aboutsummaryrefslogtreecommitdiffstats
path: root/src/vhdl/translate/trans-chap5.adb
blob: 60c44b20880a2a07b15ecbdccc0bd3a10e89e9fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
--  Iir to ortho translator.
--  Copyright (C) 2002 - 2014 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GCC; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.

with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Trans.Chap2;
with Trans.Chap3;
with Trans.Chap4;
with Trans.Chap6;
with Trans.Chap7;
with Trans.Chap9;
with Trans_Decls; use Trans_Decls;
with Trans.Helpers2; use Trans.Helpers2;
with Trans.Foreach_Non_Composite;

package body Trans.Chap5 is
   use Trans.Helpers;

   procedure Save_Map_Env (Env : out Map_Env; Scope_Ptr : Var_Scope_Acc) is
   begin
      Env := (Scope_Ptr => Scope_Ptr,
              Scope => Scope_Ptr.all);
   end Save_Map_Env;

   procedure Restore_Map_Env (Env : Map_Env)
   is
      --  Avoid potential compiler bug with discriminant check.
      pragma Suppress (Discriminant_Check);
   begin
      Env.Scope_Ptr.all := Env.Scope;
   end Restore_Map_Env;

   procedure Set_Map_Env (Env : Map_Env) is
   begin
      --  In some cases, the previous environment is still needed (for example
      --  an implicit array conversion accesses to both the formal and the
      --  actual type).  Set ENV only if it is not null, in order not to erase
      --  the previous env.
      if not Is_Null (Env.Scope) then
         Restore_Map_Env (Env);
      end if;
   end Set_Map_Env;

   procedure Translate_Attribute_Specification
     (Spec : Iir_Attribute_Specification)
   is
      Spec_Expr : constant Iir := Get_Expression (Spec);
      Spec_Type : constant Iir := Get_Type (Spec_Expr);
      Attr      : constant Iir_Attribute_Declaration :=
        Get_Named_Entity (Get_Attribute_Designator (Spec));
      Mark      : Id_Mark_Type;
      Mark2     : Id_Mark_Type;
      Info      : Object_Info_Acc;
      Val       : Iir;
      Num       : Natural;
      Vtype     : O_Tnode;
   begin
      Push_Identifier_Prefix_Uniq (Mark);
      if Is_Anonymous_Type_Definition (Spec_Type) then
         Push_Identifier_Prefix (Mark2, "OT");
         Chap3.Translate_Subtype_Definition (Spec_Type, True);
         Pop_Identifier_Prefix (Mark2);
      end if;

      Num := 1;
      Val := Get_Attribute_Value_Spec_Chain (Spec);
      while Is_Valid (Val) loop
         Info := Add_Info (Val, Kind_Object);
         Vtype := Chap4.Get_Object_Type (Get_Info (Spec_Type), Mode_Value);
         if Get_Static_Attribute_Flag (Spec)
           and then Get_Expr_Staticness (Spec_Expr) = Locally
         then
            --  Create a global var so that the attribute can be referenced
            --  from outside.  This is possible only if the attribute is
            --  locally static.
            Info.Object_Var := Create_Global_Var
              (Create_Identifier (Attr, "V"), Vtype, Global_Storage);
         else
            Info.Object_Var := Create_Var
              (Create_Var_Identifier (Attr, "V", Num), Vtype, Global_Storage);
         end if;

         --  Create only one object if the expression is static.
         exit when Get_Expr_Staticness (Spec_Expr) /= None;

         Val := Get_Spec_Chain (Val);
         Num := Num + 1;
      end loop;
      Pop_Identifier_Prefix (Mark);
   end Translate_Attribute_Specification;

   procedure Elab_Attribute_Specification
     (Spec : Iir_Attribute_Specification)
   is
      Expr : constant Iir := Get_Expression (Spec);
      Val    : Iir;
   begin
      Val := Get_Attribute_Value_Spec_Chain (Spec);
      while Is_Valid (Val) loop
         Chap4.Elab_Object_Value (Val, Expr);
         exit when Get_Expr_Staticness (Expr) /= None;
         Val := Get_Spec_Chain (Val);
      end loop;
   end Elab_Attribute_Specification;

   procedure Gen_Elab_Disconnect_Non_Composite
     (Targ : Mnode; Targ_Type : Iir; Time : O_Dnode)
   is
      pragma Unreferenced (Targ_Type);
      Assoc : O_Assoc_List;
   begin
      Start_Association (Assoc, Ghdl_Signal_Set_Disconnect);
      New_Association
        (Assoc, New_Convert_Ov (New_Value (M2Lv (Targ)), Ghdl_Signal_Ptr));
      New_Association (Assoc, New_Obj_Value (Time));
      New_Procedure_Call (Assoc);
   end Gen_Elab_Disconnect_Non_Composite;

