aboutsummaryrefslogtreecommitdiffstats
path: root/src/vhdl/simulate/simul-simulation-main.adb
blob: 141e1fd2d48025bfbf1cb6ffe6ea943035c0f972 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
--  Interpreted simulation
--  Copyright (C) 2014-2017 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GHDL; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.

with Ada.Unchecked_Conversion;
with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
with Iirs_Utils; use Iirs_Utils;
with Errorout; use Errorout;
with PSL.Nodes;
with PSL.NFAs;
with PSL.NFAs.Utils;
with Vhdl.Std_Package;
with Trans_Analyzes;
with Simul.Elaboration; use Simul.Elaboration;
with Simul.Execution; use Simul.Execution;
with Simul.Annotations; use Simul.Annotations;
with Vhdl.Ieee.Std_Logic_1164;
with Grt.Main;
with Simul.Debugger; use Simul.Debugger;
with Simul.Debugger.AMS;
with Grt.Errors;
with Grt.Processes;
with Grt.Signals;
with Areapools; use Areapools;

package body Simul.Simulation.Main is
   --  Configuration for the whole design
   Top_Config : Iir_Design_Unit;

   --  Elaborate the design
   procedure Ghdl_Elaborate;
   pragma Export (C, Ghdl_Elaborate, "__ghdl_ELABORATE");

   function To_Instance_Acc is new Ada.Unchecked_Conversion
     (System.Address, Grt.Processes.Instance_Acc);

   procedure Process_Executer (Self : Grt.Processes.Instance_Acc);
   pragma Convention (C, Process_Executer);

   procedure Process_Executer (Self : Grt.Processes.Instance_Acc)
   is
      function To_Process_State_Acc is new Ada.Unchecked_Conversion
        (Grt.Processes.Instance_Acc, Process_State_Acc);

      Process : Process_State_Acc renames
        To_Process_State_Acc (Self);
   begin
      --  For debugger
      Current_Process := Process;

      Instance_Pool := Process.Pool'Access;

      if Trace_Simulation then
         Put (" run process: ");
         Disp_Instance_Name (Process.Top_Instance);
         Put_Line (" (" & Disp_Location (Process.Proc) & ")");
      end if;

      Execute_Sequential_Statements (Process);

      --  Sanity checks.
      if not Is_Empty (Expr_Pool) then
         raise Internal_Error;
      end if;

      case Get_Kind (Process.Proc) is
         when Iir_Kind_Sensitized_Process_Statement =>
            if Process.Instance.In_Wait_Flag then
               raise Internal_Error;
            end if;
            if Process.Instance.Stmt = Null_Iir then
               Process.Instance.Stmt :=
                 Get_Sequential_Statement_Chain (Process.Proc);
            end if;
         when Iir_Kind_Process_Statement =>
            if not Process.Instance.In_Wait_Flag then
               raise Internal_Error;
            end if;
         when others =>
            raise Internal_Error;
      end case;

      Instance_Pool := null;
      Current_Process := null;
   end Process_Executer;

   type Convert_Mode is (Convert_In, Convert_Out);

   type Convert_Instance_Type is record
      Mode : Convert_Mode;
      Instance : Block_Instance_Acc;
      Func : Iir;
      Src : Iir_Value_Literal_Acc;
      Dst : Iir_Value_Literal_Acc;
   end record;

   type Convert_Instance_Acc is access Convert_Instance_Type;

   procedure Conversion_Proc (Data : System.Address) is
      Conv : Convert_Instance_Type;
      pragma Import (Ada, Conv);
      for Conv'Address use Data;

      Src : Iir_Value_Literal_Acc;
      Dst : Iir_Value_Literal_Acc;

      Expr_Mark : Mark_Type;
   begin
      pragma Assert (Instance_Pool = null);
      Instance_Pool := Global_Pool'Access;
      Mark (Expr_Mark, Expr_Pool);
      Current_Process := No_Process;

      case Conv.Mode is
         when Convert_In =>
            Src := Execute_Read_Signal_Value
              (Conv.Src, Read_Signal_Effective_Value);
         when Convert_Out =>
            Src := Execute_Read_Signal_Value
              (Conv.Src, Read_Signal_Driving_Value);
      end case;

      Dst := Execute_Assoc_Conversion (Conv.Instance, Conv.Func, Src);

      Check_Bounds (Conv.Dst, Dst, Conv.Func);

      case Conv.Mode is
         when Convert_In =>
            Execute_Write_Signal (Conv.Dst, Dst, Write_Signal_Effective_Value);
         when Convert_Out =>
            Execute_Write_Signal (Conv.Dst, Dst, Write_Signal_Driving_Value);
      end case;

      Release (Expr_Mark, Expr_Pool);
      Instance_Pool := null;
   end Conversion_Proc;

