Chain (Choice);
end loop;
pragma Assert (Choice_Idx = Choice_Data'Last);
-- Sort by order.
if Get_Kind (Get_Type (Expr)) in Iir_Kinds_Discrete_Type_Definition then
Sort_Discrete_Choices (Case_Info);
else
Sort_String_Choices (Case_Info);
end if;
-- Create list of wire_id, sort it.
Nbr_Wires := Count_Wires_In_Alternatives (Alts.all);
Wires := new Wire_Id_Array (1 .. Nbr_Wires);
Fill_Wire_Id_Array (Wires.all, Alts.all);
Sort_Wire_Id_Array (Wires.all);
-- Associate each choice with the assign node
-- For each wire_id:
-- Build mux2/mux4 tree (group by 4)
Case_El := new Case_Element_Array (1 .. Case_Info.Nbr_Choices);
Pasgns := new Partial_Assign_Array (1 .. Int32 (Alts'Last));
Nets := new Net_Array (1 .. Int32 (Alts'Last));
Sel_Net := Get_Net (Sel);
-- For each wire, compute the result.
for I in Wires'Range loop
declare
Wi : constant Wire_Id := Wires (I);
Last_Val : Net;
Res : Net;
Default : Net;
Ch : Natural;
Min_Off, Off : Uns32;
Wd : Width;
List : Partial_Assign_List;
begin
-- Extract the value for each branch.
for I in Alts'Range loop
-- If there is an assignment to Wi in Alt, it will define the
-- value.
if Get_Wire_Id (Alts (I).Asgns) = Wi then
Pasgns (Int32 (I)) := Get_Assign_Partial (Alts (I).Asgns);
Alts (I).Asgns := Get_Assign_Chain (Alts (I).Asgns);
else
Pasgns (Int32 (I)) := No_Partial_Assign;
end if;
end loop;
Partial_Assign_Init (List);
Min_Off := 0;
loop
Off := Min_Off;
-- Extract value of partial assignments to NETS.
Extract_Merge_Partial_Assigns
(Build_Context, Pasgns.all, Nets.all, Off, Wd);
exit when Off = Uns32'Last and Wd = Width'Last;
-- If a branch has no value, use the value before the case.
Last_Val := No_Net;
for I in Nets'Range loop
if Nets (I) = No_Net then
if Last_Val = No_Net then
Last_Val := Get_Current_Assign_Value
(Build_Context, Wi, Off, Wd);
end if;
Nets (I) := Last_Val;
end if;
end loop;
-- Build the map between choices and values.
for J in Annex_Arr'Range loop
Ch := Natural (Annex_Arr (J));
Case_El (J) := (Sel => Choice_Data (Ch).Val,
Val => Nets (Int32 (Choice_Data (Ch).Alt)));
end loop;
-- Extract default value (for missing alternative).
if Others_Alt_Idx /= 0 then
Default := Nets (Int32 (Others_Alt_Idx));
else
Default := No_Net;
end if;
-- Generate the muxes tree.
Synth_Case (Get_Build (C.Inst),
Sel_Net, Case_El.all, Default, Res,
Get_Location (Expr));
Partial_Assign_Append (List, New_Partial_Assign (Res, Off));
Min_Off := Off + Wd;
end loop;
Merge_Partial_Assigns (Build_Context, Wi, List);
end;
end loop;
-- free.
Free_Case_Element_Array (Case_El);
Free_Wire_Id_Array (Wires);
Free_Choice_Data_Array (Choice_Data);
Free_Annex_Array (Annex_Arr);
Free_Alternative_Data_Array (Alts);
Free_Partial_Assign_Array (Pasgns);
Free_Net_Array (Nets);
end Synth_Case_Statement;
procedure Synth_Selected_Signal_Assignment
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
use Vhdl.Sem_Expr;
Targ : constant Node := Get_Target (Stmt);
Expr : constant Node := Get_Expression (Stmt);
Choices : constant Node := Get_Selected_Waveform_Chain (Stmt);
Choice : Node;
Targ_Type : Type_Acc;
Case_Info : Choice_Info_Type;
Annex_Arr : Annex_Array_Acc;
-- Array of alternatives
Alts : Alternative_Data_Acc;
Alt_Idx : Alternative_Index;
Others_Alt_Idx : Alternative_Index;
-- Array of choices. Contains tuple of (Value, Alternative).
Choice_Data : Choice_Data_Array_Acc;
Choice_Idx : Natural;
Case_El : Case_Element_Array_Acc;
Sel : Value_Acc;
Sel_Net : Net;
begin
Targ_Type := Get_Value_Type (Syn_Inst, Get_Type (Targ));
-- Create a net for the expression.
Sel := Synth_Expression_With_Basetype (Syn_Inst, Expr);
-- Count choices and alternatives.
Count_Choices (Case_Info, Choices);
Fill_Choices_Array (Case_Info, Choices);
-- Allocate structures.
-- Because there is no 1-1 link between choices and alternatives,
-- create an array for the choices and an array for the alternatives.
Alts := new Alternative_Data_Array
(1 .. Alternative_Index (Case_Info.Nbr_Alternatives));
Choice_Data := new Choice_Data_Array (1 .. Case_Info.Nbr_Choices);
Annex_Arr := new Annex_Array (1 .. Case_Info.Nbr_Choices);
Case_Info.Annex_Arr := Annex_Arr;
-- Synth statements, extract choice value.
Alt_Idx := 0;
Others_Alt_Idx := 0;
Choice_Idx := 0;
Choice := Choices;
while Is_Valid (Choice) loop
if not Get_Same_Alternative_Flag (Choice) then
Alt_Idx := Alt_Idx + 1;
Alts (Alt_Idx).Val := Get_Net
(Synth_Waveform
(Syn_Inst, Get_Associated_Chain (Choice), Targ_Type));
end if;
case Get_Kind (Choice) is
when Iir_Kind_Choice_By_Expression =>
Choice_Idx := Choice_Idx + 1;
Annex_Arr (Choice_Idx) := Int32 (Choice_Idx);
declare
Choice_Expr : constant Node :=
Get_Choice_Expression (Choice);
Val, Dc : Uns64;
begin
Convert_To_Uns64 (Choice_Expr, Val, Dc);
if Dc = 0 then
Choice_Data (Choice_Idx) := (Val => Val,
Alt => Alt_Idx);
else
Error_Msg_Synth (+Choice_Expr, "meta-values never match");
Choice_Data (Choice_Idx) := (Val => 0,
Alt => 0);
end if;
end;
when Iir_Kind_Choice_By_Others =>
Others_Alt_Idx := Alt_Idx;
when others =>
raise Internal_Error;
end case;
Choice := Get_Chain (Choice);
end loop;
pragma Assert (Choice_Idx = Choice_Data'Last);
-- Sort by order.
if Get_Kind (Get_Type (Expr)) in Iir_Kinds_Discrete_Type_Definition then
Sort_Discrete_Choices (Case_Info);
else
Sort_String_Choices (Case_Info);
end if;
-- Associate each choice with the assign node
-- For each wire_id:
-- Build mux2/mux4 tree (group by 4)
Case_El := new Case_Element_Array (1 .. Case_Info.Nbr_Choices);
Sel_Net := Get_Net (Sel);
declare
Res : Net;
Default : Net;
C : Natural;
begin
-- Build the map between choices and values.
for J in Annex_Arr'Range loop
C := Natural (Annex_Arr (J));
Case_El (J) := (Sel => Choice_Data (C).Val,
Val => Alts (Choice_Data (C).Alt).Val);
end loop;
-- Extract default value (for missing alternative).
if Others_Alt_Idx /= 0 then
Default := Alts (Others_Alt_Idx).Val;
else
Default := No_Net;
end if;
-- Generate the muxes tree.