   function Gen_Elab_Disconnect_Prepare
     (Targ : Mnode; Targ_Type : Iir; Time : O_Dnode) return O_Dnode
   is
      pragma Unreferenced (Targ, Targ_Type);
   begin
      return Time;
   end Gen_Elab_Disconnect_Prepare;

   function Gen_Elab_Disconnect_Update_Data_Array
     (Time : O_Dnode; Targ_Type : Iir; Index : O_Dnode) return O_Dnode
   is
      pragma Unreferenced (Targ_Type, Index);
   begin
      return Time;
   end Gen_Elab_Disconnect_Update_Data_Array;

   function Gen_Elab_Disconnect_Update_Data_Record
     (Time : O_Dnode; Targ_Type : Iir; El : Iir_Element_Declaration)
     return O_Dnode
   is
      pragma Unreferenced (Targ_Type, El);
   begin
      return Time;
   end Gen_Elab_Disconnect_Update_Data_Record;

   procedure Gen_Elab_Disconnect is new Foreach_Non_Composite
     (Data_Type => O_Dnode,
      Composite_Data_Type => O_Dnode,
      Do_Non_Composite => Gen_Elab_Disconnect_Non_Composite,
      Prepare_Data_Array => Gen_Elab_Disconnect_Prepare,
      Update_Data_Array => Gen_Elab_Disconnect_Update_Data_Array,
      Prepare_Data_Record => Gen_Elab_Disconnect_Prepare,
      Update_Data_Record => Gen_Elab_Disconnect_Update_Data_Record);

   procedure Elab_Disconnection_Specification
     (Spec : Iir_Disconnection_Specification)
   is
      Val  : O_Dnode;
      List : constant Iir_Flist := Get_Signal_List (Spec);
      El   : Iir;
   begin
      Val := Create_Temp_Init
        (Std_Time_Otype,
         Chap7.Translate_Expression (Get_Expression (Spec)));
      for I in Flist_First .. Flist_Last (List) loop
         El := Get_Nth_Element (List, I);
         Gen_Elab_Disconnect (Chap6.Translate_Name (El, Mode_Signal),
                              Get_Type (El), Val);
      end loop;
   end Elab_Disconnection_Specification;

   type Connect_Mode is
     (
      --  Actual is a source for the formal.
      Connect_Source,

      --  Both.
      Connect_Both,

      --  Effective value of actual is the effective value of the formal.
      Connect_Effective,

      --  Actual is a value.
      Connect_Value
     );

   type Connect_Data is record
      Actual_Sig  : Mnode;
      Actual_Type : Iir;

      --  Mode of the connection.
      Mode : Connect_Mode;

      --  If true, formal signal is a copy of the actual.
      By_Copy : Boolean;
   end record;

   --  Connect_effective: FORMAL is set from ACTUAL.
   --  Connect_Source: ACTUAL is set from FORMAL (source of ACTUAL).
   procedure Connect_Scalar
     (Formal_Sig : Mnode; Formal_Type : Iir; Data : Connect_Data)
   is
      Act_Node, Form_Node : Mnode;
   begin
      if Data.By_Copy then
         New_Assign_Stmt (M2Lv (Formal_Sig), M2E (Data.Actual_Sig));
         return;
      end if;

      case Data.Mode is
         when Connect_Both =>
            Open_Temp;
            Act_Node := Stabilize (Data.Actual_Sig, True);
            Form_Node := Stabilize (Formal_Sig, True);
         when Connect_Source
            | Connect_Effective =>
            Act_Node := Data.Actual_Sig;
            Form_Node := Formal_Sig;
         when Connect_Value =>
            null;
      end case;

      if Data.Mode in Connect_Source .. Connect_Both then
         --  Formal is a source to actual.
         declare
            Constr : O_Assoc_List;
         begin
            Start_Association (Constr, Ghdl_Signal_Add_Source);
            New_Association (Constr, New_Convert_Ov (M2E (Act_Node),
                             Ghdl_Signal_Ptr));
            New_Association (Constr, New_Convert_Ov (M2E (Form_Node),
                             Ghdl_Signal_Ptr));
            New_Procedure_Call (Constr);
         end;
      end if;

      if Data.Mode in Connect_Both .. Connect_Effective then
         --  The effective value of formal is the effective value of actual.
         declare
            Constr : O_Assoc_List;
         begin
            Start_Association (Constr, Ghdl_Signal_Effective_Value);
            New_Association (Constr, New_Convert_Ov (M2E (Form_Node),
                             Ghdl_Signal_Ptr));
            New_Association (Constr, New_Convert_Ov (M2E (Act_Node),
                             Ghdl_Signal_Ptr));
            New_Procedure_Call (Constr);
         end;
      end if;