   -- Add a driver for signal designed by VAL (via index field) for instance
   -- INSTANCE of process PROC.
   -- FIXME: default value.
   procedure Add_Source (Instance : Block_Instance_Acc;
                         Sig : Iir_Value_Literal_Acc;
                         Val : Iir_Value_Literal_Acc) is
   begin
      case Val.Kind is
         when Iir_Value_B1 =>
            Grt.Signals.Ghdl_Signal_Add_Port_Driver_B1 (Sig.Sig, Val.B1);
         when Iir_Value_E8 =>
            Grt.Signals.Ghdl_Signal_Add_Port_Driver_E8 (Sig.Sig, Val.E8);
         when Iir_Value_E32 =>
            Grt.Signals.Ghdl_Signal_Add_Port_Driver_E32 (Sig.Sig, Val.E32);
         when Iir_Value_I64 =>
            Grt.Signals.Ghdl_Signal_Add_Port_Driver_I64 (Sig.Sig, Val.I64);
         when Iir_Value_F64 =>
            Grt.Signals.Ghdl_Signal_Add_Port_Driver_F64 (Sig.Sig, Val.F64);
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Add_Source (Instance, Sig.Val_Array.V (I), Val.Val_Array.V (I));
            end loop;
         when Iir_Value_Record =>
            for I in Sig.Val_Record.V'Range loop
               Add_Source
                 (Instance, Sig.Val_Record.V (I), Val.Val_Record.V (I));
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Add_Source;

   --  Add drivers for process PROC.
   --  Note: this is done recursively on the callees of PROC.
   procedure Elaborate_Drivers (Instance: Block_Instance_Acc; Proc: Iir)
   is
      Driver_List: Iir_List;
      It : List_Iterator;
      El: Iir;
      Val : Iir_Value_Literal_Acc;
      Sig : Iir_Value_Literal_Acc;
      Marker : Mark_Type;
   begin
      if Trace_Drivers then
         Ada.Text_IO.Put ("Drivers for ");
         Disp_Instance_Name (Instance);
         Ada.Text_IO.Put_Line (": " & Disp_Node (Proc));
      end if;

      Driver_List := Trans_Analyzes.Extract_Drivers (Proc);

      -- Some processes have no driver list (assertion).
      It := List_Iterate_Safe (Driver_List);
      while Is_Valid (It) loop
         El := Get_Element (It);
         if Trace_Drivers then
            Put_Line (' ' & Disp_Node (El));
         end if;

         Mark (Marker, Expr_Pool);
         --  The signal name is evaluated twice, but as it is globally static,
         --  it shouldn't have any side-effect.  So not optimized but safe.
         Sig := Execute_Signal_Name (Instance, El, Signal_Sig);
         Val := Execute_Signal_Name (Instance, El, Signal_Init);
         Add_Source (Instance, Sig, Val);
         Release (Marker, Expr_Pool);

         Next (It);
      end loop;
   end Elaborate_Drivers;

   --  Call Ghdl_Process_Add_Sensitivity for each scalar subelement of
   --  SIG.
   procedure Process_Add_Sensitivity (Sig: Iir_Value_Literal_Acc) is
   begin
      case Sig.Kind is
         when Iir_Value_Signal =>
            Grt.Processes.Ghdl_Process_Add_Sensitivity (Sig.Sig);
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Process_Add_Sensitivity (Sig.Val_Array.V (I));
            end loop;
         when Iir_Value_Record =>
            for I in Sig.Val_Record.V'Range loop
               Process_Add_Sensitivity (Sig.Val_Record.V (I));
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Process_Add_Sensitivity;

   procedure Register_Sensitivity
     (Instance : Block_Instance_Acc; List : Iir_List)
   is
      It : List_Iterator;
      Sig : Iir;
      Marker : Mark_Type;
   begin
      It := List_Iterate (List);
      while Is_Valid (It) loop
         Sig := Get_Element (It);
         Mark (Marker, Expr_Pool);
         Process_Add_Sensitivity (Execute_Name (Instance, Sig, True));
         Release (Marker, Expr_Pool);
         Next (It);
      end loop;
   end Register_Sensitivity;

   procedure Create_Processes
   is
      use Grt.Processes;
      El : Iir;
      Instance : Block_Instance_Acc;
      Instance_Grt : Grt.Processes.Instance_Acc;
   begin
      Processes_State := new Process_State_Array (1 .. Processes_Table.Last);

      for I in Processes_Table.First .. Processes_Table.Last loop
         Instance := Processes_Table.Table (I);
         El := Instance.Label;

         Instance_Pool := Processes_State (I).Pool'Access;
         Instance.Stmt := Get_Sequential_Statement_Chain (El);

         Processes_State (I).Top_Instance := Instance;
         Processes_State (I).Proc := El;
         Processes_State (I).Instance := Instance;

         Current_Process := Processes_State (I)'Access;
         Instance_Grt := To_Instance_Acc (Processes_State (I)'Address);
         case Get_Kind (El) is
            when Iir_Kind_Sensitized_Process_Statement =>
               if Get_Postponed_Flag (El) then
                  Ghdl_Postponed_Sensitized_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               else
                  Ghdl_Sensitized_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               end if;

               --  Register sensitivity.
               Register_Sensitivity (Instance, Get_Sensitivity_List (El));

            when Iir_Kind_Process_Statement =>
               if Get_Postponed_Flag (El) then
                  Ghdl_Postponed_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               else
                  Ghdl_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               end if;

            when others =>
               raise Internal_Error;
         end case;

         --  LRM93 §12.4.4  Other Concurrent Statements
         --  All other concurrent statements are either process
         --  statements or are statements for which there is an
         --  equivalent process statement.
         --  Elaboration of a process statement proceeds as follows:
         --  1.  The process declarative part is elaborated.
         Elaborate_Declarative_Part
           (Instance, Get_Declaration_Chain (El));

         --  2.  The drivers required by the process statement
         --      are created.
         --  3.  The initial transaction defined by the default value
         --      associated with each scalar signal driven by the
         --      process statement is inserted into the corresponding
         --      driver.
         --  FIXME: do it for drivers in called subprograms too.
         Elaborate_Drivers (Instance, El);

         if not Is_Empty (Expr_Pool) then
            raise Internal_Error;
         end if;

         --  Elaboration of all concurrent signal assignment
         --  statements and concurrent assertion statements consists
         --  of the construction of the equivalent process statement
         --  followed by the elaboration of the equivalent process
         --  statement.
         --  [GHDL:  this is done by canonicalize.  ]

         --  FIXME: check passive statements,
         --  check no wait statement in sensitized processes.