Synth_Case (Get_Build (Syn_Inst),
Sel_Net, Case_El.all, Default, Res,
Get_Location (Expr));
Synth_Assignment (Syn_Inst, Get_Target (Stmt),
Create_Value_Net (Res, Targ_Type),
Stmt);
end;
-- free.
Free_Case_Element_Array (Case_El);
Free_Choice_Data_Array (Choice_Data);
Free_Annex_Array (Annex_Arr);
Free_Alternative_Data_Array (Alts);
end Synth_Selected_Signal_Assignment;
type Association_Iterator is record
Inter : Node;
First_Named_Assoc : Node;
Next_Assoc : Node;
end record;
procedure Association_Iterate_Init (Iterator : out Association_Iterator;
Inter_Chain : Node;
Assoc_Chain : Node) is
begin
Iterator := (Inter => Inter_Chain,
First_Named_Assoc => Null_Node,
Next_Assoc => Assoc_Chain);
end Association_Iterate_Init;
procedure Association_Iterate_Next (Iterator : in out Association_Iterator;
Inter : out Node;
Assoc : out Node)
is
Formal : Node;
begin
Inter := Iterator.Inter;
if Inter = Null_Node then
-- End of iterator.
Assoc := Null_Node;
return;
else
-- Advance to the next interface for the next call.
Iterator.Inter := Get_Chain (Iterator.Inter);
end if;
if Iterator.First_Named_Assoc = Null_Node then
Assoc := Iterator.Next_Assoc;
if Assoc = Null_Node then
-- No more association: open association.
return;
end if;
Formal := Get_Formal (Assoc);
if Formal = Null_Node then
-- Association by position.
-- Update for the next call.
Iterator.Next_Assoc := Get_Chain (Assoc);
return;
end if;
Iterator.First_Named_Assoc := Assoc;
end if;
-- Search by name.
Assoc := Iterator.First_Named_Assoc;
while Assoc /= Null_Node loop
Formal := Get_Formal (Assoc);
pragma Assert (Formal /= Null_Node);
Formal := Get_Interface_Of_Formal (Formal);
if Formal = Inter then
-- Found.
-- Optimize in case assocs are in order.
if Assoc = Iterator.First_Named_Assoc then
Iterator.First_Named_Assoc := Get_Chain (Assoc);
end if;
return;
end if;
Assoc := Get_Chain (Assoc);
end loop;
-- Not found: open association.
return;
end Association_Iterate_Next;
procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
Caller_Inst : Synth_Instance_Acc;
Inter_Chain : Node;
Assoc_Chain : Node;
Infos : out Target_Info_Array)
is
pragma Assert (Infos'First = 1);
Inter : Node;
Inter_Type : Type_Acc;
Assoc : Node;
Actual : Node;
Val : Value_Acc;
Nbr_Inout : Natural;
Iterator : Association_Iterator;
begin
Set_Instance_Const (Subprg_Inst, True);
Nbr_Inout := 0;
-- Process in INTER order.
Association_Iterate_Init (Iterator, Inter_Chain, Assoc_Chain);
loop
Association_Iterate_Next (Iterator, Inter, Assoc);
exit when Inter = Null_Node;
Inter_Type := Get_Value_Type (Caller_Inst, Get_Type (Inter));
case Iir_Parameter_Modes (Get_Mode (Inter)) is
when Iir_In_Mode =>
if Assoc = Null_Node
or else Get_Kind (Assoc) = Iir_Kind_Association_Element_Open
then
Actual := Get_Default_Value (Inter);
Val := Synth_Expression_With_Type
(Subprg_Inst, Actual, Inter_Type);
else
case Get_Kind (Assoc) is
when Iir_Kind_Association_Element_By_Expression =>
Actual := Get_Actual (Assoc);
Val := Synth_Expression_With_Type
(Caller_Inst, Actual, Inter_Type);
when others =>
raise Internal_Error;
end case;
end if;
when Iir_Out_Mode | Iir_Inout_Mode =>
Nbr_Inout := Nbr_Inout + 1;
Actual := Get_Actual (Assoc);
Infos (Nbr_Inout) := Synth_Target (Caller_Inst, Actual);
declare
Info : Target_Info renames Infos (Nbr_Inout);
begin
if Info.Kind /= Target_Simple then
raise Internal_Error;
end if;
case Iir_Kinds_Interface_Object_Declaration
(Get_Kind (Inter))
is
when Iir_Kind_Interface_Constant_Declaration =>
raise Internal_Error;
when Iir_Kind_Interface_Variable_Declaration =>
-- Always pass by value.
Val := Synth_Read_Memory
(Caller_Inst, Info.Obj, Info.Off, No_Net,
Info.Targ_Type, Assoc);
when Iir_Kind_Interface_Signal_Declaration =>
-- Always pass by reference (use an alias).
Val := Create_Value_Alias
(Info.Obj, Info.Off, Info.Targ_Type);
when Iir_Kind_Interface_File_Declaration =>
raise Internal_Error;
end case;
end;
end case;
-- FIXME: conversion only for constants, reshape for all.
Val := Synth_Subtype_Conversion (Val, Inter_Type, True, Assoc);
if Get_Instance_Const (Subprg_Inst) and then not Is_Const (Val) then
Set_Instance_Const (Subprg_Inst, False);
end if;
case Iir_Kinds_Interface_Object_Declaration (Get_Kind (Inter)) is
when Iir_Kind_Interface_Constant_Declaration =>
-- Pass by reference.
Create_Object (Subprg_Inst, Inter, Val);
when Iir_Kind_Interface_Variable_Declaration =>
-- Arguments are passed by copy.