      if Data.Mode = Connect_Value then
         declare
            Type_Info : constant Type_Info_Acc := Get_Info (Formal_Type);
            Subprg    : O_Dnode;
            Constr    : O_Assoc_List;
            Conv      : O_Tnode;
         begin
            case Type_Info.Type_Mode is
               when Type_Mode_B1 =>
                  Subprg := Ghdl_Signal_Associate_B1;
                  Conv := Ghdl_Bool_Type;
               when Type_Mode_E8 =>
                  Subprg := Ghdl_Signal_Associate_E8;
                  Conv := Ghdl_I32_Type;
               when Type_Mode_E32 =>
                  Subprg := Ghdl_Signal_Associate_E32;
                  Conv := Ghdl_I32_Type;
               when Type_Mode_I32
                 | Type_Mode_P32 =>
                  Subprg := Ghdl_Signal_Associate_I32;
                  Conv := Ghdl_I32_Type;
               when Type_Mode_P64 =>
                  Subprg := Ghdl_Signal_Associate_I64;
                  Conv := Ghdl_I64_Type;
               when Type_Mode_F64 =>
                  Subprg := Ghdl_Signal_Associate_F64;
                  Conv := Ghdl_Real_Type;
               when others =>
                  Error_Kind ("connect_scalar", Formal_Type);
            end case;
            Start_Association (Constr, Subprg);
            New_Association (Constr,
                             New_Convert_Ov (New_Value (M2Lv (Formal_Sig)),
                                             Ghdl_Signal_Ptr));
            New_Association (Constr,
                             New_Convert_Ov (M2E (Data.Actual_Sig), Conv));
            New_Procedure_Call (Constr);
         end;
      end if;

      if Data.Mode = Connect_Both then
         Close_Temp;
      end if;
   end Connect_Scalar;

   function Connect_Prepare_Data_Composite
     (Targ : Mnode; Formal_Type : Iir; Data : Connect_Data)
     return Connect_Data
   is
      pragma Unreferenced (Targ, Formal_Type);
      Res   : Connect_Data;
      Atype : constant Iir := Get_Base_Type (Data.Actual_Type);
   begin
      if Get_Kind (Atype) = Iir_Kind_Record_Type_Definition then
         Res := Data;
         Stabilize (Res.Actual_Sig);
         return Res;
      else
         return Data;
      end if;
   end Connect_Prepare_Data_Composite;

   function Connect_Update_Data_Array
     (Data : Connect_Data; Formal_Type : Iir; Index : O_Dnode)
     return Connect_Data
   is
      pragma Unreferenced (Formal_Type);
      Res : Connect_Data;
   begin
      --  FIXME: should check matching elements!
      Res := (Actual_Sig => Chap6.Translate_Indexed_Name_By_Offset
                (Data.Actual_Sig, Data.Actual_Type, Index),
              Actual_Type => Get_Element_Subtype (Data.Actual_Type),
              Mode => Data.Mode,
              By_Copy => Data.By_Copy);
      return Res;
   end Connect_Update_Data_Array;

   function Connect_Update_Data_Record
     (Data : Connect_Data; Formal_Type : Iir; El : Iir_Element_Declaration)
     return Connect_Data
   is
      pragma Unreferenced (Formal_Type);
      Res : Connect_Data;
      Fel : Iir;
   begin
      Fel := Get_Nth_Element
        (Get_Elements_Declaration_List (Data.Actual_Type),
         Natural (Get_Element_Position (El)));
      Res := (Actual_Sig =>
                Chap6.Translate_Selected_Element (Data.Actual_Sig, Fel),
              Actual_Type => Get_Type (Fel),
              Mode => Data.Mode,
              By_Copy => Data.By_Copy);
      return Res;
   end Connect_Update_Data_Record;

   procedure Connect is new Foreach_Non_Composite
     (Data_Type => Connect_Data,
      Composite_Data_Type => Connect_Data,
      Do_Non_Composite => Connect_Scalar,
      Prepare_Data_Array => Connect_Prepare_Data_Composite,
      Update_Data_Array => Connect_Update_Data_Array,
      Prepare_Data_Record => Connect_Prepare_Data_Composite,
      Update_Data_Record => Connect_Update_Data_Record);

   procedure Elab_Port_Map_Aspect_Assoc (Assoc : Iir;
                                         Formal : Iir;
                                         By_Copy : Boolean;
                                         Formal_Env : Map_Env;
                                         Actual_Env : Map_Env)
   is
      Actual      : constant Iir := Strip_Reference_Name (Get_Actual (Assoc));
      Formal_Type : constant Iir := Get_Type (Formal);
      Actual_Type : constant Iir := Get_Type (Actual);
      Port        : constant Iir := Get_Interface_Of_Formal (Formal);
      Formal_Tinfo : Type_Info_Acc;
      Formal_Sig  : Mnode;
      Formal_Val  : Mnode;
      Actual_Sig  : Mnode;
      Actual_Val  : Mnode;
      Init_Node   : Mnode;
      Actual_En   : O_Enode;
      Data        : Connect_Data;
      Mode        : Connect_Mode;
   begin
      pragma Assert
        (Get_Kind (Assoc) = Iir_Kind_Association_Element_By_Expression);