         Instance_Pool := null;
      end loop;

      if Trace_Simulation then
         Disp_Signals_Value;
      end if;
   end Create_Processes;

   procedure PSL_Process_Executer (Self : Grt.Processes.Instance_Acc);
   pragma Convention (C, PSL_Process_Executer);

   procedure PSL_Assert_Finalizer (Self : Grt.Processes.Instance_Acc);
   pragma Convention (C, PSL_Assert_Finalizer);

   type PSL_Entry_Acc is access all PSL_Entry;
   function To_PSL_Entry_Acc is new Ada.Unchecked_Conversion
     (Grt.Processes.Instance_Acc, PSL_Entry_Acc);

   function Execute_Psl_Expr (Instance : Block_Instance_Acc;
                              Expr : PSL_Node;
                              Eos : Boolean)
                             return Boolean
   is
      use PSL.Nodes;
   begin
      case Get_Kind (Expr) is
         when N_HDL_Expr =>
            declare
               E : constant Iir := Get_HDL_Node (Expr);
               Rtype : constant Iir := Get_Base_Type (Get_Type (E));
               Res   : Iir_Value_Literal_Acc;
            begin
               Res := Execute_Expression (Instance, E);
               if Rtype = Vhdl.Std_Package.Boolean_Type_Definition then
                  return Res.B1 = True;
               elsif Rtype = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_Type then
                  return Res.E8 = 3 or Res.E8 = 7; --  1 or H
               else
                  Error_Kind ("execute_psl_expr", Expr);
               end if;
            end;
         when N_True =>
            return True;
         when N_EOS =>
            return Eos;
         when N_Not_Bool =>
            return not Execute_Psl_Expr (Instance, Get_Boolean (Expr), Eos);
         when N_And_Bool =>
            return Execute_Psl_Expr (Instance, Get_Left (Expr), Eos)
              and Execute_Psl_Expr (Instance, Get_Right (Expr), Eos);
         when N_Or_Bool =>
            return Execute_Psl_Expr (Instance, Get_Left (Expr), Eos)
              or Execute_Psl_Expr (Instance, Get_Right (Expr), Eos);
         when others =>
            Error_Kind ("execute_psl_expr", Expr);
      end case;
   end Execute_Psl_Expr;

   procedure PSL_Process_Executer (Self : Grt.Processes.Instance_Acc)
   is
      use PSL.NFAs;

      E : constant PSL_Entry_Acc := To_PSL_Entry_Acc (Self);
      Nvec : Boolean_Vector (E.States.all'Range);
      Marker : Mark_Type;
      V : Boolean;

      NFA : PSL_NFA;
      S : NFA_State;
      S_Num : Nat32;
      Ed : NFA_Edge;
      Sd : NFA_State;
      Sd_Num : Nat32;
   begin
      --  Exit now if already covered (never set for assertion).
      if E.Done then
         return;
      end if;

      Instance_Pool := Global_Pool'Access;
      Current_Process := No_Process;

      Mark (Marker, Expr_Pool);
      V := Execute_Psl_Expr (E.Instance, Get_PSL_Clock (E.Stmt), False);
      Release (Marker, Expr_Pool);
      if V then
         Nvec := (others => False);
         case Get_Kind (E.Stmt) is
            when Iir_Kind_Psl_Cover_Statement
              | Iir_Kind_Psl_Endpoint_Declaration =>
               Nvec (0) := True;
            when others =>
               null;
         end case;

         --  For each state: if set, evaluate all outgoing edges.
         NFA := Get_PSL_NFA (E.Stmt);
         S := Get_First_State (NFA);
         while S /= No_State loop
            S_Num := Get_State_Label (S);

            if E.States (S_Num) then
               Ed := Get_First_Src_Edge (S);
               while Ed /= No_Edge loop
                  Sd := Get_Edge_Dest (Ed);
                  Sd_Num := Get_State_Label (Sd);

                  if not Nvec (Sd_Num) then
                     Mark (Marker, Expr_Pool);
                     V := Execute_Psl_Expr
                       (E.Instance, Get_Edge_Expr (Ed), False);
                     Release (Marker, Expr_Pool);
                     if V then
                        Nvec (Sd_Num) := True;
                     end if;
                  end if;

                  Ed := Get_Next_Src_Edge (Ed);
               end loop;
            end if;

            S := Get_Next_State (S);
         end loop;

