aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-values.adb
blob: 47a354078b82c59de370a9378c39076eda561387 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
--  Values in synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Ada.Unchecked_Conversion;
with System;
with System.Storage_Elements;

with Netlists.Utils;

with Vhdl.Nodes; use Vhdl.Nodes;

package body Synth.Values is
   function To_Value_Acc is new Ada.Unchecked_Conversion
     (System.Address, Value_Acc);

   function Is_Static (Val : Value_Acc) return Boolean is
   begin
      case Val.Kind is
         when Value_Memory =>
            return True;
         when Value_Net
           | Value_Wire =>
            return False;
         when Value_File =>
            return True;
         when Value_Alias =>
            return Is_Static (Val.A_Obj);
         when Value_Const =>
            return True;
      end case;
   end Is_Static;

   function Is_Static_Val (Val : Value_Acc) return Boolean is
   begin
      case Val.Kind is
         when Value_Memory =>
            return True;
         when Value_Net =>
            return Netlists.Utils.Is_Const_Net (Val.N);
         when Value_Wire =>
            return Is_Const_Wire (Val.W);
         when Value_File =>
            return True;
         when Value_Const =>
            return True;
         when Value_Alias =>
            return Is_Static_Val (Val.A_Obj);
      end case;
   end Is_Static_Val;

   function Strip_Alias_Const (V : Value_Acc) return Value_Acc
   is
      Res : Value_Acc;
   begin
      Res := V;
      loop
         case Res.Kind is
            when Value_Const =>
               Res := Res.C_Val;
            when Value_Alias =>
               if Res.A_Off /= (0, 0) then
                  raise Internal_Error;
               end if;
               Res := Res.A_Obj;
            when others =>
               return Res;
         end case;
      end loop;
   end Strip_Alias_Const;

   function Strip_Alias_Const (V : Valtyp) return Valtyp is
   begin
      return (V.Typ, Strip_Alias_Const (V.Val));
   end Strip_Alias_Const;

   function Is_Equal (L, R : Valtyp) return Boolean
   is
      L1 : constant Value_Acc := Strip_Alias_Const (L.Val);
      R1 : constant Value_Acc := Strip_Alias_Const (R.Val);
   begin
      if L1.Kind /= R1.Kind then
         return False;
      end if;
      if L1 = R1 then
         return True;
      end if;

      case L1.Kind is
         when Value_Const =>
            raise Internal_Error;
         when Value_Memory =>
            pragma Assert (R1.Kind = Value_Memory);
            if L.Typ.Sz /= R.Typ.Sz then
               return False;
            end if;
            --  FIXME: not correct for records, not correct for floats!
            for I in 1 .. L.Typ.Sz loop
               if L1.Mem (I - 1) /= R1.Mem (I - 1) then
                  return False;
               end if;
            end loop;
            return True;
         when others =>
            --  TODO.
            raise Internal_Error;
      end case;
   end Is_Equal;

   function Create_Value_Wire (W : Wire_Id) return Value_Acc
   is
      subtype Value_Type_Wire is Value_Type (Values.Value_Wire);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Wire);
   begin
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Wire,
                                   W => W)));
   end Create_Value_Wire;

   function Create_Value_Wire (W : Wire_Id; Wtype : Type_Acc) return Valtyp
   is
      pragma Assert (Wtype /= null);
   begin
      return (Wtype, Create_Value_Wire (W));
   end Create_Value_Wire;

   function Create_Value_Net (N : Net) return Value_Acc
   is
      subtype Value_Type_Net is Value_Type (Value_Net);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Net);
   begin
      return To_Value_Acc
        (Alloc (Current_Pool, Value_Type_Net'(Kind => Value_Net, N => N)));
   end Create_Value_Net;

   function Create_Value_Net (N : Net; Ntype : Type_Acc) return Valtyp
   is
      pragma Assert (Ntype /= null);
   begin
      return (Ntype, Create_Value_Net (N));
   end Create_Value_Net;