      Open_Temp;
      if Get_Actual_Conversion (Assoc) = Null_Iir
        and then Get_Formal_Conversion (Assoc) = Null_Iir
      then
         --  Usual case: without conversions.
         if Is_Signal_Name (Actual) then
            --  LRM93 4.3.1.2
            --  For a signal of a scalar type, each source is either
            --  a driver or an OUT, INOUT, BUFFER or LINKAGE port of
            --  a component instance or of a block statement with
            --  which the signals associated.

            --  LRM93 12.6.2
            --  For a scalar signal S, the effective value of S is
            --  determined in the following manner:
            --  *  If S is [...] a port of mode BUFFER or [...],
            --     then the effective value of S is the same as
            --     the driving value of S.
            --  *  If S is a connected port of mode IN or INOUT,
            --     then the effective value of S is the same as
            --     the effective value of the actual part of the
            --     association element that associates an actual
            --     with S.
            --  *  [...]
            case Get_Mode (Port) is
               when Iir_In_Mode =>
                  Mode := Connect_Effective;
               when Iir_Inout_Mode =>
                  Mode := Connect_Both;
               when Iir_Out_Mode
                  | Iir_Buffer_Mode
                  | Iir_Linkage_Mode =>
                  Mode := Connect_Source;
               when Iir_Unknown_Mode =>
                  raise Internal_Error;
            end case;

            if By_Copy then
               Set_Map_Env (Actual_Env);
               Chap6.Translate_Signal_Name (Actual, Actual_Sig, Actual_Val);
               Set_Map_Env (Formal_Env);
               Chap6.Translate_Signal_Name (Formal, Formal_Sig, Formal_Val);

               --  Copy pointer to the values.
               Formal_Tinfo := Get_Info (Formal_Type);
               --  Need to convert base, as you can assign a bounded type
               --  to an unbounded type (or the opposite).  Maybe convert
               --  only when needed ?  Subtype matching is checked below.
               case Formal_Tinfo.Type_Mode is
                  when Type_Mode_Unbounded_Array
                     | Type_Mode_Unbounded_Record =>
                     New_Assign_Stmt
                       (M2Lp (Chap3.Get_Composite_Base (Formal_Val)),
                        New_Convert_Ov
                          (M2Addr (Chap3.Get_Composite_Base (Actual_Val)),
                           Formal_Tinfo.B.Base_Ptr_Type (Mode_Value)));
                  when Type_Mode_Bounded_Arrays
                     | Type_Mode_Bounded_Records =>
                     New_Assign_Stmt
                       (M2Lp (Formal_Val),
                        New_Convert_Ov
                          (M2Addr (Chap3.Get_Composite_Base (Actual_Val)),
                           Formal_Tinfo.Ortho_Ptr_Type (Mode_Value)));
                  when others =>
                     New_Assign_Stmt
                       (M2Lp (Formal_Val), M2Addr (Actual_Val));
               end case;
            else
               Set_Map_Env (Actual_Env);
               Actual_Sig := Chap6.Translate_Name (Actual, Mode_Signal);
               Set_Map_Env (Formal_Env);
               Formal_Sig := Chap6.Translate_Name (Formal, Mode_Signal);
            end if;

         else
            --  Association by value.  The formal cannot be referenced in the
            --  actual, but the type of the formal may be used by the actual.
            Set_Map_Env (Formal_Env);
            Chap6.Translate_Signal_Name (Formal, Formal_Sig, Formal_Val);
            Actual_En := Chap7.Translate_Expression (Actual, Formal_Type);
            Actual_Sig := E2M (Actual_En, Get_Info (Formal_Type), Mode_Value);
            Mode := Connect_Value;
--            raise Internal_Error;
         end if;

         if Get_Kind (Formal_Type) in Iir_Kinds_Array_Type_Definition then
            --  Check length matches.
            --  FIXME: records ?
            Stabilize (Formal_Sig);
            Stabilize (Actual_Sig);
            Chap3.Check_Composite_Match (Formal_Type, Formal_Sig,
                                         Actual_Type, Actual_Sig,
                                         Assoc);
         end if;

         Data := (Actual_Sig => Actual_Sig,
                  Actual_Type => Actual_Type,
                  Mode => Mode,
                  By_Copy => By_Copy);
         Connect (Formal_Sig, Formal_Type, Data);