         --  Check fail state.
         S := Get_Final_State (NFA);
         S_Num := Get_State_Label (S);
         pragma Assert (S_Num = Get_PSL_Nbr_States (E.Stmt) - 1);
         case Get_Kind (E.Stmt) is
            when Iir_Kind_Psl_Assert_Statement =>
               if Nvec (S_Num) then
                  Execute_Failed_Assertion
                    (E.Instance, "psl assertion", E.Stmt,
                     "assertion violation", 2);
               end if;
            when Iir_Kind_Psl_Cover_Statement =>
               if Nvec (S_Num) then
                  if Get_Report_Expression (E.Stmt) /= Null_Iir then
                     Execute_Failed_Assertion
                       (E.Instance, "psl cover", E.Stmt,
                        "sequence covered", 0);
                  end if;
                  E.Done := True;
               end if;
            when Iir_Kind_Psl_Endpoint_Declaration =>
               declare
                  Info : constant Sim_Info_Acc := Get_Info (E.Stmt);
               begin
                  E.Instance.Objects (Info.Slot).B1 := Ghdl_B1 (Nvec (S_Num));
               end;
            when others =>
               Error_Kind ("PSL_Process_Executer", E.Stmt);
         end case;

         E.States.all := Nvec;
      end if;

      Instance_Pool := null;
      Current_Process := null;
   end PSL_Process_Executer;

   procedure PSL_Assert_Finalizer (Self : Grt.Processes.Instance_Acc)
   is
      use PSL.NFAs;
      Ent : constant PSL_Entry_Acc := To_PSL_Entry_Acc (Self);

      NFA : constant PSL_NFA := Get_PSL_NFA (Ent.Stmt);
      S : NFA_State;
      E : NFA_Edge;
      Sd : NFA_State;
      S_Num : Int32;
   begin
      S := Get_Final_State (NFA);
      E := Get_First_Dest_Edge (S);
      while E /= No_Edge loop
         Sd := Get_Edge_Src (E);

         if PSL.NFAs.Utils.Has_EOS (Get_Edge_Expr (E)) then

            S_Num := Get_State_Label (Sd);

            if Ent.States (S_Num)
              and then
              Execute_Psl_Expr (Ent.Instance, Get_Edge_Expr (E), True)
            then
               Execute_Failed_Assertion
                 (Ent.Instance, "psl assertion", Ent.Stmt,
                  "assertion violation", 2);
               exit;
            end if;
         end if;

         E := Get_Next_Dest_Edge (E);
      end loop;
   end PSL_Assert_Finalizer;

   procedure Create_PSL is
   begin
      for I in PSL_Table.First .. PSL_Table.Last loop
         declare
            E : PSL_Entry renames PSL_Table.Table (I);
         begin
            --  Create the vector.
            E.States := new Boolean_Vector'
              (0 .. Get_PSL_Nbr_States (E.Stmt) - 1 => False);
            E.States (0) := True;

            Grt.Processes.Ghdl_Process_Register
              (To_Instance_Acc (E'Address), PSL_Process_Executer'Access,
               null, System.Null_Address);

            Register_Sensitivity
              (E.Instance, Get_PSL_Clock_Sensitivity (E.Stmt));

            case Get_Kind (E.Stmt) is
               when Iir_Kind_Psl_Assert_Statement =>
                  if Get_PSL_EOS_Flag (E.Stmt) then
                     Grt.Processes.Ghdl_Finalize_Register
                       (To_Instance_Acc (E'Address),
                        PSL_Assert_Finalizer'Access);
                  end if;
               when Iir_Kind_Psl_Cover_Statement =>
                  --  TODO
                  null;
               when others =>
                  null;
            end case;
         end;
      end loop;

      --  Finalizer ?
   end Create_PSL;

   function Create_Shadow_Signal (Sig : Iir_Value_Literal_Acc)
                                 return Iir_Value_Literal_Acc
   is
      Val : Ghdl_Value_Ptr;
   begin
      case Sig.Kind is
         when Iir_Value_Signal =>
            Val := new Value_Union;
            case Sig.Sig.Mode is
               when Mode_I64 =>
                  Val.I64 := 0;
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_I64
                       (Val, null, System.Null_Address));
               when Mode_B1 =>
                  Val.B1 := False;
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_B1
                       (Val, null, System.Null_Address));
               when Mode_E8 =>
                  Val.E8 := 0;
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_E8
                       (Val, null, System.Null_Address));
               when Mode_E32 =>
                  Val.E32 := 0;
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_E32
                       (Val, null, System.Null_Address));
               when Mode_F64 =>
                  Val.F64 := 0.0;
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_F64
                       (Val, null, System.Null_Address));
               when Mode_I32 =>
                  raise Internal_Error;
            end case;
         when Iir_Value_Array =>
            declare
               Res : Iir_Value_Literal_Acc;
            begin
               Res := Unshare_Bounds (Sig, Instance_Pool);
               for I in Res.Val_Array.V'Range loop
                  Res.Val_Array.V (I) :=
                    Create_Shadow_Signal (Sig.Val_Array.V (I));
               end loop;
               return Res;
            end;
         when Iir_Value_Record =>
            declare
               Res : Iir_Value_Literal_Acc;
            begin
               Res := Create_Record_Value
                 (Sig.Val_Record.Len, Instance_Pool);
               for I in Res.Val_Record.V'Range loop
                  Res.Val_Record.V (I) :=
                    Create_Shadow_Signal (Sig.Val_Record.V (I));
               end loop;
               return Res;
            end;
         when Iir_Value_Scalars
           | Iir_Value_Access
           | Iir_Value_Range
           | Iir_Value_Protected
           | Iir_Value_Terminal
           | Iir_Value_Quantity
           | Iir_Value_File
           | Iir_Value_Instance =>
            raise Internal_Error;
      end case;
   end Create_Shadow_Signal;