   function Create_Value_Memory (Vtype : Type_Acc) return Valtyp
   is
      subtype Value_Type_Memory is Value_Type (Value_Memory);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Memory);
      function To_Memory_Ptr is new Ada.Unchecked_Conversion
        (System.Address, Memory_Ptr);
      V : Value_Acc;
      M : System.Address;
   begin
      Areapools.Allocate (Current_Pool.all, M,
                          Vtype.Sz, Size_Type (2 ** Natural (Vtype.Al)));
      V := To_Value_Acc
        (Alloc (Current_Pool, Value_Type_Memory'(Kind => Value_Memory,
                                                 Mem => To_Memory_Ptr (M))));

      return (Vtype, V);
   end Create_Value_Memory;

   function Create_Value_File (File : File_Index) return Value_Acc
   is
      subtype Value_Type_File is Value_Type (Value_File);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_File);
   begin
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_File, File => File)));
   end Create_Value_File;

   function Create_Value_File (Vtype : Type_Acc; File : File_Index)
                              return Valtyp
   is
      pragma Assert (Vtype /= null);
   begin
      return (Vtype, Create_Value_File (File));
   end Create_Value_File;

   function Vec_Length (Typ : Type_Acc) return Iir_Index32 is
   begin
      return Iir_Index32 (Typ.Vbound.Len);
   end Vec_Length;

   function Get_Array_Flat_Length (Typ : Type_Acc) return Iir_Index32 is
   begin
      case Typ.Kind is
         when Type_Vector =>
            return Iir_Index32 (Typ.Vbound.Len);
         when Type_Array =>
            declare
               Len : Width;
            begin
               Len := 1;
               for I in Typ.Abounds.D'Range loop
                  Len := Len * Typ.Abounds.D (I).Len;
               end loop;
               return Iir_Index32 (Len);
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Array_Flat_Length;

   function Create_Value_Alias
     (Obj : Value_Acc; Off : Value_Offsets; Typ : Type_Acc) return Valtyp
   is
      pragma Assert (Typ /= null);
      subtype Value_Type_Alias is Value_Type (Value_Alias);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Alias);
      Val : Value_Acc;
   begin
      Val := To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Alias,
                                   A_Obj => Obj,
                                   A_Off => Off)));
      return (Typ, Val);
   end Create_Value_Alias;

   function Create_Value_Const (Val : Value_Acc; Loc : Syn_Src)
                               return Value_Acc
   is
      subtype Value_Type_Const is Value_Type (Value_Const);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Const);
   begin
      pragma Assert (Val = null or else Val.Kind /= Value_Const);
      return To_Value_Acc (Alloc (Current_Pool,
                                  (Kind => Value_Const,
                                   C_Val => Val,
                                   C_Loc => Loc,
                                   C_Net => No_Net)));
   end Create_Value_Const;

   function Create_Value_Const (Val : Valtyp; Loc : Syn_Src)
                               return Valtyp is
   begin
      return (Val.Typ, Create_Value_Const (Val.Val, Loc));
   end Create_Value_Const;

   procedure Strip_Const (Vt : in out Valtyp) is
   begin
      if Vt.Val.Kind = Value_Const then
         Vt.Val := Vt.Val.C_Val;
      end if;
   end Strip_Const;

   procedure Copy_Memory (Dest : Memory_Ptr; Src : Memory_Ptr; Sz : Size_Type)
   is
   begin
      for I in 1 .. Sz loop
         Dest (I - 1) := Src (I - 1);
      end loop;
   end Copy_Memory;

   procedure Write_Value (Dest : Memory_Ptr; Vt : Valtyp)
   is
      Mt : Memtyp;
   begin
      Mt := Get_Memtyp (Vt);
      Copy_Memory (Dest, Mt.Mem, Mt.Typ.Sz);
   end Write_Value;