         --  Set driving value
         if By_Copy
           and then (Mode = Connect_Both or Mode = Connect_Source)
         then
            Formal_Sig := Chap6.Translate_Name (Formal, Mode_Signal);

            if Is_Valid (Get_Default_Value (Port)) then
               Init_Node := Chap6.Get_Port_Init_Value (Formal);
            else
               Init_Node := Mnode_Null;
            end if;
            Chap9.Gen_Port_Init_Driving
              (Formal_Sig, Formal_Type, Init_Node);
         end if;
      else
         if Get_Actual_Conversion (Assoc) /= Null_Iir then
            Chap4.Elab_In_Conversion (Assoc, Formal, Actual_Sig);
            Set_Map_Env (Formal_Env);
            Formal_Sig := Chap6.Translate_Name (Formal, Mode_Signal);
            Data := (Actual_Sig => Actual_Sig,
                     Actual_Type => Formal_Type,
                     Mode => Connect_Effective,
                     By_Copy => False);
            Connect (Formal_Sig, Formal_Type, Data);
            Set_Map_Env (Actual_Env);
         end if;
         if Get_Formal_Conversion (Assoc) /= Null_Iir then
            --  flow: FORMAL to ACTUAL
            Chap4.Elab_Out_Conversion (Assoc, Formal, Formal_Sig);
            Set_Map_Env (Actual_Env);
            Actual_Sig := Chap6.Translate_Name (Actual, Mode_Signal);
            Data := (Actual_Sig => Actual_Sig,
                     Actual_Type => Actual_Type,
                     Mode => Connect_Source,
                     By_Copy => False);
            Set_Map_Env (Formal_Env);
            Connect (Formal_Sig, Actual_Type, Data);
         end if;
      end if;

      Close_Temp;
   end Elab_Port_Map_Aspect_Assoc;

   function Alloc_Bounds (Atype : Iir; Alloc : Allocation_Kind) return Mnode
   is
      Tinfo : constant Type_Info_Acc := Get_Info (Atype);
      Var : O_Dnode;
   begin
      Var := Create_Temp (Tinfo.B.Bounds_Ptr_Type);
      New_Assign_Stmt
        (New_Obj (Var),
         Gen_Alloc (Alloc,
                    New_Lit (New_Sizeof (Tinfo.B.Bounds_Type,
                                         Ghdl_Index_Type)),
                    Tinfo.B.Bounds_Ptr_Type));
      return Dp2M (Var, Tinfo, Mode_Value,
                   Tinfo.B.Bounds_Type,
                   Tinfo.B.Bounds_Ptr_Type);
   end Alloc_Bounds;

   function Get_Unconstrained_Port_Bounds (Assoc : Iir; Inter : Iir)
                                          return Mnode
   is
      Actual : constant Iir := Get_Actual (Assoc);
      Actual_Type : constant Iir := Get_Type (Actual);
      In_Conv : constant Iir := Get_Actual_Conversion (Assoc);
      Out_Conv : constant Iir := Get_Formal_Conversion (Assoc);

      function Get_Actual_Bounds (Save : Boolean) return Mnode
      is
         Tinfo       : Type_Info_Acc;
         Bounds : Mnode;
         Bounds_Copy : Mnode;
      begin
         if Is_Fully_Constrained_Type (Actual_Type) then
            Chap3.Create_Composite_Subtype (Actual_Type);
            Bounds := Chap3.Get_Composite_Type_Bounds (Actual_Type);
            Tinfo := Get_Info (Actual_Type);
            if Save
              and then
                Chap3.Get_Composite_Type_Layout_Alloc (Tinfo) = Alloc_Stack
            then
               --  We need a copy.
               Bounds_Copy := Alloc_Bounds (Actual_Type, Alloc_System);
               Chap3.Copy_Bounds (Bounds_Copy, Bounds, Actual_Type);
               return Bounds_Copy;
            else
               return Bounds;
            end if;
         else
            --  Actual type is unconstrained, but as this is an object reads
            --  bounds from the object.
            return Chap3.Get_Composite_Bounds
              (Chap6.Translate_Name (Actual, Mode_Signal));
         end if;
      end Get_Actual_Bounds;

      In_Conv_Type : Iir;
      Param_Type : Iir;
      Res_Type : Iir;
      Bounds : Mnode;
      Can_Convert : Boolean;
      Res : Mnode;
   begin
      if In_Conv = Null_Iir and then Out_Conv = Null_Iir then
         --  The easy and usual case.  Get bounds from the actual.
         return Get_Actual_Bounds (True);
      end if;