   function Get_Leftest_Signal (Val : Iir_Value_Literal_Acc)
                               return Iir_Value_Literal_Acc is
   begin
      case Val.Kind is
         when Iir_Value_Signal =>
            return Val;
         when Iir_Value_Array =>
            return Get_Leftest_Signal (Val.Val_Array.V (1));
         when Iir_Value_Record =>
            return Get_Leftest_Signal (Val.Val_Record.V (1));
         when others =>
            raise Internal_Error;
      end case;
   end Get_Leftest_Signal;

   procedure Add_Conversion (Conv : Convert_Instance_Acc)
   is
      Src_Left : Grt.Signals.Ghdl_Signal_Ptr;
      Src_Len : Ghdl_Index_Type;
      Dst_Left : Grt.Signals.Ghdl_Signal_Ptr;
      Dst_Len : Ghdl_Index_Type;
   begin
      Conv.Src := Unshare_Bounds (Conv.Src, Instance_Pool);
      Conv.Dst := Unshare_Bounds (Conv.Dst, Instance_Pool);

      Src_Left := Get_Leftest_Signal (Conv.Src).Sig;
      Src_Len := Ghdl_Index_Type (Get_Nbr_Of_Scalars (Conv.Src));

      Dst_Left := Get_Leftest_Signal (Conv.Dst).Sig;
      Dst_Len := Ghdl_Index_Type (Get_Nbr_Of_Scalars (Conv.Dst));

      case Conv.Mode is
         when Convert_In =>
            Grt.Signals.Ghdl_Signal_In_Conversion (Conversion_Proc'Address,
                                                   Conv.all'Address,
                                                   Src_Left, Src_Len,
                                                   Dst_Left, Dst_Len);
         when Convert_Out =>
            Grt.Signals.Ghdl_Signal_Out_Conversion (Conversion_Proc'Address,
                                                    Conv.all'Address,
                                                    Src_Left, Src_Len,
                                                    Dst_Left, Dst_Len);
      end case;
   end Add_Conversion;

   type Connect_Mode is (Connect_Source, Connect_Effective);

   -- Add a driving value PORT to signal SIG, ie: PORT is a source for SIG.
   -- As a side effect, this connect the signal SIG with the port PORT.
   -- PORT is the formal, while SIG is the actual.
   procedure Connect (Sig: Iir_Value_Literal_Acc;
                      Port: Iir_Value_Literal_Acc;
                      Mode : Connect_Mode)
   is
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            if Port.Kind /= Sig.Kind then
               raise Internal_Error;
            end if;

            if Sig.Val_Array.Len /= Port.Val_Array.Len then
               raise Internal_Error;
            end if;
            for I in Sig.Val_Array.V'Range loop
               Connect (Sig.Val_Array.V (I), Port.Val_Array.V (I), Mode);
            end loop;
            return;
         when Iir_Value_Record =>
            if Port.Kind /= Sig.Kind then
               raise Internal_Error;
            end if;
            if Sig.Val_Record.Len /= Port.Val_Record.Len then
               raise Internal_Error;
            end if;
            for I in Sig.Val_Record.V'Range loop
               Connect (Sig.Val_Record.V (I), Port.Val_Record.V (I), Mode);
            end loop;
            return;
         when Iir_Value_Signal =>
            pragma Assert (Port.Kind = Iir_Value_Signal);
            -- Here, SIG and PORT are simple signals (not composite).
            -- PORT is a source for SIG.
            case Mode is
               when Connect_Source =>
                  Grt.Signals.Ghdl_Signal_Add_Source
                    (Sig.Sig, Port.Sig);
               when Connect_Effective =>
                  Grt.Signals.Ghdl_Signal_Effective_Value
                    (Port.Sig, Sig.Sig);
            end case;
         when Iir_Value_E32 =>
            if Mode = Connect_Source then
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Signal_Associate_E32 (Port.Sig, Sig.E32);
         when Iir_Value_I64 =>
            if Mode = Connect_Source then
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Signal_Associate_I64 (Port.Sig, Sig.I64);
         when Iir_Value_B1 =>
            if Mode = Connect_Source then
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Signal_Associate_B1 (Port.Sig, Sig.B1);
         when Iir_Value_E8 =>
            if Mode = Connect_Source then
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Signal_Associate_E8 (Port.Sig, Sig.E8);
         when others =>
            raise Internal_Error;
      end case;
   end Connect;

   procedure Set_Connect
     (Formal_Instance : Block_Instance_Acc;
      Formal_Expr : Iir_Value_Literal_Acc;
      Local_Instance : Block_Instance_Acc;
      Local_Expr : Iir_Value_Literal_Acc;
      Inter : Iir;
      Assoc : Iir_Association_Element_By_Expression)
   is
      pragma Unreferenced (Formal_Instance);
      Formal : constant Iir := Get_Formal (Assoc);
   begin
      if False and Trace_Elaboration then
         Put ("connect formal ");
         Put (Iir_Mode'Image (Get_Mode (Inter)));
         Put (" ");
         Disp_Iir_Value (Formal_Expr, Get_Type (Formal));
         Put (" with actual ");
         Disp_Iir_Value (Local_Expr, Get_Type (Get_Actual (Assoc)));
         New_Line;
      end if;