Create_Object (Subprg_Inst, Inter, Unshare (Val, Current_Pool));
when Iir_Kind_Interface_Signal_Declaration =>
Create_Object (Subprg_Inst, Inter, Val);
when Iir_Kind_Interface_File_Declaration =>
Create_Object (Subprg_Inst, Inter, Val);
end case;
end loop;
end Synth_Subprogram_Association;
procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
Caller_Inst : Synth_Instance_Acc;
Inter_Chain : Node;
Assoc_Chain : Node)
is
Infos : Target_Info_Array (1 .. 0);
pragma Unreferenced (Infos);
begin
Synth_Subprogram_Association (Subprg_Inst, Caller_Inst,
Inter_Chain, Assoc_Chain, Infos);
end Synth_Subprogram_Association;
procedure Synth_Subprogram_Back_Association
(Subprg_Inst : Synth_Instance_Acc;
Caller_Inst : Synth_Instance_Acc;
Inter_Chain : Node;
Assoc_Chain : Node;
Infos : Target_Info_Array)
is
pragma Assert (Infos'First = 1);
Inter : Node;
Assoc : Node;
Assoc_Inter : Node;
Val : Value_Acc;
Nbr_Inout : Natural;
begin
Nbr_Inout := 0;
Assoc := Assoc_Chain;
Assoc_Inter := Inter_Chain;
while Is_Valid (Assoc) loop
Inter := Get_Association_Interface (Assoc, Assoc_Inter);
case Iir_Parameter_Modes (Get_Mode (Inter)) is
when Iir_In_Mode =>
null;
when Iir_Out_Mode | Iir_Inout_Mode =>
Nbr_Inout := Nbr_Inout + 1;
if False then
Val := Synth_Expression (Subprg_Inst, Inter);
Synth_Assignment
(Caller_Inst, Infos (Nbr_Inout), Val, Assoc);
end if;
end case;
Next_Association_Interface (Assoc, Assoc_Inter);
end loop;
pragma Assert (Nbr_Inout = Infos'Last);
end Synth_Subprogram_Back_Association;
function Synth_Label (Stmt : Node) return Sname
is
Label : constant Name_Id := Get_Label (Stmt);
begin
if Label = Null_Identifier then
return No_Sname;
else
return New_Sname_User (Label);
end if;
end Synth_Label;
procedure Count_Associations
(Inter_Chain : Node; Assoc_Chain : Node; Nbr_Inout : out Natural)
is
Assoc : Node;
Assoc_Inter : Node;
Inter : Node;
begin
Nbr_Inout := 0;
Assoc := Assoc_Chain;
Assoc_Inter := Inter_Chain;
while Is_Valid (Assoc) loop
Inter := Get_Association_Interface (Assoc, Assoc_Inter);
case Iir_Parameter_Modes (Get_Mode (Inter)) is
when Iir_In_Mode =>
null;
when Iir_Out_Mode | Iir_Inout_Mode =>
Nbr_Inout := Nbr_Inout + 1;
end case;
Next_Association_Interface (Assoc, Assoc_Inter);
end loop;
end Count_Associations;
function Synth_Subprogram_Call
(Syn_Inst : Synth_Instance_Acc; Call : Node) return Value_Acc
is
Imp : constant Node := Get_Implementation (Call);
Is_Func : constant Boolean := Is_Function_Declaration (Imp);
Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Call);
Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
Bod : constant Node := Get_Subprogram_Body (Imp);
Area_Mark : Areapools.Mark_Type;
Res : Value_Acc;
C : Seq_Context;
Wire_Mark : Wire_Id;
Subprg_Phi : Phi_Type;
Nbr_Inout : Natural;
begin
Mark (Wire_Mark);
Areapools.Mark (Area_Mark, Instance_Pool.all);
C := (Inst => Make_Instance (Syn_Inst, Bod,
New_Internal_Name (Build_Context)),
Cur_Loop => null,
W_En => Alloc_Wire (Wire_Variable, Imp),
W_Ret => Alloc_Wire (Wire_Variable, Imp),
W_Val => No_Wire_Id,
Ret_Init => No_Net,
Ret_Value => null,
Ret_Typ => null,
Nbr_Ret => 0);
if Is_Func then
C.W_Val := Alloc_Wire (Wire_Variable, Imp);
end if;
Count_Associations (Inter_Chain, Assoc_Chain, Nbr_Inout);
declare
Infos : Target_Info_Array (1 .. Nbr_Inout);
begin
Synth_Subprogram_Association
(C.Inst, Syn_Inst, Inter_Chain, Assoc_Chain, Infos);
Push_Phi;
if Is_Func then
-- Set a default value for the return.
C.Ret_Typ := Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
Set_Wire_Gate (C.W_Val,
Build_Signal (Build_Context,
New_Internal_Name (Build_Context),
C.Ret_Typ.W));
C.Ret_Init := Build_Const_X (Build_Context, C.Ret_Typ.W);
Phi_Assign (Build_Context, C.W_Val, C.Ret_Init, 0);
end if;
Set_Wire_Gate
(C.W_En, Build_Signal (Build_Context,
New_Internal_Name (Build_Context), 1));
Phi_Assign (Build_Context, C.W_En, Get_Inst_Bit1 (Syn_Inst), 0);
Set_Wire_Gate
(C.W_Ret, Build_Signal (Build_Context,
New_Internal_Name (Build_Context), 1));
Phi_Assign (Build_Context, C.W_Ret, Get_Inst_Bit1 (Syn_Inst), 0);
Decls.Synth_Declarations (C.Inst, Get_Declaration_Chain (Bod), True);
Synth_Sequential_Statements
(C, Get_Sequential_Statement_Chain (Bod));
if Is_Func then
if C.Nbr_Ret = 0 then
raise Internal_Error;
elsif C.Nbr_Ret = 1 and then Is_Const (C.Ret_Value) then
Res := C.Ret_Value;
else
Res := Create_Value_Net
(Get_Current_Value (Build_Context, C.W_Val), C.Ret_Value.Typ);
end if;
else
Res := null;
Synth_Subprogram_Back_Association
(C.Inst, Syn_Inst, Inter_Chain, Assoc_Chain, Infos);
end if;
Pop_Phi (Subprg_Phi);
Decls.Finalize_Declarations
(C.Inst, Get_Declaration_Chain (Bod), True);
pragma Unreferenced (Infos);
-- Propagate assignments.
Propagate_Phi_Until_Mark (Get_Build (C.Inst), Subprg_Phi, Wire_Mark);
end;
-- Free wires.
Free_Wire (C.W_En);
Free_Wire (C.W_Ret);
if Is_Func then
Free_Wire (C.W_Val);
end if;
Free_Instance (C.Inst);
Areapools.Release (Area_Mark, Instance_Pool.all);
Release (Wire_Mark);
return Res;
end Synth_Subprogram_Call;
procedure Synth_Procedure_Call (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Call : constant Node := Get_Procedure_Call (Stmt);
Imp : constant Node := Get_Implementation (Call);
Res : Value_Acc;
begin
if Get_Implicit_Definition (Imp) in Iir_Predefined_Implicit then
Error_Msg_Synth (+Stmt, "call to implicit %n is not supported", +Imp);
return;
elsif Get_Foreign_Flag (Imp) then
Error_Msg_Synth (+Stmt, "call to foreign %n is not supported", +Imp);
return;
end if;
Res := Synth_Subprogram_Call (Syn_Inst, Call);
pragma Assert (Res = null);
end Synth_Procedure_Call;
function In_Range (Rng : Discrete_Range_Type; V : Int64) return Boolean is
begin
case Rng.Dir is
when Iir_To =>
return V >= Rng.Left and then V <= Rng.Right;
when Iir_Downto =>
return V <= Rng.Left and then V >= Rng.Right;
end case;
end In_Range;
procedure Update_Index (Rng : Discrete_Range_Type; Idx : in out Int64) is
begin
case Rng.Dir is
when Iir_To =>
Idx := Idx + 1;
when Iir_Downto =>
Idx := Idx - 1;
end case;
end Update_Index;
procedure Loop_Control_Init (C : Seq_Context; Stmt : Node)
is
Lc : constant Loop_Context_Acc := C.Cur_Loop;
begin
Mark (C.Cur_Loop.Wire_Mark);
if (Lc.Prev_Loop /= null and then Lc.Prev_Loop.Need_Quit) then
Lc.W_Quit := Alloc_Wire (Wire_Variable, Lc.Loop_Stmt);
Set_Wire_Gate
(Lc.W_Quit, Build_Signal (Get_Build (C.Inst),
New_Internal_Name (Build_Context), 1));
Phi_Assign (Get_Build (C.Inst), Lc.W_Quit, Get_Inst_Bit1 (C.Inst), 0);
end if;
if Get_Exit_Flag (Stmt) or else Get_Next_Flag (Stmt) then
Lc.Saved_En := Get_Current_Value (null, C.W_En);
Lc.Need_Quit := True;
end if;
if Get_Exit_Flag (Stmt) then
-- Exit statement for this loop.