      Can_Convert := False;
      if In_Conv /= Null_Iir then
         In_Conv_Type := Get_Type (In_Conv);
         if Is_Fully_Constrained_Type (In_Conv_Type) then
            --  The 'in' conversion gives the type.
            return Chap3.Get_Composite_Type_Bounds (In_Conv_Type);
         elsif Get_Kind (In_Conv) = Iir_Kind_Type_Conversion then
            --  Convert bounds of the actual.
            Can_Convert := True;
         else
            pragma Assert (Get_Kind (In_Conv) = Iir_Kind_Function_Call);
            --  Cannot use anything from the in conversion.
            null;
         end if;
      end if;
      if Out_Conv /= Null_Iir then
         if Get_Kind (Out_Conv) = Iir_Kind_Function_Call then
            Param_Type := Get_Type (Get_Interface_Declaration_Chain
                                      (Get_Implementation (Out_Conv)));
            if Is_Fully_Constrained_Type (Param_Type) then
               return Chap3.Get_Composite_Type_Bounds (Param_Type);
            else
               pragma Assert (Can_Convert);
               null;
            end if;
         else
            pragma Assert (Get_Kind (Out_Conv) = Iir_Kind_Type_Conversion);
            --  Automatically convert actual type to the formal type.
            Can_Convert := True;
         end if;
      end if;

      pragma Assert (Can_Convert);
      Res_Type := Get_Type (Get_Association_Interface (Assoc, Inter));
      Bounds := Get_Actual_Bounds (False);
      Res := Alloc_Bounds (Res_Type, Alloc_System);
      Chap7.Translate_Type_Conversion_Bounds
        (Res, Bounds, Res_Type, Actual_Type, Assoc);
      return Res;
   end Get_Unconstrained_Port_Bounds;

   --  Set bounds for PORT.
   procedure Elab_Unconstrained_Port_Bounds (Port : Iir; Assoc : Iir)
   is
      Info : Signal_Info_Acc;
      Bounds : Mnode;
      Act_Node : Mnode;
   begin
      Open_Temp;
      case Iir_Kinds_Association_Element_Parameters (Get_Kind (Assoc)) is
         when Iir_Kind_Association_Element_By_Expression =>
            pragma Assert (Get_Whole_Association_Flag (Assoc));
            Bounds := Get_Unconstrained_Port_Bounds (Assoc, Port);
         when Iir_Kind_Association_Element_Open =>
            declare
               Actual_Type : constant Iir :=
                 Get_Type (Get_Default_Value (Port));
            begin
               Chap3.Create_Composite_Subtype (Actual_Type);
               Bounds := Chap3.Get_Composite_Type_Bounds (Actual_Type);
            end;
         when Iir_Kind_Association_Element_By_Individual =>
            declare
               Actual_Type : constant Iir := Get_Actual_Type (Assoc);
            begin
               Chap3.Translate_Anonymous_Subtype_Definition
                 (Actual_Type, False);
               Chap3.Create_Composite_Subtype (Actual_Type);
               Bounds := Chap3.Get_Composite_Type_Bounds (Actual_Type);
            end;
      end case;

      Stabilize (Bounds);
      for K in Object_Kind_Type loop
         Act_Node := Chap6.Translate_Name (Port, K);
         --  Note: this works only because it is not stabilized, and
         --  therefore the bounds field is returned and not a pointer to
         --  the bounds.
         New_Assign_Stmt (M2Lp (Chap3.Get_Composite_Bounds (Act_Node)),
                          M2Addr (Bounds));
      end loop;

      --  Set bounds of init value (if present)
      Info := Get_Info (Port);
      if Info.Signal_Val /= Null_Var then
         New_Assign_Stmt (M2Lp (Chap3.Get_Composite_Bounds
                                  (Chap6.Get_Port_Init_Value (Port))),
                          M2Addr (Bounds));
      end if;
      Close_Temp;
   end Elab_Unconstrained_Port_Bounds;

   procedure Elab_Port_Map_Aspect
     (Header : Iir; Map : Iir; Block_Parent : Iir; Formal_Env : Map_Env)
   is
      Actual_Env : Map_Env;
      Assoc : Iir;
      Inter : Iir;
      Value : Iir;
   begin
      Save_Map_Env (Actual_Env, Formal_Env.Scope_Ptr);

      --  Ports.
      Assoc := Get_Port_Map_Aspect_Chain (Map);
      Inter := Get_Port_Chain (Header);
      while Assoc /= Null_Iir loop
         declare
            Formal : constant Iir := Get_Association_Formal (Assoc, Inter);
            Formal_Base : constant Iir := Get_Interface_Of_Formal (Formal);
            Fb_Type : constant Iir := Get_Type (Formal_Base);
            Fbt_Info : constant Type_Info_Acc := Get_Info (Fb_Type);
         begin
            Set_Map_Env (Formal_Env);