      case Get_Mode (Inter) is
         when Iir_Out_Mode
           | Iir_Inout_Mode
           | Iir_Buffer_Mode
           | Iir_Linkage_Mode =>
            --  FORMAL_EXPR is a source for LOCAL_EXPR.
            declare
               Out_Conv : constant Iir := Get_Formal_Conversion (Assoc);
               Src : Iir_Value_Literal_Acc;
            begin
               if Out_Conv /= Null_Iir then
                  Src := Create_Shadow_Signal (Local_Expr);
                  Add_Conversion
                    (new Convert_Instance_Type'
                       (Mode => Convert_Out,
                        Instance => Local_Instance,
                        Func => Out_Conv,
                        Src => Formal_Expr,
                        Dst => Src));
               else
                  Src := Formal_Expr;
               end if;
               --  LRM93 §12.6.2
               --  A signal is said to be active [...] if one of its source
               --  is active.
               Connect (Local_Expr, Src, Connect_Source);
            end;

         when Iir_In_Mode =>
            null;
         when Iir_Unknown_Mode =>
            raise Internal_Error;
      end case;

      case Get_Mode (Inter) is
         when Iir_In_Mode
           | Iir_Inout_Mode
           | Iir_Buffer_Mode
           | Iir_Linkage_Mode =>
            declare
               In_Conv : constant Iir := Get_Actual_Conversion (Assoc);
               Src : Iir_Value_Literal_Acc;
            begin
               if In_Conv /= Null_Iir then
                  Src := Create_Shadow_Signal (Formal_Expr);
                  Add_Conversion
                    (new Convert_Instance_Type'
                       (Mode => Convert_In,
                        Instance => Local_Instance,
                        Func => In_Conv,
                        Src => Local_Expr,
                        Dst => Src));
               else
                  Src := Local_Expr;
               end if;
               Connect (Src, Formal_Expr, Connect_Effective);
            end;
         when Iir_Out_Mode =>
            null;
         when Iir_Unknown_Mode =>
            raise Internal_Error;
      end case;
   end Set_Connect;

   procedure Create_Connects is
   begin
      --  New signals may be created (because of conversions).
      Instance_Pool := Global_Pool'Access;

      for I in Connect_Table.First .. Connect_Table.Last loop
         declare
            E : Connect_Entry renames Connect_Table.Table (I);
         begin
            Set_Connect (E.Formal_Instance, E.Formal,
                         E.Actual_Instance, E.Actual,
                         E.Inter, E.Assoc);
         end;
      end loop;

      Instance_Pool := null;
   end Create_Connects;

   procedure Set_Disconnection (Val : Iir_Value_Literal_Acc;
                                Time : Iir_Value_Time) is
   begin
      case Val.Kind is
         when Iir_Value_Signal =>
            Grt.Signals.Ghdl_Signal_Set_Disconnect (Val.Sig, Std_Time (Time));
         when Iir_Value_Record =>
            for I in Val.Val_Record.V'Range loop
               Set_Disconnection (Val.Val_Record.V (I), Time);
            end loop;
         when Iir_Value_Array =>
            for I in Val.Val_Array.V'Range loop
               Set_Disconnection (Val.Val_Array.V (I), Time);
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Set_Disconnection;

   procedure Create_Disconnections is
   begin
      for I in Disconnection_Table.First .. Disconnection_Table.Last loop
         declare
            E : Disconnection_Entry renames Disconnection_Table.Table (I);
         begin
            Set_Disconnection (E.Sig, E.Time);
         end;
      end loop;
   end Create_Disconnections;

   procedure Create_Guard_Signal (Instance : Block_Instance_Acc;
                                  Sig_Guard : Iir_Value_Literal_Acc;
                                  Val_Guard : Iir_Value_Literal_Acc;
                                  Guard : Iir)
   is
      procedure Add_Guard_Sensitivity (Sig : Iir_Value_Literal_Acc) is
      begin
         case Sig.Kind is
            when Iir_Value_Signal =>
               Grt.Signals.Ghdl_Signal_Guard_Dependence (Sig.Sig);
            when Iir_Value_Array =>
               for I in Sig.Val_Array.V'Range loop
                  Add_Guard_Sensitivity (Sig.Val_Array.V (I));
               end loop;
            when Iir_Value_Record =>
               for I in Sig.Val_Record.V'Range loop
                  Add_Guard_Sensitivity (Sig.Val_Record.V (I));
               end loop;
            when others =>
               raise Internal_Error;
         end case;
      end Add_Guard_Sensitivity;

      Dep_List : Iir_List;
      Dep_It : List_Iterator;
      Dep : Iir;
      Data : Guard_Instance_Acc;
   begin
      Data := new Guard_Instance_Type'(Instance => Instance,
                                       Guard => Guard);
      Sig_Guard.Sig := Grt.Signals.Ghdl_Signal_Create_Guard
        (To_Ghdl_Value_Ptr (Val_Guard.B1'Address),
         Data.all'Address, Guard_Func'Access);
      Dep_List := Get_Guard_Sensitivity_List (Guard);
      Dep_It := List_Iterate (Dep_List);
      while Is_Valid (Dep_It) loop
         Dep := Get_Element (Dep_It);
         Add_Guard_Sensitivity (Execute_Name (Instance, Dep, True));
         Next (Dep_It);
      end loop;