Lc.W_Exit := Alloc_Wire (Wire_Variable, Lc.Loop_Stmt);
Set_Wire_Gate
(Lc.W_Exit, Build_Signal (Get_Build (C.Inst),
New_Internal_Name (Build_Context), 1));
Phi_Assign (Get_Build (C.Inst), Lc.W_Exit, Get_Inst_Bit1 (C.Inst), 0);
end if;
end Loop_Control_Init;
function Loop_Control_And (C : Seq_Context; L, R : Net) return Net
is
B1 : constant Net := Get_Inst_Bit1 (C.Inst);
begin
-- Optimize common cases.
if L = B1 then
return R;
elsif R = B1 then
return L;
else
return Build_Dyadic (Get_Build (C.Inst), Netlists.Gates.Id_And, L, R);
end if;
end Loop_Control_And;
procedure Loop_Control_Update (C : Seq_Context)
is
Lc : constant Loop_Context_Acc := C.Cur_Loop;
Res : Net;
begin
-- Execution continue iff:
-- 1. Loop was enabled (Lc.Saved_En)
Res := Lc.Saved_En;
if Res = No_Net then
-- No loop control.
return;
end if;
-- 2. No return (C.W_Ret)
if C.W_Ret /= No_Wire_Id then
Res := Loop_Control_And (C, Res, Get_Current_Value (null, C.W_Ret));
end if;
-- 3. No exit.
if Lc.W_Exit /= No_Wire_Id then
Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Exit));
end if;
-- 4. No quit.
if Lc.W_Quit /= No_Wire_Id then
Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Quit));
end if;
Phi_Assign (Get_Build (C.Inst), C.W_En, Res, 0);
end Loop_Control_Update;
procedure Loop_Control_Finish (C : Seq_Context)
is
Lc : constant Loop_Context_Acc := C.Cur_Loop;
Res : Net;
begin
-- Execute continue iff:
-- 1. Loop was enabled (Lc.Saved_En)
Res := Lc.Saved_En;
if Res = No_Net then
-- No loop control.
return;
end if;
-- 2. No return (C.W_Ret)
if C.W_Ret /= No_Wire_Id then
Res := Loop_Control_And (C, Res, Get_Current_Value (null, C.W_Ret));
end if;
-- 3. No quit (C.W_Quit)
if Lc.W_Quit /= No_Wire_Id then
Res := Loop_Control_And (C, Res, Get_Current_Value (null, Lc.W_Quit));
end if;
Phi_Discard_Wires (Lc.W_Quit, Lc.W_Exit);
if Lc.W_Quit /= No_Wire_Id then
Free_Wire (Lc.W_Quit);
end if;
if Lc.W_Exit /= No_Wire_Id then
Free_Wire (Lc.W_Exit);
end if;
Release (C.Cur_Loop.Wire_Mark);
Phi_Assign (Get_Build (C.Inst), C.W_En, Res, 0);
end Loop_Control_Finish;
procedure Synth_Exit_Next_Statement (C : in out Seq_Context; Stmt : Node)
is
Cond : constant Node := Get_Condition (Stmt);
Is_Exit : constant Boolean := Get_Kind (Stmt) = Iir_Kind_Exit_Statement;
Loop_Label : Node;
Lc : Loop_Context_Acc;
Cond_Val : Value_Acc;
Phi_True : Phi_Type;
Phi_False : Phi_Type;
begin
if Cond /= Null_Node then
Cond_Val := Synth_Expression (C.Inst, Cond);
Push_Phi;
end if;
-- Execution is suspended.
Phi_Assign (Get_Build (C.Inst), C.W_En, Get_Inst_Bit0 (C.Inst), 0);
Lc := C.Cur_Loop;
Loop_Label := Get_Loop_Label (Stmt);
if Loop_Label = Null_Node then
Loop_Label := Lc.Loop_Stmt;
else
Loop_Label := Get_Named_Entity (Loop_Label);
end if;
loop
if Lc.Loop_Stmt = Loop_Label then
if Is_Exit then
Phi_Assign (Get_Build (C.Inst), Lc.W_Exit,
Get_Inst_Bit0 (C.Inst), 0);
end if;
exit;
else
Phi_Assign (Get_Build (C.Inst), Lc.W_Quit,
Get_Inst_Bit0 (C.Inst), 0);
end if;
Lc := Lc.Prev_Loop;
end loop;
if Cond /= Null_Node then
Pop_Phi (Phi_True);
Push_Phi;
Pop_Phi (Phi_False);
Merge_Phis (Build_Context,
Get_Net (Cond_Val), Phi_True, Phi_False, Stmt);
end if;
end Synth_Exit_Next_Statement;
procedure Synth_For_Loop_Statement (C : in out Seq_Context; Stmt : Node)
is
Iterator : constant Node := Get_Parameter_Specification (Stmt);
Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
It_Type : constant Node := Get_Declaration_Type (Iterator);
It_Rng : Type_Acc;
Val : Value_Acc;
Lc : aliased Loop_Context;
begin
Lc := (Prev_Loop => C.Cur_Loop,
Loop_Stmt => Stmt,
Need_Quit => False,
Saved_En => No_Net,
W_Exit => No_Wire_Id,
W_Quit => No_Wire_Id,
Wire_Mark => No_Wire_Id);
C.Cur_Loop := Lc'Unrestricted_Access;
Loop_Control_Init (C, Stmt);
if It_Type /= Null_Node then
Synth_Subtype_Indication (C.Inst, It_Type);
end if;
-- Initial value.
It_Rng := Get_Value_Type (C.Inst, Get_Type (Iterator));
Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);
Create_Object (C.Inst, Iterator, Val);
while In_Range (It_Rng.Drange, Val.Scal) loop
Synth_Sequential_Statements (C, Stmts);
Update_Index (It_Rng.Drange, Val.Scal);
Loop_Control_Update (C);
end loop;
Loop_Control_Finish (C);
Destroy_Object (C.Inst, Iterator);
if It_Type /= Null_Node then
Destroy_Object (C.Inst, It_Type);
end if;
C.Cur_Loop := Lc.Prev_Loop;
end Synth_For_Loop_Statement;
procedure Synth_While_Loop_Statement (C : in out Seq_Context; Stmt : Node)
is
Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
Cond : constant Node := Get_Condition (Stmt);
Val : Value_Acc;
Lc : aliased Loop_Context;
begin
Lc := (Prev_Loop => C.Cur_Loop,
Loop_Stmt => Stmt,
Need_Quit => False,
Saved_En => No_Net,
W_Exit => No_Wire_Id,
W_Quit => No_Wire_Id,
Wire_Mark => No_Wire_Id);
C.Cur_Loop := Lc'Unrestricted_Access;
Loop_Control_Init (C, Stmt);
loop
if Cond /= Null_Node then
Val := Synth_Expression_With_Type (C.Inst, Cond, Boolean_Type);
if not Is_Const (Val) then
Error_Msg_Synth (+Cond, "loop condition must be static");
exit;
end if;
exit when Val.Scal = 0;
end if;
Synth_Sequential_Statements (C, Stmts);
Loop_Control_Update (C);
end loop;
Loop_Control_Finish (C);
C.Cur_Loop := Lc.Prev_Loop;
end Synth_While_Loop_Statement;
procedure Synth_Return_Statement (C : in out Seq_Context; Stmt : Node)
is
Val : Value_Acc;
Expr : constant Node := Get_Expression (Stmt);
begin
if Expr /= Null_Node then
-- Return in function.
Val := Synth_Expression_With_Type (C.Inst, Expr, C.Ret_Typ);
Val := Synth_Subtype_Conversion (Val, C.Ret_Typ, False, Stmt);
if C.Nbr_Ret = 0 then
C.Ret_Value := Val;
if not Is_Bounded_Type (C.Ret_Typ) then
-- The function was declared with an unconstrained return type.
-- Now that a value has been returned, we know the subtype of
-- the returned values. So adjust it.