            --  Set bounds of unbounded ports.
            if Get_Whole_Association_Flag (Assoc)
              and then Fbt_Info.Type_Mode in Type_Mode_Unbounded
            then
               Elab_Unconstrained_Port_Bounds (Formal, Assoc);
            end if;

            --  Allocate storage of ports.
            --  (Only once for each port, individual association are ignored).
            Open_Temp;
            case Iir_Kinds_Association_Element_Parameters (Get_Kind (Assoc)) is
               when Iir_Kind_Association_Element_By_Individual
                 | Iir_Kind_Association_Element_Open =>
                  pragma Assert (Get_Whole_Association_Flag (Assoc));
                  Chap4.Elab_Signal_Declaration_Storage (Formal, False);
               when Iir_Kind_Association_Element_By_Expression =>
                  if Get_Whole_Association_Flag (Assoc) then
                     Chap4.Elab_Signal_Declaration_Storage
                       (Formal, Get_Collapse_Signal_Flag (Assoc));
                  end if;
            end case;
            Close_Temp;

            --  Create or copy signals.
            Open_Temp;
            case Iir_Kinds_Association_Element_Parameters (Get_Kind (Assoc)) is
               when Iir_Kind_Association_Element_By_Expression =>
                  if Get_Whole_Association_Flag (Assoc) then
                     if Get_Collapse_Signal_Flag (Assoc) then
                        Value := Get_Default_Value (Formal_Base);
                        if Is_Valid (Value) then
                           --  Set default value.
                           Chap9.Destroy_Types (Value);
                           Chap4.Elab_Object_Init
                             (Get_Var (Get_Info (Formal_Base).Signal_Val,
                                       Fbt_Info, Mode_Value),
                              Inter, Value, Alloc_System);
                        end if;
                        --  For collapsed association, copy signals.
                        Elab_Port_Map_Aspect_Assoc
                          (Assoc, Formal, True, Formal_Env, Actual_Env);
                     else
                        --  Create non-collapsed signals.
                        Chap4.Elab_Signal_Declaration_Object
                          (Formal, Block_Parent, False);
                        --  And associate.
                        Elab_Port_Map_Aspect_Assoc
                          (Assoc, Formal, False, Formal_Env, Actual_Env);
                     end if;
                  else
                     --  By sub-element.
                     --  Never collapsed, signal was already created (by the
                     --  By_Individual association).
                     --  And associate.
                     Elab_Port_Map_Aspect_Assoc
                       (Assoc, Formal, False, Formal_Env, Actual_Env);
                  end if;
               when Iir_Kind_Association_Element_Open
                 | Iir_Kind_Association_Element_By_Individual =>
                  --  Create non-collapsed signals.
                  pragma Assert (Get_Whole_Association_Flag (Assoc));
                  Chap4.Elab_Signal_Declaration_Object
                    (Formal, Block_Parent, False);
            end case;
            Close_Temp;
         end;
         Next_Association_Interface (Assoc, Inter);
      end loop;
      Restore_Map_Env (Actual_Env);
   end Elab_Port_Map_Aspect;

   procedure Elab_Generic_Map_Aspect
     (Header : Iir; Map : Iir; Formal_Env : Map_Env)
   is
      Actual_Env : Map_Env;
      Assoc  : Iir;
      Formal : Iir;
      Inter : Iir;
   begin
      Save_Map_Env (Actual_Env, Formal_Env.Scope_Ptr);