      --  FIXME: free mem
   end Create_Guard_Signal;

   procedure Create_Implicit_Signal (Sig : Iir_Value_Literal_Acc;
                                     Val : Iir_Value_Literal_Acc;
                                     Time : Std_Time;
                                     Prefix : Iir_Value_Literal_Acc;
                                     Kind : Mode_Signal_Type)
   is
      procedure Register_Prefix (Pfx : Iir_Value_Literal_Acc) is
      begin
         case Pfx.Kind is
            when Iir_Value_Signal =>
               Grt.Signals.Ghdl_Signal_Attribute_Register_Prefix (Pfx.Sig);
            when Iir_Value_Array =>
               for I in Pfx.Val_Array.V'Range loop
                  Register_Prefix (Pfx.Val_Array.V (I));
               end loop;
            when Iir_Value_Record =>
               for I in Pfx.Val_Record.V'Range loop
                  Register_Prefix (Pfx.Val_Record.V (I));
               end loop;
            when others =>
               raise Internal_Error;
         end case;
      end Register_Prefix;
   begin
      case Kind is
         when Mode_Stable =>
            Sig.Sig := Grt.Signals.Ghdl_Create_Stable_Signal
              (To_Ghdl_Value_Ptr (Val.B1'Address), Time);
         when Mode_Quiet =>
            Sig.Sig := Grt.Signals.Ghdl_Create_Quiet_Signal
              (To_Ghdl_Value_Ptr (Val.B1'Address), Time);
         when Mode_Transaction =>
            Sig.Sig := Grt.Signals.Ghdl_Create_Transaction_Signal
              (To_Ghdl_Value_Ptr (Val.B1'Address));
         when others =>
            raise Internal_Error;
      end case;
      Register_Prefix (Prefix);
   end Create_Implicit_Signal;

   procedure Create_Delayed_Signal (Sig : Iir_Value_Literal_Acc;
                                    Val : Iir_Value_Literal_Acc;
                                    Pfx : Iir_Value_Literal_Acc;
                                    Time : Std_Time)
   is
      Val_Ptr : Ghdl_Value_Ptr;
   begin
      case Pfx.Kind is
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Create_Delayed_Signal
                 (Sig.Val_Array.V (I), Val.Val_Array.V (I),
                  Pfx.Val_Array.V (I), Time);
               end loop;
         when Iir_Value_Record =>
            for I in Pfx.Val_Record.V'Range loop
               Create_Delayed_Signal
                 (Sig.Val_Record.V (I), Val.Val_Record.V (I),
                  Pfx.Val_Array.V (I), Time);
            end loop;
         when Iir_Value_Signal =>
            case Iir_Value_Scalars (Val.Kind) is
               when Iir_Value_I64 =>
                  Val_Ptr := To_Ghdl_Value_Ptr (Val.I64'Address);
               when Iir_Value_E32 =>
                  Val_Ptr := To_Ghdl_Value_Ptr (Val.E32'Address);
               when Iir_Value_F64 =>
                  Val_Ptr := To_Ghdl_Value_Ptr (Val.F64'Address);
               when Iir_Value_B1 =>
                  Val_Ptr := To_Ghdl_Value_Ptr (Val.B1'Address);
               when Iir_Value_E8 =>
                  Val_Ptr := To_Ghdl_Value_Ptr (Val.E8'Address);
            end case;
            Sig.Sig := Grt.Signals.Ghdl_Create_Delayed_Signal
              (Pfx.Sig, Val_Ptr, Time);
         when others =>
            raise Internal_Error;
      end case;
   end Create_Delayed_Signal;

   -- Create a new signal, using DEFAULT as initial value.
   -- Set its number.
   procedure Create_User_Signal (Block: Block_Instance_Acc;
                                 Mode : Mode_Signal_Type;
                                 Signal: Iir;
                                 Sig : Iir_Value_Literal_Acc;
                                 Val : Iir_Value_Literal_Acc)
   is
      use Grt.Signals;

      procedure Create_Signal (Val : Iir_Value_Literal_Acc;
                               Sig : Iir_Value_Literal_Acc;
                               Sig_Type: Iir;
                               Already_Resolved : Boolean)
      is
         Sub_Resolved : Boolean := Already_Resolved;
         Resolv_Func : Iir;
         Resolv_Instance : Resolv_Instance_Acc;
      begin
         if not Already_Resolved
           and then Get_Kind (Sig_Type) in Iir_Kinds_Subtype_Definition
         then
            Resolv_Func := Get_Resolution_Indication (Sig_Type);
         else
            Resolv_Func := Null_Iir;
         end if;
         if Resolv_Func /= Null_Iir then
            Sub_Resolved := True;
            Resolv_Instance := new Resolv_Instance_Type'
              (Func => Get_Named_Entity (Resolv_Func),
               Block => Block,
               Sig => Sig);
            Grt.Signals.Ghdl_Signal_Create_Resolution
              (Resolution_Proc'Access,
               Resolv_Instance.all'Address,
               System.Null_Address,
               Ghdl_Index_Type (Get_Nbr_Of_Scalars (Val)));
         end if;
         case Val.Kind is
            when Iir_Value_Array =>
               declare
                  Sig_El_Type : constant Iir :=
                    Get_Element_Subtype (Get_Base_Type (Sig_Type));
               begin
                  for I in Val.Val_Array.V'Range loop
                     Create_Signal (Val.Val_Array.V (I), Sig.Val_Array.V (I),
                                    Sig_El_Type, Sub_Resolved);
                  end loop;
               end;
            when Iir_Value_Record =>
               declare
                  List : constant Iir_Flist := Get_Elements_Declaration_List
                    (Get_Base_Type (Sig_Type));
                  El : Iir_Element_Declaration;
               begin
                  for I in Val.Val_Record.V'Range loop
                     El := Get_Nth_Element (List, Natural (I - 1));
                     Create_Signal (Val.Val_Record.V (I), Sig.Val_Record.V (I),
                                    Get_Type (El), Sub_Resolved);
                  end loop;
               end;