   function Copy (Src : Valtyp) return Valtyp
   is
      Res : Valtyp;
   begin
      case Src.Val.Kind is
         when Value_Memory =>
            Res := Create_Value_Memory (Src.Typ);
            for I in 1 .. Src.Typ.Sz loop
               Res.Val.Mem (I - 1) := Src.Val.Mem (I - 1);
            end loop;
         when Value_Net =>
            Res := Create_Value_Net (Src.Val.N, Src.Typ);
         when Value_Wire =>
            Res := Create_Value_Wire (Src.Val.W, Src.Typ);
         when Value_File =>
            Res := Create_Value_File (Src.Typ, Src.Val.File);
         when Value_Const =>
            raise Internal_Error;
         when Value_Alias =>
            raise Internal_Error;
      end case;
      return Res;
   end Copy;

   function Unshare (Src : Valtyp; Pool : Areapool_Acc) return Valtyp
   is
      Prev_Pool : constant Areapool_Acc := Current_Pool;
      Res : Valtyp;
   begin
      Current_Pool := Pool;
      Res := Copy (Src);
      Current_Pool := Prev_Pool;
      return Res;
   end Unshare;

   type Ghdl_U8_Ptr is access all Ghdl_U8;
   function To_U8_Ptr is
      new Ada.Unchecked_Conversion (Memory_Ptr, Ghdl_U8_Ptr);

   procedure Write_U8 (Mem : Memory_Ptr; Val : Ghdl_U8) is
   begin
      To_U8_Ptr (Mem).all := Val;
   end Write_U8;

   function Read_U8 (Mem : Memory_Ptr) return Ghdl_U8 is
   begin
      return To_U8_Ptr (Mem).all;
   end Read_U8;

   type Ghdl_I32_Ptr is access all Ghdl_I32;
   function To_I32_Ptr is
      new Ada.Unchecked_Conversion (Memory_Ptr, Ghdl_I32_Ptr);

   procedure Write_I32 (Mem : Memory_Ptr; Val : Ghdl_I32) is
   begin
      To_I32_Ptr (Mem).all := Val;
   end Write_I32;

   function Read_I32 (Mem : Memory_Ptr) return Ghdl_I32 is
   begin
      return To_I32_Ptr (Mem).all;
   end Read_I32;

   type Ghdl_U32_Ptr is access all Ghdl_U32;
   function To_U32_Ptr is
      new Ada.Unchecked_Conversion (Memory_Ptr, Ghdl_U32_Ptr);

   procedure Write_U32 (Mem : Memory_Ptr; Val : Ghdl_U32) is
   begin
      To_U32_Ptr (Mem).all := Val;
   end Write_U32;

   function Read_U32 (Mem : Memory_Ptr) return Ghdl_U32 is
   begin
      return To_U32_Ptr (Mem).all;
   end Read_U32;

   type Ghdl_I64_Ptr is access all Ghdl_I64;
   function To_I64_Ptr is
      new Ada.Unchecked_Conversion (Memory_Ptr, Ghdl_I64_Ptr);

   procedure Write_I64 (Mem : Memory_Ptr; Val : Ghdl_I64) is
   begin
      To_I64_Ptr (Mem).all := Val;
   end Write_I64;

   function Read_I64 (Mem : Memory_Ptr) return Ghdl_I64 is
   begin
      return To_I64_Ptr (Mem).all;
   end Read_I64;

   type Fp64_Ptr is access all Fp64;
   function To_Fp64_Ptr is
      new Ada.Unchecked_Conversion (Memory_Ptr, Fp64_Ptr);

   procedure Write_Fp64 (Mem : Memory_Ptr; Val : Fp64) is
   begin
      To_Fp64_Ptr (Mem).all := Val;
   end Write_Fp64;

   function Read_Fp64 (Mem : Memory_Ptr) return Fp64 is
   begin
      return To_Fp64_Ptr (Mem).all;
   end Read_Fp64;

   type Heap_Index_Ptr is access all Heap_Index;
   function To_Heap_Index_Ptr is
      new Ada.Unchecked_Conversion (Memory_Ptr, Heap_Index_Ptr);

   procedure Write_Access (Mem : Memory_Ptr; Val : Heap_Index) is
   begin
      To_Heap_Index_Ptr (Mem).all := Val;
   end Write_Access;