-- All the returned values must have the same length.
C.Ret_Typ := Val.Typ;
Set_Width (Get_Wire_Gate (C.W_Val), C.Ret_Typ.W);
Set_Width (C.Ret_Init, C.Ret_Typ.W);
end if;
end if;
Phi_Assign (Get_Build (C.Inst), C.W_Val, Get_Net (Val), 0);
end if;
-- The subprogram has returned. Do not execute further statements.
Phi_Assign (Get_Build (C.Inst), C.W_En, Get_Inst_Bit0 (C.Inst), 0);
if C.W_Ret /= No_Wire_Id then
Phi_Assign (Get_Build (C.Inst), C.W_Ret, Get_Inst_Bit0 (C.Inst), 0);
end if;
C.Nbr_Ret := C.Nbr_Ret + 1;
end Synth_Return_Statement;
procedure Synth_Sequential_Statements
(C : in out Seq_Context; Stmts : Node)
is
Stmt : Node;
Phi_T, Phi_F : Phi_Type;
Has_Phi : Boolean;
En : Net;
begin
Stmt := Stmts;
while Is_Valid (Stmt) loop
En := Get_Current_Value (null, C.W_En);
pragma Assert (En /= Get_Inst_Bit0 (C.Inst));
Has_Phi := En /= Get_Inst_Bit1 (C.Inst);
if Has_Phi then
Push_Phi;
end if;
case Get_Kind (Stmt) is
when Iir_Kind_If_Statement =>
Synth_If_Statement (C, Stmt);
when Iir_Kind_Simple_Signal_Assignment_Statement =>
Synth_Simple_Signal_Assignment (C.Inst, Stmt);
when Iir_Kind_Conditional_Signal_Assignment_Statement =>
Synth_Conditional_Signal_Assignment (C.Inst, Stmt);
when Iir_Kind_Variable_Assignment_Statement =>
Synth_Variable_Assignment (C.Inst, Stmt);
when Iir_Kind_Conditional_Variable_Assignment_Statement =>
Synth_Conditional_Variable_Assignment (C.Inst, Stmt);
when Iir_Kind_Case_Statement =>
Synth_Case_Statement (C, Stmt);
when Iir_Kind_For_Loop_Statement =>
Synth_For_Loop_Statement (C, Stmt);
when Iir_Kind_While_Loop_Statement =>
Synth_While_Loop_Statement (C, Stmt);
when Iir_Kind_Null_Statement =>
-- Easy
null;
when Iir_Kind_Return_Statement =>
Synth_Return_Statement (C, Stmt);
when Iir_Kind_Procedure_Call_Statement =>
Synth_Procedure_Call (C.Inst, Stmt);
when Iir_Kind_Report_Statement
| Iir_Kind_Assertion_Statement =>
-- TODO ?
null;
when Iir_Kind_Exit_Statement
| Iir_Kind_Next_Statement =>
Synth_Exit_Next_Statement (C, Stmt);
when others =>
Error_Kind ("synth_sequential_statements", Stmt);
end case;
if Has_Phi then
Pop_Phi (Phi_T);
Push_Phi;
Pop_Phi (Phi_F);
Merge_Phis (Build_Context,
Get_Current_Value (Build_Context, C.W_En),
Phi_T, Phi_F, Stmt);
end if;
if Get_Current_Value (null, C.W_En) = Get_Inst_Bit0 (C.Inst) then
return;
end if;
Stmt := Get_Chain (Stmt);
end loop;
end Synth_Sequential_Statements;
Proc_Pool : aliased Areapools.Areapool;
-- Synthesis of statements of a non-sensitized process.
procedure Synth_Process_Sequential_Statements
(C : in out Seq_Context; Proc : Node)
is
Stmt : Node;
Cond : Node;
Cond_Val : Value_Acc;
Phi_True : Phi_Type;
Phi_False : Phi_Type;
begin
Stmt := Get_Sequential_Statement_Chain (Proc);
-- The first statement must be a wait statement.
if Get_Kind (Stmt) /= Iir_Kind_Wait_Statement then
Error_Msg_Synth (+Stmt, "expect wait as the first statement");
return;
end if;
-- Handle the condition as an if.
Cond := Get_Condition_Clause (Stmt);
if Cond = Null_Node then
Error_Msg_Synth (+Stmt, "expect wait condition");
return;
end if;
Cond_Val := Synth_Expression (C.Inst, Cond);
Push_Phi;
Synth_Sequential_Statements (C, Get_Chain (Stmt));
Pop_Phi (Phi_True);
Push_Phi;
Pop_Phi (Phi_False);
Merge_Phis (Build_Context, Get_Net (Cond_Val),
Phi_True, Phi_False, Stmt);
end Synth_Process_Sequential_Statements;
procedure Synth_Process_Statement
(Syn_Inst : Synth_Instance_Acc; Proc : Node)
is
use Areapools;
Label : constant Name_Id := Get_Identifier (Proc);
Decls_Chain : constant Node := Get_Declaration_Chain (Proc);
Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
M : Areapools.Mark_Type;
C_Sname : Sname;
C : Seq_Context;
begin
if Label = Null_Identifier then
C_Sname := New_Internal_Name (Build_Context, Get_Sname (Syn_Inst));
else
C_Sname := New_Sname (Get_Sname (Syn_Inst), Label);
end if;
C := (Inst => Make_Instance (Syn_Inst, Proc, C_Sname),
Cur_Loop => null,
W_En => Alloc_Wire (Wire_Variable, Proc),
W_Ret => No_Wire_Id,
W_Val => No_Wire_Id,
Ret_Init => No_Net,
Ret_Value => null,
Ret_Typ => null,
Nbr_Ret => 0);
Mark (M, Proc_Pool);
Instance_Pool := Proc_Pool'Access;
if Is_Valid (Decls_Chain) then
Synth_Declarations (C.Inst, Decls_Chain);
end if;
Set_Wire_Gate (C.W_En, Build_Signal (Build_Context,
New_Internal_Name (Build_Context),
1));
Phi_Assign (Build_Context, C.W_En, Get_Inst_Bit1 (Syn_Inst), 0);
case Iir_Kinds_Process_Statement (Get_Kind (Proc)) is
when Iir_Kind_Sensitized_Process_Statement =>
Synth_Sequential_Statements
(C, Get_Sequential_Statement_Chain (Proc));
-- FIXME: check sensitivity list.
when Iir_Kind_Process_Statement =>
Synth_Process_Sequential_Statements (C, Proc);
end case;
-- FIXME: free W_En ?