            when Iir_Value_I64 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_I64
                 (To_Ghdl_Value_Ptr (Val.I64'Address),
                  null, System.Null_Address);
            when Iir_Value_B1 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_B1
                 (To_Ghdl_Value_Ptr (Val.B1'Address),
                  null, System.Null_Address);
            when Iir_Value_E8 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_E8
                 (To_Ghdl_Value_Ptr (Val.E8'Address),
                  null, System.Null_Address);
            when Iir_Value_E32 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_E32
                 (To_Ghdl_Value_Ptr (Val.E32'Address),
                  null, System.Null_Address);
            when Iir_Value_F64 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_F64
                 (To_Ghdl_Value_Ptr (Val.F64'Address),
                  null, System.Null_Address);

            when Iir_Value_Signal
              | Iir_Value_Range
              | Iir_Value_File
              | Iir_Value_Access
              | Iir_Value_Protected
              | Iir_Value_Quantity
              | Iir_Value_Terminal
              | Iir_Value_Instance =>
               raise Internal_Error;
         end case;
      end Create_Signal;

      Sig_Type: constant Iir := Get_Type (Signal);
      Kind : Kind_Signal_Type;

      type Iir_Kind_To_Kind_Signal_Type is
        array (Iir_Signal_Kind) of Kind_Signal_Type;
      Iir_Kind_To_Kind_Signal : constant Iir_Kind_To_Kind_Signal_Type :=
        (Iir_Register_Kind  => Kind_Signal_Register,
         Iir_Bus_Kind       => Kind_Signal_Bus);
   begin
      if Get_Guarded_Signal_Flag (Signal) then
         Kind := Iir_Kind_To_Kind_Signal (Get_Signal_Kind (Signal));
      else
         Kind := Kind_Signal_No;
      end if;

      Grt.Signals.Ghdl_Signal_Set_Mode (Mode, Kind, True);

      Create_Signal (Val, Sig, Sig_Type, False);
   end Create_User_Signal;

   procedure Create_Signals is
   begin
      for I in Signals_Table.First .. Signals_Table.Last loop
         declare
            E : Signal_Entry renames Signals_Table.Table (I);
         begin
            case E.Kind is
               when Mode_Guard =>
                  Create_Guard_Signal (E.Instance, E.Sig, E.Val, E.Decl);
               when Mode_Stable | Mode_Quiet | Mode_Transaction =>
                  Create_Implicit_Signal
                    (E.Sig, E.Val, E.Time, E.Prefix, E.Kind);
               when Mode_Delayed =>
                  Create_Delayed_Signal (E.Sig, E.Val, E.Prefix, E.Time);
               when Mode_Signal_User =>
                  Create_User_Signal
                    (E.Instance, E.Kind, E.Decl, E.Sig, E.Val);
               when Mode_Conv_In | Mode_Conv_Out | Mode_End =>
                  raise Internal_Error;
            end case;
         end;
      end loop;
   end Create_Signals;

   procedure Ghdl_Elaborate is
   begin
      Elaboration.Elaborate_Design (Top_Config);

      if Disp_Stats then
         Disp_Design_Stats;
      end if;

      if Disp_Ams then
         Debugger.AMS.Disp_Characteristic_Expressions;
      end if;

      -- There is no inputs.
      -- All the simulation is done via time, so it must be displayed.
      Disp_Time_Before_Values := True;

      -- Initialisation.
      if Trace_Simulation then
         Put_Line ("Initialisation:");
      end if;

      Create_Signals;
      Create_Connects;
      Create_Disconnections;
      Create_Processes;
      Create_PSL;

      if Disp_Tree then
         Debugger.Disp_Instances_Tree;
      end if;

      if Flag_Interractive then
         Debug (Reason_Elab);
      end if;
   end Ghdl_Elaborate;

   procedure Simulation_Entity (Top_Conf : Iir_Design_Unit)
   is
      use Grt.Errors;
      Stop : Boolean;
      Status : Integer;
   begin
      Break_Time := Std_Time'Last;

      Top_Config := Top_Conf;

      Grt.Errors.Error_Hook := Debug_Error'Access;

      if Flag_Interractive then
         Debug (Reason_Start);
      end if;

      Grt.Main.Run_Elab (Stop);
      if Stop then
         return;
      end if;

      Status := Grt.Main.Run_Through_Longjump
        (Grt.Processes.Simulation_Init'Access);

      if Status = 0 then
         loop
            Status := Grt.Main.Run_Through_Longjump
              (Grt.Processes.Simulation_Cycle'Access);
            exit when Status < 0 or Status = Run_Stop or Status = Run_Finished;

            if Grt.Processes.Next_Time >= Break_Time
              and then Break_Time /= Std_Time'Last
            then
               Debug (Reason_Time);
            end if;

            exit when Grt.Processes.Has_Simulation_Timeout;
         end loop;
      end if;

      Grt.Processes.Simulation_Finish;

      Grt.Main.Run_Finish (Status);
   exception
      when Debugger_Quit =>
         null;
      when Simulation_Finished =>
         null;
   end Simulation_Entity;
end Simul.Simulation.Main;