   function Read_Access (Mem : Memory_Ptr) return Heap_Index is
   begin
      return To_Heap_Index_Ptr (Mem).all;
   end Read_Access;

   function "+" (Base : Memory_Ptr; Off : Size_Type) return Memory_Ptr
   is
      use System.Storage_Elements;

      function To_Address is new Ada.Unchecked_Conversion
        (Memory_Ptr, System.Address);
      function To_Memory_Ptr is new Ada.Unchecked_Conversion
        (System.Address, Memory_Ptr);
   begin
      return To_Memory_Ptr (To_Address (Base) + Storage_Offset (Off));
   end "+";

   procedure Write_Discrete (Mem : Memory_Ptr; Typ : Type_Acc; Val : Int64) is
   begin
      case Typ.Sz is
         when 1 =>
            Write_U8 (Mem, Ghdl_U8 (Val));
         when 4 =>
            Write_I32 (Mem, Ghdl_I32 (Val));
         when 8 =>
            Write_I64 (Mem, Ghdl_I64 (Val));
         when others =>
            raise Internal_Error;
      end case;
   end Write_Discrete;

   procedure Write_Discrete (Vt : Valtyp; Val : Int64) is
   begin
      Write_Discrete (Vt.Val.Mem, Vt.Typ, Val);
   end Write_Discrete;

   function Read_Discrete (Mem : Memory_Ptr; Typ : Type_Acc) return Int64 is
   begin
      case Typ.Sz is
         when 1 =>
            return Int64 (Read_U8 (Mem));
         when 4 =>
            return Int64 (Read_I32 (Mem));
         when 8 =>
            return Int64 (Read_I64 (Mem));
         when others =>
            raise Internal_Error;
      end case;
   end Read_Discrete;

   function Read_Discrete (Vt : Valtyp) return Int64 is
   begin
      return Read_Discrete (Vt.Val.Mem, Vt.Typ);
   end Read_Discrete;

   function Create_Value_Float (Val : Fp64; Vtype : Type_Acc) return Valtyp
   is
      Res : Valtyp;
      pragma Assert (Vtype /= null);
   begin
      Res := Create_Value_Memory (Vtype);
      Write_Fp64 (Res.Val.Mem, Val);
      return Res;
   end Create_Value_Float;

   function Read_Fp64 (Vt : Valtyp) return Fp64 is
   begin
      pragma Assert (Vt.Typ.Kind = Type_Float);
      pragma Assert (Vt.Typ.Sz = 8);
      return Read_Fp64 (Vt.Val.Mem);
   end Read_Fp64;

   function Read_Access (Vt : Valtyp) return Heap_Index is
   begin
      pragma Assert (Vt.Typ.Kind = Type_Access);
      return Read_Access (Vt.Val.Mem);
   end Read_Access;

   function Create_Value_Discrete (Val : Int64; Vtype : Type_Acc) return Valtyp
   is
      Res : Valtyp;
   begin
      Res := Create_Value_Memory (Vtype);
      case Vtype.Sz is
         when 1 =>
            Write_U8 (Res.Val.Mem, Ghdl_U8 (Val));
         when 4 =>
            Write_I32 (Res.Val.Mem, Ghdl_I32 (Val));
         when 8 =>
            Write_I64 (Res.Val.Mem, Ghdl_I64 (Val));
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Create_Value_Discrete;

   function Create_Value_Uns (Val : Uns64; Vtype : Type_Acc) return Valtyp
   is
      Res : Valtyp;
   begin
      Res := Create_Value_Memory (Vtype);
      case Vtype.Sz is
         when 1 =>
            Write_U8 (Res.Val.Mem, Ghdl_U8 (Val));
         when 4 =>
            Write_U32 (Res.Val.Mem, Ghdl_U32 (Val));
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Create_Value_Uns;

   pragma Unreferenced (Read_U32);