Free_Instance (C.Inst);
Release (M, Proc_Pool);
Instance_Pool := Prev_Instance_Pool;
end Synth_Process_Statement;
function Synth_User_Function_Call
(Syn_Inst : Synth_Instance_Acc; Expr : Node) return Value_Acc is
begin
-- Is it a call to an ieee function ?
declare
Imp : constant Node := Get_Implementation (Expr);
Pkg : constant Node := Get_Parent (Imp);
Unit : Node;
Lib : Node;
begin
if Get_Kind (Pkg) = Iir_Kind_Package_Declaration then
Unit := Get_Parent (Pkg);
if Get_Kind (Unit) = Iir_Kind_Design_Unit then
Lib := Get_Library (Get_Design_File (Unit));
if Get_Identifier (Lib) = Std_Names.Name_Ieee then
Error_Msg_Synth
(+Expr, "unhandled call to an ieee function");
raise Internal_Error;
end if;
end if;
end if;
end;
return Synth_Subprogram_Call (Syn_Inst, Expr);
end Synth_User_Function_Call;
procedure Synth_Concurrent_Assertion_Statement
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Cond : constant Node := Get_Assertion_Condition (Stmt);
Val : Value_Acc;
Inst : Instance;
begin
Val := Synth_Expression (Syn_Inst, Cond);
if Is_Const (Val) then
if Val.Scal /= 1 then
raise Internal_Error;
end if;
return;
end if;
Inst := Build_Assert (Build_Context, Synth_Label (Stmt), Get_Net (Val));
Set_Location (Inst, Get_Location (Stmt));
end Synth_Concurrent_Assertion_Statement;
procedure Synth_Block_Statement (Syn_Inst : Synth_Instance_Acc; Blk : Node)
is
use Areapools;
Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
Blk_Inst : Synth_Instance_Acc;
Blk_Sname : Sname;
M : Areapools.Mark_Type;
begin
-- No support for guard or header.
if Get_Block_Header (Blk) /= Null_Node
or else Get_Guard_Decl (Blk) /= Null_Node
then
raise Internal_Error;
end if;
Blk_Sname := New_Sname (Get_Sname (Syn_Inst), Get_Identifier (Blk));
Blk_Inst := Make_Instance (Syn_Inst, Blk, Blk_Sname);
Mark (M, Proc_Pool);
Instance_Pool := Proc_Pool'Access;
Synth_Declarations (Blk_Inst, Get_Declaration_Chain (Blk));
Synth_Concurrent_Statements
(Blk_Inst, Get_Concurrent_Statement_Chain (Blk));
Free_Instance (Blk_Inst);
Release (M, Proc_Pool);
Instance_Pool := Prev_Instance_Pool;
end Synth_Block_Statement;
function Synth_PSL_Expression
(Syn_Inst : Synth_Instance_Acc; Expr : PSL.Types.PSL_Node) return Net
is
use PSL.Types;
use PSL.Nodes;
begin
case Get_Kind (Expr) is
when N_HDL_Expr =>
declare
E : constant Vhdl.Types.Vhdl_Node := Get_HDL_Node (Expr);
begin
return Get_Net (Synth_Expression (Syn_Inst, E));
end;
when N_Not_Bool =>
return Build_Monadic
(Build_Context, Netlists.Gates.Id_Not,
Synth_PSL_Expression (Syn_Inst, Get_Boolean (Expr)));
when N_And_Bool =>
declare
L : constant PSL_Node := Get_Left (Expr);
R : constant PSL_Node := Get_Right (Expr);
Edge : Net;
begin
-- Handle edge (as it can be in default clock).
if Get_Kind (L) = N_HDL_Expr and then Get_Kind (R) = N_HDL_Expr
then
Edge := Synth_Clock_Edge
(Syn_Inst, Get_HDL_Node (L), Get_HDL_Node (R));
if Edge /= No_Net then
return Edge;
end if;
end if;
if Get_Kind (R) = N_EOS then
-- It is never EOS!
return Build_Const_UB32 (Build_Context, 0, 1);
end if;
return Build_Dyadic
(Build_Context, Netlists.Gates.Id_And,
Synth_PSL_Expression (Syn_Inst, L),
Synth_PSL_Expression (Syn_Inst, R));
end;
when N_Or_Bool =>
return Build_Dyadic
(Build_Context, Netlists.Gates.Id_Or,
Synth_PSL_Expression (Syn_Inst, Get_Left (Expr)),
Synth_PSL_Expression (Syn_Inst, Get_Right (Expr)));
when N_True =>
return Build_Const_UB32 (Build_Context, 1, 1);
when N_False
| N_EOS =>
return Build_Const_UB32 (Build_Context, 0, 1);
when others =>
PSL.Errors.Error_Kind ("translate_psl_expr", Expr);
end case;
end Synth_PSL_Expression;
function Synth_Psl_NFA (Syn_Inst : Synth_Instance_Acc;
NFA : PSL.Types.PSL_NFA;
Nbr_States : Int32;
States : Net) return Net
is
use PSL.NFAs;
S : NFA_State;
S_Num : Int32;
D_Num : Int32;
I : Net;
Cond : Net;
E : NFA_Edge;
D_Arr : Net_Array_Acc;
Res : Net;
begin
D_Arr := new Net_Array'(0 .. Nbr_States - 1 => No_Net);
-- For each state:
S := Get_First_State (NFA);
while S /= No_State loop
S_Num := Get_State_Label (S);
I := Build_Extract_Bit (Build_Context, States, Uns32 (S_Num));
-- For each edge:
E := Get_First_Src_Edge (S);
while E /= No_Edge loop
-- Edge condition.
Cond := Build_Dyadic
(Build_Context, Netlists.Gates.Id_And,
I, Synth_PSL_Expression (Syn_Inst, Get_Edge_Expr (E)));
-- TODO: if EOS is present, then this is a live state.
-- Reverse order for final concatenation.
D_Num := Nbr_States - 1 - Get_State_Label (Get_Edge_Dest (E));
if D_Arr (D_Num) = No_Net then
D_Arr (D_Num) := Cond;
else
D_Arr (D_Num) := Build_Dyadic
(Build_Context, Netlists.Gates.Id_Or, D_Arr (D_Num), Cond);
end if;
E := Get_Next_Src_Edge (E);
end loop;
S := Get_Next_State (S);
end loop;
if D_Arr (Nbr_States - 1) = No_Net then
D_Arr (Nbr_States - 1) := Build_Const_UB32 (Build_Context, 0, 1);
end if;
Res := Concat_Array (D_Arr);
Free_Net_Array (D_Arr);
return Res;
end Synth_Psl_NFA;
procedure Synth_Psl_Dff (Syn_Inst : Synth_Instance_Acc;
Stmt : Node;
Next_States : out Net)
is
use Netlists.Gates;
Nbr_States : constant Int32 := Get_PSL_Nbr_States (Stmt);
States : Net;
Init : Net;
Clk : Net;
Clk_Inst : Instance;
begin
-- create init net, clock net
pragma Assert (Nbr_States <= 32);
Init := Build_Const_UB32 (Build_Context, 1, Uns32 (Nbr_States));
Clk := Synth_PSL_Expression (Syn_Inst, Get_PSL_Clock (Stmt));
-- Check the clock is an edge and extract it.
Clk_Inst := Get_Net_Parent (Clk);
if Get_Id (Clk_Inst) /= Id_Edge then
Error_Msg_Synth (+Stmt, "clock is not an edge");
Next_States := No_Net;
return;
end if;
Clk := Get_Input_Net (Clk_Inst, 0);
-- build idff
States := Build_Idff (Build_Context, Clk, No_Net, Init);
-- create update nets
-- For each state: if set, evaluate all outgoing edges.
Next_States :=
Synth_Psl_NFA (Syn_Inst, Get_PSL_NFA (Stmt), Nbr_States, States);
Connect (Get_Input (Get_Net_Parent (States), 1), Next_States);
end Synth_Psl_Dff;
function Synth_Psl_Final
(Syn_Inst : Synth_Instance_Acc; Stmt : Node; Next_States : Net) return Net
is
use PSL.Types;
use PSL.NFAs;
NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
begin
return Build_Extract_Bit
(Get_Build (Syn_Inst), Next_States,
Uns32 (Get_State_Label (Get_Final_State (NFA))));
end Synth_Psl_Final;
function Synth_Psl_Not_Final
(Syn_Inst : Synth_Instance_Acc; Stmt : Node; Next_States : Net)
return Net is
begin
return Build_Monadic
(Get_Build (Syn_Inst), Netlists.Gates.Id_Not,
Synth_Psl_Final (Syn_Inst, Stmt, Next_States));
end Synth_Psl_Not_Final;
procedure Synth_Psl_Restrict_Directive
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Next_States : Net;
Res : Net;
Inst : Instance;
begin
-- Build assume gate.