      --  Elab generics, and associate.
      Assoc := Get_Generic_Map_Aspect_Chain (Map);
      Inter := Get_Generic_Chain (Header);
      while Assoc /= Null_Iir loop
         Formal := Get_Association_Formal (Assoc, Inter);
         Open_Temp;
         case Get_Kind (Assoc) is
            when Iir_Kind_Association_Element_By_Expression =>
               declare
                  Targ : Mnode;
               begin
                  if Get_Whole_Association_Flag (Assoc) then
                     Set_Map_Env (Formal_Env);
                     Chap4.Elab_Object_Storage (Formal);
                     Targ := Chap6.Translate_Name (Formal, Mode_Value);
                     Set_Map_Env (Actual_Env);
                     Chap4.Elab_Object_Init
                       (Targ, Formal, Get_Actual (Assoc), Alloc_System);
                  else
                     Set_Map_Env (Formal_Env);
                     Targ := Chap6.Translate_Name (Formal, Mode_Value);
                     Set_Map_Env (Actual_Env);
                     Chap7.Translate_Assign
                       (Targ, Get_Actual (Assoc), Get_Type (Formal));
                  end if;
               end;
            when Iir_Kind_Association_Element_Open =>
               case Get_Kind (Formal) is
                  when Iir_Kind_Interface_Constant_Declaration =>
                     declare
                        Value : constant Iir := Get_Default_Value (Formal);
                     begin
                        pragma Assert (Is_Valid (Value));
                        Set_Map_Env (Formal_Env);
                        Chap4.Elab_Object_Value (Formal, Value);
                        Chap9.Destroy_Types (Value);
                        Set_Map_Env (Actual_Env);
                     end;
                  when Iir_Kind_Interface_Package_Declaration =>
                     --  The package interface have generics and implicitly
                     --  defines an instantiated package.
                     pragma Assert
                       (Get_Generic_Map_Aspect_Chain (Formal) /= Null_Iir);
                     Set_Map_Env (Formal_Env);
                     Chap2.Elab_Package_Instantiation_Declaration (Formal);
                     Set_Map_Env (Actual_Env);
                  when others =>
                     Error_Kind ("elab_generic_map_aspect(open)", Formal);
               end case;
            when Iir_Kind_Association_Element_By_Individual =>
               --  Create the object.
               declare
                  Formal_Type : constant Iir := Get_Type (Formal);
                  Obj_Info    : constant Object_Info_Acc := Get_Info (Formal);
                  Obj_Type    : constant Iir := Get_Actual_Type (Assoc);
                  Formal_Node : Mnode;
                  Type_Info   : Type_Info_Acc;
                  Bounds      : Mnode;
               begin
                  Set_Map_Env (Formal_Env);
                  Chap3.Elab_Object_Subtype_Indication (Formal); -- FIXME?
                  Type_Info := Get_Info (Formal_Type);
                  Formal_Node := Get_Var
                    (Obj_Info.Object_Var, Type_Info, Mode_Value);
                  Stabilize (Formal_Node);
                  if Obj_Type = Null_Iir then
                     Chap4.Allocate_Complex_Object
                       (Formal_Type, Alloc_System, Formal_Node);
                  else
                     Chap3.Create_Composite_Subtype (Obj_Type);
                     Bounds := Chap3.Get_Composite_Type_Bounds (Obj_Type);
                     Chap3.Translate_Object_Allocation
                       (Formal_Node, Alloc_System, Formal_Type, Bounds);
                  end if;
                  Set_Map_Env (Actual_Env);
               end;
            when Iir_Kind_Association_Element_Package =>
               pragma Assert (Get_Kind (Formal) =
                                Iir_Kind_Interface_Package_Declaration);
               declare
                  Uninst_Pkg  : constant Iir :=
                    Get_Uninstantiated_Package_Decl (Formal);
                  Uninst_Info : constant Ortho_Info_Acc :=
                    Get_Info (Uninst_Pkg);
                  Formal_Info : constant Ortho_Info_Acc := Get_Info (Formal);
                  Actual      : constant Iir := Get_Named_Entity
                    (Get_Actual (Assoc));
                  Actual_Info : constant Ortho_Info_Acc := Get_Info (Actual);
               begin
                  New_Assign_Stmt
                    (Get_Var (Formal_Info.Package_Instance_Spec_Var),
                     New_Address
                       (Get_Instance_Ref
                            (Actual_Info.Package_Instance_Spec_Scope),
                        Uninst_Info.Package_Spec_Ptr_Type));
                  New_Assign_Stmt
                    (Get_Var (Formal_Info.Package_Instance_Body_Var),
                     New_Address
                       (Get_Instance_Ref
                            (Actual_Info.Package_Instance_Body_Scope),
                        Uninst_Info.Package_Body_Ptr_Type));
               end;
            when Iir_Kind_Association_Element_Type
              | Iir_Kind_Association_Element_Subprogram =>
               null;
            when others =>
               Error_Kind ("elab_generic_map_aspect(1)", Assoc);
         end case;
         Close_Temp;
         Next_Association_Interface (Assoc, Inter);
      end loop;
      Restore_Map_Env (Actual_Env);
   end Elab_Generic_Map_Aspect;

   procedure Elab_Map_Aspect
     (Header : Iir; Maps : Iir; Block_Parent : Iir; Formal_Env : Map_Env) is
   begin
      --  The use of FORMAL_ENV (and then later ACTUAL_ENV) is rather fragile
      --  as in some cases both the formal and the actual are referenced in the
      --  same time (like Check_Array_Match).  But the env are different only
      --  in case of direct recursive instantation (rare).  To stay on the safe
      --  side, FORMAL_ENV must be active/set.

      --  The generic map must be done before the elaboration of
      --  the ports, since a port subtype may depend on a generic.
      Elab_Generic_Map_Aspect (Header, Maps, Formal_Env);

      Elab_Port_Map_Aspect (Header, Maps, Block_Parent, Formal_Env);
   end Elab_Map_Aspect;
end Trans.Chap5;