   function Create_Value_Int (Val : Int64; Vtype : Type_Acc) return Valtyp
   is
      Res : Valtyp;
   begin
      Res := Create_Value_Memory (Vtype);
      case Vtype.Sz is
         when 4 =>
            Write_I32 (Res.Val.Mem, Ghdl_I32 (Val));
         when 8 =>
            Write_I64 (Res.Val.Mem, Ghdl_I64 (Val));
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Create_Value_Int;

   function Arr_Index (M : Memory_Ptr; Idx : Iir_Index32; El_Typ : Type_Acc)
                      return Memory_Ptr is
   begin
      return M + Size_Type (Idx) * El_Typ.Sz;
   end Arr_Index;

   procedure Write_Value_Default (M : Memory_Ptr; Typ : Type_Acc) is
   begin
      case Typ.Kind is
         when Type_Bit
           | Type_Logic =>
            --  FIXME: what about subtype ?
            Write_U8 (M, 0);
         when Type_Discrete =>
            Write_Discrete (M, Typ, Typ.Drange.Left);
         when Type_Float =>
            Write_Fp64 (M, Typ.Frange.Left);
         when Type_Vector =>
            declare
               Len : constant Iir_Index32 := Vec_Length (Typ);
               El_Typ : constant Type_Acc := Typ.Vec_El;
            begin
               for I in 1 .. Len loop
                  Write_Value_Default (Arr_Index (M, I - 1, El_Typ), El_Typ);
               end loop;
            end;
         when Type_Unbounded_Vector =>
            raise Internal_Error;
         when Type_Slice =>
            raise Internal_Error;
         when Type_Array =>
            declare
               Len : constant Iir_Index32 := Get_Array_Flat_Length (Typ);
               El_Typ : constant Type_Acc := Typ.Arr_El;
            begin
               for I in 1 .. Len loop
                  Write_Value_Default (Arr_Index (M, I - 1, El_Typ), El_Typ);
               end loop;
            end;
         when Type_Unbounded_Array =>
            raise Internal_Error;
         when Type_Record =>
            for I in Typ.Rec.E'Range loop
               Write_Value_Default (M + Typ.Rec.E (I).Moff, Typ.Rec.E (I).Typ);
            end loop;
         when Type_Access =>
            Write_Access (M, Null_Heap_Index);
         when Type_File =>
            raise Internal_Error;
      end case;
   end Write_Value_Default;

   function Create_Value_Default (Typ : Type_Acc) return Valtyp
   is
      Res : Valtyp;
   begin
      Res := Create_Value_Memory (Typ);
      Write_Value_Default (Res.Val.Mem, Typ);
      return Res;
   end Create_Value_Default;

   function Create_Value_Access (Val : Heap_Index; Acc_Typ : Type_Acc)
                                return Valtyp
   is
      Res : Valtyp;
   begin
      Res := Create_Value_Memory (Acc_Typ);
      Write_Access (Res.Val.Mem, Val);
      return Res;
   end Create_Value_Access;

   function Value_To_String (Val : Valtyp) return String
   is
      Str : String (1 .. Natural (Val.Typ.Abounds.D (1).Len));
   begin
      for I in Str'Range loop
         Str (Natural (I)) := Character'Val
           (Read_U8 (Val.Val.Mem + Size_Type (I - 1)));
      end loop;
      return Str;
   end Value_To_String;

   function Get_Memtyp (V : Valtyp) return Memtyp is
   begin
      case V.Val.Kind is
         when Value_Net
           | Value_Wire =>
            raise Internal_Error;
         when Value_Memory =>
            return (V.Typ, V.Val.Mem);
         when Value_Alias =>
            declare
               T : Memtyp;
            begin
               T := Get_Memtyp ((V.Typ, V.Val.A_Obj));
               return (T.Typ, T.Mem + V.Val.A_Off.Mem_Off);
            end;
         when Value_Const =>
            return Get_Memtyp ((V.Typ, V.Val.C_Val));
         when Value_File =>
            raise Internal_Error;
      end case;
   end Get_Memtyp;
end Synth.Values;