-- Note: for synthesis, we assume the next state will be correct.
-- (If we assume on States, then the first cycle is ignored).
Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
if Next_States /= No_Net then
-- The restriction holds as long as there is a 1 in the NFA state.
Res := Build_Reduce (Build_Context,
Netlists.Gates.Id_Red_Or, Next_States);
Inst := Build_Assume (Build_Context, Synth_Label (Stmt), Res);
Set_Location (Inst, Get_Location (Stmt));
end if;
end Synth_Psl_Restrict_Directive;
procedure Synth_Psl_Cover_Directive
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Next_States : Net;
Res : Net;
Inst : Instance;
begin
-- Build cover gate.
-- Note: for synthesis, we assume the next state will be correct.
-- (If we assume on States, then the first cycle is ignored).
Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
if Next_States /= No_Net then
-- The sequence is covered as soon as the final state is reached.
Res := Synth_Psl_Final (Syn_Inst, Stmt, Next_States);
Inst := Build_Cover (Build_Context, Synth_Label (Stmt), Res);
Set_Location (Inst, Get_Location (Stmt));
end if;
end Synth_Psl_Cover_Directive;
procedure Synth_Psl_Assume_Directive
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Next_States : Net;
Inst : Instance;
begin
-- Build assume gate.
-- Note: for synthesis, we assume the next state will be correct.
-- (If we assume on States, then the first cycle is ignored).
Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
if Next_States /= No_Net then
Inst := Build_Assume
(Build_Context, Synth_Label (Stmt),
Synth_Psl_Not_Final (Syn_Inst, Stmt, Next_States));
Set_Location (Inst, Get_Location (Stmt));
end if;
end Synth_Psl_Assume_Directive;
procedure Synth_Psl_Assert_Directive
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
use PSL.Types;
use PSL.NFAs;
NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
Active : NFA_State;
Next_States : Net;
Inst : Instance;
Lab : Sname;
begin
-- Build assert gate.
-- Note: for synthesis, we assume the next state will be correct.
-- (If we assert on States, then the first cycle is ignored).
Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
if Next_States /= No_Net then
Lab := Synth_Label (Stmt);
Inst := Build_Assert
(Build_Context, Lab,
Synth_Psl_Not_Final (Syn_Inst, Stmt, Next_States));
Set_Location (Inst, Get_Location (Stmt));
Active := Get_Active_State (NFA);
if Active /= No_State then
if Lab /= No_Sname then
Lab := New_Sname (Lab, Std_Names.Name_Cover);
end if;
Inst := Build_Assert_Cover
(Get_Build (Syn_Inst), Lab,
Build_Extract_Bit (Get_Build (Syn_Inst), Next_States,
Uns32 (Get_State_Label (Active))));
Set_Location (Inst, Get_Location (Stmt));
end if;
end if;
end Synth_Psl_Assert_Directive;
procedure Synth_Generate_Statement_Body (Syn_Inst : Synth_Instance_Acc;
Bod : Node;
Name : Sname;
Iterator : Node := Null_Node;
Iterator_Val : Value_Acc := null)
is
use Areapools;
Decls_Chain : constant Node := Get_Declaration_Chain (Bod);
Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
Bod_Inst : Synth_Instance_Acc;
M : Areapools.Mark_Type;
begin
Bod_Inst := Make_Instance (Syn_Inst, Bod, Name);
Mark (M, Proc_Pool);
Instance_Pool := Proc_Pool'Access;
if Iterator /= Null_Node then
-- Add the iterator (for for-generate).
Create_Object (Bod_Inst, Iterator, Iterator_Val);
end if;
Synth_Declarations (Bod_Inst, Decls_Chain);
Synth_Concurrent_Statements
(Bod_Inst, Get_Concurrent_Statement_Chain (Bod));
Free_Instance (Bod_Inst);
Release (M, Proc_Pool);
Instance_Pool := Prev_Instance_Pool;
end Synth_Generate_Statement_Body;
procedure Synth_If_Generate_Statement
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Gen : Node;
Bod : Node;
Cond : Value_Acc;
Name : Sname;
begin
Gen := Stmt;
Name := New_Sname (Get_Sname (Syn_Inst),
Get_Identifier (Stmt));
loop
Cond := Synth_Expression (Syn_Inst, Get_Condition (Gen));
pragma Assert (Cond.Kind = Value_Discrete);
if Cond.Scal = 1 then
Bod := Get_Generate_Statement_Body (Gen);
Apply_Block_Configuration
(Get_Generate_Block_Configuration (Bod), Bod);
Synth_Generate_Statement_Body (Syn_Inst, Bod, Name);
exit;
end if;
Gen := Get_Generate_Else_Clause (Gen);
exit when Gen = Null_Node;
end loop;
end Synth_If_Generate_Statement;
procedure Synth_For_Generate_Statement
(Syn_Inst : Synth_Instance_Acc; Stmt : Node)
is
Iterator : constant Node := Get_Parameter_Specification (Stmt);
Bod : constant Node := Get_Generate_Statement_Body (Stmt);
Configs : constant Node := Get_Generate_Block_Configuration (Bod);
It_Type : constant Node := Get_Declaration_Type (Iterator);
Config : Node;
It_Rng : Type_Acc;
Val : Value_Acc;
Name : Sname;
Lname : Sname;
begin
if It_Type /= Null_Node then
Synth_Subtype_Indication (Syn_Inst, It_Type);
end if;
-- Initial value.
It_Rng := Get_Value_Type (Syn_Inst, Get_Type (Iterator));
Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);
Name := New_Sname (Get_Sname (Syn_Inst), Get_Identifier (Stmt));
while In_Range (It_Rng.Drange, Val.Scal) loop
-- Find and apply the config block.
declare
Spec : Node;
begin
Config := Configs;
while Config /= Null_Node loop
Spec := Get_Block_Specification (Config);
case Get_Kind (Spec) is
when Iir_Kind_Simple_Name =>
exit;
when others =>
Error_Kind ("synth_for_generate_statement", Spec);
end case;
Config := Get_Prev_Block_Configuration (Config);
end loop;
if Config = Null_Node then
raise Internal_Error;
end if;
Apply_Block_Configuration (Config, Bod);
end;
-- FIXME: get position ?
Lname := New_Sname_Version (Name, Uns32 (Val.Scal));
Synth_Generate_Statement_Body (Syn_Inst, Bod, Lname, Iterator, Val);
Update_Index (It_Rng.Drange, Val.Scal);
end loop;
end Synth_For_Generate_Statement;
procedure Synth_Concurrent_Statement
(Syn_Inst : Synth_Instance_Acc; Stmt : Node) is
begin
case Get_Kind (Stmt) is
when Iir_Kind_Concurrent_Simple_Signal_Assignment =>
Push_Phi;
Synth_Simple_Signal_Assignment (Syn_Inst, Stmt);
Pop_And_Merge_Phi (Build_Context, Stmt);
when Iir_Kind_Concurrent_Conditional_Signal_Assignment =>
Push_Phi;
Synth_Conditional_Signal_Assignment (Syn_Inst, Stmt);
Pop_And_Merge_Phi (Build_Context, Stmt);
when Iir_Kind_Concurrent_Selected_Signal_Assignment =>
Push_Phi;
Synth_Selected_Signal_Assignment (Syn_Inst, Stmt);
Pop_And_Merge_Phi (Build_Context, Stmt);
when Iir_Kind_Concurrent_Procedure_Call_Statement =>
Push_Phi;
Synth_Procedure_Call (Syn_Inst, Stmt);
Pop_And_Merge_Phi (Build_Context, Stmt);
when Iir_Kinds_Process_Statement =>
Push_Phi;
Synth_Process_Statement (Syn_Inst, Stmt);
Pop_And_Merge_Phi (Build_Context, Stmt);
when Iir_Kind_If_Generate_Statement =>
Synth_If_Generate_Statement (Syn_Inst, Stmt);
when Iir_Kind_For_Generate_Statement =>
Synth_For_Generate_Statement (Syn_Inst, Stmt);
when Iir_Kind_Component_Instantiation_Statement =>
Push_Phi;
if Is_Component_Instantiation (Stmt) then
declare
Comp_Config : constant Node :=
Get_Component_Configuration (Stmt);
begin
if Get_Binding_Indication (Comp_Config) = Null_Node then
-- Not bound.
Synth_Blackbox_Instantiation_Statement (Syn_Inst, Stmt);
else
Synth_Component_Instantiation_Statement (Syn_Inst, Stmt);
end if;
end;
else
Synth_Design_Instantiation_Statement (Syn_Inst, Stmt);
end if;
Pop_And_Merge_Phi (Build_Context, Stmt);
when Iir_Kind_Block_Statement =>
Synth_Block_Statement (Syn_Inst, Stmt);
when Iir_Kind_Psl_Default_Clock =>
null;
when Iir_Kind_Psl_Restrict_Directive =>
Synth_Psl_Restrict_Directive (Syn_Inst, Stmt);
when Iir_Kind_Psl_Assume_Directive =>
Synth_Psl_Assume_Directive (Syn_Inst, Stmt);
when Iir_Kind_Psl_Cover_Directive =>
Synth_Psl_Cover_Directive (Syn_Inst, Stmt);
when Iir_Kind_Psl_Assert_Directive =>
Synth_Psl_Assert_Directive (Syn_Inst, Stmt);
when Iir_Kind_Concurrent_Assertion_Statement =>
-- Passive statement.
Synth_Concurrent_Assertion_Statement (Syn_Inst, Stmt);
when others =>
Error_Kind ("synth_concurrent_statement", Stmt);
end case;
end Synth_Concurrent_Statement;
procedure Synth_Concurrent_Statements
(Syn_Inst : Synth_Instance_Acc; Stmts : Node)
is
Stmt : Node;
begin
Stmt := Stmts;
while Is_Valid (Stmt) loop
Synth_Concurrent_Statement (Syn_Inst, Stmt);
Stmt := Get_Chain (Stmt);
end loop;
end Synth_Concurrent_Statements;
procedure Synth_Attribute_Formal (Syn_Inst : Synth_Instance_Acc;
Val : Node;
Id : Netlists.Gates.Formal_Module_Id)
is
Spec : constant Node := Get_Attribute_Specification (Val);
Sig : constant Node := Get_Designated_Entity (Val);
V : Value_Acc;
Targ : Value_Acc;
begin
-- The type must be boolean
if (Get_Base_Type (Get_Type (Val)) /=
Vhdl.Std_Package.Boolean_Type_Definition)
then
Error_Msg_Synth (+Val, "type of attribute %i must be boolean",
(1 => +Get_Attribute_Designator (Spec)));
return;
end if;
-- The designated entity must be a signal.
if Get_Kind (Sig) /= Iir_Kind_Signal_Declaration then
Error_Msg_Synth (+Val, "attribute %i only applies to signals",
(1 => +Get_Attribute_Designator (Spec)));
return;
end if;
-- The value must be true
V := Synth_Expression_With_Type
(Syn_Inst, Get_Expression (Spec), Boolean_Type);
if V.Scal /= 1 then
return;
end if;
declare
Off : Uns32;
Voff : Net;
Wd : Width;
Typ : Type_Acc;
N : Net;
begin
Synth_Assignment_Prefix (Syn_Inst, Sig, Targ, Off, Voff, Wd, Typ);
pragma Assert (Off = 0);
pragma Assert (Voff = No_Net);
pragma Assert (Targ.Kind = Value_Wire);
N := Build_Formal_Input (Get_Build (Syn_Inst), Id, Typ.W);
Add_Conc_Assign (Targ.W, N, 0, Val);
end;
end Synth_Attribute_Formal;
procedure Synth_Attribute_Values
(Syn_Inst : Synth_Instance_Acc; Unit : Node)
is
use Std_Names;
use Netlists.Gates;
Val : Node;
Spec : Node;
Id : Name_Id;
begin
Val := Get_Attribute_Value_Chain (Unit);
while Val /= Null_Node loop
Spec := Get_Attribute_Specification (Val);
Id := Get_Identifier (Get_Attribute_Designator (Spec));
case Id is
when Name_Allconst =>
Synth_Attribute_Formal (Syn_Inst, Val, Id_Allconst);
when Name_Allseq =>
Synth_Attribute_Formal (Syn_Inst, Val, Id_Allseq);
when Name_Anyconst =>
Synth_Attribute_Formal (Syn_Inst, Val, Id_Anyconst);
when Name_Anyseq =>
Synth_Attribute_Formal (Syn_Inst, Val, Id_Anyseq);
when others =>
Warning_Msg_Synth (+Spec, "unhandled attribute %i", (1 => +Id));
end case;
Val := Get_Value_Chain (Val);
end loop;
end Synth_Attribute_Values;
procedure Synth_Verification_Unit
(Syn_Inst : Synth_Instance_Acc; Unit : Node)
is
use Areapools;
Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
Unit_Inst : Synth_Instance_Acc;
Unit_Sname : Sname;
M : Areapools.Mark_Type;
Item : Node;
begin
Unit_Sname := New_Sname (Get_Sname (Syn_Inst), Get_Identifier (Unit));
Unit_Inst := Make_Instance (Syn_Inst, Unit, Unit_Sname);
Mark (M, Proc_Pool);
Instance_Pool := Proc_Pool'Access;
Item := Get_Vunit_Item_Chain (Unit);
while Item /= Null_Node loop
case Get_Kind (Item) is
when Iir_Kind_Psl_Default_Clock =>
null;
when Iir_Kind_Psl_Assert_Directive =>
Synth_Psl_Assert_Directive (Unit_Inst, Item);
when Iir_Kind_Psl_Assume_Directive =>
Synth_Psl_Assume_Directive (Unit_Inst, Item);
when Iir_Kind_Psl_Restrict_Directive =>
Synth_Psl_Restrict_Directive (Unit_Inst, Item);
when Iir_Kind_Psl_Cover_Directive =>
Synth_Psl_Cover_Directive (Unit_Inst, Item);
when Iir_Kind_Signal_Declaration
| Iir_Kind_Function_Declaration
| Iir_Kind_Procedure_Declaration
| Iir_Kind_Function_Body
| Iir_Kind_Procedure_Body
| Iir_Kind_Attribute_Declaration
| Iir_Kind_Attribute_Specification =>
Synth_Declaration (Unit_Inst, Item, False);
when Iir_Kind_Concurrent_Simple_Signal_Assignment =>
Synth_Concurrent_Statement (Unit_Inst, Item);
when others =>
Error_Kind ("synth_verification_unit", Item);
end case;
Item := Get_Chain (Item);
end loop;
Synth_Attribute_Values (Unit_Inst, Unit);
Free_Instance (Unit_Inst);
Release (M, Proc_Pool);
Instance_Pool := Prev_Instance_Pool;
end Synth_Verification_Unit;
end Synth.Stmts;
|